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Abstract
A simple linear-time algorithm for constructing a linear context-free tree grammar of size O(r2g logn)
for a given input tree T of size n is presented, where g is the size of a minimal linear context-free tree
grammar for T , and r is the maximal rank of symbols in T (which is a constant in many applications).
This is the first example of a grammar-based tree compression algorithm with an approximation ratio
polynomial in g. The analysis of the algorithm uses an extension of the recompression technique (used in
the context of grammar-based string compression) from strings to trees.
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1 Introduction

Grammar-based compression has emerged to an active field in string compression during the last
10 years. The principle idea is to represent a given string s by a small context-free grammar that
generates only s; such a grammar is also called a straight-line program (SLP). For instance, the
word (ab)1024 can be represented by the SLP with the productions A0 → ab and Ai → Ai−1Ai−1
for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this grammar is much smaller than the size
(length) of the string (ab)1024. In general, an SLP of size n (the size of an SLP is usually defined as
the total length of all right-hand sides of productions) can produce a string of length 2Ω(n). Hence,
an SLP can be seen indeed as a succinct representation of the generated word. The principle task
of grammar-based string compression is to construct from a given input string s a small SLP that
produces s. Unfortunately, finding a size-minimal SLP for a given input string is hard: Unless
P = NP there is no polynomial time grammar-based compressor, whose output SLP has size less
than 8569/8568 times the size of a minimal SLP for the input string [4], and so there is no polynomial
time grammar-based compressor G with an approximation ratio of less than 8569/8568. In general
the approximation ratio for G is defined as the function αG with

αG(n) = max size of the SLP produced by G with input x
size of a minimal SLP for x

,

where the max is taken over all strings of length n (over an arbitrary alphabet). The best known poly-
nomial time grammar-based compressors [4, 9, 17, 18] have an approximation ratio ofO(log(n/g)),
where g is the size of a smallest SLP for the input string (each of them works in linear time).

At this point, the reader might ask, what makes grammar-based compression so attractive. There
are actually several reasons: The output of a grammar-based compressor (an SLP) is a clean and
simple object, which may simplify the analysis of a compressor or the analysis of algorithms that
work on compressed data (see [13] for a survey). Moreover, there are grammar-based compressors
which achieve very good compression ratios. For example REPAIR [12] performs very well in
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practice and was for instance used for the compression of web graphs [5]. Finally, the idea of
grammar-based string compression can be generalized to other data types as long as suitable gram-
mar formalisms are known for them. The last point is the most important one for this work. In [3],
grammar-based compression was generalized from strings to trees (a tree in this paper is always a
rooted ordered tree over a ranked alphabet, i.e., every node is labelled with a symbol and the rank
of this symbol is equal to the number of children of the node). For this, context-free tree grammars
were used. Context free tree grammars that produce only a single tree are also known as straight-line
context-free tree grammars (SLCF tree grammars). Several papers deal with algorithmic problems
on trees that are succinctly represented by SLCF tree grammars, see [13] for a survey. In [14],
REPAIR was generalized from strings to trees, and the resulting algorithm TREEREPAIR achieved
excellent results on real XML data trees. Other grammar-based tree compressors were developed
in [15]. But none of these compressors has an approximation ratio polynomial in g: For instance,
in [14] a series of trees is constructed, where the n-th tree tn has size Θ(n), there exists an SLCF
tree grammar for tn of size O(logn), but the grammar produced by TREEREPAIR for tn has size
Ω(n) (similar examples can be constructed for the compressors in [3, 15]).

In this paper, we give the first example of a grammar-based tree compressor, called TTOG, with
an approximation ratio of O(logn) assuming the maximal rank r of symbols is bounded; otherwise
the approximation ratio becomes O(r2 logn). TTOG is based on the work [9] of the first author,
where grammar-based string compressor with an approximation ratio of O(logn) is presented. The
crucial fact about this compressor is that in contrast to [4, 17, 18] it does not use the LZ77 factor-
ization of a string (which makes the compressors from [4, 17, 18] not suitable for a generalization
to trees, since LZ77 ignores the tree structure and no analogue of LZ77 for trees is known), but
is based on the recompression technique. This technique was introduced in [7] and successfully
applied for a variety of algorithmic problems for SLP-compressed strings [7, 8] and word equa-
tions [11, 10]. The basic idea is to compress a string using two operations: (i) block compressions,
which replaces every maximal substring of the form a` for a letter a by a new symbol a`, and (ii) pair
compression, which for a given partition Σ`]Σr of the alphabet replaces every substring ab ∈ Σ`Σr
by a new symbol c. It can be shown that the composition of block compression followed by pair
compression (for a suitably chosen partition of the input letters) reduces the length of the string by
a constant factor. Hence, the iteration of block compression followed by pair compression yields
a string of length one after a logarithmic number of phases. By reversing the single compression
steps, one obtains an SLP for the initial string. The term “recompression” refers to the fact, that
for a given SLP G, block compression and pair compression can be simulated on the SLP G. More
precisely, one can compute from G a new grammar G′, which is not much larger than G such that
G′ produces the result of block compression (respectively, pair compression) applied to the string
produced by G. In [9], the recompression technique is used to bound the approximation ratio of the
above compression algorithm based on block and pair compression.

In this work we generalize the recompression technique from strings to trees. The operations
of block compression and pair compression can be directly applied to chains of unary nodes (nodes
having only a single child) in a tree. But clearly, these two operations alone cannot reduce the size
of the initial tree by a constant factor. Hence we need a third compression operation that we call leaf
compression. It merges all children of node that are leafs into the node; the new label of the node
determines the old label, the sequence of labels of the children that are leaves, and their positions in
the sequence of all children of the node. Then, one can show that a single phase, consisting of block
compression (that we call chain compression), followed by pair compression (that we call unary
pair compression), followed by leaf compression reduces the size of the initial tree by a constant
factor. As for strings, we obtain an SLCF tree grammar for the input tree by basically reversing
the sequence of compression operations. The recompression approach again yield an approximation
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ratio of O(logn) for our compression algorithm, but the analysis is technically more subtle.

Related work on grammar-based tree compression. We already mentioned that grammar-
based tree compressors were developed in [3, 14, 15], but none of these compressors has a good ap-
proximation ratio. Another grammar-based tree compressors was presented in [1]. It is based on the
BISECTION algorithm for strings and has an approximation ratio of O(n5/6). But this algorithm
used a different form of grammars (elementary ordered tree grammars) and it is not clear whether
the results from [1] can be extended to SLCF tree grammars, or whether the good algorithmic results
for SLCF-compressed trees [13] can be extended to elementary ordered tree grammars. Let us fi-
nally mention [2], where trees are compressed by so called top trees. These are another hierarchical
representation of trees. Upper bounds on the size of top trees are derived and compared with the size
of the minimal dag (directed acyclic graph). More precisely, it is shown in [2] that the size of the top
tree is larger than the size of the minimal dag by a factor of O(logn). Since dags can be seen as a
special case of SLCF tree grammars, our main result is stronger.

Computational model. To achieve a linear running time we employ RADIXSORT, see [6, Sec-
tion 8.3], to obtain a linear-time grouping of symbols. To this end some assumption on the compu-
tational model and form of the input are needed: we assume that numbers of O(logn) bits (where
n is the size of the input tree) can be manipulated in time O(1) and that the labels of the input tree
come from an interval [1, . . , nc], where c is some constant.

1.1 Trees and SLCF tree grammars

Let us fix for every i ≥ 0 a countably infinite set Fi of letters of rank i and let F =
⋃
i≥0 Fi be their

disjoint union. Symbols in F0 are called constants, while symbols in F1 are called unary letters.
We also write rank(a) = i if a ∈ Fi. A ranked alphabet F is a finite subset of F. We also write
Fi for F ∩ Fi and F≥i for

⋃
j≥i Fi. An F -labelled tree is a rooted, ordered tree whose nodes are

labelled with elements from F , satisfying the condition that if a node v is labelled with a then it has
exactly rank(a) children, which are linearly ordered (by the usual left-to-right order). We denote
by T (F ) the set of F -labelled trees. In the following we shall simply speak about trees when the
ranked alphabet is clear from the context or unimportant. When useful, we identify an F -labelled
tree with a term over F in the usual way. The size |t| of the tree t is its number of nodes.

Fix a countable set Y with Y∩F = ∅ of (formal) parameters, which are denoted by y, y1, y2, . . ..
For the purposes of building trees with parameters, we treat all parameters as constants, and so F -
labelled trees with parameters from Y ⊆ Y (where Y is finite) are simply (F ∪ Y )-labelled trees,
where the rank of every y ∈ Y is 0. However to stress the special role of parameters we write
T (F, Y ) for the set of F -labelled trees with parameters from Y . We identify T (F ) with T (F, ∅).
In the following we talk about trees with parameters (or even trees) when the ranked alphabet and
parameter set is clear from the context or unimportant. The idea of parameters is best understood
when we represent trees as terms: For instance f(y1, a, y2, y1) with parameters y1 and y2 can be
seen as a term with variables y1, y2 and we can instantiate those variables later on. A pattern (or
linear tree) is a tree t ∈ T (F, Y ), that contains for every y ∈ Y at most one y-labelled node. Clearly,
a tree without parameters is a pattern. All trees in this paper will be patterns, and we will not mention
this assumption explicitly in the following.

When we talk of a subtree u of a tree t, we always mean a full subtree in the sense that for
every node of u all descendents of that node in t belong to u as well. In contrast, a subpattern v
of t is obtained from a subtree u of t by replacing some of the subtrees of u by pairwise different
parameters. In this way we obtain a pattern p(y1, . . . , yn) and we say that (i) the subpattern v is
an occurrence of the pattern p(y1, . . . , yn) in t and (ii) p(y1, . . . , yn) is the pattern corresponding
to the subpattern v (this pattern is unique up to renaming of parameters). This later terminology
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applies also to subtrees, since a subtree is a subpattern as well. To make this notions clear, consider
for instance the tree f(a(b(c)), a(b(d))) with f ∈ F2, a, b ∈ F1 and c, d ∈ F0. It contains one
occurrence of the pattern a(b(c)) and two occurrences of the pattern a(b(y)).

A chain pattern is a pattern of the form a1(a2(. . . (ak(y)) . . .)) with a1, a2, . . . , ak ∈ F1. We
write a1a2 · · · ak for this pattern and treat it as a string (even though this string still needs an argument
on its right to form a proper term). In particular, we write a` for the chain pattern consisting of `
many a-labelled nodes and we write vw (for chain patterns v and w) for what should be v(w(y)).
A chain in a tree t is an occurrence of a chain pattern in t. A chain s in t is maximal if there is no
chain s′ in t with s ( s′. A 2-chain is a chain consisting of only two nodes (which, most of the time,
will be labelled with different letters). For a ∈ F1, an a-maximal chain is a chain such that (i) all
nodes are labelled with a and (ii) there is no chain s′ in t such that s ( s′ and all nodes of s′ are
labelled with a too. Note that an a-maximal chain is not necessarily a maximal chain. Consider for
instance the tree baa(c). The unique occurrence of the chain pattern aa is an a-maximal chain, but
is not maximal. The only maximal chain is the unique occurrence of the chain pattern baa.

For the further consideration, fix a countable infinite set Ni of symbols of rank iwith Ni∩Nj = ∅
for i 6= j. Let N =

⋃
i≥0 Ni. Furthermore, assume that F ∩ N = ∅. Hence, every finite subset

N ⊆ N is a ranked alphabet. A linear context-free tree grammar (there exist also non-linear CF
tree grammars, which we do not need for our purpose) or short linear CF tree grammar is a tuple
G = (N,F, P, S) such that N ⊆ N (resp., F ⊆ F) is a finite set of nonterminals (resp., terminals),
S ∈ N is the start nonterminal of rank 0, and P (the set of productions) is a finite set of pairs (A, t)
(for which we writeA→ t), whereA ∈ N and t ∈ T (F ∪N, {y1, . . . , yrank(A)}) is a pattern, which
contains exactly one yi-labelled node for each 1 ≤ i ≤ rank(A). To stress the dependency of A
on its parameters we sometimes write A(y1, . . . , yrank(A)) → t instead of A → t. Without loss of
generality we assume that every nonterminal B ∈ N \ {S} occurs in the right-hand side t of some
production (A → t) ∈ P , see [16, Theorem 5]. The derivation relation ⇒G on T (F ∪ N,Y ) is
defined as follows: s ⇒G s′ if and only if there is a production (A(y1, . . . , y`) → t) ∈ P such that
s′ is obtained from s by replacing some subtree A(t1, . . . , t`) of s by t with each yi replaced by ti.
Intuitively, we replace an A-labelled node by the pattern t(y1 . . . , yrank(A)) and thereby identify the
j-th child ofAwith the unique yj-labelled node of the pattern. ThenL(G) = {t ∈ T (F ) | S ⇒∗G t}.

A straight-line context-free tree grammar (or SLCF grammar for short) is a linear CF tree gram-
mar G = (N,F, P, S), where (i) for everyA ∈ N there is exactly one production (A→ t) ∈ P with
left-hand side A, (ii) if (A→ t) ∈ P and B occurs in t then B < A, where < is a linear order on N ,
and (iii) S is the maximal nonterminal with respect to <. By (i) and (ii), every A ∈ N derives ex-
actly one tree from T (F, {y1, . . . , yrank(A)}); we denote this tree by val(A) (like value). Moreover,
we define val(G) = val(S), which is a tree from T (F ). For an SLCF grammar G = (N,F, P, S)
we can assume without loss of generality that for every production (A → t) ∈ P the parameters
y1, . . . , yrank(A) occur in t in the order y1, y2, . . . , yrank(A) from left to right. This can be ensured
by a simple bottom-up rearranging procedure.

There is a subtle point, when defining the size |G| of the SLCF grammar G: One possible
definition could be |G| =

∑
(A→t)∈P |t|, i.e., the sum of all sizes of right-hand sides. However,

consider for instance the rule A(y1, . . . , y`) → f(y1, . . . , yi−1, a, yi, . . . , y`). It is in fact enough
to describe the right-hand side as (f, (i, a)), as we have a as the i-th child of f . On the remaining
positions we just list the parameters, whose order is known; see the above remark. In general, each
right-hand side can be specified by listing for each node its children that are not parameters together
with their positions in the list of all children. These positions are numbers between 1 and r (it is easy
to show that our algorithm TTOG creates only nonterminals of rank at most r, see Lemma 1, and
hence every node in a right-hand side has at most r children) and therefore fit into O(1) machine
words. For this reason we define the size |G| as the total number of non-parameter nodes in all right-
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hand sides. If the size of a grammar is defined as the total number of all nodes (including parameters)
in all right-hand sides, then the approximation ratio of TTOG is multiplied by an additional factor r.

Notational conventions. Our compression algorithm TTOG takes a tree T and applies to it local
compression operations, which shrink the size of the tree. With T we always denote the current tree
stored by TTOG, whereas n denotes the size of the initial input tree. The algorithm TTOG adds fresh
letters to the tree. With F we always denote the set of letters occurring in the current tree T . The
ranks of the fresh letters do not exceed the maximal rank of the original letters. To be more precise,
if we add a letter a to Fi, then F≥i was non-empty before this addition. By r we denote the maximal
rank of the letters occurring in the input tree. By the above remark, TTOG never introduces letters
of rank larger than r.

2 Compression operations

Our compression algorithm TTOG is based on three local replacement rules applied to trees:

(i) a-maximal chain compression: For a unary letter a replace every a-maximal chain consisting of
` > 1 nodes with a fresh unary letter a` (for all ` > 1).

(ii) (a, b)-pair compression: For two unary letters a 6= b replace every occurrence of ab by a single
node labelled with a fresh unary letter c (which identifies the pair (a, b)).

(iii) (f, i1, a1 . . . , i`, a`)-leaf compression: For f ∈ F≥1, ` ≥ 1, a1, . . . , a` ∈ F0 and 0 < i1 < i2 <

· · · < i` ≤ rank(f) =: m replace every occurrence of f(t1, . . . , tm), where tij = aj for 1 ≤ j ≤ `
and ti is a non-constant for i 6∈ {i1, . . . , i`}, by f ′(t1, . . . , ti1−1, ti1+1, . . . , ti`−1, ti`+1, . . . , tm),
where f ′ is a fresh letter of rank rank(f)− ` (which identifies (f, i1, a1 . . . , i`, a`)).

Note that each of these operations shrinks the size of the current tree. Operations (i) and (ii) apply
only to unary letters and are direct translations of the operations used in the recompression-based
algorithm for constructing a grammar for a given string [9]. On the other hand, (iii) is a new and
designed specifically to deal with trees.

Every application of one of our compression operations can be seen as the ‘backtracking’ of
a production of the grammar that we construct: When we replace a` by a`, we introduce the new
nonterminal a`(y) with the production a`(y)→ a`(y). When we replace all occurrences of the chain
ab by c, the new production is c(y) → a(b(y)). Finally, for (f, i1, a1 . . . , i`, a`)-leaf compression
the production is f ′(y1, . . . , yrank(f)−`) → f(t1, . . . , trank(f)), where tij = aj for 1 ≤ j ≤ ` and
every ti with i 6∈ {i1, . . . , i`} is a parameter (and the left-to-right order of the parameters in the
right-hand side is y1, . . . , yrank(f)−`). All these productions are for nonterminals of rank at most r,
which implies:

I Lemma 1. The rank of nonterminals defined by TTOG is at most r.

During the analysis of the approximation ratio of TTOG we also consider the nonterminals of a smal-
lest grammar generating the given input tree. To avoid confusion between these nonterminals and the
nonterminals of the grammar produced by TTOG, we insist on calling the fresh symbols introduced
by TTOG (a`, c, and f ′ above) letters and add them to the set F of current letters, so that F always
denotes the set of letters in the current tree T . In particular, whenever we talk about nonterminals,
productions, etc. we mean the ones of the smallest grammar we consider. Nevertheless, the above
productions for the new letters form the grammar returned by our algorithm TTOG and we need to
estimate their size. In order not to mix the notation, we shall call the size of the rule for a new letter a
the representation cost for a and say that a represents the subpattern it replaces in T . For instance, the
representation cost of a` with a`(y) → a`(y) is `, the representation cost of c with c(y) → a(b(y))
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is 2, and the representation cost of f ′ with f ′(y1, . . . , yrank(f)−`)→ f(t1, . . . , trank(f)) is `+ 1. A
crucial part of the analysis of TTOG is the reduction of the representation cost for letters a`: Note
that instead of representing a`(y) directly by a`(y) → a`(y), we can introduce new unary letters
representing some shorter chains in a` and build longer chains using the smaller ones as building
blocks. For instance, the rule a8(y) → a8(y) can be replaced by the rules a8(y) → a4(a4(y)),
a4(y) → a2(a2(y)) and a2(y) → a(a(y)). This yields a total representation cost of 6 instead of
8. Our algorithm employs a particular strategy for representing a-maximal chains, which yields the
total cost stated in the following lemma:

I Lemma 2 (cf. [9, Lemma 2]). Given a list `1 < `2 < · · · < `k we can represent the let-
ters a`1 , a`2 , . . . , a`k that replace the chain patterns a`1 , a`2 , . . . , a`k with a total cost of O(k +∑k
i=1 log(`i − `i−1)), where `0 = 0.

The important property of the compression operations is that we can perform many of them inde-
pendently in an arbitrary order without influencing the outcome. Since different a-maximal chains
and b-maximal chains do not overlap (regardless of whether a = b or not) we can perform a-maximal
chain compression for all unary letters a occurring in T in an arbitrary order (assuming that the new
letters do not occur in T ). We call the resulting tree CHAINCMP(T ), and denote the corresponding
procedure also chain compression.

A similar observation applies to leaf compressions: We can perform (f, i1, a1 . . . , i`, a`)-leaf
compression for all f ∈ F≥1, 0 < i1 < i2 < · · · < i` ≤ rank(f) =: m, and (a1, a2, . . . , a`) ∈ F `0
in an arbitrary order (again assuming that the fresh letters do not occur in the T ). We denote the
resulting tree with LEAFCMP(T ) and call the corresponding procedure also leaf compression.

The situation is more subtle for unary pair compression: observe that in a chain abc we can
compress ab or bc but we cannot do both in parallel (and the outcome depends on the order of the
operations). However, as in the case of string compression [9], independent (or parallel) (a, b)-pair
compressions are possible when we take a and b from disjoint subalphabets F up

1 and F down
1 , respect-

ively. In this case for each unary letter we can tell whether it should be the parent node or the child
node in the compression step and the result does not depend on the order of the considered 2-chains,
as long as new letters are outside F up

1 ∪ F down
1 . Hence, we denote with UNARYCMP(F up

1 , F down
1 , T )

the result of doing (a, b)-pair compression for all a ∈ F up
1 and b ∈ F down

1 (in an arbitrary order). The
corresponding procedure is also called (F up

1 , F down
1 )-compression.

3 The algorithm TTOG

In a single phase of the algorithm TTOG, chain compression, (F up
1 , F down

1 )-compression and leaf
compression are executed in this order (for an appropriate choice of the partition F up

1 , F down
1 ).

Algorithm 1 TTOG: Creating an SLCF tree grammar for
the input tree T

1: while |T | > 1 do
2: T ← CHAINCMP(T )
3: compute a partition F1 = F up

1 ] F down
1 . Lemma 3

4: T ← UNARYCMP(F up
1 , F down

1 , T )
5: T ← LEAFCMP(T )
6: return constructed grammar

The intuition behind this approach
is as follows: If the tree t in question
does not have any unary letters, then
leaf compression on its own reduces
the size of t by half, as it effectively re-
duces all constant nodes, i.e. leaves of
the tree, and more than half of nodes
are leaves. On the other end of the
spectrum is the situation in which all
nodes (except for the unique leaf) are labelled with unary letters. In this case our instance is in
fact a string. Chain compression and unary pair compression correspond to the operations of block
compression and pair compression, respectively, from the earlier work of the first author on string
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compression [9], where it is shown that block compression followed by pair compression reduces
the size of the string by a constant factor 3/4 (for an appropriate choice of the partition F up

1 , F down
1

of the letters occurring in the string). The in-between cases are a mix of those two extreme scenarios
and for each of them the size of the instance drops by a constant factor in one phase as well, see
Lemma 4. We need the following lemma, which is a modification of [9, Lemma 4]. Recall that F
always denotes the set of letters occurring in T .

I Lemma 3. Assume that (i) T does not contain an occurrence of a chain pattern aa for some
a ∈ F1 and (ii) the symbols in T form an interval of numbers. Then, in time O(|T |) one can find a
partition F1 = F up

1 ]F down
1 such that the number of occurrences of chain patterns from F up

1 F down
1 in

T is at least (n1 − 3c+ 2)/4, where n1 is the number of nodes in T with a unary label and c is the
number of maximal chains in T . In the same running time we can provide for each ab ∈ F up

1 F down
1

occurring in T a lists of pointers to all occurrences of ab in T .

A single iteration of the main loop of TTOG is called a phase. A single phase can be implemented
in time linear to the size of the current T . The main idea is that RADIXSORT is used for effective
grouping in linear time and finding a partition is a simple modification of [9, Lemma 4]. The main
property of a single phase is:

I Lemma 4. In each phase, |T | is reduced by a constant factor.

Since each phase needs linear time, the contributions of all phase give a geometric series and we get:

I Theorem 5. TTOG runs in linear time.

4 Size of the grammar produced by TTOG: recompression

4.1 Normal form

We want to compare the size of the grammar produced by TTOG with the size of a smallest SLCF
grammar for the input tree T . For this, we first transform the minimal grammar into a so called
handle grammar and show that this increases the grammar size by a factor of O(r), where r is the
maximal rank of symbols from F occurring in T . Then, we compare the size of a minimal handle
grammar for T with the size of the output of TTOG.

A handle is a pattern t(y) = f(w1(γ1), w2(γ2), . . . , wi−1(γi−1), y, wi+1(γi+1), . . . , w`(γ`)),
where rank(f) = `, every γj is either a constant symbol or a nonterminal of rank 0, every wj is a
chain pattern, and y is a parameter. Note that a(y) for a unary letter a is a handle. Since handles have
one parameter only, for handles h1, h2, . . . , h` we write h1h2 · · ·h` for the tree h1(h2(. . . (h`(y))))
and treat it as a string, similarly to chains patterns. We say that an SLCF grammar G is a handle
grammar (or simply “G is handle”) if the following conditions hold:

(H1) N ⊆ N0 ∪ N1
(H2) For A ∈ N ∩N1 the unique rule for A is of the form A(y)→ u(B(v(C(w(y))))) or A(y)→

u(B(v(y))) or A(y) → u(y), where u, v, and w are (perhaps empty) sequences of handles
and B,C ∈ N1. We call B the first and C the second nonterminal in the rule for A.

(H3) For A ∈ N ∩N0 the rule for A is of the (similar) form A→ u(B(v(C))) or A→ u(B(v(c)))
or A → u(C) or A → u(c), where u and v are (perhaps empty) sequences of handles, c is a
constant, B ∈ N1, C ∈ N0, and j, k < i. Again we speak of the first and second nonterminal
in the rule for A.

Note that the representation of the rules for nonterminals from N0 is not unique. Take for instance
the rule A → f(B,C), which can be written as A → a(C) for the handle a(y) = f(B, y) or as
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A → b(B) for the handle b(y) = f(y, C). For nonterminals from N1 this problem does not occur,
since there is a unique occurrence of the parameter y in the right-hand side. For a given SLCF
grammar we can find an equivalent handle grammar of similar size:

I Lemma 6. Let G be an SLCF grammar. Then there exists a handle grammar G′ such that
val(G′) = val(G) and |G′| = O(r|G|), where r is the maximal rank of the letters used in G.

For the proof one first applies the main result of [16] to make G monadic (i.e., N ⊆ N0 ∪ N1).
The resulting grammar can be easily transformed into a handle grammar by considering for each
nonterminal A ∈ N ∩ N1 the path from the root to the unique occurrence of the parameter in the
right-hand side of A.

4.2 Intuition and invariants

For a given input tree T we start with a smallest handle grammar G generating T . In the following,
by g we always denote the size of this initial minimal handle grammar. With each occurrence of a
letter from F in G’s rules we associate 2 credits. During the run of TTOG we appropriately modify G,
so that val(G) = T (where T always denotes the current tree in TTOG). In other words, we perform
the compression steps of TTOG also on G. We always maintain the invariant that every occurrence
of a letter from F in G’s rules has two credits. To this end, we issue some new credits during the
modifications, and we have to do a precise bookkeeping on the amount of issued credit. On the other
hand, if we do a compression step in G, then we remove some occurrences of letters. The credit
associated with these occurrences is then released and can be used to pay for the representation
cost of the new letters introduced by the compression step. For unary pair compression and leaf
compression, the released credit indeed suffices to pay the representation cost for the fresh letters,
but for chain compression the released credit does not suffice. Here we need some extra amount that
will be estimated separately. At the end, we bound the size of the grammar produced by TTOG as
the sum of the initial credit assigned to G (at most 2g) plus the total amount of issued credit plus the
extra cost estimated in Section 4.6. We emphasize that the modification of G is not performed by
TTOG, but is only a mental experiment done for the purpose of analyzing TTOG.

An important difference between our algorithm and the string compression algorithm from the
earlier paper of the first author [9] is that we add new nonterminals to G during its modification. All
such nonterminals will have rank 0 and we shall denote the set of such currently used nonterminals
by Ñ0. To simplify notation, we denote with m always the number of nonterminals of the current
grammar G, and we denote its nonterminals by A1, . . . , Am. We assume that i < j if Ai occurs
in the right-hand side of Aj , and that Am is the start nonterminal. With αi we always denote the
current right-hand side of Ai, i.e., the productions of G are Ai → αi for 1 ≤ i ≤ m.

Suppose a compression step, for simplicity say an (a, b)-pair compression, is applied to T . We
should also reflect it in G. The simplest solution would be to perform the same compression on
each of the rules of G, hoping that in this way all occurrences of ab in val(G) will be replaced by c.
However, this is not always the case. For instance, the 2-chain abmay occur ‘between’ a nonterminal
and a unary letter: consider a grammar A1(y) → a(y) and A2 → A1(b(c)) and a 2-chain ab. Then
it it occurs in val(A2) but this occurrence is ‘between’ A1 and b in the rule for A2. This intuitions
are made precise in Section 4.3. To deal with this problem, we modify the grammar, so that such bad
cases no longer occur. Similar problems occur also when we want to replace an a-maximal chain or
perform leaf compression. Solutions to those problems are similar and are given in Section 4.4 and
Section 4.5, respectively.

To ensure that G is handle and to estimate the amount of issued credit, we show that the grammar
preserves the following invariants, where n0 (resp. n1) is the initial number of nonterminals from
N0 (resp., N1) in G and g is the initial size of G.
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(I1) G is handle.
(I2) G has nonterminals N0 ∪N1 ∪ Ñ0, where Ñ0, N0 ⊆ N0, |N0| ≤ n0 and N1 ⊆ N1, |N1| ≤ n1.
(I3) The number of occurrences of nonterminals from N0, N1 and Ñ0 in G are at most g, n0 + 2n1

and (n0 + 2n1)(r − 1), respectively
(I4) The rules for Ai ∈ Ñ0 are of the form Ai → wAj or Ai → wc, where w is a string of unary

symbols, Aj ∈ N0 ∪ Ñ0 and c is a constant.
It is easy to show that (I1)–(I5) hold for the initial handle grammar G when we set Ñ0 = ∅. The only
non-trivial condition is that the number of occurrences of nonterminals fromN1 is at most n0 +2n1.
However, in a rule for Ai ∈ N0 there is at most one occurrence of a nonterminal from N1, namely
the first nonterminal in this rule (all other nonterminals are parts of handles and so they are from
N0). Similarly in a rule for Ai ∈ N1 there are at most two occurrences of nonterminals from N1.

4.3 (F up
1 , F

down
1 )-compression

We begin with some definitions that help to classify which 2-chains are easy and which hard to
compress.

For a non-empty tree or pattern t its first letter is the letter that labels the root of t. For a pattern
t(y) which is not a parameter its last letter is the label of the node above the one labelled with y. A
chain pattern ab has a crossing occurrence in a nonterminal Ai if one of the following holds:

(C1) a(Aj) is a subpattern of αi and the first letter of val(Aj) is b
(C2) Aj(b) is a subpattern of αi and the last letter of val(Aj) is a
(C3) Aj(Ak) is a subpattern of αi, the last letter of val(Aj) is a and the first letter of val(Ak) is b.
A chain pattern ab is crossing if it has a crossing occurrence in any nonterminal and non-crossing
otherwise. Unless explicitly written, we use this notion only in case a 6= b.

When every chain pattern ab ∈ F up
1 F down

1 is noncrossing, simulating (F up
1 , F down

1 )-compression
on G is easy: It is enough to apply (F up

1 , F down
1 )-compression to each right-hand side of G. We

denote the resulting grammar with UNARYCMP(G).

Algorithm 2 POP(F up
1 , F down

1 ,G)
1: for i← 1 . .m− 1 do
2: if the first symbol of αi is b ∈ F down

1 then
3: if αi = b then
4: replace each Ai G rules by b
5: else remove this leading b from αi
6: replace each Ai in G rules by bAi
7: do symmetric actions for the last symbol

To distinguish between the nonterminals,
grammar, etc. before and after the application
of UNARYCMP (or, in general, any proced-
ure) we use ‘primed’ symbols, i.e. A′i, G′,
T ′ for the nonterminals, grammar and tree,
respectively, after the compression step and
‘unprimed’ symbols (i.e. Ai, G, T ) for the
ones before.

It is left to assure that indeed all occur-
rences of chain patterns from F up

1 F down
1 are noncrossing. Consider for instance the grammar with

the rules A1(y) → a(y) and A2 → A1(b(c)). The pattern ab has a crossing occurrence. To deal
with crossing occurrences we change the grammar. In our example, we replace A1 with a, leaving
only A2 → ab(c), which does not contain a crossing occurrence of ab.

In general, suppose that some ab ∈ F up
1 F down

1 is crossing because of (C1). Let a(Ai) be a
subpattern of some right-hand side and let val(Ai) = b(t′). Then it is enough to modify the rule for
Ai so that val(Ai) = t′ and replace each occurrence ofAi in a right-hand side by b(Ai). We call this
action popping-up b from Ai. The similar operation of popping down a letter a from Ai ∈ N ∩ N1
is symmetrically defined (note that both pop operations apply only to unary letters). By Lemma 7
below, popping up and down removes all crossing occurrences of ab. Note that the popping up
and popping down can be performed for many letters in parallel: The procedure POP (Algorithm 2)
‘uncrosses’ all occurrences of patterns from the set F up

1 F down
1 , assuming that F up

1 and F down
1 are
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disjoint subsets of F1. Then, (F up
1 , F down

1 )-compression can be simulated on G by first uncrossing
all 2-chains from F up

1 F down
1 followed by (F up

1 , F down
1 )-compression.

I Lemma 7. Let G satisfy (I1)–(I5) and G′ = UNARYCMP(F up
1 , F down

1 , POP(F up
1 , F down

1 ,G)).
Then val(G′) = UNARYCMP(F up

1 , F down
1 , val(G)) and G′ satisfies (I1)–(I5). O(g + (n0 + n1)r)

credits are issued in the construction of G′, where r is the maximal rank of letters in G. The issued
credits and the credits released by UNARYCMP cover the representation cost of fresh letters as well
as their credits.

Since by Lemma 4 we apply O(logn) many (F up
1 , F down

1 )-compressions (for different sets F up
1

and F down
1 ) to G, we obtain:

I Corollary 8. (F up
1 , F down

1 )-compression issues in totalO((g+ (n0 +n1)r) logn) credits during
all modifications of G.

4.4 Chain compression

Our notations and analysis for chain compression is similar to those for (F up
1 , F down

1 )-compression.
In order to simulate chain compression on G we want to apply chain compression to the right-hand
sides of G. This works as long as there are no crossing chains: A unary letter a has a crossing chain
in a rule Ai → αi if aa has a crossing occurrence in αi, otherwise it has no crossing chain. As for
(F up

1 , F down
1 )-compression, when there are no crossing chains, we apply chain compression to the

right-hand sides of G. We denote with CHAINCMP(G) the resulting grammar.
Crossing chains are eliminated by a procedure similar to POP: Suppose for instance that a has a

crossing chain because a(Ai) is a subpattern in a right-hand side and val(Ai) begins with a. Popping
up a does not solve the problem, since after popping, val(Ai) might still begin with a. Thus, we
keep on popping up until the first letter of val(Ai) is not a. In order to do this in one step we need
some notation: We say that a` is an a-prefix of a tree (or pattern) t if t = a`(t′) and the first letter
of t′ is not a (here t′ might be the trivial pattern y). Similarly, we say that a` is an a-suffix of a
pattern t(y) if t = t′(a`(y)) for a pattern t′(y) and the last letter of t′ is not a (again, t′ might be the
trivial pattern y). In this terminology, we have to pop-up (resp. pop-down) the whole a-prefix (resp.,
a-suffix) of val(Ai) from of Ai in one step. This is achieved by a procedure REMCRCHS, which is
similar to POP. So chain compression is done by first running REMCRCHS and then CHAINCMP on
the right-hand sides of G. We obtain:

I Lemma 9. Let G satisfy (I1)–(I5) and G′ = CHAINCMP(REMCRCHS(G)). Then val(G′) =
CHAINCMP(val(G)) and G′ satisfies (I1)–(I5). O(g+(n0+n1)r) credits are issued in the construc-
tion of G′ and these credits are used to pay the credits for the fresh letters introduced by CHAINCMP

(but not their representation cost).

Since by Lemma 4 we apply O(logn) many chain compressions to G, we get:

I Corollary 10. Chain compression issues in total O((g + (n0 + n1)r) logn) credits during all
modifications of G.

The representation cost for the new letters a` introduced by chain compression is addressed in Sec-
tion 4.6.

4.5 Leaf compression

In order to simulate leaf compression on G we perform similar operations as for (F up
1 , F down

1 )-
compression: Ideally we would like to apply leaf compression to each right-hand side of G. How-
ever, in some cases this does not return the appropriate result. We say that the pair (f, a) is a crossing
parent-leaf pair in G, if f ∈ F≥1, a ∈ F0, and one of the following holds:
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(L1) f(t1, . . . , t`) is a subtree of some right-hand side of G, where for some j we have tj = Ak
and val(Ak) = a.

(L2) For some Ai ∈ N1, Ai(a) is a subtree of some right-hand side of G and the last letter of
val(Ai) is f .

(L3) For some Ai ∈ N1 and Ak ∈ N0 ∪ Ñ0, Ai(Ak) is a subtree of some right-hand side of G, the
last letter of val(Ai) is f , and val(Ak) = a.

When there is no crossing parent-leaf pair, we can apply leaf compression to each right-hand side
of a rule; denote the resulting grammar with LEAFCMP(G). If there is a crossing parent-leaf pair,
we uncross them all by a generalisation of POP, called GENPOP, which pops up letters from F0 and
pops down letters from F≥1. The latter requires some generalisation: If we want to pop down a letter
of rank > 1, we need to pop a whole handle. This adds new nonterminals to G as well as a large
number of new letters and hence a large amount of credit, so we need to be careful. There are two
crucial details:

When we pop down a whole handle h = f(t1, . . . , tk, y, tk+1, . . . , t`), we add to the set Ñ0 fresh
nonterminals for all trees ti that are non-constants, replace these ti in h by their corresponding
nonterminals and then pop down the resulting handle. In this way the issued credit is reduced
and no new occurrence of nonterminals from N0 ∪N1 is created.
We do not pop down a handle from every nonterminal, but do it only when it is needed, i.e., if
for Ai ∈ N1 one of the cases (L2) or (L3) holds. This allows preserving (I5). Note that when the
last symbol in the rule for Ai is not a handle but another nonterminal, this might cause a need
for recursive popping. So we perform the whole popping down in a depth-first-search style.

So, for leaf compression we can proceed as in the case of (F up
1 , F down

1 )-compression and chain com-
pression: We first uncross all parent-leaf pairs and then compress each right-hand side independently.

I Lemma 11. Let G satisfy (I1)–(I5) and G′ = LEAFCMP(GENPOP(G)). Then val(G′) =
LEAFCMP(val(G)) and G′ satisfies (I1)–(I5). O(g + (n0 + n1)r) credits are issued in the con-
struction of G′. The issued credit and the credit released by LEAFCMP cover the representation cost
of fresh letters as well as their credit.

Since by Lemma 4 we apply O(logn) many leaf compressions to G, we obtain:

I Corollary 12. Leaf compression issues in total O(((n0 + n1)r + g) logn) credits during all
modifications of G.

4.6 Calculating the total cost of representing letters

The issued credit of (which is O(((n0 + n1)r + g) logn) by Corollaries 8, 10, and 12) is enough to
pay the 2 credits for every letter introduced during popping, whereas the released credit covers the
representation cost for the new letters introduced by (F up

1 , F down
1 )-compression and leaf compres-

sion. However, the released credit does not cover the representation cost for letters created during
chain compression. The appropriate analysis is similar to [9]. The idea is as follows: Firstly, we
define a scheme of representing letters introduced by chain compression based on the grammar G
and the way G is changed by chain compression (the G-based representation). Then, we show that
for this scheme the representation cost is bounded byO((g+ (n0 +n1)r) logn). Lastly, it is proved
that the actual representation cost of letters introduced by chain compression during the run of TTOG
(the TTOG-based representation, whose cost is given by Lemma 2) is smaller than the G-based one.
Hence, it is bounded by O((g + (n0 + n1)r) logn), too. Adding this to the issued credit, we obtain
the main result of the paper:
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I Corollary 13. The total representation cost of the letters introduced by TTOG (and hence the
size of the grammar produced by TTOG) isO((g+ (n0 +n1)r) logn) ≤ O(g · r · logn), where g is
the size of a minimal handle grammar for the input tree T and r the maximal rank of symbols in T .

Together with Lemma 6 we get:

I Corollary 14. The size of the grammar produced by TTOG is O(g r2 logn), where g is the size
of a minimal SLCF grammar for the input tree T and r is the maximal rank of symbols in T .
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