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Abstract. It is shown that membership in rational subsets of wreath products
H 'V with H a finite group and V' a virtually free group is decidable. On the
other hand, it is shown that there exists a fixed finitely generated submonoid in
the wreath product Z ! Z with an undecidable membership problem.

1 Introduction

The study of algorithmic problems in group theory has a long tradition. Dehn, in his
seminal paper from 1911, introduced the word problem (Does a given word over the
generators represent the identity?), the conjugacy problem (Are two given group el-
ements conjugate?) and the isomorphism problem (Are two given finitely presented
groups isomorphic?), see [25] for general references in combinatorial group theory.
Starting with the work of Novikov and Boone from the 1950’s, all three problems were
shown to be undecidable for finitely presented groups in general. A generalization of
the word problem is the subgroup membership problem (also known as the general-
ized word problem) for finitely generated groups: Given group elements g, g1, . . ., gn,
does g belong to the subgroup generated by g1, ..., g,? Explicitly, this problem was
introduced by Mihailova in 1958, although Nielsen had already presented in 1921 an
algorithm for the subgroup membership problem for free groups.

Motivated partly by automata theory, the subgroup membership problem was fur-
ther generalized to the rational subset membership problem. Assume that the group G
is finitely generated by the set X (where @ € X if and only if a=! € X). A finite
automaton A with transitions labeled by elements of X defines a subset L(A) C G in
the natural way; such subsets are the rational subsets of GG. The rational subset mem-
bership problem asks whether a given group element belongs to L(A) for a given finite
automaton (in fact, this problem makes sense for any finitely generated monoid). The
notion of a rational subset of a monoid can be traced back to the work of Eilenberg and
Schiitzenberger from 1969 [8]. Other early references are [1, 11]. Rational subsets of
groups also found applications for the solution of word equations (here, quite often the
term rational constraint is used) [6, 20]. In automata theory, rational subsets are tightly
related to valence automata (see [9, 16, 17] for details): For any group G, the empti-
ness problem for valence automata over G (which are also known as GG-automata) is
decidable if and only if G has a decidable rational subset membership problem.
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For free groups, Benois [2] proved that the rational subset membership problem is
decidable using a classical automaton saturation procedure (which yields a polynomial
time algorithm). For commutative groups, the rational subset membership can be solved
using integer programming. Further (un)decidability results on the rational subset mem-
bership problem can be found in [21] for right-angled Artin groups, in [28] for nilpotent
groups, and in [23] for metabelian groups. In general, groups with a decidable rational
subset membership problem seem to be rare. In [22] it was shown that if the group G
has at least two ends, then the rational subset membership problem for G is decidable
if and only if the submonoid membership problem for G (Does a given element of G
belong to a given finitely generated submonoid of G?) is decidable.

In this paper, we investigate the rational subset membership problem for wreath
products. The wreath product is a fundamental operation in group theory. To define the
wreath product H { G of two groups G and H, one first takes the direct sum K =
&b gec H of copies of H, one for each element of G. An element g € G acts on K by
permuting the copies of H according to the left action of g on G. The corresponding
semidirect product K x G is the wreath product H ! G.

In contrast to the word problem, decidability of the rational subset membership
problem is not preserved under wreath products. For instance, in [23] it was shown that
for every non-trivial group H, the rational subset membership problem for H? (Z x Z)
is undecidable. The proof uses an encoding of a tiling problem, which uses the grid
structure of the Cayley graph of Z x Z.

In this paper, we prove the following two new results concerning the rational subset
membership problem and the submonoid membership problem for wreath products:

(i) The submonoid membership problem is undecidable for Z Z. The wreath product
7.7 is one of the simplest examples of a finitely generated group that is not finitely
presented, see [4, 5] for further results showing the importance of Z Z.

(ii) For every finite group H and every virtually free group* V, the group H ! V has
a decidable rational subset membership problem; this includes for instance the fa-
mous lamplighter group Zs ! Z.

For the proof of (i) we encode the acceptance problem for a 2-counter machine (Minsky
machine [26]) into the submonoid membership problem for Z ! Z. One should remark
that Z { Z is a finitely generated metabelian group and hence has a decidable subgroup
membership problem [29, 30]. For the proof of (ii), an automaton saturation procedure
is used. The termination of the process is guaranteed by a well-quasi-order (wqo) that
refines the classical subsequence wqo considered by Higman [14].

Wqo theory has also been applied successfully for the verification of infinite state
systems. This research led to the notion of well-structured transition systems [10]. Ap-
plications in formal language theory are the decidability of the membership problem
for leftist grammars [27] and Kunc’s proof of the regularity of the solutions of certain
language equations [18]. A disadvantage of using wqo theory is that the algorithms it
yields are not accompanied by complexity bounds. The membership problem for leftist
grammars [15] and, in the context of well-structured transition systems, several natural
reachability problems [3,32] (e.g. for lossy channel systems) have even been shown

4 Recall that a group is virtually free if it has a free subgroup of finite index.



not to be primitive recursive. The complexity status for the rational subset membership
problem for wreath products A V' (H finite, V' virtually free) thus remains open. Ac-
tually, we do not even know whether the rational subset membership problem for the
lamplighter group Zs ! Z is primitive recursive.

2 Rational subsets of groups

Let G be a finitely generated group and X a finite symmetric generating set for G (sym-
metric means that z € X < 2~ € X). For a subset B C G we denote with B* (resp.
(B)) the submonoid (resp. subgroup) of G generated by B. The set of rational subsets of
G is the smallest set that contains all finite subsets of G and that is closed under union,
product, and *. Alternatively, rational subsets can be represented by finite automata. Let
A =(Q,G, E,q,Qr) be a finite automaton, where transitions are labeled with ele-
ments of G: () is the finite set of states, gy € @ is the initial state, Qr C @ is the set of
final states, and £ C @ x G x () is a finite set of transitions. Every transition label g € G
can be represented by a finite word over the generating set X. The subset L(A) C G
accepted by A consists of all group elements g1 g2gs - - - g5, such that there exists a se-
quence of transitions (qo, 91,¢1), (q1, 92, 42), (42, 93,43); - - - » (@n—1, Gn+ Gn) € E with
qn € Qp. The rational subset membership problem for G is the following decision
problem: Given a finite automaton A as above and an element g € G, does g € L(A)
hold? Since g € L(A) if and only if 1¢ € L(A)g~!, and L(A)g~! is rational, too, the
rational subset membership problem for G is equivalent to the question whether a given
automaton accepts the group identity.

The submonoid membership problem for G is the following decision problem: Given
elements g, g1,...,9n € G, does g € {g1,...,gn}* hold? Clearly, decidability of the
rational subset membership problem for GG implies decidability of the submonoid mem-
bership problem for GG. Moreover, the latter generalizes the classical subgroup mem-
bership problem for GG (also known as the generalized word problem), where the input
is the same as for the submonoid membership problem for G but it is asked whether
g € {g1,...,gn) holds.

In our undecidability results in Sec. 5, we will actually consider the non-uniform
variant of the submonoid membership problem, where the submonoid is fixed, i.e., not
part of the input.

3  Wreath products

Let G and H be groups. Consider the direct sum K = P Hy, where Hy is a copy of
H.We view K asthe set H(@) = {f ¢ H® | f~'(H\{1g})is finite} of all mappings
from G to H with finite support together with pointwise multiplication as the group
operation. The group G has a natural left action on H(%) given by gf(a) = f(¢~'a),
where f € H(%) and g,a € G. The corresponding semidirect product H(%) x G is the
wreath product H ! G. In other words:

— Elements of H { G are pairs (f, g), where f € H(%) and g € G.



— The multiplication in H ? G is defined as follows: Let (f1,91), (f2,92) € H1G.
Then (f1,91)(f2,92) = (f,9192), where f(a) = fi(a)f2(gy ‘a).

The following intuition might be helpful: An element (f,g) € H ! G can be thought
of as a finite multiset of elements of H \ {15} that are sitting at certain elements of G
(the mapping f) together with the distinguished element g € GG, which can be thought
of as a cursor moving in G. If we want to compute the product (f1, g1)(f2,92), we do
this as follows: First, we shift the finite collection of H-elements that corresponds to
the mapping f> by g1: If the element h € H\ {1y} issittingata € G (i.e., f2(a) = h),
then we remove h from a and put it to the new location gya € H. This new collection
corresponds to the mapping f5: a — f2(g; 'a). After this shift, we multiply the two
collections of H-elements pointwise: If in a € G the elements h; and hy are sitting
(i.e., fi(a) = hy and f5(a) = hs), then we put the product hjhs into the location a.
Finally, the new distinguished G-element (the new cursor position) becomes g1 go.

If H (resp. G) is generated by the set A (resp. B) with AN B = (), then H G is
generated by AU B.

Proposition 1. Let K be a subgroup of G of finite index m and let H be a group. Then
H™ ) K is isomorphic to a subgroup of index m in H G.

4 Decidability

We show that the rational subset membership problem is decidable for groups G =
H 'V, where H is finite and V is virtually free. First, we will show that the rational
subset membership problem for G = H ! F;, where F is the free group generated by a
and b, is decidable. For this we make use of a particular well-quasi-order.

A well-quasi-order Recall that a well-quasi-order (wqo) on a set A is a reflexive and
transitive relation < such that for every infinite sequence a1, as,as,... with a; € A
there exist ¢ < j such that a; = a;. In this paper, < will always be antisymmetric as
well; so < will be a well partial order.

For a finite alphabet X and two words u,v € X*, we write u < v if there exist
VgyevesUp € X*, Up,...,u, € X such that v = vouivy - - - Upv, and u = uy - -« Uy,
The following theorem was shown by Higman [14] (and independently Haines [13]).

Theorem 1 (Higman’s Lemma). The order =< on X* is a wqo.

Let H be a group. For a monoid morphism o: X* — H and u,v € X* letu <, v if
there is a factorization v = vouqv1 - - - UV, With vg, ..., v, € X5, uy,...,u, € X,
u = up---Up, and a(v;) = 1 for 0 < ¢ < n. It is easy to see that <, is indeed a
partial order on X *. Furthermore, let <y be the partial order on X* with v <pg v if
V = VUiV - - - UpV, for some vy, ..., v, € X*, uy,...,uy € X,and u = uq - - up,
such that «(v;) = 1 for every morphism «: X* — H and 0 < i < n. Note that if
H is finite, there are only finitely many morphisms «: X* — H. The upward closure
U C X* of {e} with respect to < is the intersection of all preimages a~!(1) for
all morphisms «: X* — H, which is therefore regular if H is finite (and a finite
automaton for this upward closure can be constructed from X and H). Since for w =



Wy - We, W1, - . ., W, € X, the upward closure of {w} equals Uw; - - - Uw, U, we can
also construct a finite automaton for the upward closure of any given singleton provided
that H is finite. In the latter case, we can also show that <z is a wqo:

Lemma 1. For every finite group H and finite alphabet X, (X*, =<y is a wqo.’

Proof. There are only finitely many morphisms a: X* — H, say aq,...,ap. If 8 :
X* — H'is the morphism with B(w) = (ayi(w),...,ae(w)), then for all words
w € X*: f(z) = 1if and only if a(z) = 1 for all morphisms « : X* — H. Thus, <y
coincides with <, and it suffices to show that <3 is a wqo.

Let wy,ws, ... € X* be an infinite sequence of words. Since H* is finite, we can
assume that all the w; have the same image under (3; otherwise, choose an infinite
subsequence on which 3 is constant. Consider the alphabet Y = X x H’. For every
weX*,w=ay--a,,letw € Y* be the word

w = (a1, B(a1))(az, Blaraz)) -~ (ar, B(a1 - - - ar)). )]
Applying Thm. 1 to the sequence w1, Wo, . .. yields ¢ < j with w; = w;. This means
W; = uy---ul, wj = vyuiv) -l for some ..., u. € Y, v),... 0. € YR

By definition of @w; we have u’, = (us, hs) for 1 < s < r, where hy = B(uy - - us)
and w; = uy---u,. Let m1: Y* — X* be the morphism extending the projection
onto the first component, and let v; = m(v}) for 0 < s < r. Then clearly w; =
VoULV1 - - - Upvp. We claim that S(vs) = 1 for 0 < s < r, from which w; <5 w;
and hence the lemma follows. Since w; is also obtained according to (1), we have
Bluy - tusy1) = hsp1 = Blvougvy - - - usvsusyq) for 0 < s < r — 1. By induction
on s, this implies S(vs) = 1 for 0 < s < r — 1. Finally, S(v,) = 1 follows from
Bluy -+ up) = B(w;) = B(wy) = Blvourvr - upvy) = Bur - upvy). O

Loops Let G = H F; and fix free generators a,b € F5. Recall that every element
of F} can be represented by a unique word over {a,a~1,b,b='} that does not contain
a factor of the form aa=1, a—1a, bb—1, or b—1b; such words are called reduced. For
f € Fy, let |f| be the length of the reduced word representing f. Also recall that
elements of G are pairs (k, f), where k € K = @, H and f € F>.In the following,
we simply write k f for the pair (k, f). Fix an automaton A = (Q, G, E, qo, Q) with
labels from G for the rest of Sec. 4. We want to check whether 1 € L(A). Since G is
generated as a monoid by H U {a,a™',b,b"'}, we can assume that E C Q x (H U
{a,a=1,b,b71}) x Q.

A configuration is an element of @ x G. For configurations (p, g1), (¢q,92), we
write (p,g1) —a (g,g2) if there is a (p, g,q) € E such that go = g¢1g. For elements
f,9 € Fy, we write f < g (f < g) if the reduced word representing f is a (proper)
prefix of the reduced word representing g. We say that an element f € F5 \ {1} is of
type x € {a,a=1,b,b=1} if the reduced word representing f ends with x. Furthermore,
1 € Fyis of type 1. Hence, the set of typesis T = {1,a,a*,b,b~'}. When regarding
the Cayley graph of F5 as a tree with root 1, the children of a node of type ¢ are of

> One can actually show for any group H: (X*, <) is a wqo if and only if for every n € N,
there is k € N with [{g1,...,gn)| < kforall g1,..., g, € H. See the full version [24].



the types C(t) = {a,a1,b,b71} \ {t~1}. Clearly, two nodes have the same type if
and only if their induced subtrees of the Cayley graph are isomorphic. The elements of
D = {a,a',b,b='} will also be called directions.

Letp,q € Q@ andt € T. A sequence of configurations

(g1, k1f1) =a (g2, k2f2) =a - —=a (qn, knfrn) 2

(recall that k; f; denotes the pair (k;, f;) € G) is called a well-nested (p, q)-computation
fortif (1) g1 = pand q, = q, (ii) f1 = fn isof type ¢, and (iii) f; > frforl <i <n
(this last condition is satisfied automatically if f; = f, = 1). We define the effect
of the computation to be f; 'ky 'k, f, € K. Hence, the effect describes the change
imposed by applying the corresponding sequence of transitions, independently of the
configuration in which it starts. The depth of the computation (2) is the maximum value
of | f{ 1 f;| for 1 <i < n.Wehave 1 € L(A) if and only if for some g € Q, there is a
well-nested (go, ¢)-computation for 1 with effect 1.

For d € C(t), a well-nested (p, ¢)-computation (2) for ¢ is called a (p, d, q)-loop for
t if in addition f1d < f; for 1 < i < n. Note that there is a (p, d, ¢)-loop for ¢ that starts
in (p, kf) (where f is of type t) with effect e and depth m if and only if there exists a
(p, d, q)-loop for t with effect e and depth m that starts in (p, t).

Given p,q € Q,t € T, d € C(t), it is decidable whether there is a (p,d, q)-
loop for t: This amounts to checking whether a given automaton with input alphabet
{a,a=1,b,b71} accepts a word representing the identity of F, such that no proper
prefix represents the identity of F5. Since this can be accomplished using pushdown
automata, we can compute the set

X: ={(p,d,q) € Q x C(t) x Q| there is a (p, d, q)-loop for t}.

Loop patterns  Given a word w = (p1,d1,q1) - (Pn,dn,qn) € X, a loop as-
signment for w is a choice of a (p;, d;, g;)-loop for ¢ for each position i, 1 < i < n.
The effect of a loop assignment is e; - -- e, € K, where e; € K is the effect of the
loop assigned to position i. The depth of a loop assignment is the maximum depth
of an appearing loop. A loop pattern for t is a word w € X that has a loop as-
signment with effect 1. The depth of the loop pattern is the minimum depth of a loop
assignment with effect 1. Note that applying the loops for the symbols in a loop pat-
tern (p1,d1,q1) - -+ (Pn, dn, ¢n) does not have to be a computation: We do not require
¢; = pi+1. Instead, the loop patterns describe the possible ways in which a well-nested
computation can enter (and leave) subtrees of the Cayley graph of F5 in order to have
effect 1. The sets

P, = {w € X/ | wis aloop pattern for ¢}

for t € T will therefore play a central role in the decision procedure.
Recall the definition of the partial order <y from Sec. 4. We have shown that <7
is a wqo (Lemma 1). The second important result on <y; is:

Lemma 2. For eacht € T, P, is an upward closed subset of X with respect to <.



Lemma 1 and 2 already imply that each P, is a regular language, since the upward
closure of each singleton is regular. This can also be deduced by observing that <j; is
a monotone order in the sense of [7]. Therein, Ehrenfeucht et al. show that languages
that are upward closed with respect to monotone well-quasi-orders are regular. Our next
step is a characterization of the P; that allows us to compute finite automata for them.
In order to state this characterization, we need the following definitions.

Let X,Y be alphabets. A regular substitution is a map o: X — 2 such that
o(x) C Y* is regular for every x € X. Forw € X*, w = wy - wp, w; € X, let
o(w) = Ry -+ Ry, where o(w;) = R; for 1 < i < n.Given R C Y* and a regular
substitution o: X — 2¥", let o~ (R) = {w € X* | o(w) N R # 0}. If R is regular,
then o~!(R) is regular as well [31, Prop. 2.16], and an automaton for o ~!(R) can be
obtained effectively from automata for R and the o(x). The alphabet Y; is given by

Yi= X, U((Q % H x Q)N E).

We will interpret a word in Y;* as that part of a computation that happens in a node of
type ¢: A symbol in Y; \ X; stands for a transition that stays in the current node and
only changes the local H-value and the state. A symbol (p,d, q) € X; represents the
execution of a (p, d, ¢)-loop in a subtree of the current node. The morphism 7;: Y* —
X} is the projection onto X, meaning 7(y) = y for y € X; and m(y) = ¢ for
y € Y; \ X¢. The morphism v;: Y;* — H is defined by

vi((p,d,q)) = 1for (p,d,q) € Xy
vi((p, by q)) = hfor (p,h,q) € Yy \ X

Hence, when w € Y;* describes part of a computation, v;(w) is the change it imposes
on the current node. For p, ¢ € @ and t € T, define the regular set

R, . ={(po,91.01)(P1,92:02) - - (Pn—1, Gn:Pn) € Y | po = ,on = q}-

Then 7r; *(P;) Ny H(1) N R}, , consists of those words over Y; that admit an assign-
ment of loops to occurrences of symbols in X; so as to obtain a well-nested (p, q)-
computation for ¢ with effect 1. Given d € C(t), t € T, the regular substitution
014 X; — 2Y4 is defined by

Ut,d((pa da Q)) = U{Rg’7q’ ‘ (pa d7p/)a (qlvd_17 Q) S E}

ora((p,u,q)) = {e} foru e C(t) \ {d}.

For tuples (U;)ier and (Vi)ier with U, Vi C X, we write (Uy)ier < (Vi)ier if
U, C V, foreach t € T'. We can now state the following fixpoint characterization:

Lemma 3. (P,)icr is the smallest tuple such that for every t € T we have € € P, and

M oia (7' (P) Ny (1) € P
deC(t)

Given a language L C X/, let L1; = {v € X} | u <y v for some u € L}.



Theorem 2. The rational subset membership problem is decidable for every group G =
H F, where H is finite and F is a finitely generated free group.

Proof. Since H ! F'is a subgroup of H ! F; (since F' is a subgroup of F3), it suffices to
show decidability for G = H { F5. First, we compute finite automata for the languages
P,. We do this by initializing Ut(o) := {e}1; for each ¢ € T and then successively
extending the sets Ut(i), which are represented by finite automata, until they equal F;:
If thereisat € T and a word

we () opd ('@ vt )\ U,
deC ()

we set Ut(iﬂ) = Ut(i) U{w}t: and Uit = ul foru € T\ {t}. Otherwise we stop.
By induction on ¢, it follows from Lemma 2 and Lemma 3 that Ut(i) CP,.

In each step, we obtain Ut(iH) by adding new words to U, (Z) Since the sets Ut(i)
are upward closed by construction and there is no infinite (strictly) ascending chain
of upward closed sets in a wqo, the algorithm above has to terminate with some tuple
(Ut(k))teT. This, however, means that for every t € T'

— — k — k
N o (m' @) vzt @) cu®.
deC(t)

Since on the other hand € € Ut(k) and Ut(k) C P, Lemma 3 yields Ut(k) = P.
Now we have 1 € L(A) if and only if 7 *(Py) N vyt (1) N R}, , # 0 for some
q € Qp, which can be reduced to non-emptiness for finite automata. O

Theorem 3. The rational subset membership problem is decidable for every group H
V with H finite and V virtually free.

Proof. This is immediate from Thm. 2 and Prop. 1: If F'is a free subgroup of index m
in V, then H™ { F' is isomorphic to a subgroup of index m in H ! V and decidability of
rational subset membership is preserved by finite extensions [12, 17]. a

5 Undecidability

In this section, we will prove the second main result of this paper: The wreath product
7! Z contains a fixed submonoid with an undecidable membership problem. Our proof
is based on the undecidability of the halting problem for 2-counter machines.

2-counter machines A 2-counter machine (also known as Minsky machine) is a tuple
C = (Q,qo,4qf,9), where Q is a finite set of states, gy € Q is the initial state, g5 € Q
is the final state, and § C (Q \ {qr}) x {co,c1} x {+1,—1,= 0} x Q is the set of
transitions. The set of configurations is @ x N x N, on which we define a binary relation
—¢ as follows: (p, mg, m1) —¢ (g,n0,n1) if and only if one of the following holds:

— Thereis (p, ¢;, b,q) € d such thatb € {—1,1},n; = m; + b,andny_; = my_;.



— There is (p, ¢;, = 0,q) € § such thatn; =m; =0and ny_; = mi_;.

It is well known that every Turing-machine can be simulated by a 2-counter machine
(see e.g. [26]). In particular, we have:

Theorem 4. There is a fixed 2-counter machine C = (Q, qo,qy,9) such that the fol-
lowing problem is undecidable: Given m,n € N, does (qo, m,n) =& (qs,0,0) hold?

Submonoids of Z ! Z In this section, we only consider wreath products of the form
HZ. An element (f, m) € H{Z such that the support of f is contained in the interval
[a,b] (with a,b € Z) and 0,m € [a,b] will also be written as a list [f(a), ..., f(])],
where in addition the element f(0) is labeled by an incoming (downward) arrow and
the element f(m) is labeled by an outgoing (upward) arrow.

We will construct a fixed finitely generated submonoid of the wreath product ZQ Z
with an undecidable membership problem. For this, let C' = (Q, qo, g7, 0) be the 2-
counter machine from Thm. 4. W.1.o.g. we can assume that there exists a partition () =
Qo U @1 such that gg € Q¢ and

dC (QO X {CO} X {+1>_17: 0} X Ql) U (Ql X {Cl} X {"_1’ -1,= 0} X QO)

In other words, C' alternates between the two counters. Hence, a transition (g, ¢;, x, p)
can be just written as (¢, z, p).

Let X' = QW{c,#} and let Z* be the free abelian group generated by X. First, we
prove that there is a fixed finitely generated submonoid M of Z*Z with an undecidable
membership problem. Let a ¢ X be a generator for the right Z-factor; hence Z*  Z
is generated by X' U {a}. Let K = @, ., Z*. In the following, we will freely switch
between the description of elements of Z* ! Z by words over (X' U {a})*! and by pairs
from K x Z.

Our finitely generated submonoid M of Z* ! Z is generated by the following el-
ements. The right column shows the generators in list notation (elements of Z* are
written additively, i.e., as Z-linear combinations of elements of X):

_ + T

p~ta#a’#aq for (p,=0,q) €6 [—p, #,0,#, 4] A3)
1

p~'a#aca’qa? for (p,+1,q) €6 [=p, #. 6,0, q] )

-1 3 6 .—1 -8 _ j ) —

p a#ta’qa’c a”° for (p,—1,9) €6  [-p,#,0,0,¢,0,0,0,0,0,—c]  (5)

—1 8 —8 3

c aca [—¢,0,0,0,0,0,0,0, ] 6)

—1 7 —6 + i\

¢ Ta#a'ca [—¢, #,0,0,0,0,0,0,c] 0
T 1

gy ta”! [0, —qy] (®)
T N

# 'a7? 0,0, —#] )

For initial counter values m,n € N let I(m,n) = agoa’c™a*c™a~%; its list notation is

1
[0, do,0,m - ¢,0,0,0,7 - . (10)



Here is some intuition: The group element I(m,n) represents the initial configura-
tion (go, m,n) of the 2-counter machine C. Lemma 4 below states that (go, m,n) —&
(q7,0,0) is equivalent to the existence of Y € M with I(m,n)Y = 1,i.e.,I(m,n)"! €
M. Generators of type (3)—(7) simulate the 2-counter machine C'. States of C' will be
stored at cursor positions 4k + 1. The values of the first (resp., second) counter will
be stored at cursor positions 8k + 3 (resp., 8k + 7). Note that I(m,n) puts a single
copy of the symbol ¢y € X at position 1, m copies of symbol ¢ (which represents
counter values) at position 3, and n copies of symbol ¢ at position 7. Hence, indeed,
I(m,n) sets up the initial configuration (go,m, n) for C. Even cursor positions will
carry the special symbol #. Note that generator (8) is the only generator which changes
the cursor position from even to odd or vice versa. It will turn out that if I(m,n)Y =1
(Y € M), then generator (8) has to occur exactly once in Y’; it terminates the simula-
tion of the 2-counter machine C'. Hence, Y can be written as Y = U (qj?lafl)V with
U,V € M. Moreover, it turns out that U € M is a product of generators (3)—(7), which
simulate C'. Thereby, even cursor positions will be marked with a single occurrence of
the special symbol #. In a second phase, which corresponds to V' € M, these special
symbols # will be removed again and the cursor will be moved left to position 0. This
is accomplished with generator (9). In fact, our construction enforces that V' is a power
of (9).

During the simulation phase (corresponding to U € M), generators of type (3) im-
plement zero tests, whereas generators of type (4) (resp., (5)) increment (resp., decre-
ment) a counter. Finally, (6) and (7) copy the counter value to the next cursor position
that is reserved for the counter (that is copied). During such a copy phase, (6) is first
applied > 0 many times. Finally, (7) is applied exactly once.

Lemma 4. For all m,n € N we have: (qo,m,n) —¢ (qf,0,0) if and only if there
exists Y € M such that I(m,n)Y = 1.

The following result is an immediate consequence of Thm. 4 and Lemma 4.

Theorem 5. There is a fixed finitely generated submonoid M of the wreath product
7> 7 with an undecidable membership problem.

Finally, we can establish the main result of this section.

Theorem 6. There is a fixed finitely generated submonoid M of the wreath product
7. 7, with an undecidable membership problem.

Proof. By Thm. 5 it suffices to reduce the submonoid membership problem of Z* | Z
to the submonoid membership problem of Z Z. If m = | X, then Prop. 1 shows that
7> V7 = 7™y mZ is isomorphic to a subgroup of index m in Z Z. So if Z { Z had a
decidable submonoid membership problem for each finitely generated submonoid, then
the same would be true of Z* } Z. a

Theorem 6 together with the undecidability of the rational subset membership problem
for groups H{(Z x Z) for non-trivial H [23] implies the following: For finitely generated
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non-trivial abelian groups G and H, H ! G has a decidable rational subset membership
problem if and only if (i) G is finite® or (ii) G has rank 1 and H is finite.

By [4], ZZ is a subgroup of Thompson’s group F' as well as of Baumslag’s finitely
presented metabelian group (a, s,t | [s,t] = [a?,a] = 1,a® = aa®). Hence, we get:

Corollary 1. Thompson’s group F' and Baumslag’s finitely presented metabelian group
both contain finitely generated submonoids with an undecidable membership problem.

6 Open problems

As mentioned in the introduction, the rational subset membership problem is undecid-
able for every wreath product H ? (Z x Z), where H is a non-trivial group [23]. We
conjecture that for every non-trivial group H and every non-virtually free group G, the
rational subset membership problem for H { G is undecidable. The reason is that the
undecidability proof for H(Z x Z) [23] only uses the grid-like structure of the Cayley
graph of Z x Z. In [19] it was shown that the Cayley graph of a group G has bounded
tree width if and only if the group is virtually free. Hence, if G is not virtually free,
then the Cayley-graph of G has unbounded tree width, which means that finite grids of
arbitrary size appear as minors in the Cayley-graph of G. One might therefore hope to
again reduce a tiling problem to the rational subset membership problem for H { G (for
H non-trivial and G not virtually free).

Another interesting case, which is not resolved by our results, concerns the rational
subset membership problem for wreath products G V' with V virtually free and G a
finitely generated infinite torsion group. Finally, all these questions can also be asked
for the submonoid membership problem. We do not know any example of a group with
decidable submonoid membership problem but undecidable rational subset membership
problem. If such a group exists, it must be one-ended [22].
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