
Rational subsets and submonoids of wreath productsI

Markus Lohreya, Benjamin Steinbergb,1, Georg Zetzschec

aUniversität Siegen, Department für Elektrotechnik und Informatik
bCity College of New York, Department of Mathematics

cTechnische Universität Kaiserslautern, Fachbereich Informatik

Abstract

It is shown that membership in rational subsets of wreath products H o V
with H a finite group and V a virtually free group is decidable. On the other
hand, it is shown that there exists a fixed finitely generated submonoid in
the wreath product Z o Z with an undecidable membership problem.

1. Introduction

The study of algorithmic problems in group theory has a long tradition.
Dehn, in his seminal paper from 1911 [8], introduced the word problem (Does
a given word over the generators represent the identity?), the conjugacy
problem (Are two given group elements conjugate?) and the isomorphism
problem (Are two given finitely presented groups isomorphic?), see [28] for
general references in combinatorial group theory. Starting with the work of
Novikov and Boone from the 1950’s, all three problems were shown to be
undecidable for finitely presented groups in general. A generalization of the
word problem is the subgroup membership problem (also known as the gen-
eralized word problem) for finitely generated groups: Given group elements
g, g1, . . . , gn, does g belong to the subgroup generated by g1, . . . , gn? Explic-
itly, this problem was introduced by Mihailova in 1958, although Nielsen had
already presented an algorithm for the subgroup membership problem for
free groups in his paper from 1921 [31].

Motivated partly by automata theory, the subgroup membership problem
was further generalized to the rational subset membership problem. Assume

IThis work was supported by the DAAD research project RatGroup.
1This author was partially supported by a grant from the Simons Foundation (#245268

to Benjamin Steinberg).

Preprint submitted to Information and Computation February 22, 2014

that the group G is finitely generated by the set X (where a ∈ X if and only
if a−1 ∈ X). A finite automaton A with transitions labeled by elements of X
defines a subset L(A) ⊆ G in the natural way; such subsets are the rational
subsets of G. The rational subset membership problem asks whether a given
group element belongs to L(A) for a given finite automaton (in fact, this
problem makes sense for any finitely generated monoid). The notion of a
rational subset of a monoid can be traced back to the work of Eilenberg and
Schützenberger from 1969 [11]. Other early references are [1, 14]. Rational
subsets of groups also found applications for the solution of word equations
(here, quite often the term rational constraint is used) [9, 23]. In automata
theory, rational subsets are tightly related to valence automata: For any
group G, the emptiness problem for valence automata over G (which are also
known as G-automata) is decidable if and only if G has a decidable rational
subset membership problem. See [12, 19, 20] for details on valence automata
and G-automata.

For free groups, Benois [2] proved that the rational subset membership
problem is decidable using a classical automaton saturation procedure (which
yields a polynomial time algorithm). For commutative groups, the ratio-
nal subset membership can be solved using integer programming. Further
(un)decidability results on the rational subset membership problem can be
found in [24] for right-angled Artin groups, in [32] for nilpotent groups, and
in [26] for metabelian groups. In general, groups with a decidable rational
subset membership problem seem to be rare. In [25] it was shown that if the
group G has at least two ends, then the rational subset membership problem
for G is decidable if and only if the submonoid membership problem for G
(Does a given element of G belong to a given finitely generated submonoid
of G?) is decidable.

In this paper, we investigate the rational subset membership problem for
wreath products. The wreath product is a fundamental operation in group
theory. To define the wreath product H oG of two groups G and H, one first
takes the direct sum K =

⊕
g∈GH of copies of H, one for each element of

G. An element g ∈ G acts on K by permuting the copies of H according to
the left action of g on G. The corresponding semidirect product K o G is
the wreath product H oG.

In contrast to the word problem, decidability of the rational subset mem-
bership problem is not preserved under wreath products. For instance, in [26]
it was shown that for every non-trivial group H, the rational subset member-
ship problem for H o (Z×Z) is undecidable. The proof uses an encoding of a

2

tiling problem, which uses the grid structure of the Cayley graph of Z× Z.
In this paper, we prove the following two new results concerning the ra-

tional subset membership problem and the submonoid membership problem
for wreath products:

(i) The submonoid membership problem is undecidable for Z o Z. The
wreath product Z o Z is one of the simplest examples of a finitely gen-
erated group that is not finitely presented, see [6, 7] for further results
showing the importance of Z o Z.

(ii) For every finite group H and every virtually free group2 V , the group
H oV has a decidable rational subset membership problem; this includes
for instance the famous lamplighter group Z2 o Z.

For the proof of (i) we encode the acceptance problem for a 2-counter machine
(Minsky machine [29]) into the submonoid membership problem for Z o Z.
One should remark that Z o Z is a finitely generated metabelian group and
hence has a decidable subgroup membership problem [33, 34]. For the proof
of (ii), an automaton saturation procedure is used. The termination of the
process is guaranteed by a well-quasi-order (wqo) that refines the classical
subsequence wqo considered by Higman [17].

Wqo theory has also been applied successfully for the verification of infi-
nite state systems. This research led to the notion of well-structured transi-
tion systems [13]. Applications in formal language theory are the decidability
of the membership problem for leftist grammars [30] and Kunc’s proof of the
regularity of the solutions of certain language equations [21]. A disadvantage
of using wqo theory is that the algorithms it yields are not accompanied by
complexity bounds. The membership problem for leftist grammars [18] and,
in the context of well-structured transition systems, several natural reacha-
bility problems [5, 36] (e.g. for lossy channel systems) have even been shown
not to be primitive recursive. The complexity status for the rational sub-
set membership problem for wreath products H o V (H finite, V virtually
free) thus remains open. Actually, we do not even know whether the ratio-
nal subset membership problem for the lamplighter group Z2 oZ is primitive
recursive.

As mentioned earlier, the rational subset membership problem is unde-
cidable for every wreath product H o (Z×Z), where H is a non-trivial group.

2Recall that a group is virtually free if it has a free subgroup of finite index.

3

We conjecture that this can be generalized to the following result: For ev-
ery non-trivial group H and every non-virtually free group G, the rational
subset membership problem for H oG is undecidable. The reason is that the
undecidability proof for H o (Z × Z) [26] only uses the grid-like structure
of the Cayley graph of Z × Z. In [22] it was shown that the Cayley graph
of a group G has bounded tree width if and only if the group is virtually
free. Hence, if G is not virtually free, then the Cayley-graph of G has un-
bounded tree width, which means that finite grids of arbitrary size appear as
minors in the Cayley-graph of G. One might therefore hope to again reduce
a tiling problem to the rational subset membership problem for H oG (for H
non-trivial and G not virtually free).

Our decidability result for the rational subset membership problem for
wreath products H o V with H finite and V virtually free can be also inter-
preted in terms of tree automata with additional data values. Consider a
tree walking automaton operating on infinite rooted trees. Every tree node
contains an additional data value from a finite group such that all but finitely
many nodes contain the group identity. Besides navigating in the tree, the
tree automaton can multiply (on the right) the group element from the cur-
rent tree node with another group element (specified by the transition). The
automaton cannot read the group element from the current node. Our de-
cidability result basically says that reachability for this automaton model is
decidable.

2. Rational subsets of groups

Let G be a finitely generated group and X a finite symmetric generating
set for G (symmetric means that X is closed under taking inverses). For
a subset B ⊆ G we denote with B∗ the submonoid of G generated by B.
The subgroup generated by B is 〈B〉. The set of rational subsets of G is the
smallest set that (i) contains all finite subsets ofG and (ii) that is closed under
union, product, and ∗. Alternatively, rational subsets can be represented by
finite automata. Let A = (Q,G,E, q0, QF) be a finite automaton, where
transitions are labeled with elements of G: Q is the finite set of states,
q0 ∈ Q is the initial state, QF ⊆ Q is the set of final states, and E ⊆
Q × G × Q is a finite set of transitions. Every transition label g ∈ G can
be represented by a finite word over the generating set X. In this way, A
becomes a finite object. The subset L(A) ⊆ G accepted by A consists of all
group elements g1g2g3 · · · gn such that there exists a sequence of transitions

4

(q0, g1, q1), (q1, g2, q2), (q2, g3, q3), . . . , (qn−1, gn, qn) ∈ E with qn ∈ QF . The
rational subset membership problem for G is the following decision problem:

INPUT: A finite automaton A as above and an element g ∈ G.
QUESTION: Does g ∈ L(A) hold?

Since g ∈ L(A) if and only if 1G ∈ L(A)g−1, and L(A)g−1 is rational, too,
the rational subset membership problem for G is equivalent to the question
of deciding whether a given automaton accepts the group identity.

The submonoid membership problem for G is the following decision prob-
lem:

INPUT: Elements g, g1, . . . , gn ∈ G.
QUESTION: Does g ∈ {g1, . . . , gn}∗ hold?

Clearly, decidability of the rational subset membership problem for G implies
decidability of the submonoid membership problem for G. Moreover, the
latter generalizes the classical subgroup membership problem for G (also
known as the generalized word problem), where the input is the same as
for the submonoid membership problem for G but it is asked whether g ∈
〈g1, . . . , gn〉 holds.

In our undecidability results in Section 5, we will actually consider the
non-uniform variant of the submonoid membership problem, where the sub-
monoid is fixed, i.e., not part of the input.

3. Wreath products

Let G and H be groups. Consider the direct sum

K =
⊕
g∈G

Hg,

where Hg is a copy of H. We view K as the set

H(G) = {ζ ∈ HG | ζ−1(H \ {1H}) is finite}

of all mappings from G to H with finite support together with pointwise
multiplication as the group operation. The group G has a natural left action
on H(G) given by

gζ(a) = ζ(g−1a)

where ζ ∈ H(G) and g, a ∈ G. The corresponding semidirect productH(G)oG
is the wreath product H oG. In other words:

5

• Elements of H oG are pairs (ζ, g), where ζ ∈ H(G) and g ∈ G.

• The multiplication in H oG is defined as follows: Let (ζ1, g1), (ζ2, g2) ∈
H oG. Then (ζ1, g1)(ζ2, g2) = (ζ, g1g2), where ζ(a) = ζ1(a)ζ2(g−1

1 a).

The following intuition might be helpful: An element (ζ, g) ∈ H o G can
be thought of as a finite multiset of elements of H \ {1H} that are sitting
at certain elements of G (the mapping ζ) together with the distinguished
element g ∈ G, which can be thought of as a cursor moving in G. If we want
to compute the product (ζ1, g1)(ζ2, g2), we do this as follows: First, we shift
the finite collection of H-elements that corresponds to the mapping ζ2 by g1:
If the element h ∈ H \ {1H} is sitting at a ∈ G (i.e., ζ2(a) = h), then we
remove h from a and put it to the new location g1a ∈ H. This new collection
corresponds to the mapping ζ ′2 : a 7→ ζ2(g−1

1 a). After this shift, we multiply
the two collections of H-elements pointwise: If in a ∈ G the elements h1 and
h2 are sitting (i.e., ζ1(a) = h1 and ζ ′2(a) = h2), then we put the product
h1h2 into the location a. Finally, the new distinguished G-element (the new
cursor position) becomes g1g2.

By identifying ζ ∈ H(G) with (ζ, 1G) ∈ H o G and g ∈ G with (1H(G) , g),
we regard H(G) and G as subgroups of H oG. Hence, for ζ ∈ H(G) and g ∈ G,
we have ζg = (ζ, 1G)(1H(G) , g) = (ζ, g).

If H (resp. G) is generated by the set A (resp. B) with A ∩B = ∅, then
H o G is generated by the set C = {(ζa, 1G) | a ∈ A} ∪ {(ζ1H

, b) | b ∈ B},
where for h ∈ H, the mapping ζh : G → H is defined by ζh(1G) = h and
ζh(x) = 1H for x ∈ G \ {1G}. This generating set C can be identified with
A ∪B.

Proposition 1. Let K be a subgroup of G of finite index m and let H be a
group. Then Hm oK is isomorphic to a subgroup of index m in H oG.

Proof. Let T be a set of right coset representatives for G/K; it has m ele-
ments. The action of G on H(G) restricts to an action of K on H(G) and so
H(G) o K is a subgroup of H o G. There is a K-equivariant3 group isomor-
phism α : H(G) → (HT)(K) given by [α(ζ)(k)](t) = ζ(kt), where ζ ∈ H(G),
k ∈ K, and t ∈ T . This α is indeed bijective; the inverse α−1 is given by
[α−1(ζ)](kt) = [ζ(k)](t) for ζ ∈ (HT)(K), k ∈ K, and t ∈ T (which has finite

3A K-equivariant group isomorphism α : H(G) → (HT)(K) is an isomorphism that
commutes with the action of K: kα(ζ) = α(kζ).

6

support because T is finite and ζ has finite support). That α is K-equivariant
follows from

[kα(ζ)(k′)](t) = [α(ζ)(k−1k′)](t) = ζ(k−1k′t) = [kζ](k′t) = [α(kζ)(k′)](t).

It follows that Hm oK ∼= (HT)(K) oK ∼= H(G) oK.
It thus remains to prove that H(G) o K has index m in H o G. Indeed,

let e ∈ H(G) be the map sending all of G to the identity of H. Then the
elements of the form (e, t) with t ∈ T form a set of right coset representatives
of H(G) o K in H o G. Indeed, it is easy to see that these elements are in
distinct cosets. If g = kt with k ∈ K and t ∈ T , then (ζ, g) = (ζ, k)(e, t),
which is in the coset of (e, t).

4. Decidability

We show that the rational subset membership problem is decidable for
groups G = H o V , where H is finite and V is virtually free. First, we will
show that the rational subset membership problem for G = H oF2, where F2

is the free group generated by a and b, is decidable. For this we make use of
a particular well-quasi-order.

4.1. A well-quasi-order

Recall that a well-quasi-order on a set A is a reflexive and transitive
relation � such that for every infinite sequence a1, a2, a3, . . . with ai ∈ A there
exist i < j such that ai � aj. In this paper, � will always be antisymmetric
as well; so � will be a well partial order.

For a finite alphabet X and two words u, v ∈ X∗, we write u � v if
there exist v0, . . . , vn ∈ X∗, u1, . . . , un ∈ X such that v = v0u1v1 · · ·unvn
and u = u1 · · ·un. The following theorem was shown by Higman [17] (and
independently Haines [16]).

Theorem 2 (Higman’s Lemma). The order � on X∗ is a well-quasi-order.

Let G be a group. For a monoid morphism α : X∗ → G and u, v ∈ X∗ let
u �α v if there is a factorization v = v0u1v1 · · ·unvn with v0, . . . , vn ∈ X∗,
u1, . . . , un ∈ X, u = u1 · · ·un, and α(vi) = 1 for 0 ≤ i ≤ n. It is easy to see
that �α is indeed a partial order on X∗. Furthermore, let �G be the partial
order on X∗ with u �G v if v = v0u1v1 · · ·unvn for some v0, . . . , vn ∈ X∗,
u1, . . . , un ∈ X, and u = u1 · · ·un such that α(vi) = 1 for every morphism

7

α : X∗ → G and 0 ≤ i ≤ n. Note that if G is finite, there are only finitely
many morphisms α : X∗ → G. The upward closure U ⊆ X∗ of {ε} with
respect to �G is the intersection of all preimages α−1(1) for all morphisms
α : X∗ → G, which is therefore regular if G is finite (and a finite automaton
for this upward closure can be constructed from X and G). Since for w =
w1 · · ·wn, w1, . . . , wn ∈ X, the upward closure of {w} equals Uw1 · · ·UwnU ,
we can also construct a finite automaton for the upward closure of any given
singleton provided that G is finite. In the latter case, we can also show that
�G is a well-quasi-order. As the authors learned after the publication of the
preliminary version [27] of this work, for finite G, the order �α had already
been shown to be a well-quasi-order by Cano, Guaiana, and Pin [4], for which
they employed a criterion by Bucher, Ehrenfeucht, and Haussler [3] for an
order to be a well-quasi-order. To make the paper self-contained, we provide
a proof for this fact below.

Lemma 3. Let G be a group and X be an alphabet with |X| = n. Then the
following statements are equivalent:

(i) (X∗,�G) is a well-quasi-order.

(ii) There is a k ∈ N with |〈g1, . . . , gn〉| ≤ k for all g1, . . . , gn ∈ G.

Proof. Suppose (ii) does not hold. Then there is a sequence of morphisms
α1, α2, ... : X

∗ → G such that |〈αi(X)〉| ≥ i for each i ≥ 1. This also
means that |αi(X∗)| ≥ i, because |αi(X∗)| < i would imply that αi(X

∗)
is a group and hence equals 〈αi(X)〉. We inductively define a sequence of
words w1, w2, . . . ∈ X∗. Choose w1 = ε and suppose w1, . . . , wi have been
defined. Since |αi+1(X∗)| ≥ i+ 1, we can choose wi+1 ∈ X∗ to be a word
such that αi+1(wi+1) is outside of {αi+1(w1), . . . , αi+1(wi)}. We claim that
the words w1, w2, . . . are pairwise incomparable with respect to �G. Observe
that u �G v implies α(u) = α(v) for any morphism α : X∗ → G. Since for
any i, j ∈ N, i < j, the construction guarantees αj(wj) 6= αj(wi), the words
are pairwise incomparable.

Suppose (ii) does hold. First, we claim that there is a finite group H
such that �G coincides with �H . By (ii) there are only finitely many non-
isomorphic groups that appear as 〈α(X)〉 for morphisms α : X∗ → G, say
H1, . . . , Hm, and each of them is finite. For H = H1 × · · · ×Hm, we have⋂

α:X∗→G

ker(α) =
⋂

α:X∗→H

ker(α).

8

Hence, �G coincides with �H . There are only finitely many morphisms
α : X∗ → H, say α1, . . . , α`. If β : X∗ → H` is the morphism with β(w) =
(α1(w), . . . , α`(w)), then ⋂

α:X∗→H

ker(α) = ker(β).

Thus, �H coincides with �β. Therefore, it suffices to show that �β is a
well-quasi-order.

Let w1, w2, . . . ∈ X∗ be an infinite sequence of words. Since H` is finite,
we can assume that all the wi have the same image under β; otherwise,
choose an infinite subsequence on which β is constant. Consider the alphabet
Y = X ×H`. For every w ∈ X∗, w = a1 · · · ar, let w̄ ∈ Y ∗ be the word

w̄ = (a1, β(a1))(a2, β(a1a2)) · · · (ar, β(a1 · · · ar)). (1)

Applying Higman’s Lemma to the sequence w̄1, w̄2, . . . yields indices i < j
such that w̄i � w̄j. This means w̄i = u′1 · · ·u′r, w̄j = v′0u

′
1v
′
1 · · ·u′rv′r for some

u′1, . . . , u
′
r ∈ Y , v′0, . . . , v

′
r ∈ Y ∗. By definition of w̄i, we have u′s = (us, hs)

for 1 ≤ s ≤ r, where hs = β(u1 · · ·us) and wi = u1 · · ·ur. Let π1 : Y ∗ → X∗

be the morphism extending the projection onto the first component, and let
vs = π1(v′s) for 0 ≤ s ≤ r. Then clearly wj = v0u1v1 · · ·urvr. We claim that
β(vs) = 1 for 0 ≤ s ≤ r, from which wi �β wj and hence the lemma follows.
Since w̄j is also obtained according to (1), we have

β(u1 · · ·us+1) = hs+1 = β(v0u1v1 · · ·usvsus+1)

for 0 ≤ s ≤ r − 1. By induction on s, this allows us to deduce β(vs) = 1 for
0 ≤ s ≤ r − 1. Finally, β(wi) = β(wj) entails

β(u1 · · ·ur) = β(wi) = β(wj) = β(v0u1v1 · · ·urvr) = β(u1 · · ·urvr),

implying β(vr) = 1.

4.2. Loops

Let G = H oF2 and fix free generators a, b ∈ F2. Recall that every element
of F2 can be represented by a unique word over {a, a−1, b, b−1} that does not
contain a factor of the form aa−1, a−1a, bb−1, or b−1b; such words are called
reduced. For f ∈ F2, let |f | be the length of the reduced word representing
f . Also recall that elements of G are pairs (k, f), where k ∈ K =

⊕
g∈F2

H

9

and f ∈ F2. In the following, we simply write kf for the pair (k, f). Fix an
automaton

A = (Q,G,E, q0, QF)

with labels from G for the rest of Section 4. We want to check whether
1 ∈ L(A). Since G is generated as a monoid by H ∪ {a, a−1, b, b−1}, we can
assume that E ⊆ Q× (H ∪ {a, a−1, b, b−1})×Q.

A configuration is an element of Q×G. For configurations (p, g1), (q, g2),
we write (p, g1) →A (q, g2) if there is a (p, g, q) ∈ E such that g2 = g1g. For
elements f, g ∈ F2, we write f ≤ g (f < g) if the reduced word representing
f is a (proper) prefix of the reduced word representing g. We say that an
element f ∈ F2 \ {1} is of type x ∈ {a, a−1, b, b−1} if the reduced word
representing f ends with x. Furthermore, 1 ∈ F2 is of type 1. Hence, the set
of types is

T = {1, a, a−1, b, b−1}.

When regarding the Cayley graph of F2 as a directed tree with root 1, the
children of a node of type t are of the types

C(t) = {a, a−1, b, b−1} \ {t−1}.

Clearly, two nodes have the same type if and only if their induced subtrees
of the Cayley graph are isomorphic. The elements of D = {a, a−1, b, b−1} will
also be called directions.

Let p, q ∈ Q and t ∈ T . A sequence of configurations

(q1, k1f1)→A (q2, k2f2)→A · · · →A (qn, knfn) (2)

(recall that kifi denotes the pair (ki, fi) ∈ G) is called a well-nested (p, q)-
computation for t if

(i) q1 = p and qn = q,

(ii) f1 = fn is of type t, and

(iii) fi ≥ f1 for 1 < i < n.

Of course, condition (iii) is satisfied automatically if f1 = fn = 1. We define
the effect of the computation to be (k1f1)−1(knfn). The second component
(from F2) of this element is 1, hence the effect can be identified with an
element of K. The effect of a computation can be also defined as the product

10

of all transition labels of the corresponding path in the automaton A. Hence,
it describes the change imposed by applying the corresponding sequence of
transitions, independently of the configuration in which it starts. The depth
of the computation (2) is the maximum value of |f−1

1 fi| for 1 ≤ i ≤ n.
We have 1 ∈ L(A) if and only if for some q ∈ QF , there is a well-nested
(q0, q)-computation for 1 with effect 1.

For d ∈ C(t), a well-nested (p, q)-computation (2) for t is called a (p, d, q)-
loop for t if in addition n ≥ 3 and f1d ≤ fi for 1 < i < n. Note that the first
(resp., last) transition of a (p, d, q)-loop must be of the form (q1, k1f1) →A

(q2, k2f1d) (resp., (qn−1, kn−1fnd)→A (qn, knfn)). Hence, the H-value of the
origin f1 (viewed as a node of the Cayley-graph of F2) is not modified (in
particular, k1(f1) = kn(fn). Moreover, there is a (p, d, q)-loop for t that starts
in (p, kf) (where f is of type t) with effect e and depth m if and only if there
exists a (p, d, q)-loop for t with effect e and depth m that starts in (p, t).

Given p, q ∈ Q, t ∈ T , d ∈ C(t), it is decidable whether there is a (p, d, q)-
loop for t: This amounts to checking whether a given automaton with input
alphabet {a, a−1, b, b−1} accepts a word w such that (i) w begins with d, (ii)
w represents the identity of F2, and (iii) no proper prefix of w represents the
identity of F2. Since this can be accomplished using pushdown automata, we
can compute the set

Xt = {(p, d, q) ∈ Q× C(t)×Q | there is a (p, d, q)-loop for t}.

4.3. Loop patterns

Given a word w = (p1, d1, q1) · · · (pn, dn, qn) ∈ X∗t , a loop assignment for
w is a choice of a (pi, di, qi)-loop for t for each position i, 1 ≤ i ≤ n. The
effect of a loop assignment is e1 · · · en ∈ K, where ei ∈ K is the effect of the
loop assigned to position i. The depth of a loop assignment is the maximum
depth of an appearing loop. A loop pattern for t is a word w ∈ X∗t that
has a loop assignment with effect 1. The depth of the loop pattern is the
minimum depth of a loop assignment with effect 1. Note that applying the
loops for the symbols in a loop pattern (p1, d1, q1) · · · (pn, dn, qn) does not
have to be a computation: We do not require qi = pi+1. Instead, the loop
patterns describe the possible ways in which a well-nested computation can
enter (and leave) subtrees of the Cayley graph of F2 in order to have effect
1. The sets

Pt = {w ∈ X∗t | w is a loop pattern for t}
for t ∈ T will therefore play a central role in the decision procedure.

11

Recall the definition of the well-quasi-order �H from Section 4.1.

Lemma 4. For each t ∈ T , the set Pt is an upward closed subset of X∗t with
respect to �H .

Proof. Since K is a direct sum of copies of H, the orders�H and�K coincide.
It therefore suffices to show that Pt is upward closed with respect to �K . Let
u ∈ Pt and u �K v, v ∈ X∗t , meaning v = v0u1v1 · · ·unvn with u = u1 · · ·un
and α(vi) = 1, 0 ≤ i ≤ n, for every morphism α : X∗t → K. Since u ∈ Pt,
there is a loop assignment for each ui, 1 ≤ i ≤ n, with effect ei such that
e1 · · · en = 1. By construction of Xt, for each (p, d, q) ∈ Xt, there is a
(p, d, q)-loop, say `p,d,q, for t. Let ϕ : X∗t → K be the morphism such that
for each (p, d, q) ∈ Xt, ϕ((p, d, q)) is the effect of `p,d,q. Choosing `p,d,q for
each occurrence of (p, d, q) in a subword vi and reusing the loop assignments
for the ui defines a loop assignment for v. Since ϕ(vi) = 1 for 0 ≤ i ≤ n,
the effect of this loop assignment is ϕ(v0)e1ϕ(v1) · · · enϕ(vn) = e1 · · · en = 1.
Hence, v ∈ Pt.

Since �H is a well-quasi-order, the previous lemma already implies that
each Pt is a regular language. On the one hand, this follows from the fact that
the upward closure of each singleton is regular. On the other hand, this can
be deduced by observing that �H is a monotone order in the sense of [10].
Therein, Ehrenfeucht, Haussler, and Rozenberg show that languages that
are upward closed with respect to monotone well-quasi-orders are regular.
Our next step is a characterization of the sets Pt that allows us to compute
finite automata for them. In order to state this characterization, we need the
following definitions.

Let X, Y be alphabets. A regular substitution is a map σ : X → 2Y
∗

such
that σ(x) is a regular language for every x ∈ X. For w ∈ X∗, w = w1 · · ·wn,
wi ∈ X, let σ(w) = R1 · · ·Rn, where σ(wi) = Ri for 1 ≤ i ≤ n. Given a set
R ⊆ Y ∗ and a regular substitution σ : X → 2Y

∗
, let

σ−1(R) = {w ∈ X∗ | σ(w) ∩R 6= ∅}.

Note that if R is regular, then σ−1(R) is regular as well [35, Proposition
2.16], and an automaton for σ−1(R) can be constructed effectively from an
automaton for R and automata for the σ(x).

The alphabet Yt is given by

Yt = Xt ∪ ((Q×H ×Q) ∩ E).

12

We will interpret a word in Y ∗t as that part of a computation that happens
in a node (of the Cayley-graph of F2) of type t: A symbol in Yt \Xt stands
for a transition that stays in the current node and only changes the local
H-value and the state. A symbol (p, d, q) ∈ Xt represents the execution of a
(p, d, q)-loop in a subtree of the current node. The morphism πt : Y

∗
t → X∗t

is the projection onto X∗t , meaning

πt(y) =

{
y for y ∈ Xt

ε for y ∈ Yt \Xt.

The morphism νt : Y
∗
t → H is defined by

νt((p, d, q)) = 1 for (p, d, q) ∈ Xt

νt((p, h, q)) = h for (p, h, q) ∈ Yt \Xt.

Hence, when w ∈ Y ∗t describes part of a computation, νt(w) is the change it
imposes on the current node. For p, q ∈ Q and t ∈ T , define the regular set

Rt
p,q = {(p0, g1, p1)(p1, g2, p2) · · · (pn−1, gn, pn) ∈ Y ∗t | p0 = p, pn = q}.

Then π−1
t (Pt) ∩ ν−1

t (1) ∩ Rt
p,q consists of those words over Yt that admit

an assignment of loops to occurrences of symbols in Xt so as to obtain a
well-nested (p, q)-computation for t with effect 1. More precisely, if w ∈
π−1
t (Pt) ∩ ν−1

t (1) ∩Rt
p,q, then

• w ∈ Rt
p,q ensures that automaton states match in successive triples,

• w ∈ ν−1
t (1) ensures that the H-value of the origin (the initial and final

node of the Cayley graph of F2, which must be of type t) is not changed,
and

• w ∈ π−1
t (Pt) ensures that one can assign loops to the symbols from Xt

such that the overall effect of these loops is 1. Note that these loops
do not change the H-value of the origin, since the definition of a loop
requires that the origin is only visited in the first and last configuration.

Given t ∈ T and d ∈ C(t), the regular substitution σt,d : Xt → 2Y
∗
d is defined

by

σt,d((p, d, q)) =
⋃
{Rd

p′,q′ | (p, d, p′), (q′, d−1, q) ∈ E}
σt,d((p, u, q)) = {ε} for u ∈ C(t) \ {d}.

13

Given two tuples, (Ut)t∈T and (Vt)t∈T with Ut, Vt ⊆ X∗t , we write (Ut)t∈T ≤
(Vt)t∈T if Ut ⊆ Vt for each t ∈ T . Recall that an effect of a well-nested (p, q)-
computation is always an element of K, which consists of functions F2 → H
with finite support. Thus, if e ∈ K is the effect of a computation and f ∈ F2,
then e(f) ∈ H is the change the computation imposes on the node gf if it
is executed in the node g ∈ F2. For e ∈ K and f ∈ F2, we will write e|>f
to denote the element e′ ∈ K with e′(g) = e(g) for g > f and e′(g) = 1 for
g 6> f . Hence, this allows us to denote the effect a computation has on the
subtrees below the node f .

Lemma 5. (Pt)t∈T is the smallest tuple such that for every t ∈ T we have
ε ∈ Pt and ⋂

d∈C(t)

σ−1
t,d

(
π−1
d (Pd) ∩ ν−1

d (1)
)
⊆ Pt. (3)

Proof. For each i ∈ N, let P
(i)
t ⊆ X∗t be the set of loop patterns for t whose

depth is at most i. Then clearly P
(0)
t = {ε} (if a loop pattern starts with

(p, d, q), then the pattern has depth at least 1, since every (p, d, q)-loop has
depth at least 1). We claim that

P
(i+1)
t =

⋂
d∈C(t)

σ−1
t,d

(
π−1
d (P

(i)
d) ∩ ν−1

d (1)
)

(4)

for every i ≥ 0. For each d ∈ C(t), let

Xt,d = Xt ∩ (Q× {d} ×Q).

We define the morphism ρd : X∗t → X∗t,d by ρd((p, d, q)) = (p, d, q) and
ρd((p, d

′, q)) = ε for all p, q ∈ Q and d′ 6= d. Now each side of (4) contains
a word w ∈ X∗t if and only if it contains ρd(w) for every d ∈ C(t). Hence,
proving (4) amounts to showing that for every d ∈ C(t) and w ∈ X∗t,d, we
have

w ∈ P (i+1)
t if and only if σt,d(w) ∩ π−1

d (P
(i)
d) ∩ ν−1

d (1) 6= ∅. (5)

In order to show the direction “⇒”, let w ∈ P (i+1)
t , w ∈ X∗t,d, and write w =

(p1, d, q1) · · · (pn, d, qn). This means for each 1 ≤ j ≤ n, there is a (pj, d, qj)-
loop for t, `j, of depth ≤ i+ 1 and with effect ej such that e1 · · · en = 1.

Let µ : E∗ → F2 be the morphism with µ((p, h, q)) = 1 for h ∈ H and
µ((p, f, q)) = f for f ∈ F2. For each 1 ≤ j ≤ n, let uj ∈ E∗ be the edge

14

sequence corresponding to `j. Then by the definition of loops, there is a
unique decomposition

uj = (pj, d, p
′
j)y

(j)
0 x

(j)
1 y

(j)
1 · · ·x(j)

nj
y(j)
nj

(q′j, d
−1, qj)

such that for 1 ≤ k ≤ nj, we have y
(j)
k ∈ (Yd \ Xd)

∗, µ(x
(j)
k) = 1, and

µ(x) > 1 for every proper prefix x of x
(j)
k . Clearly, each x

(j)
k corresponds to

a (p̄
(j)
k , d̄

(j)
k , q̄

(j)
k)-loop of depth ≤ i for some p̄

(j)
k , q̄

(j)
k ∈ Q, d̄

(j)
k ∈ C(d). Let

vj = y
(j)
0 (p̄

(j)
1 , d̄

(j)
1 , q̄

(j)
1)y

(j)
1 · · · (p̄(j)

nj
, d̄(j)

nj
, q̄(j)
nj

)y(j)
nj
.

We shall prove that

v1 · · · vn ∈ σt,d(w) ∩ π−1
d (P

(i)
d) ∩ ν−1

d (1). (6)

Since vj ∈ Rd
p′j ,q
′
j
, we have v1 · · · vn ∈ σt,d(w). Furthermore, assigning to

(p̄
(j)
k , d̄

(j)
k , q̄

(j)
k) the loop corresponding to x

(j)
k for 1 ≤ k ≤ nj, 1 ≤ j ≤ n, yields

a loop assignment for πd(v1 · · · vn) ∈ X∗d with effect d−1(e1 · · · en)|>dd = 1.

This means v1 · · · vn ∈ π−1
d (P

(i)
d). Finally, νd(vj) = ej(d) implies νd(v1 · · · vn) =

(e1 · · · en)(d) = 1. This proves (6) and hence “⇒” of (5).
We shall now prove the direction “⇐” of (5). Let d ∈ C(t) and suppose

w ∈ X∗t,d, w = (p1, d, q1) · · · (pn, d, qn), with v ∈ σt,d(w) ∩ π−1
d (P

(i)
d) ∩ ν−1

d (1)
for some v ∈ Y ∗d . Since v ∈ σt,d(w), we can write v = v1 · · · vn for words
v1, . . . , vn ∈ Y ∗t with vj ∈ Rd

p′j ,q
′
j

for some p′j, q
′
j ∈ Q, 1 ≤ j ≤ n. Con-

sider the loop assignment with effect 1 for πd(v) ∈ P
(i)
d . Let uj ∈ E∗ be

obtained from vj by replacing every occurrence of (p, d′, q), d′ ∈ C(d), with
the edge sequence corresponding to the loop assigned to this occurrence.
Since vj ∈ Rd

p′j ,q
′
j
, uj corresponds to a well-nested (p′j, q

′
j)-computation for

d and hence (pj, d, p
′
j)uj(q

′
j, d
−1, qj) is an edge sequence corresponding to a

(pj, d, qj)-loop for d, say `j. Let ej be its effect. The loop assignment we chose
for πd(v) has effect 1, meaning (e1 · · · en)(f) = 1 for f > d. Moreover, we
have (e1 · · · en)(d) = νd(v) = 1. Thus, e1 · · · en = 1, implying that assigning
`j to (pj, d, qj) defines a loop assignment with effect 1 for w. Since the depth

of each `j is ≤ i + 1, we can conclude w ∈ P (i+1)
t . This completes the proof

of (5) and hence of (4).
Let (P̄t)t∈T be a tuple with ε ∈ P̄t that satisfies (3). By induction on

i, (4) implies that (P
(i)
t)t∈T ≤ (P̄t)t∈T . Since Pt =

⋃
i≥0 P

(i)
t , this means

(Pt)t∈T ≤ (P̄t)t∈T . Finally, (4) also implies that (Pt)t∈T satisfies (3) itself.

15

Given a language L ⊆ X∗t , let L↑t = {v ∈ X∗t | u �H v for some u ∈ L}.

Theorem 6. The rational subset membership problem is decidable for every
group G = H o F , where H is finite and F is a finitely generated free group.

Proof. Since H o F is a subgroup of H o F2 (since F is a subgroup of F2), it
suffices to show decidability for G = H oF2. First, we compute finite automata
for the languages Pt. We do this by initializing U

(0)
t := {ε}↑t for each t ∈ T

and then successively extending the sets U
(i)
t , which are represented by finite

automata, until they equal Pt: If there is a t ∈ T and a word

w ∈
⋂

d∈C(t)

σ−1
t,d

(
π−1
d (U

(i)
d) ∩ ν−1

d (1)
)
\ U (i)

t ,

we set U
(i+1)
t := U

(i)
t ∪ {w}↑t and U

(i+1)
u := U

(i)
u for u ∈ T \ {t}. Otherwise

we stop. By induction on i, it follows from Lemma 4 and Lemma 5 that
U

(i)
t ⊆ Pt.

In each step, we obtain U
(i+1)
t by adding new words to U

(i)
t . Since the

sets U
(i)
t are upward closed by construction and there is no infinite (strictly)

ascending chain of upward closed sets in a wqo, the algorithm above has to
terminate with some tuple (U

(k)
t)t∈T . This, however, means that for every

t ∈ T ⋂
d∈C(t)

σ−1
t,d

(
π−1
d (U

(k)
d) ∩ ν−1

d (1)
)
⊆ U

(k)
t .

Since on the other hand ε ∈ U (k)
t and U

(k)
t ⊆ Pt, Lemma 5 yields U

(k)
t = Pt.

Now we have 1 ∈ L(A) if and only if π−1
1 (P1)∩ν−1

1 (1)∩R1
q0,q
6= ∅ for some

q ∈ QF , which can be reduced to non-emptiness for finite automata.

Theorem 7. The rational subset membership problem is decidable for every
group H o V with H finite and V virtually free.

Proof. This is immediate from Theorem 6 and Proposition 1, because if F is
a free subgroup of index m in V , then Hm oF is isomorphic to a subgroup of
index m in H oV and decidability of rational subset membership is preserved
by finite extensions [15, 20].

16

5. Undecidability

In this section, we will prove the second main result of this paper: The
wreath product Z oZ contains a fixed submonoid with an undecidable mem-
bership problem. Our proof is based on the halting problem for 2-counter
machines (also known as Minsky machines), which is a classical undecidable
problem.

5.1. 2-counter machines

A 2-counter machine (also known as Minsky machine) is a tuple C =
(Q, q0, qf , δ), where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• qf ∈ Q is the final state, and

• δ ⊆ (Q \ {qf})× {c0, c1} × {+1,−1,= 0} ×Q is the set of transitions.

The set of configurations is Q×N×N, on which we define a binary relation
→C as follows: (p,m0,m1) →C (q, n0, n1) if and only if one of the following
three cases holds:

• There exist i ∈ {0, 1} and a transition (p, ci,+1, q) ∈ δ such that
ni = mi + 1 and n1−i = m1−i.

• There exist i ∈ {0, 1} and a transition (p, ci,−1, q) ∈ δ such that
ni = mi − 1 (in particular, we must have mi > 0) and n1−i = m1−i.

• There exist i ∈ {0, 1} and a transition (p, ci,= 0, q) ∈ δ such that
ni = mi = 0 and n1−i = m1−i.

It is well known that every Turing-machine can be simulated by a 2-counter
machine (see e.g. [29]). In particular, we have:

Theorem 8. There exists a fixed 2-counter machine C = (Q, q0, qf , δ) such
that the following problem is undecidable:

INPUT: Numbers m,n ∈ N.
QUESTION: Does (q0,m, n)→∗C (qf , 0, 0) hold?

17

5.2. Submonoids of Z o Z
In this section, we will only consider wreath products of the form H o Z.

An element (ζ,m) ∈ H o Z such that the support of ζ is contained in the
interval [a, b] (with a, b ∈ Z) and 0,m ∈ [a, b] will also be written as a list
[ζ(a), . . . , ζ(b)], where in addition the element ζ(0) is labeled by an incoming
(downward) arrow and the element ζ(m) is labeled by an outgoing (upward)
arrow.

In this section, we will construct a fixed finitely generated submonoid of
the wreath product Z o Z with an undecidable membership problem.

Let C = (Q, q0, qf , δ) be the 2-counter machine from Theorem 8. Without
loss of generality we can assume that there exists a partition Q = Q0 ∪ Q1

such that q0 ∈ Q0 and

δ ⊆ (Q0 × {c0} × {+1,−1,= 0} ×Q1) ∪ (Q1 × {c1} × {+1,−1,= 0} ×Q0).

In other words, C alternates between the two counters. Hence, a transition
(q, ci, x, p) can be just written as (q, x, p). Let

Σ = Q ∪ {c,#}.

Let ZΣ be the free abelian group generated by Σ. First, we will prove that
there is a fixed finitely generated submonoid M of the wreath product ZΣ oZ
with an undecidable membership problem. Let a 6∈ Σ be a generator for the
right Z-factor; hence ZΣ o Z is generated by Σ ∪ {a}. Let K =

⊕
m∈Z ZΣ.

In the following, we will freely switch between the description of elements of
ZΣ oZ by words over (Σ∪{a})±1 and by pairs from KoZ. For a finite-support
mapping ζ ∈ K, m ∈ Z, and x ∈ Σ, we also write ζ(m,x) for the integer
ζ(m)(x).

Our finitely generated submonoid M of ZΣoZ is generated by the following
elements. The right column shows the generators in list notation, where
elements of the free abelian group ZΣ are written additively, i.e., as Z-linear

18

combinations of elements of Σ:

p−1a#a2#aq for (p,= 0, q) ∈ δ [
´
−p,#, 0,#, q̂] (7)

p−1a#aca2qa−2 for (p,+1, q) ∈ δ [
´
−p,#, ĉ, 0, q] (8)

p−1a#a3qa6c−1a−8 for (p,−1, q) ∈ δ [
´
−p,#,

ˆ
0, 0, q, 0, 0, 0, 0, 0,−c] (9)

c−1a8ca−8 [
´ˆ
−c, 0, 0, 0, 0, 0, 0, 0, c] (10)

c−1a#a7ca−6 [
´
−c,#,

ˆ
0, 0, 0, 0, 0, 0, c] (11)

q−1
f a−1 [

ˆ
0,

´
−qf] (12)

#−1a−2 [
ˆ
0, 0,

´
−#] (13)

For initial counter values m,n ∈ N let

I(m,n) = aq0a
2cma4cna−6.

The list notation for I(m,n) is

[
´
0, q̂0, 0,m · c, 0, 0, 0, n · c]. (14)

Here is some intuition: The group element I(m,n) represents the initial
configuration (q0,m, n) of the 2-counter machine C. Lemma 9 below states
that (q0,m, n) →∗C (qf , 0, 0) is equivalent to the existence of Y ∈ M with
I(m,n)Y = 1, i.e., I(m,n)−1 ∈M . Generators of type (7)–(11) simulate the
2-counter machine C. States of C will be stored at cursor positions 4k + 1.
The values of the first (resp., second) counter will be stored at cursor positions
8k + 3 (resp., 8k + 7). Note that I(m,n) puts a single copy of the symbol
q0 ∈ Σ at position 1, m copies of symbol c (which represents counter values)
at position 3, and n copies of symbol c at position 7. Hence, indeed, I(m,n)
sets up the initial configuration (q0,m, n) for C. Even cursor positions will
carry the special symbol #. Note that generator (12) is the only generator
which changes the cursor position from even to odd or vice versa. It will
turn out that if I(m,n)Y = 1 (Y ∈ M), then generator (12) has to occur
exactly once in Y ; it terminates the simulation of the 2-counter machine C.
Hence, Y can be written as Y = U(q−1

f a−1)V with U, V ∈ M . Moreover, it
turns out that U ∈ M is a product of generators (7)–(11), which simulate

19

C. Thereby, even cursor positions will be marked with a single occurrence
of the special symbol #. In a second phase, which corresponds to V ∈ M ,
these special symbols # will be removed again and the cursor will be moved
left to position 0. This is accomplished with generator (13). In fact, our
construction enforces that V is a power of (13).

During the simulation phase (corresponding to U ∈ M), generators of
type (7) implement zero tests, whereas generators of type (8) (resp., (9))
increment (resp., decrement) a counter. Finally, (10) and (11) copy the
counter value to the next cursor position that is reserved for the counter
(that is copied). During such a copy phase, (10) is first applied ≥ 0 many
times. Finally, (11) is applied exactly once.

Lemma 9. For all m,n ∈ N the following are equivalent:

• (q0,m, n)→∗C (qf , 0, 0)

• There exists Y ∈M such that I(m,n)Y = 1.

Proof. Assume first that I(m,n)Y = 1 for some Y ∈ M . We have to show
that (q0,m, n)→∗C (qf , 0, 0); this is the more difficult direction. Let

Y = y1 · · · yk,

where each yi is one of the generators of M . For 0 ≤ i ≤ k let

Yi = y1 · · · yi

(thus, Y0 = 1) and assume that

I(m,n)Yi = (ζi,mi) ∈ K o Z.

Hence, ζk = 0 is the zero-mapping and mk = 0. Moreover (ζ0,m0) = I(m,n).

Claim 1. For all 0 ≤ i ≤ k, q ∈ Q, and ` ∈ Z we have ζi(2`, q) = 0.

Proof of Claim 1. Assume that ζi(2`, q) 6= 0 for some 0 ≤ i ≤ k, q ∈ Q, and
` ∈ Z. Choose 0 ≤ i ≤ k minimal such that there exist q ∈ Q and ` ∈ Z with
ζi(2`, q) 6= 0. Since ζ0(2`, q) = 0 for all q ∈ Q and ` ∈ Z (the list notation
for (ζ0,m0) is (14)), we must have i ≥ 1. Hence, ζi−1(2`, q) = 0 for all q ∈ Q
and ` ∈ Z. An inspection of the generators shows that if mi−1 were odd, we
would also have ζi(2`, q) = 0 for all q ∈ Q and ` ∈ Z. Therefore, mi−1 must

20

be even. An inspection of the generators of M shows that there exist j ∈ Z
and p ∈ Q such that

ζi(2j, p) < 0 and ζi(2j
′, p′) = 0 for all j′ < j and p′ ∈ Q.

But then, for all i ≤ i′ ≤ k there exist j ∈ Z and p ∈ Q such that

ζi′(2j, p) < 0 and ζi′(2j
′, p′) = 0 for all j′ < j and p′ ∈ Q.

For i′ = k we obtain a contradiction, since ζk = 0.

Claim 1 implies that for all 1 ≤ i ≤ k with mi−1 even, the generator yi cannot
be of type (7), (8), (9), or (12).

Claim 2. For all 0 ≤ i ≤ k and ` ∈ Z we have ζi(2`, c) = 0.

Proof of Claim 2. Assume that ζi(2`, c) 6= 0 for some 0 ≤ i ≤ k and ` ∈ Z.
Choose 0 ≤ i ≤ k minimal such that there exists ` ∈ Z with ζi(2`, c) 6= 0.
Since ζ0(2`, c) = 0 for all ` ∈ Z, we must have i ≥ 1. Hence, ζi−1(2`, c) = 0
for all ` ∈ Z. An inspection of the generators shows that if mi−1 were odd,
we would also have ζi(2`, c) = 0 for all ` ∈ Z. Therefore, mi−1 must be even.
The generator yi must be of one of the types (8), (9), (10), or (11). But the
types (8) and (9) are excluded by the remark before Claim 2. Therefore, yi
must be either (10) or (11). Thus, there exists j ∈ Z such that

ζi(2j, c) < 0 and ζi(2j
′, c) = 0 for all j′ < j.

Note that for all i < i′ ≤ k with mi′−1 even, the generator yi′ is not of type
(8) (again by the remark before Claim 2). This implies that for all i ≤ i′ ≤ k
there exists j ∈ Z such that

ζi′(2j, c) < 0 and ζi′(2j
′, c) = 0 for all j′ < j.

For i′ = k we obtain a contradiction, since ζk = 0.

Claim 1 and 2 imply that for all 1 ≤ i ≤ k with mi−1 even, the generator yi
is (13).

Claim 3. For all 0 ≤ i ≤ k and ` ∈ Z we have ζi(2`+ 1,#) = 0.

Proof of Claim 3. Assume that ζi(2` + 1,#) 6= 0 for some 0 ≤ i ≤ k
and ` ∈ Z. Choose 0 ≤ i ≤ k minimal such that there exists ` ∈ Z with
ζi(2` + 1,#) 6= 0. Since ζ0(`,#) = 0 for all ` ∈ Z, we must have i ≥ 1.
Hence, ζi−1(2`+ 1,#) = 0 for all ` ∈ Z. There are two possible cases:

21

1. mi−1 is odd and yi is the generator (13).

2. mi−1 is even and yi is a generator of type (7)–(9) or (11).

But the second case is not possible by the remark before Claim 3. Hence,
mi−1 is odd and yi is the generator (13). Thus, there exists j ∈ Z with
ζi(2j + 1,#) < 0. Since for every i ≤ i′ ≤ k with mi′−1 even, the generator
yi′ can only be of type (13) (again by the remark before Claim 3), it follows
that for every i ≤ i′ ≤ k we have ζi′(2j + 1,#) < 0. For i′ = k we obtain a
contradiction, since ζk = 0.

Claim 4. There is exactly one 1 ≤ i ≤ k such that yi is the generator (12).

Proof of Claim 4. For g = (ζ,m) ∈ ZΣ o Z and b ∈ {0, 1} we define

σQ(g, b) =
∑
k∈Z

∑
q∈Q

ζ(2k + b, q).

An inspection of all generators of M shows that for every g ∈ ZΣ o Z and
every generator z of M we have:

• If z is not the generator (12), then σQ(gz, b) = σQ(g, b) for both b = 0
and b = 1.

• If z is the generator (12), then there is b ∈ {0, 1} such that σQ(gz, b) =
σQ(g, b)− 1 and σQ(gz, 1− b) = σQ(g, 1− b).

The claim follows, since σQ(I(m,n), 0) = σQ(I(m,n)Y, 0) = σQ(I(m,n)Y, 1) =
0 and σQ(I(m,n), 1) = 1.

By Claim 1–4, there exists a unique 1 ≤ i ≤ k such that the following three
properties hold:

• For every 1 ≤ j < i, yj is a generator of type (7)–(11).

• yi is the generator (12).

• For every i < j ≤ k, yj is the generator (13).

Hence, I(m,n)Yi−1 must be of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂f],

22

since only such an element can be reduced to 1 by right-multiplication with
generator (12) followed by a positive power of generator (13). We show that
this implies (q0,m, n) →∗C (qf , 0, 0). Note that every generator of type (7)–
(11) (those generators that occur in Yi−1) moves the cursor 2d (for some d ≥
0) to the right along the Z-line. This means that for every 0 ≤ j ≤ i− 1, mj

is odd and moreover, for every odd m < mj, the group element ζj(m) ∈ ZΣ

is zero.

Claim 5. Let 0 ≤ j < i− 1 and assume that I(m,n)Yj is of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, p̂, 0, a · c, 0, 0, 0, b · c], (15)

where p ∈ Q0, a, b ∈ N, and p̂ occurs at position ` = 8k + 1 for some k ≥ 0
(hence, (15) represents the configuration (p, a, b)). Then there exists j′ > j
and a valid C-transition (p, a, b) →C (q, a′, b′) such that I(m,n)Yj′ is of the
form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂, 0, b′ · c, 0, 0, 0, a′ · c].

Here q̂ occurs at position `+ 4.

Proof of Claim 5. Generator yj+1 has to be of the form (7), (8), or (9),
because otherwise we leave at position ` a negative copy of c, which cannot
be compensated later. Let us first assume that yj+1 has the form (7), arising
from (p,= 0, q) ∈ δ. Then I(m,n)Yj+1 is of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, a · c,#, q̂, 0, b · c, 0, 0, 0, 0], (16)

where q̂ occurs at position ` + 4. If a > 0, then the a many c’s at position
`+ 2 cannot be removed in the future. Hence, we must have a = 0. Setting
a′ = 0 and b′ = b shows that (16) has the form required in the conclusion of
Claim 5.

Next, assume that yj+1 has the form (8), arising from (p,+1, q) ∈ δ.
Hence, I(m,n)Yj+1 is of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#,

ˆ
(a+ 1) · c, 0, q, 0, b · c, 0, 0, 0, 0],

where
ˆ

(a+ 1) · c occurs at position `+ 2. So we have to remove a+ 1 many
copies of c from position `+ 2. Hence, the only way to continue is to apply a

23

many times generator (10) followed by a single application of generator (11).
Hence, I(m,n)Yj+a+2 must be of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂, 0, b · c, 0, 0, 0, (a+ 1) · c], (17)

where q̂ occurs at position ` + 4. Setting b′ = b and a′ = a + 1 shows that
(17) has the form required in the conclusion of Claim 5.

Finally, assume that yj+1 has the form (9), arising from (p,−1, q) ∈ δ.
Hence, I(m,n)Yj+1 is of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#,

ˆ
a · c, 0, q, 0, b · c, 0, 0, 0,−c],

where
ˆ

a · c occurs at position ` + 2. First, assume that a = 0. Then there
is no way to move the cursor to the right without leaving a negative copy of
a symbol from Q ∪ {c} at position ` + 2, and this negative copy cannot be
eliminated later. Hence, we must have a > 0. Now, the only way to continue
is to apply a− 1 many times generator (10) followed by a single application
of generator (11). Hence, I(m,n)Yj+a+1 must be of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂, 0, b · c, 0, 0, 0, (a− 1) · c], (18)

where q̂ occurs at position ` + 4. Setting b′ = b and a′ = a − 1 shows that
(18) has the form required in the conclusion of Claim 5.

This concludes the proof of Claim 5. Completely analogously to Claim 5,
one can show:

Claim 6. Let 0 ≤ j < i− 1 and assume that I(m,n)Yj is of the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, p̂, 0, a · c, 0, 0, 0, b · c], (19)

where p ∈ Q1, a, b ∈ N, p̂ occurs at position ` = 8k + 5 for some k ≥ 0
(hence, (19) represents the configuration (p, b, a)). Then there exists j′ > j
and a valid C-transition (p, b, a) →C (q, b′, a′) such that I(m,n)Yj′ is of the
form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂, 0, b′ · c, 0, 0, 0, a′ · c].

Here q̂ occurs at position `+ 4.

24

Using Claim 5 and 6 we can now easily conclude that (q0,m, n)→∗C (qf , 0, 0)
holds.

The other direction (if (q0,m, n) →∗C (qf , 0, 0) then there exists Y ∈ M
with I(m,n)Y = 1) is easier. A computation

(q0,m, n)→C (q1,m1, n1)→C · · · →C (q`−1,m`−1, n`−1)→C (qf , 0, 0)

can be directly translated into a sequence of M -generators y1y2 · · · yk such
that the group element I(m,n)y1y2 · · · yk has the form

[
´
0, 0,#, 0,#, 0,#, . . . , 0,#, 0,#, q̂f],

Multiplying this element with generator (12) followed by a positive power of
generator (13) yields the group identity.

The following result is an immediate consequence of Theorem 8 and
Lemma 9.

Theorem 10. There is a fixed finitely generated submonoid M of the wreath
product ZΣ o Z with an undecidable membership problem.

Finally, we can establish the main result of this section.

Theorem 11. There is a fixed finitely generated submonoid M of the wreath
product Z o Z with an undecidable membership problem.

Proof. By Theorem 10 it suffices to reduce the submonoid membership prob-
lem of ZΣ o Z to the submonoid membership problem of Z o Z. If m = |Σ|,
then Proposition 1 shows that ZΣ oZ ∼= Zm omZ is isomorphic to a subgroup
of index m in Z o Z. So if Z o Z had a decidable submonoid membership
problem for each finitely generated submonoid, then the same would be true
of ZΣ o Z.

We remark that, together with the undecidability of the rational subset
membership problem for groups H o (Z×Z) for non-trivial H [26], our results
imply the following: For finitely generated non-trivial abelian groups G and
H, the wreath product H o G has a decidable rational subset membership
problem if and only if (i) G is finite4 or (ii) (G has rank 1 and H is finite).

4If G has size m, then by Proposition 1, Hm ∼= Hm o 1 is isomorphic to a subgroup
of index m in H o G. Since Hm is finitely generated abelian, decidability of the rational
subset membership problem of H o G follows from the fact that decidability is preserved
by finite extensions [15, 20].

25

Furthermore, for virtually free groups G and H, the rational subset member-
ship problem is decidable for H oG if and only if (i) G is trivial or (ii) H is
finite, or (iii) (G is finite and H is virtually abelian).

By [6], the wreath product Z o Z is a subgroup of Thompson’s group F
as well as of Baumslag’s finitely presented metabelian group 〈a, s, t | [s, t] =
[at, a] = 1, as = aat〉. Hence, we get:

Corollary 12. Thompson’s group F as well as Baumslag’s finitely presented
metabelian group both contain finitely generated submonoids with an unde-
cidable membership problem.

6. Open problems

As mentioned in the introduction, we conjecture that the rational subset
membership problem for a wreath product H o G with H non-trivial and
G not virtually free is undecidable. Another interesting case, which is not
resolved by our results, concerns wreath products G oV with V virtually free
and G a finitely generated infinite torsion group. Finally, all these questions
can also be asked for the submonoid membership problem. We do not know
any example of a group with decidable submonoid membership problem but
undecidable rational subset membership problem. If such a group exists, it
must be one-ended [25].

Acknowledgments

We would like to thank Jean-Éric Pin for providing references [4, 3].

References

[1] A. V. Anisimov. Group languages. Kibernetika, 4:18–24, 1971. In
Russian; English translation in Cybernetics 4, 594–601, 1973.

[2] M. Benois. Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris,
Sér. A, 269:1188–1190, 1969.

[3] W. Bucher, A. Ehrenfeucht, and D. Haussler. On total regulators gener-
ated by derivation relations. Theoretical Computer Science, 40:131–148,
1985.

26

[4] A. Cano, G. Guaiana, and J.-É. Pin. Regular languages and partial
commutations. Information and Computation, 2013. To appear.

[5] P. Chambart and P. Schnoebelen. Post embedding problem is not prim-
itive recursive, with applications to channel systems. In Proceedings of
the 27th International Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2007), volume 4855 of
Lecture Notes in Computer Science, pages 265–276. Springer, 2007.

[6] S. Cleary. Distortion of wreath products in some finitely-presented
groups. Pacific Journal of Mathematics, 228(1):53–61, 2006.

[7] T. C. Davis and A. Y. Olshanskii. Subgroup distortion in wreath
products of cyclic groups. Journal of Pure and Applied Algebra,
215(12):2987–3004, 2011.

[8] M. Dehn. Über unendliche diskontinuierliche gruppen. Mathematische
Annalen, 71:116–144, 1911. In German.

[9] V. Diekert and A. Muscholl. Solvability of equations in free partially
commutative groups is decidable. International Journal of Algebra and
Computation, 16(6):1047–1069, 2006.

[10] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of
context-free languages. Theoretical Computer Science, 27:311–332, 1983.

[11] S. Eilenberg and M. P. Schützenberger. Rational sets in commutative
monoids. Journal of Algebra, 13:173–191, 1969.

[12] H. Fernau and R. Stiebe. Sequential grammars and automata with
valences. Theoretical Computer Science, 276(1-2):377–405, 2002.

[13] A. Finkel and P. Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[14] R. H. Gilman. Formal languages and infinite groups. In Geometric
and computational perspectives on infinite groups (Minneapolis, MN and
New Brunswick, NJ, 1994), volume 25 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 27–51. Amer. Math. Soc., Providence, RI,
1996.

27

[15] Z. Grunschlag. Algorithms in Geometric Group Theory. PhD thesis,
University of California at Berkley, 1999.

[16] L. H. Haines. On free monoids partially ordered by embedding. Journal
of Combinatorial Theory, 6:94–98, 1969.

[17] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of
the London Mathematical Society. Third Series, 2:326–336, 1952.

[18] T. Jurdzinski. Leftist grammars are non-primitive recursive. In Proceed-
ings of the 35th International Colloquium on Automata, Languages and
Programming (ICALP 2008), volume 5126 of Lecture Notes in Computer
Science, pages 51–62. Springer, 2008.

[19] M. Kambites. Formal languages and groups as memory. Communica-
tions in Algebra, 37(1):193–208, 2009.

[20] M. Kambites, P. V. Silva, and B. Steinberg. On the rational subset
problem for groups. Journal of Algebra, 309(2):622–639, 2007.

[21] M. Kunc. Regular solutions of language inequalities and well quasi-
orders. Theoretical Computer Science, 348(2):277–293, 2005.

[22] D. Kuske and M. Lohrey. Logical aspects of Cayley-graphs: the group
case. Annals of Pure and Applied Logic, 131(1–3):263–286, 2005.

[23] M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalga-
mated products. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming (ICALP 2006), Venice (Italy), number
4052 in Lecture Notes in Computer Science, pages 681–692. Springer,
2006.

[24] M. Lohrey and B. Steinberg. The submonoid and rational subset mem-
bership problems for graph groups. Journal of Algebra, 320(2):728–755,
2008.

[25] M. Lohrey and B. Steinberg. Submonoids and rational subsets of groups
with infinitely many ends. Journal of Algebra, 324(4):970–983, 2010.

[26] M. Lohrey and B. Steinberg. Tilings and submonoids of metabelian
groups. Theory of Computing Systems, 48(2):411–427, 2011.

28

[27] M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and sub-
monoids of wreath products. In F. V. Fomin, R. Freivalds, M. Z.
Kwiatkowska, and D. Peleg, editors, Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part II, pages 361–372, 2013.

[28] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer,
1977.

[29] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall International, Englewood Cliffs, 1967.

[30] R. Motwani, R. Panigrahy, V. A. Saraswat, and S. Venkatasubramanian.
On the decidability of accessibility problems (extended abstract). In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing (STOC 2000), pages 306–315. ACM, 2000.

[31] J. Nielsen. Om regning med ikke kommutative faktoren og dens anven-
delse i gruppeteorien. Matematisk Tidsskrift, B., pages 77–94, 1921. In
Danish.

[32] V. Roman’kov. On the occurence problem for rational subsets of a group.
In V. Roman’kov, editor, International Conference on Combinatorial
and Computational Methods in Mathematics, pages 76–81, 1999.

[33] N. S. Romanovskĭı. Some algorithmic problems for solvable groups.
Algebra i Logika, 13(1):26–34, 1974.

[34] N. S. Romanovskĭı. The occurrence problem for extensions of abelian
groups by nilpotent groups. Sibirsk. Mat. Zh., 21:170–174, 1980.

[35] J. Sakarovitch. Elements of Automata Theory. Cambridge University
Press, 2009.

[36] P. Schnoebelen. Verifying lossy channel systems has nonprimitive recur-
sive complexity. Inf. Process. Lett., 83(5):251–261, 2002.

29

	Introduction
	Rational subsets of groups
	Wreath products
	Decidability
	A well-quasi-order
	Loops
	Loop patterns

	Undecidability
	2-counter machines
	Submonoids of Z Z

	Open problems

