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Abstract

The class of rational subsets of a group G is the smallest class
that contains all finite subsets of G and that is closed with respect to
union, product and taking the monoid generated by a set. The ratio-
nal subset membership problem for a finitely generated group G is the
decision problem, where for a given rational subset of G and a group
element g it is asked whether g ∈ G. This paper presents a survey
on known decidability and undecidability results for the rational sub-
set membership problem for groups. The membership problems for
finitely generated submonoids and finitely generated subgroups will
be discussed as well.

1 Introduction

The study of algorithmic problems in group theory has a long tradition.
Dehn, in his seminal paper from 1911 [13], introduced the word problem
(Does a given word over the generators represent the identity?), the conjugacy
problem (Are two given group elements conjugate?) and the isomorphism
problem (Are two given finitely presented groups isomorphic?), see [38] for
general references in combinatorial group theory. Starting with the work
of Novikov and Boone from the 1950’s, all three problems were shown to
be undecidable for finitely presented groups in general. A generalization
of the word problem is the subgroup membership problem (also known as
the generalized word problem) for finitely generated groups: Given group
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elements g, g1, . . . , gn, does g belong to the subgroup generated by g1, . . . , gn?
Explicitly, this problem was introduced by Mihailova in 1959 [42], although
Nielsen had already presented an algorithm for the subgroup membership
problem for free groups in his paper from 1921 [47].

Motivated partly by automata theory, the subgroup membership problem
was further generalized to the rational subset membership problem. Assume
that the group G is finitely generated by the set X (where a ∈ X if and only
if a−1 ∈ X). A finite automaton A with transitions labeled by elements of X
defines a subset L(A) ⊆ G in the natural way; such subsets are the rational
subsets of G, see Section 2 and 3 for precise definitions. The rational subset
membership problem asks whether a given group element belongs to L(A) for
a given finite automaton (in fact, this problem makes sense for any finitely
generated monoid). The notion of a rational subset of a monoid can be traced
back to the work of Eilenberg and Schützenberger from 1969 [15]. The first
decidability result for the rational subset membership problem was shown
by Benois [5]: Every finitely generated free group has a decidable rational
subset membership problem.

It seems that after Benois’ work the rational subset membership problem
had been forgotten for a long time. Aspects of rational sets in monoids that
are close to classical formal language theory were studied in the 1980s and
1990s, see [7, 18] for surveys. Only in 1999, Grunschlag returned to the ratio-
nal subset membership problem in his thesis [19]. He proved that the rational
subset membership problem is decidable for finitely generated abelian groups
and that decidability of the rational subset membership problem is preserved
by finite extensions. Also in 1999, Roman’kov presented at a conference a
proof, showing that the rational subset membership problem is undecidable
for nilpotent groups (even of class 2), see Section 7. The next step was done
by Kambites, Silva, and Steinberg in 2006 [26]. They proved that the ratio-
nal subset membership problem is decidable for the fundamental group of a
graph of groups, provided that (i) all edge groups are finite and (ii) every
vertex group has a decidable rational subset membership problem, see Sec-
tion 5. Further (un)decidability results on the rational subset membership
problem in various classes of groups (right-angled Artin groups, metabelian
groups, wreath products) can be found in [33, 36, 37], see Sections 6, 8,
and 9. The latter three papers also studied the submonoid membership
problem, which sits in between the subgroup membership problem and the
rational subset membership problem. The input consists of group elements
g, g1, . . . , gn ∈ G and it is asked whether g belongs to the submonoid of G
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generated by g, g1, . . . , gn. In [35] it was shown that if the group G has at
least two ends, then the rational subset membership problem for G is decid-
able if and only if the submonoid membership problem for G is decidable,
see Section 10.

Rational subsets of groups also found applications for the solution of word
equations (here, quite often the term rational constraint is used) [14, 31]. In
automata theory, rational subsets are tightly related to valence automata: A
valence automaton over a monoid M (also the term M-automaton is some-
times used) is a finite automaton, where every transition is labeled with an
input symbol and an element of M . A word w is accepted by such a valence
automaton, if there exists a path from the initial state to a final state such
that: (i) the concatenation of the inputs symbols along this path yields the
word w and (ii) the product of the M-elements along the path is the monoid
identity. For any group G, the emptiness problem for valence automata over
G is decidable if and only if G has a decidable rational subset membership
problem. See [10, 16, 24, 26, 60, 61] for details on valence automata.

2 Finite automata

We assume that the reader has some background on computability theory.
She or he should be familiar with the concepts of a decidable problem (also
called computable problem) and undecidable problem (also called unsolvable
problem or insoluble problem), see e.g. [51] for background. In Section 4, we
present a proof that requires some basic knowledge of complexity theory, in
particular the theory of NP-completeness, see [48] for background. Although
we give all needed definitions related to finite automata, some background
on automata theory (see e.g. [21]) makes the paper certainly easier to read.

LetX be a finite set of symbols, which is also called an alphabet. WithX∗

we denote the set of all finite words w = a1a2 · · ·an with a1, . . . , an ∈ X. If
n = 0, then w is the empty word, which is also denoted by ε. A subset ofX∗ is
also called a language. A finite automaton overX is a tuple A = (Q,∆, q0, F ),
where

• ∆ ⊆ Q×X ×Q is the set of transitions,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.
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The language accepted by A, denoted by L(A), is the set of all words w =
a1a2 · · ·an ∈ X∗ for which there exist states q1, q2, . . . , qn ∈ Q such that
(qi−1, ai, qi) ∈ ∆ for 1 ≤ i ≤ n (note that for i = 1, qi−1 = q0 is the initial
state) and qn ∈ F . Languages of the form L(A) for A a finite automaton are
called regular.

A finite automaton over X with ε-transitions is defined as above, except
that ∆ ⊆ Q × (X ∪ {ε}) × Q. A transition (q, ε, p) ∈ ∆ means that the
automaton can move from state q to state p without reading an input symbol.
It is well-known that for every finite automaton with ε-transitions there exists
an ordinary finite automaton (without ε-transitions) that accepts the same
language [21]. Allowing ε-transitions sometimes simplifies technical details
in proofs.

3 Rational subsets of groups

We assume that the reader has some background in combinatorial group
theory. A classical reference is [38]. Let G be a finitely generated group and
X a finite symmetric generating set for G (symmetric means that X is closed
under taking inverses). This mean that the canonical morphism π : X∗ → G
that maps a word w ∈ X∗ to the group element of G represented by w is
surjective. Hence, elements of groupG can be represented by finite words over
the alphabet X. When we say below that the input for a decision problem
consists of a group element g ∈ G (plus possibly some other objects), then we
actually mean that the input consists of a finite word w ∈ X∗ that represents
the group element g.

Let us fix a monoid M . For a subset B ⊆ M we denote with B∗ the
submonoid of M generated by B. Of course we have to distinguish B∗ from
the set of all words over B, which is also denoted by B∗. It will be always
clear, whether B∗ is viewed as the set of all words over B or as the submonoid
of M generated by B. In case M is a group, we denote with 〈B〉 the subgroup
generated by B. The set of rational subsets of M is the smallest subset of 2M

that (i) contains all finite subsets of M and (ii) that is closed under union,
product, and ∗.

In the following, we will mainly consider rational subsets of a group G.
If G is finitely generated by X∗ and π : X∗ → G is the corresponding
canonical homomorphism, then rational subsets of G can be represented by
finite automata over X. The following result can deduced from Kleene’s
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theorem for regular languages, see [18] for a proof:

Proposition 1. Let G be a finitely generated group, let X be a finite generat-
ing set for G, and let π : X∗ → G be the corresponding canonical homomor-
phism. A subset L ⊆ G is rational if and only if there is a finite automaton
A over X such that L = π(L(A)).

This characterization of rational subsets is useful since it allows to repre-
sent a rational subset of G by a finite automaton over X.

We consider the following decision problem for a finitely generated group
G together with a canonical morphism π : X∗ → G.

Decision problem 2. (Rational subset membership problem for G)

• INPUT: A finite automaton A over X and an element g ∈ G.

• QUESTION: Does g ∈ π(L(A)) hold?

Note that g ∈ L(A) if and only if 1 ∈ L(A)g−1. Moreover, the set
L(A)g−1 is rational too and a finite automaton for this set can be constructed
from A and g. Hence, the rational subset membership problem for G is
equivalent to the following problem:

• INPUT: A finite automaton A over X.

• QUESTION: Does 1 ∈ π(L(A)) hold?

Decision problem 3. (Submonoid membership problem for G)

• INPUT: Elements g, g1, . . . , gn ∈ G.

• QUESTION: Does g ∈ {g1, . . . , gn}
∗ hold?

Decision problem 4. (Subgroup membership problem for G)

• INPUT: Elements g, g1, . . . , gn ∈ G.

• QUESTION: Does g ∈ 〈g1, . . . , gn〉 hold?

The subgroup membership problem for G is also known as the generalized
word problem for G or as the occurrence problem for G.

Strictly speaking, we should speak of the rational subset membership
problem for G with respect to π : X∗ → G, since another choice for the
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generating set leads to another decision problem. On the other hand, if
X and Y are two finite generating sets for G with canonical morphisms
π : X∗ → G and σ : Y ∗ → G, then the rational subset membership problem
for G with respect to π : X∗ → G is decidable, if and only if the rational
subset membership problem for G with respect to σ : Y ∗ → G is decidable.
For the proof, one chooses a morphism ρ : Y ∗ → X∗ such that for every
a ∈ Y , σ(a) = π(ρ(a)) (clearly, such a morphism exists). Then, for w ∈ Y ∗

and a finite automaton A over Y , we have σ(w) ∈ σ(L(A)) if and only if
π(ρ(w)) ∈ π(L(B)). Here, B is the automaton over X that results from A by
replacing every a-labelled transition (a ∈ Y ) by a chain of transitions that
is labelled with the word ρ(a). A similar remark applies to the submonoid
membership problem and the subgroup membership problem for G.

Clearly, decidability of the rational subset membership problem for G
implies decidability of the submonoid membership problem for G, and the
latter implies decidablity of the subgroup membership problem for G.

Note that in the above three decision problems, the input consists of a
group element g and a finite description of a subset Z ⊆ G, and it is asked
whether g ∈ Z. A more restricted setting is obtained by fixing a subset
Z ⊆ G. For this set Z, we can consider the following decision problem:

Decision problem 5. (Membership problem for the set Z ⊆ G)

• INPUT: An element g ∈ G.

• QUESTION: Does g ∈ Z hold?

Open problem 6. Is there a finitely generated group G with the following
properties?

• For every rational subset R ⊆ G, the membership problem for R is
decidable.

• The rational subset membership problem for G is undecidable.

The same question can be considered for rational subsets replaced by finitely
generated submonoids or finitely generated subgroups.

One should note that a positive answer to this problem is conceivable:
There might exist a group G for which there is no algorithm that decides
the rational subset membership problem for G, but for every rational subset
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R ⊆ G there is an algorithm AR that checks whether a given group element
belongs to R. These algorithms AR must be completely unrelated in the
sense that they do not follow a uniform scheme.

Of course, one may also generalize Problem 2 further, e.g. by considering
context-free languages. Given a context-free grammar G over the symmetric
generating set X of the group G and a group element g ∈ G, one can ask
whether g ∈ π(L(G)). But this problem is already undecidable for free
groups: To see this, take a finitely presented group G = Gp〈X | R〉 with an
undecidable word problem. Here R ⊆ X∗ is a finite set of relators. Then,
for a given word w ∈ X∗ we have w = 1 in G if and only if in the free group
F (X), w belongs to the normal closure of R. But the latter is the canonical
image of the context-free language L = {crc−1 | r ∈ R, c ∈ X∗}. Hence, if
the word problem for G is undecidable, then the membership problem for
the free group image of the context-free language L is undecidable.

By the last paragraph, the membership problem for (images of) context-
free sets is already undecidable for the simplest finitely generated groups
(namely free groups).1 On the other hand, the following sections will show
that for the rational subset membership problem we can prove non-trivial
decidability results. This is one of the reasons for restricting the membership
problem to rational sets in this paper.

4 Classical results

The first decidability result for the rational subset membership problem was
shown by Benois in 1969 for free groups [5]:

Theorem 7. Every free group of finite rank has a decidable rational subset
membership problem.

This result can be shown by a simple automata saturation procedure.
Consider a free group F (Y ), where Y (a finite set) generates F (Y ) as a
group. Let X = Y ∪ Y −1. Let A = (Q,∆, q0, F ) be a finite automaton
with ε-transitions over the alphabet X. Since we will add ε-transitions to
the automaton, will start with an automaton with ε-transitions from the
very beginning. As remarked in the previous section, it suffices to check,
whether 1 ∈ π(L(A)). For this we iterate the following operation as long

1The only class of groups with a decidable membership problem for context-free sets,
the author is aware of, are finitely generated virtually abelian groups.
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as possible: If there are transitions (p, a, q), (r, a−1, s) ∈ ∆ with a ∈ X, and
state r can be reached from state q by a sequence of ε-transitions, then we
add the ε-transition (p, ε, s) to ∆. The order in which we add ε-transitions
is not important. Note that we only add new transitions but we do not add
new states. Hence the saturation process has to terminate after at most |Q|2

many steps. Let B be the resulting automaton with ε-transitions. Then, one
can show the following:

• π(L(A)) = π(L(B)) (this follows by induction on the construction of
B)

• If w ∈ L(B) and w is of the form w = uaa−1v with u, v ∈ X∗ and
a ∈ X, then also uv ∈ L(B).

Hence, we have 1 ∈ π(L(A)) if and only if 1 ∈ π(L(B)) if and only if there
is a word w ∈ L(B) such that w can be reduced by cancellations of the form
aa−1 → ε (a ∈ X). But the latter condition is equivalent to ε ∈ L(B).
Hence, 1 ∈ π(L(A)) if and only if ε ∈ L(B), and the latter means that there
is a path consisting only if ε-transitions leading from the initial state q0 to a
final state. This conditions can be checked by an algorithm.

It is worth mentioning that the above algorithm works in polynomial
time, see [6] for a precise complexity analysis.

Next, let us consider finitely generated abelian groups. The following
result was shown by Grunschlag in his thesis [19] using integer linear pro-
gramming.

Theorem 8. Every finitely generated abelian group has a decidable rational
subset membership problem.

Grunschlag reduces the rational subset membership problem for finitely
generated abelian groups to integer linear programming, which is a classical
NP-complete problem. It turns out that already the submonoid membership
problem for free abelian groups Z

k is NP-complete if k is part of the input.
To see this, we start with the NP-complete problem 1-in-3 SAT [48]. The
input is a conjunction

ψ =
m∧

i=1

Ci,

where every Ci is a disjunction of three literals (a literal is a boolean variable
or a negated boolean variable). Let x1, . . . , xn be the boolean variables that
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appear in ψ and let Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , where x̃ij ∈ {xij ,¬xij}. It is
asked, whether there exists a truth assignment for the variables x1, . . . , xn

such that in each disjunction Ci exactly one literal becomes true. This is
true if and only if the following system of linear equations in the 2n variables
x1, x1, . . . , xn, xn has a solution in N:

xi + xi = 1 for 1 ≤ i ≤ n

x̃i1 + x̃i2 + x̃i3 = 1 for 1 ≤ i ≤ m

In the second equation, we identify the literal ¬xij with the variable xij . This
system can be written as

n∑

i=1

(xi · ai + xi · bi) = c,

for a1,b1, . . . , an,bn, c ∈ Zn+m. This system is solvable in the natural num-
bers if and only if c belongs to the submonoid generated by a1,b1, . . . , an,bn.

Note that in the above NP-hardness proof we have to assume that the
dimension (which is n + m) is not fixed. In our context, it is more natural
to consider the case of a fixed dimension, since in Problems 2 –4 we always
fix an underlying group. Using some recent result on the Parikh images of
regular languages, we can show:

Theorem 9. For every finitely generated abelian group the rational subset
membership problem can be solved in polynomial time.

Proof. Consider a fixed finitely generated abelian group G =
∏n

i=1 Zi, where
every Zi is cyclic. By Theorem 16 from the next section, we can assume that
Zi

∼= Z for every 1 ≤ i ≤ n. Take the generating setX = {x1, x
−1
1 , . . . , xn, x

−1
n },

where xi generates Zi as a group. As usual, let π : X∗ → G be the canon-
ical morphism. Recall that the Parikh image of a language L ⊆ X∗ is
the image of L under the canonical morphism Ψ : X∗ → N2n. Thus, if
Ψ(w) = (c1, d1, . . . , cn, dn), then ci (resp., di) is the number of occurrences of
the symbol xi (resp., x−1

i ) in the word w. It is well-known that the Parikh
image Ψ(L) of a regular language (and even a context-free language) is semi-
linear, i.e., Ψ(L) can be written as

Ψ(L) =

k⋃

i=1

{ai + λ1ai,1 + · · ·+ λliai,li | λ1, . . . , λli ∈ N},
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for ai, ai,1, . . . , ai,li ∈ N2n. It has been recently shown that from a given
finite automaton A over X one can compute a semi-linear representation
of the Parikh image Ψ(L(A) in polynomial time [28].2 Such a semi-linear
representation consists of a list of all vectors ai, ai,j (1 ≤ i ≤ k, 1 ≤ j ≤ li),
where the vector entries are represented as binary encoded numbers. It is
crucial here that the alphabet Σ is fixed, because the running time of the
algorithm from [28] is exponential in the size of the alphabet.

Let us now consider the rational subset membership problem for G. Let
A be a finite automaton over X. We have to check, whether 1 ∈ π(L(A)).
First, we compute in polynomial time the Parikh image

Ψ(L) =

k⋃

i=1

{ai + λ1ai,1 + · · ·+ λliai,li | λ1, . . . , λli ∈ N}.

For a vector a = (c1, d1, . . . , cn, dn) ∈ Z2n define the vector a′ = (c1 −
d1, . . . , cn − dn) ∈ Zn. Then, we have 1 ∈ π(L(A)) if and only if there are
1 ≤ i ≤ k such that the system

λ1a
′
i,1 + · · ·+ λlia

′
i,li

= −a′
i

has a solution in N. But this is an instance of integer programming in the
fixed dimension n, which can be solved in polynomial time [30, Sec. 4].

Let us no come to classical undecidablity results in the context of rational
subsets. The first such result was shown by Mihailova [43] in 1966:

Theorem 10. The direct product F2 × F2 of two copies of the free group
of rank 2 contains a fixed finitely generated subgroup with an undecidable
membership problem.

In particular, F2×F2 has an undecidable subgroup membership problem.
Hence, also the submonoid membership problem and the rational subset
membership problem for F2 × F2 are undecidable. Mihalova’s result is also
remarkable since F2 × F2 is a very natural group. In contrast all known
examples of finitely presented groups with an undecidable word problem are
constructed from Turing machines (or other universal computation models)
with undecidable acceptance problem and cannot be considered as simple

2In particular, all numbers k, l1, . . . , lk are polynomially bounded in the size of the
automaton A.
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or natural. Nevertheless, Mihailova’s result is shown by reducing the word
problem for a finitely presented group to the membership problem for a
finitely generated subgroup of F2 × F2.

A second classical undecidability result for the subgroup membership
problem was shown by Rips in 1982:

Theorem 11. There is a word-hyperbolic group that contains a finitely gen-
erated subgroup with an undecidable membership problem.

So again, the subgroup membership problem, the submonoid membership
problem, and the rational subset membership problem are in general undecid-
able for word-hyperbolic groups. The group constructed by Rips is actually a
torsion-free small cancellation group satisfying the condition C ′(1/6). Wise
modified Rips’ construction so that the resulting group is also residually finite
[58].

5 Closure properties

For every group theoretic decision problem, let us call it P, it is good to
know closure properties with respect to group theoretic constructions. They
allow us to construct from groups for which P is decidable new (and maybe
more complicated) groups for which P is decidable. Mihailova’s result (The-
orem 10) implies that the class of groups for which the subgroup member-
ship problem (or the submonoid membership problem, or the rational subset
membership problem) is decidable is not closed under direct products: F2

has a decidable rational subset membership problem by Benois’ result (The-
orem 7) but F2 × F2 has an undecidable subgroup membership problem.
Another important operation, which destroys the decidability of the rational
subset membership problem is the wreath product; see Section 9 for more
details. But fortunately, there are other important group constructions for
which we can prove positive results.

Two very important constructions in combinatorial group theory are
HNN-extensions and amalgamated free products. The following two results
were shown in [26] (and independently in [32]) for the rational subset mem-
bership problem and in [27] for the subgroup membership problem.

Theorem 12. Let P stand for either the rational subset membership problem
or the subgroup membership problem. Assume that G is a finitely generated
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group for which P is decidable. Then P is decidable for every HNN-extension
〈G, t | t−1at = ϕ(a) (a ∈ A)〉 with A ≤ G finite.

Theorem 13. Let P stand for either the rational subset membership problem
or the subgroup membership problem. Assume that G1 and G2 are finitely
generated groups for which P is decidable. Then P is decidable for every
amalgamated free product G1 ∗A1=A2

G2 with A1 ≤ G1 and A2 ≤ G2 finite.

Closure of the class of groups with a decidable subgroup membership
problem under free products was already shown by Mihailova in [42].

Theorems 12 and 13 can be rephrased in terms of graphs of groups. Every
fundamental group of a graph of groups with finite edge groups and vertex
groups that have a decidable rational subset membership problem (resp.,
subgroup membership problem) has a decidable rational subset membership
problem (resp., subgroup membership problem) as well.

Surprisingly, it is not known whether the decidability of the submonoid
membership problem is preserved under HNN-extensions with finite associ-
ated subgroups and amalgamated free products over finite subgroups:

Open problem 14. Assume that G is a finitely generated group with a decid-
able submonoid membership problem, and let H = 〈G, t | t−1at = ϕ(a) (a ∈
A)〉 be an HNN-extension with A ≤ G finite. Does H have a decidable sub-
monoid membership problem?

Assume that G1 and G2 are finitely generated groups with a decidable
submonoid membership problem, and let G = G1∗A1=A2

G2 be an amalgamated
free product with A1 ≤ G1 and A2 ≤ G2 finite. Does G have a decidable
submonoid membership problem? Does the free product G1∗G2 has a decidable
submonoid membership problem?

Actually, the author conjectures that there are specific groups, where the
answers to the above questions are negative. We will come back to this
conjecture in Section 10 when we consider the relationship between the ra-
tional subset membership problem and the submonoid membership problem
in more detail.

Let us now discuss subgroups and extensions. The following result is
trivial:

Proposition 15. Let P stand for either the rational subset membership prob-
lem, the submonoid membership problem, or the subgroup membership prob-
lem. Assume that H is a finitely generated subgroup of the finitely generated
group G. If P is decidable for G, then P is decidable for H as well.
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Our last closure result concerns finite extensions and was shown by Grun-
schlag in his thesis [19]:

Theorem 16. Let P stand for either the rational subset membership prob-
lem or the subgroup membership problem. Assume that G is a finite index
subgroup of H. If P is decidable for G, then P is decidable for H as well.
Moreover, if P can be solved in polynomial time for G, then the same holds
for the group H.

Let us sketch the proof. Assume that G (resp., H) is generated by the
symmetric set X (resp., Y ). Let WX(G) ⊆ X∗ (resp., WY (H) ⊆ Y ∗) be the
set of all words that evaluate to the identity of G (resp., H). There exists
a rational transduction τ ⊆ X∗ × Y ∗ (which is just a rational subset of the
monoid X∗ × Y ∗) such that

WY (H) = τ(WX(G)) = {w ∈ Y ∗ | ∃u ∈WX(G) : (u, w) ∈ τ},

see [26, Lemma 3.3]. This rational transduction is given by a fixed automaton
T with transitions labelled by pairs from (X×{ε})∪({ε}×Y ). Here, “fixed”
means that we do not have to construct the automaton T .

Take a finite automaton A over Y . We have to check, whether L(A)
contains a word that evaluates to the identity of H , i.e., that belongs to
WY (H). We have L(A)∩WY (H) 6= ∅ if and only if L(A)∩ τ(WX(G)) 6= ∅ if
and only if τ−1(L(A)) ∩WX(G) 6= ∅. Finally, an automaton for τ−1(L(A))
can be constructed in polynomial time from the automaton A using a product
construction with the automaton T .

As for HNN-extensions and amalgamated free products, it is open whether
the decidability of the submonoid membership problem is preserved by finite
extensions:

Open problem 17. Assume that G is a finite index subgroup of H and
that G has a decidable submonoid membership problem. Is the submonoid
membership problem for H decidable?

6 Right-angled Artin groups

Let H = (Γ, E) be a finite simple graph. In other words, the edge relation
E ⊆ V × V is irreflexive and symmetric. One associates with H the group

G(H) = 〈Γ | ab = ba ((a, b) ∈ E)〉.
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Such a group is called a right-angled Artin group, graph group, or free partially
commutative group. Here, we use the term right-angled Artin group.3 Right-
angled Artin groups received a lot of attention in group theory during the
last few years, mainly due to their rich subgroup structure [8, 12, 17].

For graphs H1 = (V,E) and H2, we say that H1 contains an induced H2,
if there is a subset U ⊆ V such that the graph (U,E∩ (U×U)) is isomorphic
to H2. In this situation, G(H2) is a subgroup of G(H1). With C4 (cycle on
4 nodes) we denote the following graph:

Note that the right-angled Artin group G(C4) is F2 × F2. Hence, by Mi-
hailova’s result (Theorem 10), the subgroup membership problem is unde-
cidable for every graph group G(H) such that H contains an induced C4.

On the decidability side, the following result is shown in [27]. A simplified
proof can be found in [34].4

Theorem 18. Let H be a finite simple graph that does not contain an induced
cycle on n ≥ 4 nodes (such a graph is called chordal). Then, the subgroup
membership problem for the graph group G(H) is decidable.

This result and Mihailova’s result leave a gap for the decidability status
of the subgroup membership problem.

Open problem 19. For which graphs H is the subgroup membership prob-
lem for the right-angled Artin group G(H) decidable? More specifically, is
the subgroup membership problem decidable for the right-angled Artin group
G(C5) (where C5 denotes a cycle on 5 nodes)?

With P4 (path on 4 nodes) we denote the following graph:

3This term comes from the fact that right-angled Artin groups are exactly the Artin
groups corresponding to right-angled Coxeter groups.

4Actually, decidability of the subgroup membership problem is shown in [27, 34] for a
much larger class of groups.
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The following characterization of right-angled Artin groups with a de-
cidable rational subset membership problem (resp., submonoid membership
problem) is shown in [33]:

Theorem 20. Let H be a finite simple graph. Then, the following three
conditions are equivalent:

• H does not contain an induced P4 or C4.

• The rational subset membership problem for G(H) is decidable.

• The submonoid membership problem for G(H) is decidable.

For the undecidability statement in Theorem 20 one has to show that the
submonoid membership problem is undecidable for G(P4) and G(C4). The
latter group is covered by Mihailova’s result. For G(P4) it is first shown in
[33] that this group has an undecidable rational subset membership problem.
Then, in a second step the rational subset membership problem for G(P4)
is reduced to the submonoid membership problem for G(P4).5 To prove
that G(P4) has an undecidable rational subset membership problem, one
can use a result from the theory of trace monoid. Trace monoids are the
monoid counterparts of right-angled Artin groups. For a finite simple graph
H = (Γ, E) one defines the corresponding trace monoid M(H) as the quotient
of the free monoid Γ∗ by the monoid congruence generated by all pairs (ab, ba)
with (a, b) ∈ E. Aalbersberg and Hoogeboom [1] proved that the following
two conditions are equivalent:

• It is decidable, whether the intersection of two given rational subsets
of the trace monoid M(H) is nonempty.

• The graph H does not contain an induced P4 or C4.

But for two rational subsets L,K ⊆ M(H), one has L ∩K = ∅ if and only
if the set LK−1 (interpreted in the right-angled Artin group G(H)) contains
the identity element 1.

The proof of the decidability statement in Theorem 20 uses the following
characterization of graphs without induced P4 or C4, see [59]: A finite simple
graph H does not contain an induced P4 or C4 if and only if H can be
obtained from the graph with one node using the following two operations:

5This reduction is very similar to the reduction of the rational subset membership
problem to the submonoid membership problem in case of a group with infinitely many
ends. This reduction is outlined in Section 10.
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• Take the disjoint union of two graphs.

• Add a new vertex to the graph and connect it to all old nodes.

On the level of right-angled Artin groups, these two operations correspond to
(i) the free product of two groups, and (ii) the direct product by Z. Hence,
one has to show that the rational subset membership problem is decidable
for every group that can be produced from the trivial group 1 using the
operations of free product and direct product with Z.

The algorithm from [33] is not very efficient. To deal with the case of a
free product, Parikh’s theorem (stating that the Parikh image of a context-
free language is semi-linear) is applied, which leads to an exponential blow-
up in the running time. This implies that for the uniform rational subset
membership problem for right-angled Artin groups G(H), where H does not
contain an induced P4 or C4 (in this problem, H is also part of the input),
the proof in [33] only yields a non-elementary algorithm, i.e., an algorithm
whose running time is not bounded by tower of exponents of fixed height.

Open problem 21. What is the computational complexity of the rational
subset membership problem for a right-angled Artin group G(H), where H
does not contain an induced P4 or C4? Is there an algorithm with elementary
running time for the uniform problem, where the graph H is part of the input?

7 Nilpotent groups and polycyclic groups

The lower central series of the group G is the sequence of subgroups G =
G1 ≥ G2 ≥ G3 ≥ · · · where Gi+1 = [Gi, G] (which is the subgroup of Gi

generated by all commutators g−1h−1gh for g ∈ Gi and h ∈ G; by induction
one can show that indeed Gi+1 ≤ Gi). The group G is nilpotent if there
exists i ≥ 1 with Gi = 1. A group G is polycyclic, if there exists a subnormal
series G = G0 ⊲G1 ⊲ · · ·⊲Gn−1 ⊲Gn = 1 such that every quotient Gi−1/Gi

is cyclic. Nilpotent groups are polycyclic.
Mal’cev [39] proved that every polycyclic group G is subgroup separable,

i.e., for every finitely generated subgroup H ≤ G and g ∈ G \H there exists
a morphism ϕ : G→ K to a finite group K such that ϕ(g) 6∈ ϕ(K). Together
with the finite presentability of finitely generated polycyclic groups, one gets:

Theorem 22. Every finitely generated polycyclic group has a decidable sub-
group membership problem.
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A more practical algorithm for the subgroup membership problem for
polycyclic groups can be found in [2].

By Theorem 22 every finitely generated nilpotent group has a decidable
subgroup membership problem. This result does not generalize to the ratio-
nal subset membership problem, as Roman’kov [52] has shown:

Theorem 23. There exists a number r such that the free nilpotent group
of class 2 generated by r elements (this group is denoted by N2,r) has an
undecidable rational subset membership problem.

The proof of this result in [52] uses a reduction from Hilbert’s 10th prob-
lem, i.e., the question whether a Diophantine equation P (x1, . . . , xn) with
P a polynomial with integer coefficients has an integer solution. The decid-
ability status of the submonoid membership problem for finitely generated
nilpotent groups is open:

Open problem 24. Is there a finitely generated nilpotent group with an
undecidable submonoid membership problem?

Rational subsets in nilpotent groups were also studied by Bazhenova [4].
She proved that the rational subsets of a finitely generated nilpotent group
G are a Boolean algebra if and only if G is virtually abelian.

8 Metabelian groups

Recall that a group G is metabelian if the commutator subgroup [G,G] is
abelian. Equivalently, G is metabelian if G has an abelian normal subgroup
A such that the quotient G/A is abelian too. Hall [20] has shown that one
can view A as a Z[Q]-module, which is finitely generated (as a Z[Q]-module)
if G is finitely generated. This fact allows to apply commutative algebra to
obtain decidability results for metabelian groups. In particular, in [53, 54]
the following result is shown:

Theorem 25. For every finitely generated metabelian group, the subgroup
membership problem is decidable.

The submonoid membership problem seems to mark the borderline be-
tween decidability and undecidability for metabelian groups.

17



Theorem 26. The free metabelian group generated by two elements (this
group is denoted by M2 in the following) contains a fixed finitely generated
submonoid with an undecidable membership problem.

This result is shown in [36] via a reduction from the membership problem
for finitely generated subsemimodules of free (Z×Z)-modules of finite rank.
This latter problem is shown to be undecidable in [36] by interpreting it as
a particular tiling problem of the Euclidean plane6 that in turn is shown to
be undecidable via a direct encoding of a Turing machine.

Also if one tries to generalize Theorem 25 to larger classes of groups, one
quickly reaches undecidability, as Umirbaev [57] has shown:

Theorem 27. The free solvable group of derived length 3 and rank 2 has an
undecidable subgroup membership problem.

9 Wreath products

Let G and H be groups. Consider the direct sum

K =
⊕

g∈G

Hg,

where Hg is a copy of H . We view K as the set

H(G) = {f ∈ HG | f−1(H \ {1}) is finite}

of all mappings from G to H with finite support together with pointwise
multiplication as the group operation. The group G has a natural left action
on H(G) given by

gf(a) = f(g−1a)

where f ∈ H(G) and g, a ∈ G. The corresponding semidirect product H(G) ⋊

G is the wreath product H ≀G. In other words:

• Elements of H ≀G are pairs (f, g), where f ∈ H(G) and g ∈ G.

• The multiplication in H ≀G is defined as follows: Let (f1, g1), (f2, g2) ∈
H ≀G. Then (f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g

−1
1 a).

6A good introduction into tiling problems can be found in [9, Appendix A].
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The following intuition might be helpful: An element (f, g) ∈ H ≀ G can
be thought of as a finite multiset of elements of H \ {1} that are sitting
at certain elements of G (the mapping f) together with the distinguished
element g ∈ G, which can be thought of as a cursor moving in G. If we want
to compute the product (f1, g1)(f2, g2), we do this as follows: First, we shift
the finite collection of H-elements that corresponds to the mapping f2 by
g1: If the element h ∈ H \ {1} is sitting at a ∈ G (i.e., f2(a) = h), then we
remove h from a and put it to the new location g1a ∈ H . This new collection
corresponds to the mapping f ′

2 : a 7→ f2(g
−1
1 a). After this shift, we multiply

the two collections of H-elements pointwise: If in a ∈ G the elements h1 and
h2 are sitting (i.e., f1(a) = h1 and f ′

2(a) = h2), then we put the product
h1h2 into the location a. Finally, the new distinguished G-element (the new
cursor position) becomes g1g2.

If H (resp. G) is generated by the set X (resp. Y ) with X ∩ Y = ∅, then
H ≀G is generated by X∪Y . It is well-known and easy to see that decidability
of the word problem for G and H implies decidability of the word problem
for H ≀G. The following simple proposition is useful, see [37] for a proof:

Proposition 28. Let K be a subgroup of G of finite index m and let H be a
group. Then Hm ≀K is isomorphic to a subgroup of index m in H ≀G.

The following decidability result is shown in [37]:

Theorem 29. The rational subset membership problem is decidable for every
group H ≀ V with H finite and V virtually free.

Note that Theorem 29 covers the well known lamplighter group Z2 ≀ Z.
The proof of Theorem 29 in [37] makes use of well-quasi-order (wqo)

theory. Let us briefly explain the idea for a wreath product G = H ≀ F2,
where H is finite and F2 is the free group generated by a and b. Given
a finite automaton A over the alphabet H ∪ {a, a−1, b, b−1} it suffices to
check whether A accepts a word that represents the identity of G. The key
ingredient is a certain language over the alphabet of triples (p, d, q), where
p and q are states of the automaton A and d ∈ {a, a−1, b, b−1}. The idea is
that such a triple may represent a path in A from state p to q such that the
sequence of labels from {a, a−1, b, b−1} along the path is a loop in the Cayley-
graph of F2 that leaves the origin in direction d and returns to the origin from
direction d. The effect of such a path is the product of all transition labels; it
is an element of the direct sum K =

⊕
g∈F2

H . A word w over the alphabet
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of triples is a loop pattern if each triple (p, d, q) in the word can be replaced by
an automaton path as described above, such that the product of the effects
of these paths is the identity of K. It is shown in [37] that the set of all
loop patterns is a regular language. For this, it is shown that the set of loop
patterns is an upward closed set of words with respect to a wqo, which is
a refinement of the subsequence relation (also known as embeddability) on
words (which is a wqo by Higman’s Lemma). Using a saturation process one
can actually compute an automaton for the set of all loop patterns. Using
this automaton, it is straightforward to check whether A accepts a word that
represents the identity of G.

The computational complexity of the rational subset membership problem
for groups H ≀ V with H finite and V virtually free is open. Due to the use
of well quasi orders, the algorithm from [37] is not primitive recursive.

Open problem 30. Is the rational subset membership problem for groups
H ≀ V with H finite and V virtually free primitive recursive? In particular,
is the rational subset membership problem for the lamplighter group Z2 ≀ Z

primitive recursive?

It should be mentioned that there exist several decision problems, for
which decidability is proved using a well quasi order, and which can be shown
to be not primitive recursive. An example is the membership problem for so
called leftist grammars (these are grammars, where every production has the
form ab→ b or d→ cd) [23, 45].

By the following result from [37], decidability for the rational subset mem-
bership problem cannot be pushed very far beyond wreath products of the
form H ≀ V with H finite and V virtually free:

Theorem 31. There is a fixed finitely generated submonoid M of the wreath
product Z ≀ Z with an undecidable membership problem.

For the proof of Theorem 31 in [37], the authors encode the acceptance
problem for a 2-counter machine (Minsky machine [44]) into the submonoid
membership problem for Z ≀ Z. One should remark that Z ≀ Z is a finitely
generated metabelian group and hence has a decidable subgroup membership
problem, see Theorem 25.

The wreath product Z ≀Z is a subgroup of Thompson’s group F (see [41])
as well as of Baumslag’s finitely presented metabelian group 〈a, s, t | [s, t] =
[at, a] = 1, as = aat〉 [3], see e.g. [11]. Hence, we get:
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Corollary 32. Thompson’s group F as well as Baumslag’s finitely presented
metabelian group both contain finitely generated submonoids with an unde-
cidable membership problem.

A further undecidability result for wreath products was shown in [36]:

Theorem 33. For every non-trivial group H, the rational subset membership
problem for H ≀ (Z × Z) is undecidable.

The proof of this result in [36] uses an encoding of a tiling problem,
which uses the grid structure of the Cayley graph of Z×Z. It is very similar
to the undecidability proof for the submonoid membership problem for free
metabelian groups (Theorem 26) It is open, whether Theorem 33 can be
sharpened to the submonoid membership problem:

Open problem 34. Assume that H is a non-trivial group. Is the submonoid
membership problem for H ≀ (Z × Z) undecidable?

The author conjectures that the answer to this question is positive. An-
other reasonable conjecture is that Theorem 33 can be generalized to every
wreath product H ≀G, where H is non-trivial and G is not virtually free (note
that Z × Z is not virtually free).

Open problem 35. Assume that H is a non-trivial group and G is not vir-
tually free. Is the rational subset membership problem for H ≀G undecidable?

As remarked above, the author conjectures that the answer to this ques-
tion is again positive. The reason is that the undecidability proof for H ≀(Z×
Z) from [36] only uses the grid-like structure of the Cayley graph of Z × Z.
In [29] it was shown that the Cayley graph of a group G has bounded tree
width (a graph-theoretic measure that, roughly speaking, determines how
tree-like a graph is) if and only if the group is virtually free. Hence, if G is
not virtually free, then the Cayley-graph of G has unbounded tree width. By
known results from graph theory, this implies that finite grids of arbitrary
size appear as graph-theoretic minors in the Cayley-graph of G. There is
hope to use these grids for encoding an undecidable tiling problem into the
rational subset membership problem for H ≀G (for H non-trivial).

Theorem 31 and 33 imply the following: For finitely generated non-trivial
abelian groups G and H , the wreath product H ≀G has a decidable rational
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subset membership problem if and only if (i) G is finite7 or (ii) G has rank 1
and H is finite. Furthermore, for virtually free groups G and H , the rational
subset membership problem is decidable for H ≀G if and only if (i) G is trivial
or (ii) H is finite, or (iii) G is finite and H is virtually Z, i.e., has Z as a finite
index subgroup. Note that if G is finite, then Proposition 28 implies that
H |G| is a finite index subgroup of H ≀G. Hence, if H is virtually Z, then H |G|

is virtually abelian and hence has a decidable rational subset membership
problem. On the other hand, if H is virtually Fn for Fn a free group of rank
n > 1 and G is nontrivial, then H |G| (and hence H ≀ G) has an undecidable
subgroup membership problem by Theorem 10.

10 Rational subsets versus submonoids

It is a trivial obersvation that decidability of the rational subset membership
problem for a group G implies decidability of the submonoid membership
problem for G, and the latter implies decidability of the subgroup member-
ship problem for G. On the other hand, we have seen groups, for which the
subgroup membership problem is decidable, but the submonoid membership
problem is undecidable. Examples are the free metabelian group generated
by two elements (see Theorems 25 and 26) and the right-angled Artin group
G(P4) (see Theorems 18 and 20; note that P4 does not contain an induced
cycle, which allows to apply Theorem 18). It is therefore an interesting ques-
tion, whether there is a finitely generated group, for which the submonoid
membership problem is decidable but the rational subset membership prob-
lem is undecidable. Unfortunately, we do not know, whether such a group
exists.

Open problem 36. Is there a finitely generated group, for which the sub-
monoid membership problem is decidable but the rational subset membership
problem is undecidable?

By the following result from [35] we know that if such a group exists, then
it must have only one end. The number of ends of a finitely generated infinite
group G is a geometric invariant of G that is defined as follows: Assume that
G is finitely generated by the symmetric set X (the following definition is

7If G has size m, then by Proposition 28, Hm ∼= Hm ≀ 1 is isomorphic to a subgroup
of index m in H ≀ G. Since Hm is finitely generated abelian, decidability of the rational
subset membership problem of H ≀ G follows from Theorems 8 and 16.
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not influenced by the concrete choice of X) and consider the Cayley graph
G(G,X). The nodes of this graph are the elements of G and there is an edge
between two elements of g, h ∈ G if and only if there is a generator a ∈ X
such that h = ga in G. This graph is undirected (since X is symmetric) and
connected (since X generates G). Moreover, it is vertex-transitive, which
means that for all g, h ∈ G, there is a graph automorphism of G(G,X) that
maps g to h. To define the number of ends of G, choose an arbitrary node
g ∈ G (the concrete choice of g is not important) and let Gn (for n ≥ 0) be the
subgraph of G(G,X) obtained by removing all nodes from G(G,X) that have
distance at most n from g. Let en be the number of connected components of
Gn. Then the number of ends is the limit of the sequence (en)n≥0 or ∞ if this
sequence is unbounded. By the Freudenthal-Hopf Theorem, every finitely
generated infinite group G has either 1, 2, or ∞ many ends, see e.g. [41].
Here are three typical examples for each possibility:

• The number of ends of Z × Z is 1.

• The number of ends of Z is 2.

• The number of ends of the free group F2 or rank 2 is ∞.

A group has two ends if and only if it is virtually Z. A seminal result of
Stallings [55, 56] characterizes groups with infinitely many ends: A group
has infinitely many ends if and only if it is an HNN-extension with finite
associated subgroups or an amalgamated product with finite amalgamated
subgroups. The following result was shown in [35]:

Theorem 37. Assume that G is a finitely generated group G. If G has more
than one end, then the rational subset membership problem for G is decidable
if and only if the submonoid membership problem for G is decidable.

The case of group G with two ends is easy: G has Z as a finite index
subgroup. Since the rational subset membership problem for Z is decidable,
Theorem 16 implies that the rational subset membership problem (and hence
also the submonoid membership problem) is decidable. So, it remains to
consider a group G with infinitely many ends. By Stalling’s theorem one
can write G as an HNN-extension with finite associated subgroups or an
amalgamated product with finite amalgamated subgroups. Let us sketch
the proof of Theorem 37 in a simple case that nevertheless shows the main
idea: Assume that G = H ∗ F2 and assume that the submonoid membership
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problem for G is decidable. We have to show that G has a decidable rational
subset membership problem. By Theorem 13 (and the fact that F2 has a
decidable rational subset membership problem) it suffices to show that H has
a decidable rational subset membership problem. So, let us fix a generating
set X for H together with a canonical homomorphism π : X∗ → H , and let
A = (Q,∆, q0, F ) be a finite automaton over X. By adding ε-transitions to
∆ we can assume that F consists of a single state qf 6= q0. Since F2 contains
a copy of Fn (the free group of rank n) for any n ≥ 1, we can assume that
F2 contains a copy of F (Q), i.e., the free group generated by the states of A.
Recall that ∆ ⊆ Q × (X ∪ {ε}) × Q is the set of transitions. Now define a
finitely generated submonoid of G = H ∗ F2 as follows. Let

Y = {q−1ap | (q, a, p) ∈ ∆} ⊆ H ∗ F (Q) ⊆ H ∗ F2 = G.

Then, one can show that for every w ∈ X∗, we have π(w) ∈ π(L(A)) if and
only if q−1

0 wqf represents an element of the submonoid Y ∗ of G. The idea is
that in a product of the form (q−1

1 a1p1)(q
−1
2 a2p2) · · · (q

−1
n anpn) a factor of the

form piq
−1
i+1 with pi 6= qi+1 cannot be erased. On the other hand, if pi = qi+1

for 1 ≤ i ≤ n− 1, then the word is equal to q−1
1 (a1a2 · · ·an)pn.

Problem 36 is related to Problem 14: Assume that the class of finitely
generated groups with a decidable submonoid membership problem is closed
under free product (whether this is true was one of the questions asked in
Problem 14). Let G be an arbitrary finitely generated group with a decidable
submonoid membership problem. Hence, by our assumption, also the free
product G ∗ F2 has a decidable submonoid membership problem. But this
group has infinitely many ends. So, by Theorem 37, G ∗ F2 has a decidable
rational subset membership problem. But then, also the finitely generated
subgroup G has a decidable rational subset membership problem.

The author conjectures that one can construct a finitely generated group
with a decidable submonoid membership problem and an undecidable ratio-
nal subset membership problem. This leads to the conjecture that the class of
groups with a decidable submonoid membership problem is not closed under
free products.
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11 Further results on the submonoid mem-

bership problem

Let us briefly mention some further results on the submonoid membership
problem. In [46] the bounded submonoid membership problem for a finitely
generated group G was introduced:

Decision problem 38. Bounded submonoid membership problem for G

• INPUT: Elements g, g1, . . . , gn ∈ G and a unary encoded number k

• QUESTION: Can g be written as a product g = gi1gi2 · · · gil with l ≤ k
and 1 ≤ i1, . . . , il ≤ n.

It was shown in [46] that the bounded submonoid membership problem
can be solved in polynomial time for finitely generated virtually nilpotent
groups and word hyperbolic groups.

In [22] it was shown that the word problem for a one-relator inverse
monoid Inv〈X | r = 1〉 is decidable if and only if the submonoid of the
one-relator group Gp〈X | r = 1〉 that is generated by all prefixes of r has
a decidable membership problem. The latter problem is also called the pre-
fix monoid membership problem for the one-relator group Gp〈X | r = 1〉.
Motivated by this result, the submonoid membership problem was further
studied in [40], where a general technique based on distortion functions for
solving submonoid membership problems is introduced. Using this tech-
nique, the authors show that the prefix membership problem is decidable
for Baumslag-Solitar groups, surface groups of genius at least two (for which
decidability was already shown in [22]), and certain one-relator groups given
by Adian type presentations.

12 The rational subset membership problem

for monoids and semigroups

We defined the notion of a rational subset for all monoids. Hence, it makes
sense to study the rational subset membership problem for finitely generated
monoids (and, by replacing the monoid closure by the semigroup closure,
even for finitely generated semigroups). Kambites and Render proved several
interesting results in this context. They showed that the rational subset
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membership problem is decidable for the following classes of finitely generated
monoids:

• Polycyclic and bicyclic monoids [49],

• Finitely generated Rees matrix semigroups (with or without zero) over
a semigroup with decidable rational subset membership problem [50],

• Monoid that satisfy the small overlap condition C(4) (which is inspired
by small cancellation theory for groups) [25].
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Sibirskĭı Fond Algebry i Logiki. Algebra i Logika, 34(2):211–232, 243,
1995.

[58] D. T. Wise. A residually finite version of Rips’s construction. Bulletin
of the London Mathematical Society, 35(1):23–29, 2003.

[59] E. S. Wolk. A note on the “The comparability graph of a tree”. Pro-
ceedings of the American Mathematical Society, 16:17–20, 1965.

[60] G. Zetzsche. On the capabilities of grammars, automata, and trans-
ducers controlled by monoids. In L. Aceto, M. Henzinger, and J. Sgall,
editors, ICALP (2), volume 6756 of Lecture Notes in Computer Science,
pages 222–233. Springer, 2011.

[61] G. Zetzsche. Silent transitions in automata with storage. In F. V.
Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors, ICALP
(2), volume 7966 of Lecture Notes in Computer Science, pages 434–445.
Springer, 2013.

31


	Introduction
	Finite automata
	Rational subsets of groups
	Classical results
	Closure properties
	Right-angled Artin groups
	Nilpotent groups and polycyclic groups
	Metabelian groups
	Wreath products
	Rational subsets versus submonoids
	Further results on the submonoid membership problem
	The rational subset membership problem for monoids and semigroups

