
Noname manuscript No.
(will be inserted by the editor)

XML Compression via Directed Acyclic Graphs

Mireille Bousquet-Mélou · Markus
Lohrey · Sebastian Maneth · Eric Noeth

Received: date / Accepted: date

Abstract Unranked node-labeled trees can be represented using their min-
imal dag (directed acyclic graph). For XML this achieves high compression
ratios due to their repetitive mark up. Unranked trees are often represented
through first child/next sibling (fcns) encoded binary trees. We study the dif-
ference in size (= number of edges) of minimal dag versus minimal dag of the
fcns encoded binary tree. One main finding is that the size of the dag of the
binary tree can never be smaller than the square root of the size of the minimal
dag, and that there are examples that match this bound. We introduce a new
combined structure, the hybrid dag, which is guaranteed to be smaller than
(or equal in size to) both dags. Interestingly, we find through experiments that
last child/previous sibling encodings are much better for XML compression via
dags, than fcns encodings. We determine the average sizes of unranked and
binary dags over a given set of labels (under uniform distribution) in terms of
their exact generating functions, and in terms of their asymptotical behavior.

Keywords XML, tree compression, directed acyclic graph

M. Bousquet-Mélou
CNRS, LaBRI, Université de Bordeaux
Tel.: +33-5-40-00-69-06
E-mail: bousquet@labri.fr

M. Lohrey
University of Leipzig
Tel.: +49-341-97-32201
E-mail: lohrey@informatik.uni-leipzig.de

S. Maneth
University of Edinburgh
Tel.: +44-131-651-5642
E-mail: smaneth@inf.ed.ac.uk

E. Noeth
University of Leipzig
Tel.: +49-341-97-32212
E-mail: noeth@informatik.uni-leipzig.de

2 Mireille Bousquet-Mélou et al.

1 Introduction

The tree structure of an XML document can be conveniently represented as an
ordered node-labeled unranked tree [30,26], where the children of a node are
linearly ordered and every node is labeled with a symbol.1 For tree structures of
common XML documents dags (directed acyclic graphs) offer high compression
ratios: the number of edges of the minimal dag is only about 10% of the
number of edges of the original unranked tree [4] In a minimal dag, each
distinct subtree is represented only once. A dag can be exponentially smaller
than the represented tree. Dags and their linear average time construction via
hashing are folklore in computer science (see e.g. [9]); they are a popular data
structure used for sharing of common subexpressions (e.g., in programming
languages) and in binary decision diagrams, see [25]. Through a clever pointer
data structure, worst-case linear time construction is shown in [8].

Unranked trees of XML tree structures are often represented using binary
trees, see [29] for a discussion. A common encoding is the first child/next sibling
encoding [15] (in fact, this encoding is well-known, see Paragraph 2.3.2 in
Knuth’s first book [14]). The binary tree fcns(t) is obtained from an unranked
tree t as follows. Each node of t is a node of fcns(t). A node u is a left child
of node v in fcns(t) if and only if u is the first child of v in t. A node u is
the right child of a node v in fcns(t) if and only if u is the next sibling of v
in t. From now on, when we speak of the size of a graph we mean its number
of edges. Consider the minimal dag of fcns(t) (called bdag for binary dag in
the following) in comparison to the minimal dag of t. It was observed in [5]
that the sizes of these dags may differ, in both directions. For some trees the
difference is dramatic, which motivates the work of this paper: to study the
precise relationship between the two dags, and to devise a new data structure
that is guaranteed to be of equal or smaller size than the minimum size of the
two dags.

Intuitively, the dag of t shares repeated subtrees, while the dag of fcns(t)
shares repeated sibling end sequences. Consider the tree tn in the left of Fig-

a a

aa

a

a

a

a

f f

. . .

n times

. . . n edges

Fig. 1 The unranked tree tn and dag(tn).

ure 1. Its minimal dag is shown on the right. As can be seen, each repeated
1 In the following, we use the term “unranked tree” as a synonym for “ordered node-

labeled unranked tree”.

XML Compression via Directed Acyclic Graphs 3

subtree is removed in the dag. The dag consists of n+1 edges while tn consists
of 2n edges. Moreover, fcns(tn) does not have any repeated subtrees (except
for leaves), i.e., the bdag of tn has 2n edges as well. Next, consider the tree sn

f

f

f

f

f

f

f

f

f

f

aa

aa

a a

a

a

a
. . .

. . .

. . .

n− 1 times

. . .

n
ti

m
es

...

n− 1 times

n
ed

g
es

...

n edges

n− 2 edges

Fig. 2 The unranked tree sn and bdag(sn).

in the left of Figure 2. Its bdag is shown on the right, it has 3n− 2 edges. On
the other hand, sn has n2 edges and the same is true for the dag of sn since
this tree has no repeated subtrees (except for leaves). These two examples
show that (i) the size of the dag of an unranked tree can be half the size of the
dag of the fcns encoded tree and (ii) the size of the dag of the fcns encoded
tree can be quadratically smaller than the size of the dag of the unranked
tree. We prove in this paper that these ratios are maximal: The size of the
dag of the unranked tree is (i) lower bounded by half of the size of the bdag
and (ii) upper bounded by the square of the size of the bdag. Actually, we
derive these bounds from stronger statements concerning a combination of the
unranked dag and the binary dag, called the hybrid dag, which combines both
ways of sharing. The idea is as follows. Given an unranked tree, we compute
its minimal dag. The dag can be naturally viewed as a regular tree grammar:
Introduce for each node v of the dag a nonterminal Av for the grammar. If a
node v is labeled with the symbol f and its children in the dag are v1, . . . , vn
in this order, then we introduce the production Av → f(Av1 , . . . , Avn). We
now apply the fcns encoding to all right-hand sides of this grammar. Finally,
we compute the minimal dag of the forest consisting of all these fcns encoded
right-hand sides. See Figure 3 which shows a tree t of size 9. Its unranked and
binary dags are each of size 6. The hybrid dag consists of a start tree plus one
rule, and is of size 5. For the XML document trees of our corpus, the average
size of the hybrid dag is only 76% of the average size of the unranked dag.

We show that the size of the hybrid dag is always bounded by the minimum
of the sizes of the unranked dag and the binary dag. Moreover, we show that
(i) the size of the hdag is at least half of the size of the binary dag and (ii)

4 Mireille Bousquet-Mélou et al.

the size of the unranked dag is at most the square of the size of the hdag.
The above mentioned bounds for the unranked dag and binary dag are direct
corollaries of these bounds.

The tree grammar of a hybrid dag is not a regular tree grammar anymore
(because identifier nodes may have a right child). It can be unfolded in three
passes: first undoing the sharing of tree sequences, then the binary decoding,
and then undoing sharing of subtrees. We show that these grammars can be
translated into a well known type of grammars: straight-line linear context-
free tree grammars, for short SLT grammars (produced by BPLEX [5] or
TreeRePair [20]). This embedding increases the size only slightly. One advan-
tage is that SLT grammars can be unfolded into the original tree in one pass.
Moreover, it is known that finite tree automata (even with sibling equality
constraints) and tree walking automata can be executed in polynomial time
over trees represented by SLT grammars [19,22,23].

While in the theoretical limit the binary dag can be smaller in compar-
ison than the dag, it was observed in [5] that for common XML document
trees t, almost always the dag of t is smaller than the binary dag of t. One
explanation is that t contains many small repeated subtrees, which seldomly
are part of a repeating sibling end sequence. For each repetition we (possi-
bly) pay a “penalty” of one extra edge in the dag of fcns(t); see the tree tn
which has penalty n. On the other hand, there are very few repeating sibling
end sequences in common XML; this is because optional elements typically
appear towards the end of a child sequence. Hence, the additional feature of
sharing sibling sequences is not useful for XML. On real XML documents, we
show in experiments that the “reverse binary dag” that arises from the last
child/previous sibling encoding is typically smaller than the binary dag, and
almost as small as the dag. Moreover, for our test corpus, the average size of
the reverse hybrid dag built from the last child/previous sibling encoding of
the dag is only 62% of the average size of the minimal dag.

Observe that in the second sharing phase of the construction of the hybrid
dag, only sequences of identifiers (nonterminals of the regular tree grammar
corresponding to the dag) are shared. Thus, we are sharing repeated string suf-
fixes in a sequence of strings. We experimented with applying a grammar-based
string compressor to this sequence of strings. Such a compressor computes a
small straight-line string grammar (SL grammar for short) for a given input
word. The resulting object is called an SL-grammar compressed dag. It is not
difficult to incorporate the output into an SLT grammar. As our experiments
show, the obtained grammars are smaller than those of the hybrid dag and
almost as small as TreeRePair’s grammars. Moreover, they have the advan-
tage that checking equivalence of subtrees is simple (each distinct subtree is
represented by a unique identifier), a property not present for arbitrary SLT
grammars. For hybrid dags, even equality of sibling end sequences can be
checked efficiently.

Average size analysis of dags. Given a tree over n nodes and m labels,
what is the average size of its minimal dag? This problem was studied for

XML Compression via Directed Acyclic Graphs 5

unlabeled full binary trees by Flajolet, Sipala, and Steyaert [13]. They present
exact expressions and show that the expected node size of the minimal dag of
a full binary tree with n nodes is asymptotically

κ · n√
lnn
·
(

1 +O

(
1

lnn

))
where the constant κ is explicitly determined. One problem with the paper [13]
is that the proof of the result above is rather sketchy, and at certain places
contains large gaps. Here we fill these gaps, and extend their results, giving
detailed proofs of:

– exact expressions, in terms of their generating functions, for the average
node and edge sizes of dags and bdags of unranked trees over n nodes and
m labels, and of

– the asymptotic behavior of these averages. We show that these asymp-
totic behaviors are also of the form C n√

logn
, where C is again explicitly

determined.

The proofs of these results assume basic knowledge about combinatorial classes,
generating functions, and analytic combinatorics. Details on these can be found
in textbooks, e.g., the one by Flajolet and Sedgewick [12].

Outline of this paper. Section 2 contains all necessary definitions concern-
ing trees and dags, including the bdag of a tree. Section 3 introduces straight-
line tree grammars (briefly, SLT grammars). The hybrid dag of a tree is defined
in Section 4, whereas Section 5 deals with the reverse hybrid dag, based on
the last child/previous sibling encoding of a tree. In Section 6 we compare the
node size and the edge size of dag(t), bdag(t), and hdag(t) for an unranked
tree t and prove the worst case bounds mentioned earlier. Next, we consider
the average node and edge size of unranked trees in Section 7. Exact formu-
las are derived in Section 7.1, whereas asymptotic formulas are presented in
Section 7.2. The quite technical proofs for the asymptotic formulas are shifted
to an appendix at the end of the paper. Section 8 deals with SL-grammar
compressed dags. In Section 9 we consider the problem of checking equality
of subtrees and sibling sequences in the compressed tree representations from
this paper (dags, bdags, hdags, and SL-grammar compressed dags). Finally,
Section 10 presents our experimental results.

A preliminary version of this paper (not containing average-case sizes of
dags) appeared as [21].

2 Trees and dags

Let Σ be a finite set of node labels. An ordered Σ-labeled multigraph is a tuple
M = (V, γ, λ), where

– V is a finite set of nodes
– γ : V → V ∗ assigns to each node a finite word over the set of nodes

6 Mireille Bousquet-Mélou et al.

a

g

f

f

f

a

ag g

a

g g

a

f

f

a

aa

a

g

g

g

g

f

f

a

g

g

f

f

f

f

a a

A

A

A

A

A

A

g g

f

dag

|hdag(t)| = 5

A

S S

A

fcns

|dag(t)| = 6 = |bdag(t)|

Fig. 3 Top: a tree t, its dag, its fcns encoding and its bdag of t. Bottom: its hybrid dag is
shown in the box.

– λ : V → Σ assigns to each node a label from Σ.

The idea is that for a node v ∈ V , γ(v) is the ordered list of v’s successor nodes.
The underlying graph is the directed graph GM = (V,E), where (u, v) ∈ E if
and only if v occurs in γ(u). The node size ‖M‖ of M and the edge size |M |
are defined as

‖M‖ = |V | and |M | =
∑
v∈V
|γ(v)| (1)

(here, |w| denotes the length of the word w). So, ‖M‖ is the number of nodes
of M . The edge size of M is also simply called the size of M . Note that
the labeling function λ does not influence the size of M . The motivation for
this is that the size of M can be seen as the number of pointers that are
necessary in order to store M and that these pointers mainly determine the
space consumption for M .

Two orderedΣ-labeled multigraphsM1 = (V1, γ1, λ1) andM2 = (V2, γ2, λ2)
are isomorphic if there exists a bijection f : V1 → V2 such that for all v ∈ V1,
γ2(f(v)) = f(γ1(v)) and λ2(f(v)) = λ1(v) (here we implicitly extend f to a
morphism f : V ∗1 → V ∗2). We do not distinguish between isomorphic multi-
graphs. In particular, in our figures a node v ∈ V is not represented by the
symbol v, but by the label λ(v).

An ordered Σ-labeled dag is a Σ-labeled ordered multigraph d = (V, γ, λ)
such that the underlying graph Gd is acyclic. Note that the node size and edge
size of the dag d are defined using the corresponding definitions for Σ-labeled

XML Compression via Directed Acyclic Graphs 7

ordered multigraphs, see (1). The nodes r ∈ V for which there is no v ∈ V
such that (v, r) is an edge of Gd (r has no incoming edges) are called the
roots of d. An ordered Σ-labeled rooted dag is an ordered Σ-labeled dag with
a unique root. In this case every node of d is reachable in Gd from the root
node. The nodes ` ∈ V for which there is no v ∈ V such that (`, v) is an
edge of Gd (` has no outgoing edges) are called the leaves of d. An ordered
Σ-labeled tree is an ordered Σ-labeled rooted dag t = (V, γ, λ) such that every
non-root node v has exactly one occurrence in the concatenation of all strings
γ(u) for u ∈ V . In other words, the underlying graph Gt is a rooted tree in
the usual sense and in every string γ(u), every v ∈ V occurs at most once.
We define T (Σ) as the set of all ordered Σ-labeled trees. We denote ordered
Σ-labeled trees by their usual term notation, i.e., for every a ∈ Σ, n ≥ 0, and
all trees t1, . . . , tn ∈ T (Σ), we also have a(t1, . . . , tn) ∈ T (Σ). Note that trees
from T (Σ) are unranked in the sense that the number of children of a node
does not depend on the label of the node. We therefore frequently speak of
unranked trees for elements of T (Σ).

Let d = (V, γ, λ) be an ordered Σ-labeled dag. With every node v ∈ V we
associate a tree evald(v) ∈ T (Σ) inductively as follows: We set

evald(v) = f(evald(v1), . . . , evald(vn)),

if λ(v) = f and γ(v) = v1 · · · vn (where f(ε) = f). Intuitively, evald(v) is the
tree obtained by unfolding d starting in the node v. If d is an ordered Σ-labeled
rooted dag, then we define eval(d) = evald(r), where r is the root node of d.
Note that if t is an ordered Σ-labeled tree and v is a node of t, then evalt(v)
is simply the subtree of t rooted at v and is written as t/v = evalt(v) in this
case. If for nodes u 6= v of t we have t/u = t/v, then the tree t/u = t/v is a
repeated subtree of t.

Let t = (V, γ, λ) ∈ T (Σ) and let Gt = (V,E) be the underlying graph
(which is a tree). For an edge (u, v) ∈ E, v is a child of u, and u is the parent
of v. If two nodes v and v′ have the same parent node u, then v and v′ are
siblings. If moreover γ(u) is of the form u1vv

′u2 for u1, u2 ∈ V ∗ then v′ is the
next sibling of v, and v is the previous sibling of v′. If a node v does not have
a previous sibling, it is a first child, and if it does not have a next sibling, it is
a last child.

For many tree-processing formalisms (e.g. standard tree automata), it is
useful to deal with ranked trees, where the number of children of a node is
bounded. There is a standard binary encoding of unranked trees, which we
introduce next. A binary Σ-labeled dag d, or short binary dag, can be defined
as an ordered (Σ ∪ {�})-labeled dag d = (V, γ, λ), where � 6∈ Σ is a special
dummy symbol such that the following holds:

– For every v ∈ V with λ(v) ∈ Σ we have |γ(v)| = 2
– for every v ∈ V with λ(v) = � we have |γ(v)| = 0.

For a binary dag, d = (V, γ, λ), we alter our definitions of node and edge
sizes by disregarding all dummy nodes. That is, the node size is now ‖d‖ =
|{v ∈ V | λ(v) 6= �}| and the (edge) size is |d| =

∑
v∈V |γ(v)|Σ , where

8 Mireille Bousquet-Mélou et al.

|v1v2 · · · vm|Σ = |{i | 1 ≤ i ≤ m,λ(vi) 6= �}|. Accordingly, the dummy nodes
are not represented in our figures.

A binary Σ-labeled tree t, or short binary tree, is a binary dag which is
moreover an ordered (Σ ∪ {�})-labeled tree. The symbol � basically denotes
the absence of a left or right child of a node. For instance, g(a,�) denotes the
binary tree that has a g-labeled root with an a-labeled left child but no right
child (as shown in the bottom of Figure 3). Note that g(a,�) and g(�, a) are
different binary trees.

Let B(Σ) denote the set of binary Σ-labeled trees. We define a mapping
fcns : T (Σ)∗ → B(Σ), where as usual T (Σ)∗ denotes the set of all finite words
(or sequences) over the set T (Σ), as follows (“fcns” refers to “first child/next
sibling”): For the empty word ε let fcns(ε) = � (the empty binary tree). If
n ≥ 1, t1, . . . , tn ∈ T (Σ) and t1 = f(u1, . . . , um) with m ≥ 0, then

fcns(t1t2 · · · tn) = f(fcns(u1 · · ·um), fcns(t2 · · · tn)).

Note that fcns(a) = a(�,�) for a ∈ Σ. In the following we always simply write
a for a(�,�). The encoding fcns is bijective, hence the inverse fcns−1 : B(Σ)→
T (Σ)∗ is defined. Moreover, for every t ∈ T (Σ), we have ‖fcns(t)‖ = ‖t‖, see
e.g. [14]. The fcns encoding is also known as rotation correspondence (see,
e.g. [24]) and as Rabin encoding.

Example 1 Let t1 = f(a1, a2, a3) and let t2 = g(b1, b2). Then fcns(t1t2) =
f(a1(�, a2(�, a3)), g(b1(�, b2),�)).

As mentioned in the Introduction, one can construct fcns(t) by keeping all
nodes of t and creating edges as follows: For each node u of t, the left child of
u in fcns(t) is the first child of u in t (if it exists) and the right child of u in
fcns(t) is the next sibling of u in t (if it exists).

An ordered tree can be compacted by representing occurrences of repeated
subtrees only once. Several edges then point to the same subtree (which we
call a repeated subtree), thus making the tree an ordered dag. It is known that
the minimal dag of a tree is unique and that it can be constructed in linear
time (see e.g. [8]). For later purposes it is useful to define the minimal dag
dag(d) for every ordered Σ-labeled dag d = (V, γ, λ). It can be defined as

dag(d) = ({evald(u) | u ∈ V }, γ′, λ′)

with λ′(f(t1, . . . , tn)) = f and γ′(f(t1, . . . , tn)) = t1 · · · tn. Thus, the nodes of
dag(d) are the different trees represented by the unfoldings of the nodes of d.

The internal structure of the nodes of dag(d) (which are trees in our defi-
nition) has no influence on the size of dag(d), which is still defined to be the
number of its edges. Note that in general we cannot recover d from dag(d):
For instance if d is the disjoint union of two copies of the same tree t, then
dag(d) = dag(t), but this will not be a problem. Indeed, we use dags only for
the compression of forests consisting of different trees. Such a forest can be
reconstructed from its minimal dag. Note also that if d is a rooted dag, then
dag(d) is also rooted and we have eval(dag(d)) = eval(d).

XML Compression via Directed Acyclic Graphs 9

Example 2 Consider the tree tn defined by t0 = a and tn = a(tn−1, tn−1).
While |tn| = 2(2n − 1), |dag(tn)| = 2n. Hence dag(t) can be exponentially
smaller than t.

The binary dag of t ∈ T (Σ), denoted bdag(t), is defined as

bdag(t) = dag(fcns(t)).

It is a binary dag as defined above. See Figure 2 in the Introduction for an
example (recall that we do not represent dummy nodes in binary dags).

Clearly, the number of nodes of dag(t) equals the number of different sub-
trees t/v of t. In order to describe the number of nodes of bdag(t) the fol-
lowing definition is useful: For a node v of an unranked tree t = (V, γ, λ)
define sibseq(v) ∈ T (Σ)∗ (the sibling sequence of v) as the sequence of sub-
trees rooted at v and all its right siblings. More formally, if v is the root
of t then sibseq(v) = t. Otherwise, let u be the parent node of v and let
γ(u) = wvv1 · · · vm, where w ∈ V ∗. Then

sibseq(v) = (t/v)(t/v1) · · · (t/vm).

Example 3 The different sibling sequences of the tree t = f(a, f(b, a), b, a) are:
t, af(b, a)ba, f(b, a)ba, ba, and a.

The following lemma follows directly from the definitions of bdag and sibseq:

Lemma 4 The number of nodes of bdag(t) is equal to the number of different
sibling sequences sibseq(v), for all v ∈ V .

3 Straight-line tree grammars

Straight-line tree grammars are a formalism that in many cases give a more
compact tree representation as dags.

Let {y1, y2, . . .} be an infinite fixed set of parameters (or variables). A
straight-line tree grammar (SLT grammar for short) is a tuple

G = (N, rank, Σ, S, ρ),

where

– N is a finite set of so-called nonterminal symbols
– rank : N → N maps every nonterminal to its rank (which may be 0)
– Σ is a finite set of node labels
– S ∈ N is the start nonterminal and
– ρ is a function that maps every X ∈ N to an ordered Γ -labeled tree
ρ(X) = (V, γ, λ), where Γ = Σ ∪N ∪ {y1, . . . , yrank(X)} and the following
conditions hold:
– for every 1 ≤ i ≤ rank(X) there is exactly one node v ∈ V with
λ(v) = yi, which moreover is a leaf of ρ(X) and

10 Mireille Bousquet-Mélou et al.

– for every node v ∈ V with λ(v) = Y ∈ N we have |γ(v)| = rank(Y),
i.e., v has rank(Y) many children.

Finally, the binary relation {(X,Y) ∈ N × N | Y appears in ρ(X)} must
be acyclic.

We also write X → t for ρ(X) = t and call X → t a rule or production of G.
Moreover, we also write X(y1, . . . , yrank(X)) instead of X in the left-hand side
of the rules, to emphasize the rank of the nonterminals. The properties of an
SLT grammar G = (N, rank, Σ, S, ρ) allow us to define for every nonterminal
X ∈ N a (Σ∪{y1, . . . , yrank(X)})-labeled tree evalG(X) inductively as follows2:
Let ρ(X) = (V, γ, λ). Assume that for every nonterminal Y that appears in
ρ(X), the tree tY = evalG(Y) is already defined. This is a tree that contains for
every 1 ≤ j ≤ rank(Y) exactly one leaf node that is labeled with yj . We now
replace every node v ∈ V in ρ(X) that is labeled with a nonterminal by a copy
of the tree tλ(v). Thereby, the j-th child of v is identified with the yj-labeled
node of tλ(v) for every 1 ≤ j ≤ rank(λ(v)), and the parent node of the root
of tλ(v) becomes the parent node of v. The resulting tree is evalG(X). For a
completely formal definition, see e.g. [19,22].3 Finally, let eval(G) = evalG(S).
The term “straight-line tree grammar” comes from the fact that an SLT can
be seen as a context-free tree grammar that produces a single tree.

The size of G = (N, rank, Σ, S, ρ) is defined to be

|G| =
∑
X∈N

|ρ(X)|.

Example 5 Consider the SLT grammar G with nonterminals S,A,B and rules

S → B(a, b, B(c, d, a)),
B(y1, y2, y3)→ A(y1, A(y2, y3)),

A(y1, y2)→ f(g(y1), y2).

We have |G| = 13 and eval(G) = f(g(a), f(g(b), f(g(c), f(g(d), a)))). The same
tree is also generated by the SLT grammar with the rules

S → A(a,A(b, A(c, A(d, a)))),
A(y1, y2)→ f(g(y1), y2).

Its size is only 11.

A k-SLT is an SLT G = (N, rank, Σ, S, ρ) such that rank(X) ≤ k for every
X ∈ N . A 0-SLT grammar is also called a regular SLT (since it is a regular
tree grammar). In such a grammar, nonterminals only occur as leaves in the
right-hand sides of the rules.

2 We hope that no confusion will arise with the evaluation of a dag defined in the previous
section; we will see in fact that the evaluation of a dag can be seen as a special case of the
evaluation of an SLT grammar.

3 The formalisms in [19,22] slightly differ from our definition, since they assume a fixed
rank for every node label in Σ. But this is not an essential difference.

XML Compression via Directed Acyclic Graphs 11

An ordered Σ-labeled rooted dag d = (V, γ, λ) can be identified with the
0-SLT grammar

Gd = (V, rank, Σ, S, ρ),

where rank(v) = 0 for every v ∈ V , S is the root of d, and ρ(v) = f(v1, . . . , vn)
if λ(v) = f and γ(v) = v1 · · · vn. Note that all trees occurring in the right-hand
sides of the rules have height 0 or 1. Often in this paper, it will be useful to
eliminate in Gd nonterminals v ∈ V such that γ(v) = ε (that is, the leaves of
the dag d). For this, we define the reduced 0-SLT grammar

Gred
d = (V \ V0, rank, Σ, S, ρ),

where V0 = {v ∈ V | γ(v) = ε}, rank(v) = 0 for every v ∈ V \V0, S is the root
of d, and ρ(v) = f(w1, . . . , wn) if λ(v) = f , γ(v) = v1 · · · vn, and wi = λ(vi) if
vi ∈ V0 and wi = vi otherwise. Note that every right-hand side ρ(v) of Gred

d is
now a tree of height 1. This does not change the evaluation of the grammar,
and simplifies some technical details in Section 6. Of course, we should exclude
the case that V0 = V . For this, we simply exclude dags consisting of a single
node from further considerations. Finally, observe that the evaluation of the
grammar Gd coincides with the evaluation of the dag d defined in the previous
section.

If Gred
d = (V \ V0, rank, Σ, S, ρ) with V \ V0 = {A1, . . . , An} and ρ(Ai) =

fi(αi,1, . . . , αi,ki
) (where αi,j ∈ (V \ V0) ∪ Σ) then the words αi,1 · · ·αi,ki

∈
((V \ V0) ∩Σ)+ are called the child sequences of the dag d.

Example 6 For d = dag(t) in Figure 3, Gred
d consists of the rules

S → f(B,A,A), B → f(A,A), A→ g(a).

Hence the child sequences of the dag are BAA, AA, and a.

Algorithmic problems on SLT grammar-compressed trees were considered in
[19,22]. Of particular interest in this context is a result from [22] stating that
a given SLT G can be transformed in polynomial time into an equivalent 1-
SLT G1 such that eval(G1) = eval(G). In combination with results from [19] it
follows that for a given nondeterministic tree automaton A (even with sibling
constraints) and an SLT grammar G one can test in polynomial time whether
A accepts eval(G). Compression algorithms that produce from a given input
tree a small SLT grammar are proposed in [5,20].

4 The hybrid dag

While the dag shares repeated subtrees of a tree, the binary dag shares re-
peated sibling sequences (see Lemma 4). Consider an unranked tree t. As
we have seen in the Introduction, the size of dag(t) can be smaller than the
size of bdag(t). On the other hand, it can also be that the size of bdag(t) is
smaller than the size of dag(t). We now wish to define a tree representation
that combines both types of sharing (trees and tree sequences) and whose

12 Mireille Bousquet-Mélou et al.

size is guaranteed to be smaller than or equal to the minimum of the sizes
of dag(t) and bdag(t). Our starting point is d = dag(t). In this dag we now
want to share all repeated sibling sequences. As an example, consider the tree
t = f(f(g(a), g(a)), g(a), g(a)) shown on the top left of Figure 3. Its size is 9.
The dag of this tree consists of a unique occurrence of the subtree g(a) plus
two f -labeled nodes, shown to the right of t in the figure. Thus |d| = 6. The
corresponding reduced 0-SLT grammar Gred

d consists of the rules

S → f(B,A,A),
B → f(A,A),
A → g(a).

(2)

In order to share repeated sibling sequences in d we apply the fcns encoding
to the right-hand sides of Gred

d . For the above example we obtain the following
new “binary tree grammar”:

S → f(B(�, A(�, A)),�)
B → f(A(�, A),�)
A → g(a,�).

(3)

This is not an SLT grammar, since there are occurrences of A with 0 and 2,
respectively, children. We view the above rules just as the binary encoding
of (2).

We now build the minimal dag of the forest obtained by taking the dis-
joint union of all right-hand sides of (3). In the example, the subtree A(�, A)
appears twice and is shared. We write the resulting dag again as a grammar,
using the new nonterminal C for the new repeated tree A(�, A) (corresponding
to the repeated sibling sequence AA in (2)):

S → f(B(�, C),�)
B → f(C,�)
C → A(�, A)
A → g(a,�)

(4)

These rules make up the hybrid dag (hdag for short) of the initial tree. Its size
is the total number of edges in all right-hand side trees; it is 5 in our example
(here, as usual, we do not count edges to �-labeled nodes). Compare this to
dag(t) and bdag(t), which are both of size 6. Again, note that (4) should not
be seen as an SLT-grammar but as a succinct encoding of (2).

In our example, the production B → f(A,A) in the 0-SLT grammar (2)
does not save any edges, since the nonterminal B occurs only once in a right-
hand side (namely f(B,A,A)). Eliminating this production yields the 0-SLT
grammar

S → f(f(A,A), A,A)
A → g(a)

with the fcns encoding

S → f(f(A(�, A), A(�, A)),�)
A → g(a,�).

XML Compression via Directed Acyclic Graphs 13

Sharing repeated subtrees gives

S → f(f(C,C),�)
C → A(�, A)
A → g(a,�),

(5)

which corresponds to the framed graph in Figure 3 . The total number of edges
to non-� nodes in all right-hand sides is still 5, but it has only 3 nonterminals
in contrast to 4 for the above hdag. In practice, having fewer nonterminals
is preferable. In fact, our implementation avoids redundant nonterminals like
B in our example. On the other hand, having only trees of height 1 as right-
hand sides of the dag (seen as a reduced 0-SLT grammar) does not influence
the number of edges in the final grammar. Moreover, it slightly simplifies the
proofs in the next section, where we show that the size of the hdag of a tree t
is smaller than or equal to the minimum of the sizes of dag(t) and bdag(t).

In general, the hybrid dag is produced by first building the minimal dag,
then constructing the fcns encoding of the corresponding reduced 0-SLT gram-
mar, and then building a minimal dag again. More formally, consider d =
dag(t) and assume that the corresponding reduced 0-SLT grammar Gred

d con-
tains the rules A1 → t1, . . . , An → tn. Recall that every tree ti has height 1
and that the trees t1, . . . , tn are pairwise different. Let t′i be the tree that is
obtained from ti by adding Ai as an additional label to the root of ti. Then

hdag(t) = dag(fcns(t′1), . . . , fcns(t′n)),

where the tuple (fcns(t′1), . . . , fcns(t′n)) is viewed as the dag obtained by taking
the disjoint union of the binary trees fcns(t′i). Clearly hdag(t) is unique up to
isomorphism. In the second step when dag(fcns(t′1), . . . , fcns(t′n)) is constructed
from the tuple (fcns(t′1), . . . , fcns(t′n)), only suffixes of child sequences can be
shared, since the trees t′1, . . . , t

′
n are pairwise different and of height 1. The

size |hdag(t)| of the hdag is the number of edges (to non-�-labeled nodes) of
dag(fcns(t′1), . . . , fcns(t′n)). Note that the additional label Ai at the root of ti
is needed in order to be able to reconstruct the initial tree t. In (4), these
additional labels (S, A, and B) are implicitly present as the left-hand sides of
the rules. On the other hand, these labels have no influence on the size of the
hdag.

The hdag is a particular dag. It is obtained by sharing repeated suffixes of
child sequences in the minimal dag (viewed as a 0-SLT grammar). In Section 8
we introduce a further generalization of this idea, where child sequences of the
dag are compressed using a straight-line context-free tree grammar. Moreover,
we show that such a compressed structure can be easily transformed into
an equivalent 1-SLT grammar (Theorem 32). This applies in particular to
hdags. Hence, all the good algorithmic properties of (1-)SLT grammars (e.g.
polynomial time evaluation of tree automata) also hold for hdags.

14 Mireille Bousquet-Mélou et al.

5 Using the reverse encoding

Instead of using the fcns encoding of a tree, one may also use the last child
previous sibling encoding (lcps). Just like fcns, lcps is a bijection from T (Σ)∗

to B(Σ) and is defined as follows. For the empty word ε let lcps(ε) = � (the
empty binary tree). If n ≥ 1, t1, . . . , tn ∈ T (Σ) and tn = f(u1, . . . , um) with
m ≥ 0, then

lcps(t1t2 · · · tn) = f(lcps(t1, . . . , tn−1), lcps(u1 · · ·um)).

Again, the inverse lcps−1 : B(Σ)→ T (Σ)∗ is defined.

Example 7 Let t1 = f(a1, a2, a3) and t2 = g(b1, b2). Then

lcps(t1t2) = g(f(�, a3(a2(a1,�),�)), b2(b1,�)).

Let rbdag(t) = dag(lcps(t)) and

rhdag(t) = dag(lcps(t′1), . . . , lcps(t′n)),

where t′1, . . . , t
′
n are obtained from t as in the definition of the hdag. The

reason to consider the lcps encoding is that rbdag(t) and rhdag(t) are smaller
for trees that have repeated prefixes of child sequences. Empirically, as we
show in Section 10.3, this is quite common and for most trees t in our XML
corpus |rbdag(t)| < |bdag(t)| and |rhdag(t)| < |hdag(t)|.

Example 8 Let t = f(f(a, a, b), f(a, a, c)). Then |rbdag(t)| = 7 while |dag(t)| =
|bdag(t)| = |hdag(t)| = |t| = 8.

Clearly, there are also trees t where |hdag(t)| < |rhdag(t)|. This raises the ques-
tion whether there is a scheme which combines the best of both approaches.
Obviously one can construct both hdag(t) and rhdag(t) of a tree t and discard
the larger of both. Yet a scheme which combines both approaches by sharing
both suffixes and prefixes of children sequences, faces the problem that the
resulting minimal object is not necessarily unique. This can easily be seen by
considering trees in which repeated prefixes and suffixes of child sequences
overlap. Also it is not clear how a minimal such object can be constructed
efficiently. A (non-optimal) approach we have considered was to first share
repeated prefixes and then share repeated suffixes. Yet the results in com-
pression achieved were not significantly better than for the rhdag. Moreover,
this approach can be further generalized by sharing arbitrary factors of sibling
sequences. This is the topic of Section 8.

6 Comparison of worst-case sizes of dag, bdag, and hdag

We want to compare the node size and the edge size of dag(t), bdag(t), and
hdag(t) for an unranked tree t. We do not include rbdag(t) or rhdag(t), because
by symmetry the same bounds holds as for bdag(t) and hdag(t), respectively.

XML Compression via Directed Acyclic Graphs 15

6.1 The number of nodes

In this section we consider the number of nodes in the dag and bdag of an
unranked tree t. We show that ‖dag(t)‖ ≤ ‖bdag(t)‖.

Example 9 Consider the tree tn = f(a, a, . . . , a) consisting of n nodes, where
n ≥ 2. Then ‖dag(t)‖ = 2 and ‖bdag(t)‖ = n, while |dag(t)| = |bdag(t)| =
n− 1. Note that dags with multiplicities on edges, as defined in [4], can store
a tree such as tn in size O(log n).

Lemma 10 Let t be an unranked tree. Then ‖dag(t)‖ ≤ ‖bdag(t)‖.

Proof The lemma follows from Lemma 4 and the obvious fact that the number
of different subtrees of t (i.e., ‖dag(t)‖) is at most the number of different
sibling sequences in t: sibseq(u) = sibseq(v) implies t/u = t/v. ut

Lemma 11 There exists a family of trees (tn)n≥2 such that ‖dag(t)‖ = 2 and
‖tn‖ = ‖bdag(t)‖ = n.

Proof Take the family of trees tn from Example 9. ut

Let us remark that the node size of the hdag can be larger than the node
size of the bdag and the node size of the dag. The reason is that in Gred

dag(t),
there is a nonterminal for each node of the dag (and hence the height of each
right-hand side is at most one). This can be done differently of course; it was
chosen to simplify proofs and because our main goal is the reduction of edge
size. Note that the total number of edges of Gred

dag(t) is equal to the number of
edges of dag(t).

6.2 The number of edges

We have just seen that the number of nodes of the (minimal) dag is always
at most the number of nodes of the bdag, and that the gap can be maximal
(O(1) versus |t|). For the number of edges, the situation is different. We show
that 1

2 |bdag(t)| ≤ |dag(t)| ≤ 1
2 |bdag(t)|2 for |t| ≥ 2 and that these bounds are

sharp up to the constant factor 1/2 in the second inequality. In fact, for |t| ≥ 2
we show the three inequalities

|hdag(t)| ≤ min(|dag(t)|, |bdag(t)|),
|bdag(t)| ≤ 2|hdag(t)|, and

|dag(t)| ≤ 1
2
|hdag(t)|2

which imply
1
2
|bdag(t)| ≤ |dag(t)| ≤ 1

2
|bdag(t)|2.

16 Mireille Bousquet-Mélou et al.

Before we prove these bounds we need some definitions. Recall that the nodes
of bdag(t) are in 1-1-correspondence with the different sibling sequences of t.
In the following, let

sib(t) = {sibseq(v) | v a node of t}

be the set of all sibling sequences of t. To count the size (number of edges)
of bdag(t) we have to count for each sibling sequence w ∈ sib(t) the number
of outgoing edges in bdag(t). We denote this number with e(w); it can be
computed as follows, where w = s1s2 · · · sm (m ≥ 1) and the si are trees:

– e(w) = 0, if m = 1 and |s1| = 0
– e(w) = 1, if either m = 1 and |s1| ≥ 1 (then w has only a left child) or if
m ≥ 2 and |s1| = 0 (then w has only a right child)

– e(w) = 2, otherwise.

With this definition we obtain:

Lemma 12 For every t ∈ T (Σ), we have

|bdag(t)| =
∑

w∈sib(t)

e(w).

The size of the hdag can be computed similarly: Consider the reduced 0-SLT
grammar G = Gred

dag(t). Let N be the set of nonterminals of G and let S be
the start nonterminal. Recall that every right-hand side of G has the form
f(α1, . . . , αn), where every αi belongs to Σ ∪ N . Let sib(G) be the set of all
sibling sequences that occur in the right-hand sides of G. Thus, for every right-
hand side f(α1, . . . , αn) of G, the sibling sequences f(α1, . . . , αn) (a sibling
sequence of length 1) and αiαi+1 · · ·αn (1 ≤ i ≤ n) belong to sib(G). For such
a sibling sequence w we define e(w) as above. Here, every αi is viewed as a
tree with a single nodes, i.e., |αi| = 0. Then we have:

Lemma 13 For every t ∈ T (Σ), we have

|hdag(t)| =
∑

w∈sib(G)

e(w).

For w = s1 · · · sm ∈ sib(t) let w̃ be the string that results from w by replacing
every non-singleton tree si 6∈ Σ by the unique nonterminal of G that derives
to si. Actually, we should write w̃t instead of w̃, since the latter also depends
on the tree t. But the tree t will be always clear from the context. Here are a
few simple statements:

– For every w ∈ sib(t), the sibling sequence w̃ belongs to sib(G), except for
the length-1 sequence w̃ = S that is obtained from the length-1 sequence
w = t ∈ sib(t).

– For every w ∈ sib(t), w̃ is a word over N ∪Σ.
– For every w ∈ sib(t), e(w̃) ≤ e(w).
– The mapping w 7→ w̃ is an injective mapping from sib(t) \ {t} to sib(G).

XML Compression via Directed Acyclic Graphs 17

Using this mapping, the sums in Lemma 12 and 13 can be related as follows:

Lemma 14 For every t ∈ T (Σ), we have

|hdag(t)| =
∑

w∈sib(G)

e(w) = |N |+
∑

w∈sib(t)

e(w̃).

Proof By Lemma 13 it remains to show the second equality. The only sibling
sequences in sib(G) that are not of the form w̃ for w ∈ sib(t) are the sequences
(of length 1) that consist of the whole right-hand side f(α1, . . . , αm) of a
nonterminal A ∈ N . For such a sibling sequence u we have e(u) = 1 (since it
has length 1 and f(α1, . . . , αm) is not a single symbol). Hence, we have∑

w∈sib(G)

e(w) = |N |+
∑

w∈sib(t)\{t}

e(w̃)

= |N |+
∑

w∈sib(t)

e(w̃),

where the last equality follows from e(t̃) = e(S) = 0. ut

Theorem 15 For every t ∈ T (Σ), we have

|hdag(t)| ≤ min(|dag(t)|, |bdag(t)|).

Proof Since hdag(t) is obtained from dag(t) by sharing repeated suffixes of
child sequences, we immediately get |hdag(t)| ≤ |dag(t)|. It remains to show
|hdag(t)| ≤ |bdag(t)|. By Lemma 12 and 14 we have to show

|N |+
∑

w∈sib(t)

e(w̃) ≤
∑

w∈sib(t)

e(w),

where N is the set of nonterminals of Gred
dag(t). To see this, note that:

– e(w̃) ≤ e(w) for all w ∈ sib(t) and
– for every nonterminal A ∈ N there must exist a sibling sequence w ∈ sib(t)

such that w̃ starts with A. For this sequence we have e(w) = e(w̃)+1 (note
that the right-hand side of A does not belong to Σ, and hence w starts
with a tree of size at least 1).

Choose for every A ∈ N a sibling sequence wA ∈ sib(t) such that w̃A starts
with A. Let R = sib(t) \ {wA | A ∈ N}. We get

|N |+
∑

w∈sib(t)

e(w̃) = |N |+
∑
A∈N

e(w̃A) +
∑
w∈R

e(w̃)

=
∑
A∈N

(e(w̃A) + 1) +
∑
w∈R

e(w̃)

≤
∑
A∈N

e(wA) +
∑
w∈R

e(w)

=
∑

w∈sib(t)

e(w).

This proves the theorem. ut

18 Mireille Bousquet-Mélou et al.

Theorem 16 For every t ∈ T (Σ) with |t| ≥ 2, we have

|dag(t)| ≤ 1
2
|hdag(t)|2.

Proof Let fi(αi,1, . . . , αi,ni
) for 1 ≤ i ≤ k be the right-hand sides of Gred

dag(t).
W.l.o.g. assume that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. Every αi,j is either from Σ or
a nonterminal. Moreover, all the trees fi(αi,1, . . . , αi,ni) are pairwise different.
We have |dag(t)| =

∑k
i=1 ni.

If nk = 1, then t is a linear chain. In this case, we get

|dag(t)| = |t| ≤ 1
2
|t|2 =

1
2
|hdag(t)|2

since |t| ≥ 2. Let us now assume that nk ≥ 2. Recall that we compute hdag(t)
by taking the minimal dag of the forest consisting of the binary encodings of the
trees fi(αi,1, . . . , αi,ni). The binary encoding of fi(αi,1, . . . , αi,ni) has the form
fi(ti,�), where ti is a chain of ni−1 many right pointers. Let d be the minimal
dag of the forest consisting of all chains ti. Since all the trees fi(αi,1, . . . , αi,ni

)
are pairwise distinct, we have |hdag(t)| = k + |d|. Since the chain ti consists
of ni many nodes, we have |d| ≥ max{ni | 1 ≤ i ≤ k} − 1 = nk − 1. Hence, we
have to show that

∑k
i=1 ni ≤

1
2 (k + nk − 1)2. We have

k∑
i=1

ni ≤ k · nk ≤ (k − 1)nk +
1
2
n2
k =

1
2

(2(k − 1)nk + n2
k) ≤ 1

2
(k − 1 + nk)2,

which concludes the proof. For the second inequality note that nk ≤ 1
2n

2
k, since

nk ≥ 2. ut

Consider the tree sn from Figure 2. We have |dag(sn)| = |sn| = n2 and
|hdag(sn)| = |bdag(sn)| = 3n− 2. Hence, we get

|dag(sn)| = n2 >
1
9

(3n− 2)2 =
1
9
|hdag(sn)|2.

This shows that up to a constant factor, the bound in Theorem 16 is sharp.
The constant 1/9 can be slightly improved:

Theorem 17 There is a family of trees (sn)n≥1 such that

|dag(sn)| > 1
6
|hdag(sn)|2.

Proof We specify sn by the reduced 0-SLT grammar Gred
dag(sn). Let Gred

dag(sn)

contain the following productions for 0 ≤ i ≤ n:

Ai → f(Ai+1, . . . , An, a, . . . , a︸ ︷︷ ︸
n many

).

XML Compression via Directed Acyclic Graphs 19

This is indeed the grammar obtained from the minimal dag for a tree sn (of
size exponential in n). We have

|dag(sn)| =
2n∑
i=n

i = n(n+ 1) +
n∑
i=0

i = n(n+ 1) +
n(n+ 1)

2
=

3n(n+ 1)
2

.

The hybrid dag of sn consists of the child sequence A1A2 · · ·Anan together
with n+ 1 many left pointers into this sequence. Hence, we have

|hdag(sn)| = 2n− 1 + n+ 1 = 3n.

We obtain
1
6
|hdag(sn)|2 =

1
6

9n2 =
3
2
n2 <

3n(n+ 1)
2

= |dag(sn)|.

This proves the theorem. ut
Next let us bound |bdag(t)| in terms of |hdag(t)|:

Theorem 18 For every t ∈ T (Σ), we have

|bdag(t)|+ n ≤ 2|hdag(t)|,

where n is the number of non-leaf nodes of dag(t).

Proof We use the notations introduced before Theorem 15. Note that n = |N |
is the number of nonterminals of the 0-SLT grammar Gred

dag(t). By Lemma 12
we have |bdag(t)| =

∑
w∈sib(t) e(w). By Lemma 14 we have |hdag(t)| =

|N |+
∑
w∈sib(t) e(w̃). Hence, we have to show that

|N |+
∑

w∈sib(t)

e(w̃) ≥ 1
2

∑
w∈sib(t)

e(w) +
1
2
|N |.

In order to prove this, we show the following for every sibling sequence w ∈
sib(t): Either e(w̃) ≥ 1

2e(w) or e(w̃) = 0 and e(w) = 1. In the latter case, the
sibling sequence w consists of a single tree s of size at least one (i.e., s does not
consist of a single node), and w̃ consists of a single nonterminal A ∈ N . So,
let w = t1 · · · tn ∈ sib(t) and let w̃ = α1 · · ·αn with αi ∈ Σ ∪N . We consider
the following four cases:
Case 1. n > 1 and t1 = α1 ∈ Σ. We have e(w) = e(w̃) = 1.
Case 2. n > 1 and |t1| ≥ 1. We have e(w) = 2 and e(w̃) = 1.
Case 3. n = 1 and t1 = α1 ∈ Σ. We have e(w) = e(w̃) = 0.
Case 4. n = 1 and |t1| ≥ 1. We have e(w) = 1, e(w̃) = 0, and w̃ consists of a
single nonterminal A ∈ N . ut
For the tree tm from Figure 1 we have |bdag(tm)| = |tm| = 2m, |hdag(sm)| =
|dag(tm)| = m+ 1, and n = |N | = 2. Hence, Theorem 18 is optimal.

From Theorems 15, 16, and 18 we immediately get:

Corollary 19 For every t ∈ T (Σ) with |t| ≥ 2, we have
1
2
|bdag(t)| ≤ |dag(t)| ≤ 1

2
|bdag(t)|2.

20 Mireille Bousquet-Mélou et al.

7 The average-case sizes of dag and bdag

Let m ≥ 1. We will use the terminology m-labeled tree, instead of {1, . . . ,m}-
labeled tree. In this section, we analyze the average sizes (both node size and
edge size) of the dags and bdags of m-labeled unranked trees of size n. Cur-
rently, we are not able to make such an analysis for the hdag. While Section 7.1
provides exact expressions for the average sizes, Section 7.2 deals with their
asymptotic behavior. The results are mostly an extension of [13], where the
authors treat the average node size of binary trees over a singleton alphabet
(m = 1). However, we give here complete proofs, whereas the proof was merely
sketched in [13].

Let Bm denote the set of non-empty m-labeled binary trees and let Tm
denote the set of non-empty m-labeled unranked trees. Here, “non-empty”
means that our trees have at least one node. For U ∈ {B, T } and n ≥ 0, we
define

Um,n = {t ∈ Um | |t| = n}.

We seek expressions for the accumulated quantities

NUm,n =
∑

t∈Um,n

‖dag(t)‖ and EUm,n =
∑

t∈Um,n

|dag(t)|

as well as for the average sizes

N̄Um,n =
NUm,n
|Um,n|

and ĒUm,n =
EUm,n
|Um,n|

.

Recall that the fcns-encoding yields a bijection between m-labeled unranked
trees of edge size n and m-labeled binary trees of edge size n, where the root
only contains a left child. Therefore, the average node size (resp. edge size) of
the bdag of m-labeled unranked trees of size n is one plus the average node
size (resp. edge size) of the minimal dag of m-labeled binary trees of size n−1.

One key tool used in this section is that of generating functions. If Fn is a
sequence of numbers, then its (ordinary) generating function is defined as

F(z) =
∑
n≥0

Fnz
n

and [zn]F(z) denotes the coefficient of zn in F(z) (i.e., Fn). If for a set S a
size function f : S → N is defined such that for every n the set Sn = {s ∈ S |
f(s) = n} is finite, we can associate to the set S the generating function

S(z) =
∑
n≥0

|Sn|zn,

which is said to count the objects of S by their size. Such sets S are sometimes
called combinatorial classes [12, p.16]. When a class has a simple recursive
structure, it is often possible to obtain an explicit expression for S(z). This
will be the case for our two basic generating functions, Bm(z) and Tm(z),

XML Compression via Directed Acyclic Graphs 21

which count respectively the trees of Bm and Tm by their size (see Lemmas 20
and 23).

Let again U ∈ {B, T }. For u ∈ Um and n ≥ 0, define CUm,n(u) as the number
of Um-trees of size n that contain u as a subtree. Let v ∈ Um be another tree
such that |v| = |u|. For every n ≥ 0 there is a bijection between the set of
trees of size n that contain u and the set of trees of size n that contain v (it
is obtained by replacing every occurrence of u by a copy of v, and vice versa).
Therefore CUm,n(u) = CUm,n(v) and so we also write CUm,n(p) (with p = |u|)
instead of CUm,n(u). The corresponding generating function is

CUm,p(z) =
∑
n≥0

CUm,n(p)zn.

This series will be determined in Lemma 21 for binary trees and in Lemma 24
for unranked trees. Let us now explain how the accumulated sizes NUm,n and
EUm,n (or, equivalently, the associated generating functions) can be expressed
in terms of these series.

Let sub(t) denote the set of subtrees occurring in the tree t. Since ‖dag(t)‖
is the number of different subtrees of t, we have (1u∈sub(t) is 1 if u ∈ sub(t)
and 0 otherwise)

NUm,n =
∑

t∈Um,n

‖dag(t)‖ =
∑

t∈Um,n

∑
u∈Um

1u∈sub(t)

=
∑
u∈Um

CUm,n(u) =
∑
p≥0

|Um,p|CUm,n(p).

Hence the corresponding generating function is

NUm(z) =
∑
n≥0

NUm,nz
n =

∑
p≥0

|Um,p|CUm,p(z). (6)

We now want to obtain an expression for the accumulated number of edges
EUm,n and the associated generating function. Let us denote by U

(d)
m,n (with

U = B or T) the number of trees from Um,n that have root degree d (i.e., the
root has d children). Then, in the same spirit as for the number of nodes, we
get for the number of edges:

EUm,n =
∑

t∈Um,n

|dag(t)| =
∑

t∈Um,n

∑
u∈sub(t)

deg(root(u))

=
∑
u∈Um

deg(root(u))CUm,n(u) =
∑
p,d≥0

dU (d)
m,pC

U
m,n(p).

The associated generating function is

EUm(z) =
∑
n≥0

EUm,nz
n =

∑
p,d≥1

dU (d)
m,pC

U
m,p(z). (7)

Indeed, we can ignore trees of size p = 0 (or, equivalently, root degree d = 0).

22 Mireille Bousquet-Mélou et al.

7.1 Exact counting

In this section, we determine explicit expressions for the generating functions
NUm(z) and EUm(z), whose coefficients record the accumulated number of nodes
(resp. edges) in the dag of m-labeled trees of size n. We start with binary trees
(that is, U = B).

7.1.1 Binary trees

Lemma 20 The generating function Bm(z) of m-labeled binary trees, counted
by their edge number, is

Bm(z) =
1− 2mz −

√
1− 4mz

2mz2
. (8)

Equivalently, the number of m-labeled binary trees of size p is

Bm,p =
1

p+ 2

(
2p+ 2
p+ 1

)
mp+1. (9)

Of course the case m = 1 recovers the (shifted) Catalan numbers.

Proof The proof of Lemma 20 follows a general principle called the symbolic
method in [12, Chapter 1]: If a combinatorial class H is built by disjoint union
from two combinatorial classes F and G with the respective generating func-
tions F(z) and G(z), then the generating function H(z) of the combinatorial
class H is H(z) = F(z) + G(z). Similarily, if H is build via Cartesian product
from the classes F and G, then H(z) = F(z) ·G(z).

Anm-labeled binary tree is either a single node with a label from {1, . . . ,m},
or a root node with a single subtree (left or right) or a root node with two
subtrees. The above principles give for the generating function Bm(z) the
equation

Bm(z) = m+ 2mzBm(z) +m (zBm(z))2 .

Solving this equation for Bm(z) proves equation (8) (taking the other root for
Bm(z) would give a series with negative powers of z). Equation (9) follows
from (8) by a Taylor expansion. ut

Lemma 21 The generating function CBm,u(z) of m-labeled binary trees that
contain a given tree u ∈ Bm of size p is

CBm,p(z) =
1

2mz2

(√
1− 4mz + 4mzp+2 −

√
1− 4mz

)
.

Proof We first determine the generating function ABm,p(z) counting m-labeled
binary trees that do not contain (or avoid) u. A non-empty binary tree t that
avoids u is either reduced to a single node, or a root node with a u-avoiding
tree attached (this may be the left or the right child), or a root node to which
two u-avoiding trees are attached. However, we must still exclude the tree

XML Compression via Directed Acyclic Graphs 23

t = u, which is included in the above recursive description. We thus get the
following equation:

ABm,p(z) = m+ 2mzABm,p(z) +m
(
zABm,p(z)

)2 − zp,
which yields

ABm,p(z) =
1− 2mz −

√
1− 4mz + 4mzp+2

2mz2
.

Using CBm,p(z) = Bm(z)−ABm,p(z), this proves the lemma. ut

We now obtain expressions for the generating functions NBm(z) and EBm(z)
given by (6) and (7).

Theorem 22 The generating function of the accumulated number of nodes of
minimal dags of m-labeled binary trees is

NBm(z) =
1

2mz2

∑
p≥0

Bm,p

(√
1− 4mz + 4mzp+2 −

√
1− 4mz

)
,

where the numbers Bm,p are given by (9).
The generating function of the accumulated number of edges of dags of m-
labeled binary trees is

EBm(z) =
3

2mz2

∑
p≥1

p

2p+ 1
Bm,p

(√
1− 4mz + 4mzp+2 −

√
1− 4mz

)
.

Equation (3) in [13] can be obtained from the above expression for NBm(z) by
setting m = 1 and by shifting the index (since the size is defined as the number
of nodes in [13]).

Proof The expression for NBm(z) follows directly from (6) and Lemma 21. To
express the series EBm(z), we first need to determine (according to (7)) the
number B(d)

m,p of m-labeled binary trees of size p ≥ 1 with root degree d. Note
that d can only be 1 or 2. Clearly, B(1)

m,p = 2mBm,p−1, and thus B(2)
m,p =

Bm,p − 2mBm,p−1. Hence, for p ≥ 1,∑
d≥1

d ·B(d)
m,p = 2mBm,p−1 + 2(Bm,p − 2mBm,p−1)

= 2(Bm,p −mBm,p−1)

=
3p

2p+ 1
Bm,p,

where the last equation follows from (9). The expression for EBm(z) now follows,
using (7) and Lemma 21. ut

24 Mireille Bousquet-Mélou et al.

7.1.2 Unranked trees

Lemma 23 The generating function Tm(z) of m-labeled unranked trees is

Tm(z) =
1−
√

1− 4mz
2z

. (10)

Equivalently, the number of m-labeled unranked trees of size p is

Tm,p =
1

p+ 1

(
2p
p

)
mp+1. (11)

Again, we obtain the Catalan numbers when m = 1.

Proof An m-labeled unranked tree is a root node to which a sequence of
m-labeled unranked trees is attached. We can now use another construction
from [12, Chapter 1]: If G is a combinatorial class that does not contain an
element of size 0, and the class F is defined as

F = {ε}+ G + (G × G) + (G × G × G) + · · · ,

then the generating function of F is

F(z) =
1

1−G(z)

where G(z) is the generating function of G.
In our case, G(z) = zTm(z) counts trees with root degree 1 and root

label 1, and we thus obtain

Tm(z) =
m

1− zTm(z)
.

Solving this for Tm(z) yields (10). We then obtain equation (11) by a Taylor
expansion. ut

Lemma 24 The generating function of m-labeled unranked trees that contain
a given tree u of size p is

CTm,p(z) =
zp+1 +

√
1− 4mz + 2zp+1 + z2p+2 −

√
1− 4mz

2z
.

Proof We first determine the generating function ATm,p(z) counting m-labeled
unranked trees that do not contain (or avoid) u. A tree that avoids u is a root
node to which a sequence of u-avoiding trees is attached. As in the binary
case, we still need to subtract zp to avoid counting u itself. This gives

ATm,p(z) =
m

1− zATm,p(z)
− zp,

which can be solved for ATm,p(z):

ATm,p(z) =
1
2z

(
1− zp+1 −

√
1− 4mz + 2zp+1 + z2p+2

)
.

Using CTm,p(z) = Tm(z)−ATm,p(z), this proves the lemma. ut

XML Compression via Directed Acyclic Graphs 25

Proposition 25 The generating function of the accumulated node size of min-
imal dags of m-labeled unranked trees is

NTm(z) =
1
2z

∑
p≥0

Tm,p

(
zp+1 +

√
1− 4mz + 2zp+1 + z2p+2 −

√
1− 4mz

)
,

where the numbers Tm,p are given by (11).
The generating function of the accumulated edge size of minimal dags of

m-labeled unranked trees is

ETm(z) =
3
2z

∑
p≥0

pTm,p
p+ 2

(
zp+1 +

√
1− 4mz + 2zp+1 + z2p+2 −

√
1− 4mz

)
.

Proof The expression of NTm(z) follows directly from (6) and Lemma 24. To
express the series ETm(z), we first need to determine (according to (7)) the
number T (d)

m,p of m-labeled unranked trees of size p and root degree d, or, more
precisely, the sum ∑

d≥1

d · T (d)
m,p

for any p ≥ 1. This is done in [7, Corollary 4.1] in the case m = 1. It suffices
to multiply by mp+1 to obtain the general case:∑

d≥1

d · T (d)
m,p =

3pTm,p
p+ 2

.

Combining (7) and Lemma 24 now gives the expression of ETm(z). ut

7.2 Asymptotic results

In this section we state asymptotic results for the average node and edge sizes
of the dag of m-labeled binary trees, and of m-labeled unranked trees. The
proofs are rather involved and assume some knowledge in analytic combina-
torics [12]. Therefore, the proofs are are given in the Appendix.

7.2.1 Binary trees

Theorem 26 The average number of nodes in the minimal dag of an m-
labeled binary tree of size n satisfies

N̄Bm,n = 2κm
n√
lnn

(
1 +O

(
1

lnn

))
with κm =

√
ln(4m)
π

. (12)

The proof is an application of the singularity analysis of Flajolet and Odlyzko,
described in [12, Ch. VI]. One first determines the singular behavior of the
series NBm(z) given by Theorem 22 in the neighborhood of its dominant sin-
gularities (that is, singularities of minimal modulus).

26 Mireille Bousquet-Mélou et al.

Theorem 27 The generating function NBm(z) is analytic in the domain D
defined by |z| < 1

2m and z /∈ [1
4m ,

1
2m]. As z tends to 1

4m in D, one has

NBm(z) =
8mκm√

(1− 4mz) ln((1− 4mz)−1)
+O

 1√
(1− 4mz) ln3((1− 4mz)−1)

 ,

where κm is defined as in Theorem 26.

Granted this proposition, one can use the Transfer Theorem VI.4 of [12, p. 393],
combined with the estimates of the coefficients of elementary series (see [12,
Thm. VI.2, p. 385]) to obtain the asymptotic behavior of the accumulated
node size of minimal dags of m-labeled binary trees of size n:

NBm,n = [zn]NBm(z) =
2κm√
π

4n+1mn+1

√
n lnn

(
1 +O

(
1

lnn

))
.

Since the numbers Bm,n, given by (9), satisfy

Bm,n =
4n+1mn+1

√
πn3/2

(
1 +O

(
1
n

))
,

this gives Theorem 26. The proof of Theorem 27 can be found in the Appendix,
Section A.1 (for m = 1) and Section A.2 (for general values of m).

For the edge size, one obtains in a similar fashion the following result.

Theorem 28 The average number of edges in the minimal dag of an m-labeled
binary tree of size n satisfies

ĒBm,n = 3κm
n√
lnn

(
1 +O

(
1

lnn

))
(13)

with κm as in Theorem 26.

The proof is a simple adaptation of the proof of Theorem 26 and can be found
in Section A.3 of the Appendix. Note the factor 3/2 between the node and
edge sizes, which could be predicted by comparing the expressions of NBm(z)
and EBm(z) in Theorem 22.

7.2.2 Unranked trees

Theorem 29 The average number of nodes in the minmal dag of an m-labeled
unranked tree of size n satisfies

N̄Tm,n = κm
n√
lnn

(
1 +O

(
1

lnn

))
, (14)

with κm as in Theorem 26.

XML Compression via Directed Acyclic Graphs 27

Bm Tm

N̄m,n 2κm
n
√

lnn

„
1 +O

„
1

lnn

««
κm

n
√

lnn

„
1 +O

„
1

lnn

««

Ēm,n 3κm
n
√

lnn

„
1 +O

„
1

lnn

««
3κm

n
√

lnn

„
1 +O

„
1

lnn

««

Table 1 Overview over the different asymptotics. Recall that κm =
q

ln 4m
π

.

Thus the average node size of compressed unranked trees is about half the
node size of compressed binary trees of the same size. Note that the same
ratio holds between the heights of these trees [6,10,24].

The proof of Theorem 29 is very similar to the proof of Theorem 26. The
required changes are described in Section A.4.

Theorem 30 The average number of edges in the minimal dag of an m-labeled
unranked tree of size n satisfies

ĒTn = 3κm
n√
lnn

(
1 +O

(
1

lnn

))
, (15)

with κm as in Theorem 26.

In other words, asymptotically the edge size of compressed binary trees is
equal to the edge size of compressed unranked trees. The proof of Theorem 30
is given in Section A.5.

Table 1 contains an overview of the results of this section.

8 Dag and string compression

As for the hdag, consider the forest fcns(t1), . . . , fcns(tn) of the binary encod-
ings of the right-hand sides t1, . . . , tn of the reduced 0-SLT grammar Gred

dag(t)

for an unranked tree t. In the construction of the hdag we build the minimal
dag of this forest. Therefore we only share repeated suffixes of child sequences,
i.e., “right branching” trees in the binary encodings. Such trees can in fact
be considered as strings. We now want to generalize the sharing of suffixes.
Instead of only sharing suffixes of child sequences, we now apply an arbitrary
grammar-based string compressor to (a concatenation of) the child sequences.
Such a compressor infers a small straight-line context-free grammar for the
given string.

Formally, a straight-line context-free string grammar, SL grammar for short,
is a triple G = (N,Σ, ρ), where

– N is a finite set of nonterminals
– Σ is a finite set of terminal symbols

28 Mireille Bousquet-Mélou et al.

– ρ : N → (N ∪ Σ)∗ is a mapping such that the binary relation {(X,Y) |
X,Y ∈ N, ρ(X) ∈ (N ∪Σ)∗Y (N ∪Σ)∗} is acyclic.

We do not need a start nonterminal for our purpose. From every word u ∈
(N∪Σ)∗ we can derive exactly one terminal string evalG(u) using the mapping
ρ. Formally, we extend ρ to a morphism ρ : (N ∪Σ)∗ → (N ∪Σ)∗ by ρ(a) = a
for a ∈ Σ. Due to the above acyclicity condition, for every u ∈ (N ∪Σ)∗, there
exists an n ≥ 1 with ρn(u) ∈ Σ∗, and evalG(u) is this string. We define the
size of G as

∑
X∈N |ρ(X)|. As for SLTs we also write X → u if ρ(X) = u.

An SL grammar-compressed Σ-labeled dag is a tuple D = (V, γ, λ,G) such
that the following holds:

– G = (N,V, ρ) is an SL grammar with terminal alphabet V
– γ : V → (V ∪N)∗

– λ : V → Σ and
– the triple d = (V, γ′, λ) with γ′(v) = evalG(γ(v)) ∈ V ∗ is an ordered Σ-

labeled rooted dag.

We define eval(D) = eval(d). We define the size |D| of D as |G|+
∑
v∈V |γ(v)|.

We say that D is minimal if d is the minimal dag for eval(D). Note that there
are many minimal SL grammar-compressed dags for a given tree, since we do
not make any restrictions on the SL grammar part G. In particular, G does
not have to be size minimal.

Example 31 Here is an example of an SL grammar-compressed Σ-labeled dag
D = (V, γ, λ,G) with Σ = {a, b, c, f, g, h} and

V = {A1, A2, A3, A4, A,B,C}.

The mappings γ and λ are shown below in the left and in the middle column
in form of a 0-SLT grammar. For instance, A1 → f(A,D,A4, D,C) stands for
λ(A1) = f and γ(A1) = ADA4DC. The SL grammar G is shown in the right
column; it contains the nonterminals D and E.

A1 → f(A,D,A4, D,C) A→ a D → A2A3

A2 → g(E,A) B → b E → AA

A3 → h(E,B) C → c

A4 → f(D)

The size of this SL grammar-compressed dag is 14 and it represents the dag d
with the following 0-SLT grammar Gd:

A1 → f(A,A2, A3, A4, A2, A3, C) A→ a

A2 → g(A,A,A) B → b

A3 → h(A,A,B) C → c

A4 → f(A2, A3).

Also note that D is minimal.

XML Compression via Directed Acyclic Graphs 29

By the following theorem, a given SL grammar-compressed dag for a tree t
can be efficiently transformed into a 1-SLT grammar that produces the binary
encoding of t.

Theorem 32 An SL grammar-compressed Σ-labeled dag D = (V, γ, λ,G) can
be transformed in time O(|D|) into a 1-SLT grammar G1 such that eval(G1) =
fcns(eval(D)) and |G1| ≤ |D|+ 2(|V |+ |N |).

Proof Let G = (N,V, ρ). Let V̂ = {v̂ | v ∈ V }, V ′ = {v′ | v ∈ V }, N̂ =
{X̂ | X ∈ N}, and N ′ = {X ′ | X ∈ N} be disjoint copies of the sets V
and N , respectively. The set of nonterminals of the 1-SLT grammar G1 is
N ∪ N ′ ∪ N̂ ∪ V ∪ V̂ ∪ V ′. Nonterminals in N ∪ V ∪ V ′ have rank 0 and
nonterminals in N̂ ∪N ′ ∪ V̂ have rank 1. The idea is that α̂ (for α ∈ N ∪ V)
represents a copy of α that appears at positions in the fcns encoding having
exactly one child (a right child), whereas the original α will only appear in
leaf positions. This distinction is necessary since in an SLT grammar every
nonterminal has a fixed rank. Nonterminals in N ′ ∪ V ′ are used in order to
keep G1 small.

The right-hand side mapping of G1 is defined as follows: For every v ∈ V
with λ(v) = f and γ(v) = α1 · · ·αk (k ≥ 0, α1, . . . , αk ∈ V ∪N) we set:

– If k = 0, then v → f and v̂(y)→ f(�, y); the nonterminal v′ is not needed
in this case.

– If k ≥ 1, then v → f(v′,�), v̂(y)→ f(v′, y), and v′ → α̂1(· · · α̂k−1(αk) · · ·).

Note that the total size of these productions is at most k + 2 (recall that we
do not count edges to �-labeled nodes). Removing the nonterminal v′ in the
case k ≥ 1 would result in a total size of 2k + 1.

For the every X ∈ N with ρ(X) = β1 · · ·βm (β1, . . . , βm ∈ N ∪ V , m ≥ 2
without loss of generality) we set X → X ′(βm), X̂(y) → X ′(β̂m(y)), and
X ′(y) → β̂1(· · · β̂m−1(y) · · ·). These rules have total size m + 2. Hence, the
size of the resulting 1-SLT grammar G1 is |D| + 2(|V | + |N |) and the time
needed to construct it is clearly bounded by O(|G1|) = O(|D|). It is easy to
see that G1 produces fcns(eval(D)). ut

Theorem 32 implies that results for 1-SLT grammars carry over to SL grammar-
compressed dags. For instance, finite tree automata [19] (with sibling con-
straints [22]) and tree-walking automata [22] can be evaluated in polynomial
time over 1-SLT grammars and hence over SL grammar-compressed dags.

To construct an SL grammar-compressed dag for a tree t, we first construct
dag(t) in linear time. Then we apply a grammar-based string compressor (e.g.,
RePair [16] or Sequitur [27]) to the child sequences of the dag. In this second
phase we want to derive a small SL grammar for a set of strings and not a single
string. To do this, we concatenate all child sequences of the dag separated by
unique symbols. For instance, for the dag at the end of Example 31 we obtain
the string

AA2A3A4A2A3C$1AAA$2AAB$3A2A3.

30 Mireille Bousquet-Mélou et al.

An application of RePair to this string yields the grammar

S → ADA4DC$1EA$2EB$3D, D → A2A3, E → AA.

Then, the right-hand side ADA4DC$1EA$2EB$3D contains the right-hand
sides of the γ-mapping of the SL grammar-compressed dag, whereas the two
remaining productions D → A2A3 and E → AA make up the SL grammar
part.

The following example shows that our construction may compress dag(t)
exponentially.

Example 33 Consider the tree f(a, a, . . . , a) with 2n many a-leaves. Its dag has
2n many edges. We apply a grammar-based string compressor to the string
a2n

. The string compressor may produce the string grammar

S′ → A1A1

Ai → Ai+1Ai+1 for 1 ≤ i ≤ n− 2
An−1 → aa

of size 2n. Actually, RePair would produce such a grammar. The construction
from the proof of Theorem 32 yields the following 1-SLT grammar, where we
eliminate productions that do not reduce the total grammar size:

S → f(Â1(A1),�)
Ai → Âi+1(Ai+1) for 1 ≤ i ≤ n− 2

Âi(y) → Âi+1(Âi+1(y)) for 1 ≤ i ≤ n− 2
An−1 → a(�, a)

Ân−1(y) → a(�, a(�, y))

The total size of this grammar is 3n − 1. Hence we obtain a 1-SLT grammar
for the fcns encoding of f(a, a, . . . , a) of size O(n).

Both hdag(t) and rhdag(t) can be seen as particular minimal SL grammar-
compressed dags. For instance, hdag(t) can be seen as a minimal SL grammar-
compressed dag D = (V, γ, λ,G), where the SL grammar G = (N,V, ρ) is right
regular, i.e., for every nonterminal X ∈ N we have ρ(X) ∈ V ∗N ∪ V +, and
similarly, for every v ∈ V we have γ(v) ∈ V ∗N ∪V ∗. When transforming such
an SL grammar compressed dag into a 1-SLT grammar following the proof of
Theorem 32, we do not need the copy sets N̂ and N ′, because nonterminals
from N always produce suffixes of child sequences in the dag. This implies the
following:

Theorem 34 An hdag that is represented as an SL grammar-compressed Σ-
labeled dag D = (V, γ, λ,G) can be transformed in time O(|D|) into a 1-SLT
grammar G1 such that eval(G1) = fcns(eval(D)) and |G1| ≤ |D|+ 2|V |.

XML Compression via Directed Acyclic Graphs 31

9 Subtree equality check

In the previous sections we have discussed five different formalisms for the
compact representation of unranked trees:

(1) dag
(2) binary dag
(3) hybrid dag
(4) SL grammar-compressed dag
(5) SLT grammars (e.g. produced by BPLEX or TreeRePair)

As mentioned in Section 3, tree automata can be evaluated in polynomial time
for SLT grammars, and hence the same holds for the above five formalisms. In
this section we consider another important processing primitive: subtree equal-
ity check. Consider a program which realizes two independent node traversals
of an unranked tree, using one of (1)–(5) as memory representation. At a given
moment we wish to check if the subtrees at the two nodes of the traversals coin-
cide. How expensive is this check? As it turns out, the formalisms behave quite
differently for this task. The dags (1)–(3) as well as SL grammar-compressed
dags (4) allow efficient equality check. We show below (Theorem 35) that for
an appropriate representation of the two nodes, this test can be performed in
time O(logN), where N is the number of tree nodes. For SLT grammars such
a check is much more expensive. Note that we cannot unfold the subtrees and
check node by node, as this can take exponential time. For SLT grammars
a polynomial time algorithm is known, based on Plandowski’s result [28]. A
new, fine difference between the dags (1)–(3) on the one hand and (4) and (5)
on the other hand is that we can also check equality of sibling sequences in
time O(logN) for (1)–(3) (see Theorem 37). For (4) and (5) we are not aware
of such an algorithm.

Let t = (V, γ, λ) ∈ T (Σ) be an unranked tree. Recall that the preorder
traversal of t (pre(t) for short) enumerates the nodes of t by first enumer-
ating the root, followed by the preorder traversals of the direct subtrees of
the root. Formally, if r is the root of t and γ(r) = v1 · · · vn, then pre(t) =
r pre(t/v1) · · · pre(t/vn). The preorder number of a node u ∈ V is its position
in pre(t). In what follows we identify a preorder number p with the node in t
that it represents, and simply speak of “the node p”. In particular, we denote
with t/p (1 ≤ p ≤ ‖t‖) the subtree rooted at node p.

Theorem 35 Let t be an unranked tree with N nodes. Given g = dag(t) or
a minimal SL grammar-compressed dag g with eval(g) = t (this includes the
hdag) or g = bdag(t), one can, after O(|g|) time preprocessing, check for given
1 ≤ p, q ≤ N whether t/p = t/q in time O(logN).

Proof Let t = (V, γ, λ) ∈ T (Σ). First, consider g = dag(t) = (U, γ′, λ′). For
1 ≤ p ≤ N let yp be the unique node of g such that evalg(yp) = t/p. Then,
t/p = t/q if and only if yp = yq. Hence, it suffices to show that the dag-node yp
can be computed from p in time O(logN) (after O(|g|) time preprocessing).
For this, we use techniques from [3]. More precisely, we construct in time O(|g|)

32 Mireille Bousquet-Mélou et al.

an SL string grammar G′ for the word y1y2 · · · yN ∈ U∗. For this, we introduce
for every node u ∈ U of the dag g a nonterminal û. If γ′(u) = u1 · · ·un, then we
set û→ uû1 · · · ûn. It is straightforward to show that this SL string grammar
produces the word y1y2 · · · yN . Note that |G′| = |g|.

It now suffices to show that for a given number 1 ≤ p ≤ N , the p-th
symbol of eval(G′) can be computed in time O(logN) after O(|g|) = O(|G′|)
time preprocessing. This is possible by [3, Theorem 1.1]. Actually, in order to
apply this result, we first have to transform G′ into Chomsky normal form,
which is also possible in time O(|G′|) = O(|g|).

For a minimal SL grammar-compressed dag g = (U, γ, λ,G) for t, where
G = (N,U, ρ), essentially the same procedure as for the dag applies. The
set of nonterminals of the SL string grammar G′ is {û | u ∈ U} ∪ N . For
u ∈ U with γ(u) = α1 · · ·αn (with αi ∈ U ∪N) we set û→ uα̂1 · · · α̂n, where
α̂i = v̂ if αi = v ∈ U and α̂i = αi if αi ∈ N . The right-hand sides for the
G′-nonterminals from N are simply copied from the grammar G with every
occurrence of a symbol u ∈ U replaced by û. The reader finds an example of
the construction in Example 36 below.

Finally, for g = bdag(t) = (U, γ, λ) we can proceed similarly. Again we
construct in time O(|g|) an SL string grammar G′. The set of nonterminals of
G′ is {û | u ∈ U}. For every u ∈ U with λ(u) 6= � and γ(u) = u1u2 we set
û → uα1α2, where αi = ε if λ(ui) = � and αi = v̂ if λ(ui) = v ∈ U . Note
that for given preorder numbers 1 ≤ p, q ≤ N , the p-th symbol of eval(G′)
is equal to the q-th symbol of eval(G′) if and only if the sibling sequences at
nodes p and q of t are equal. But we want to check whether the subtrees rooted
at p and q are equal. For this, assume that using [3, Theorem 1.1] we have
computed in time O(logN) the p-th symbol yp ∈ U (resp. the q-th symbol
yq ∈ U) of eval(G′). Then, t/p = t/q is equivalent to the following conditions:
(i) λ(yp) = λ(yq) and (ii) either yp and yq do not have left children in g, or
the left children coincide. Since these checks only require constant time, we
obtain the desired time complexity. ut

Example 36 Consider the following minimal SL grammar-compressed dag from
Example 31:

A1 → f(A,D,A4, D,C) A→ a D → A2A3

A2 → g(E,A) B → b E → AA

A3 → h(E,B) C → c

A4 → f(D)

Then the construction from the proof of Theorem 35 yields the following SL
grammar G′:

Â1 → A1ÂDÂ4DĈ Â→ A D → Â2Â3

Â2 → A2EÂ B̂ → B E → ÂÂ

Â3 → A3EB̂ Ĉ → C

Â4 → A4D

XML Compression via Directed Acyclic Graphs 33

This grammar produces the string

eval(G′) = A1AA2A
3A3A

2BA4A2A
3A3A

2BA2A
3A3A

2BC.

We observe that for general SLT grammars, a result such as the one of The-
orem 35 is not known. To our knowledge, the fastest known way of checking
t/p = t/q for a given SLT grammar G for t works as follows: From G we can
again easily build an SL string grammar G′ for the preorder traversal of t,
see, e.g. [5,23]. Assume that the subtree of t rooted in p (resp., q) consists of
m (resp., n) nodes. Then we have to check whether the substring of eval(G′)
from position p to position p + m − 1 is equal to the substring from position
q to position q + n− 1. Using Plandowski’s result [28], this can be checked in
time polynomial in the size of G′ and hence in time polynomial in the size of
the SLT grammar G. Note that more efficient alternatives than Plandowski’s
algorithm exist, see, e.g. [18] for a survey, but all of them require at least
quadratic time in the size of the SL grammar.

In the context of XML document trees, it is also interesting to check equiv-
alence of two sibling sequences. For the dag, bdag, and hdag, this problem can
be solved again very efficiently:

Theorem 37 Let t be an unranked tree with N nodes. Given g = dag(t) or
g = bdag(t) or g = hdag(t) we can, after O(|g|) time preprocessing, check for
given 1 ≤ p, q ≤ N , whether sibseq(p) = sibseq(q) in time O(logN).

Proof The result for the dag follows from the hdag-case, since the hdag can
be constructed in linear time from the dag by constructing the minimal dag
for the forest consisting of the fcns encodings of the right-hand sides of Gred

dag(t)

(recall that the minimal dag can be constructed in linear time [8]), and this
linear time computation is part of the preprocessing. Furthermore, we have
already dealt with the bdag in the last paragraph of the proof of Theorem 35.
Hence, it remains to consider the hdag. We assume that the g = hdag(t)
is given as a minimal SL grammar-compressed dag D = (V, γ, λ,G), where
the SL grammar G = (N,V, ρ) is right regular, i.e., for every nonterminal
X ∈ N we have ρ(X) ∈ V ∗N ∪ V +, and similarly, for every v ∈ V we have
γ(v) ∈ V ∗N ∪ V ∗; see the end of Section 8. After introducing additional
nonterminals, we can assume that for every X ∈ N we have ρ(X) ∈ V N ∪ V ,
and for every v ∈ V we have γ(v) ∈ N ∪ {ε} (this transformation is possible
in time O(|g|)). Then, the elements of sib(t) \ {t} correspond to the elements
of N .

We now construct an SL string grammar G′ as follows; see also Example 38
below: The set of nonterminals of G′ is {X̂ | X ∈ N} ∪ V and the set of
terminals is N . The start nonterminal is the root r ∈ V of the hdag. For every
v ∈ V we set

v →

{
ε if γ(v) = ε

X̂ if γ(v) = X ∈ N.

34 Mireille Bousquet-Mélou et al.

For every X ∈ N we set

X̂ →

{
XvŶ if ρ(X) = vY, v ∈ V, Y ∈ N
Xv if ρ(X) = v ∈ V.

Then sibseq(p) = sibseq(q) holds for two numbers 1 ≤ p, q ≤ ‖t‖ if and only
if p = q = 1 or p > 1, q > 1, and the (p− 1)-th symbol of eval(G′) is equal to
the (q − 1)-th symbol of eval(G′). We deal with the case p = q = 1 separately
because the sibling sequence t corresponding to the root of t is not represented
in eval(G′) (the latter string has length N − 1). ut

Example 38 Consider the following hdag (our running example from Section 4),
written as an SL grammar-compressed dag of the form used in the proof of
Theorem 37.

S → f(X0), X0 → BX1,

B → f(X1), X1 → AX2,

A→ g(X3), X2 → A,

C → a X3 → C.

It produces the tree t = f(f(g(a), g(a)), g(a), g(a)), see Figure 3. The nonter-
minal X0 represents the sibling sequence f(g(a), g(a))g(a)g(a), X1 represents
g(a)g(a), X2 represents g(a), and X3 represents a. These are all sibling se-
quences except for the length-1 sequence t.

According to the construction from the proof of Theorem 37, we obtain
the following SLT grammar G′:

S → X̂0, X̂0 → X0BX̂1,

B → X̂1, X̂1 → X1AX̂2,

A→ X̂3, X̂2 → X2A,

C → ε X̂3 → X3C.

It produces the string

eval(G′) = X0X1X3X2X3X1X3X2X3.

For instance, at preorder positions 3 and 7 the same sibling sequence, namely
g(a)g(a) starts in the tree t. This sibling sequence is represented by the symbol
X1. Indeed, the 2nd and 6-th symbol in eval(G′) is X1.

For an SL grammar-compressed dag, the best solution for checking sibseq(p) =
sibseq(q) we are aware of uses again an equality check for SL grammar-
compressed strings.

XML Compression via Directed Acyclic Graphs 35

File Edges mD aD aC mC dag bdag

1998statistics 28305 5 4.9 22.4 50 1377 2403
catalog-01 225193 7 4.3 3.1 2500 8554 6990
catalog-02 2240230 7 4.3 3.1 25000 32394 52392
dblp 32345714 5 1.9 10.1 3929135 4142591 7894967
dictionary-01 277071 7 5.6 4.4 733 58391 77554
dictionary-02 2731763 7 5.6 4.4 7333 545286 681130
EnWikiNew 404651 4 2.7 3.9 34974 35075 70038
EnWikiQuote 262954 4 2.7 3.7 23815 23904 47710
EnWikiVersity 495838 4 2.7 3.8 43593 43693 87276
EnWikTionary 8385133 4 2.7 3.8 726091 726221 1452298
EXI-Array 226521 8 6.3 2.3 32448 95584 128009
EXI-factbook 55452 4 3.3 6.8 265 4477 5081
EXI-Invoice 15074 6 2.5 3.7 1002 1073 2071
EXI-Telecomp 177633 6 4.8 3.6 9865 9933 19808
EXI-weblog 93434 2 1.9 11.0 8494 8504 16997
JSTgene.chr1 216400 6 4.6 4.8 6852 9176 14606
JSTsnp.chr1 655945 7 3.8 4.6 18189 23520 40663
medline 2866079 6 3.6 2.9 30000 653604 740630
NCBIgene.chr1 360349 6 5.3 4.8 3444 16038 14356
NCBIsnp.chr1 3642224 3 2.9 9.0 404692 404704 809394
sprot39.dat 10903567 5 3.2 4.8 86593 1751929 1437445
treebank 2447726 36 6.9 2.3 2596 1315644 1454520

Table 2 The XML documents in Corpus I, their characteristics, and dag/bdag sizes

10 Experiments

In this section we empirically compare the sizes of different dags of unranked
trees, namely dag, bdag, rbdag, hdag, and rhdag. We also include a comparison
with SL grammar-compressed dags with RePair [16] as the string compressor,
as explained in Section 8, and with TreeRePair [20]. We are interested in the
tree structure only, hence we did not compare with XML file compressors like
Xmill [17] or XQueC [1].

10.1 Corpora

We use three corpora of XML files for our tests. For each XML document
we consider the unranked tree of its element nodes; we ignore all other nodes
such as texts, attributes, etc. One corpus (Corpus I) consists of XML docu-
ments that have been collected from the web, and which have often been used
in the context of XML compression research, e.g., in [4,5,20]. Each of these
files is listed in Table 2 together with the following characteristics: number
of edges, maximum depth (mD), average number of children of a node (aC),
and maximum number of children of a node (mC). Note that the file dblp.xml
consists of more than 32, 000, 000 edges and hence distorts the average values.
Precise references to the origin of these files can be found in [20]. The second
corpus (Corpus II) consists of all well-formed XML document trees with more
than 10, 000 edges and a depth of at least four from the University of Ams-

36 Mireille Bousquet-Mélou et al.

File rbdag hdag rhdag DS TR

1998statistics 2360 1292 1241 561 501
catalog-01 10303 4463 5990 4372 3965
catalog-02 56341 27365 29160 27242 26746
dblp 7905434 3975686 3986223 1143297 1074676
dictionary-01 75247 47059 46686 32139 22375
dictionary-02 653982 412452 407579 267944 167927
EnWikiNew 70016 35073 35049 9249 9632
EnWikiQuote 47690 23902 23882 6328 6608
EnWikiVersity 87255 43689 43670 7055 7455
EnWikTionary 1452270 726216 726188 81781 84107
EXI-Array 128011 95562 95563 905 1000
EXI-factbook 2928 3631 2143 1808 1392
EXI-Invoice 2068 1069 1067 96 108
EXI-Telecomp 19807 9932 9931 110 140
EXI-weblog 16997 8504 8504 44 58
JSTgene.chr1 14114 7728 7217 3943 4208
JSTsnp.chr1 37810 22203 19313 9809 10327
medline 381295 460705 252507 177638 123817
NCBIgene.chr1 10816 10515 6845 6283 5166
NCBIsnp.chr1 809394 404704 404704 61 83
sprot39.dat 1579305 989257 891591 335756 262964
treebank 1235186 1250741 1115526 1121566 528372

Table 3 The compressed sizes of the documents.

Corpus Edges aD mD aC mC

I 3.1 · 106 6.6 36 5.7 3.9 · 106

II 79465 7.9 65 6.0 2925
III 1531 18 74 1.5 13.2

Table 4 Document characteristics, average values.

terdam XML Web Collection4. We decided on fixing a minimum size because
there is no necessity to compress documents of very small size, and we chose a
minimum depth because our subject is tree compression rather than list com-
pression. Note that out of the over 180,000 documents of the collection, only
1,100 fit our criteria and are part of Corpus II (more than 27, 000 were ill-
formed and more than 140, 000 had less than 10, 000 edges). The documents
in this corpus are somewhat smaller than those in Corpus 1, but otherwise
have similar characteristics (such as maximal depth and average number of
children) as can be seen in Table 4. The third corpus (Corpus III) consists of
term rewriting systems5. These are stored in XML files, but, are rather atyp-
ical XML documents, because their tree structures are trees with small rank,
i.e., there are no long sibling sequences. This can be seen in Table 4, which
shows that the average number of children is only 1.5 for these files.

4 http://data.politicalmashup.nl/xmlweb/
5 http://www.termination-portal.org/wiki/TPDB

XML Compression via Directed Acyclic Graphs 37

Corpus Parse dag hdag DS TR

I 54 67 83 87 251
II 85 105 120 117 310
III 6.9 8.7 9.2 10.0 14.8

Table 5 Cumulative Running times (in seconds).

10.2 Experimental setup

For the dag, bdag, rbdag, and hdag we built our own implementation. It is
written in C++ (g++ version 4.6.3 with O3-switch) and uses Libxml 2.6 for
XML parsing. It should be mentioned that these are only rough prototypes
and that our code is not optimized at all. The running times listed in Table 5
should be understood with this in mind. For the RePair-compressed dag we
use Gonzalo Navarro’s implementation of RePair6. This is called “DS” in our
tables. For TreeRePair, called “TR” in the tables, we use Roy Mennicke’s
implementation7 and run with max rank=1, which produces 1-SLT grammars.
Our test machine features an Intel Core i5 with 2.5Ghz and 4GB of RAM.

10.3 Comparison

Consider first Corpus 1 and the numbers shown in Table 2 and 3. The most
interesting file, concerning the effectiveness of the hybrid dag and of the re-
verse binary encoding, is certainly the medline file. Just like dblp, it contains
bibliographic data. In particular, it consists of MedlineCitation elements; such
elements have ten children, the last of which varies greatly (it is a MeshHead-
ingList node with varying children lists) and thus cannot be shared in the
dag. This is perfect for the reverse hybrid dag, which first eliminates repeated
subtrees, thus shrinking the number of edges to 653,604, and then applies the
last child/previous sibling encoding before building a dag again. This last step
shrinks the number of edges to impressive 252,507. In contrast, the reverse bi-
nary dag has a size of 381,295. Thus, for this document really the combination
of both ways of sharing, subtrees and reversed sibling sequences, is essential.
We note that in the context of the first attempts to apply dag compression
to XML [4] the medline files were particularly pathological cases where dag
compression did not work well. We now have new explanations for this: using
reverse (last child/previous sibling) encoding slashes the size of the dag by
almost one half. And using hybrid dags again brings an improvement of more
than 30%. The treebank document, which is a ranked tree and does not con-
tain long lists, gives hardly any improvement of hybrid dag over dag, but the
reverse hybrid dag is somewhat smaller than the dag (by 5%). For treebank,
TreeRePair is unchallenged and produces a grammar that is less than half the
size of DS.

6 http://http://www.dcc.uchile.cl/∼gnavarro/software/
7 http://code.google.com/p/treerepair/

38 Mireille Bousquet-Mélou et al.

C. Input dag bdag rbdag hdag G(hd) rhdag G(rh) DS TR

I 69045 10624 15135 14602 8546 8616 8120 8185 3624 2618
II 90036 13510 15950 14671 10884 11109 9806 10039 5162 3957
III 2095 354 391 390 319 362 320 364 324 310

Table 6 Accumulated sizes (in thousand edges). C stands for Corpus, G(hd) for the gram-
mar size of the hdag and G(rh) for the grammar size of the reverse hybrid dag.

Next, consider the accumulated numbers for the three corpora in Table 6.
For Corpus I, the reverse hdag is smaller than the dag by around 38% while
the hdag is only around 25% smaller than the dag. As noted in Section 5,
the somewhat surprising outcome that the reverse binary encoding enables
better compression results from the custom that in many XML-documents
optional elements are listed last. This means that there are more common
prefixes than suffixes in child sequences. Hence the reverse schemes perform
better. When we transform hdags into SLT grammars (according to Section 8),
then we get a modest size increase of about 1–2%. For the term rewriting sys-
tems of Corpus III, the hdag improves about 10% over the dag. Represented
as grammars, however, this improvement disappears and in fact we obtain
an accumulated size that is slightly larger than the dag. Note that for this
corpus, also TreeRePair (TR) is not much smaller than the dag, and DS is
even smaller than TR. Compared to the dag, TreeRePair shares tree patterns
(=connected subgraphs). Hence, the trees in Corpus III do not contain many
repeated tree patterns which are not already shared by the dag. When we com-
pare DS with TR, then we see on corpora I and II that TreeRePair grammars
are on average around 34% smaller than DS, while on Corpus III it is only 23%
smaller. On very flat files, such as the EXI documents in Table 2, DS is about
as good as TreeRePair. For combined dag and string compression we also ex-
perimented with another grammar-based string compressor: Sequitur [27], but
found the combined sizes to be larger than with RePair. Concerning running
times (see Table 5) note that the dag-variants stay close to the parsing time,
while TreeRePair needs considerably more time. Hence, dags should be used
when light-weight compression is preferred.

11 Conclusion and future work

We compare the sizes of five different formalisms for compactly representing
unranked trees:

(1) dag
(2) binary dag
(3) hybrid dag
(4) combination of dag and SL grammar-based string compression
(5) SLT grammars (e.g. produced by BPLEX or TreeRePair)

For the comparison of (1)–(3) we prove precise bounds: (i) the size of the
binary dag of a tree is bounded by twice the size of the hybrid dag of the tree

XML Compression via Directed Acyclic Graphs 39

and (ii) the size of the unranked dag of a tree is bounded by the square of
the size of the hybrid dag of the tree. As a corollary we obtain that the size
of the dag is at least of the size of the binary dag, and at most the square of
the size of the binary dag. We also prove that for (1)–(4), checking equality of
the subtrees rooted at two given nodes of these structures, can be carried out
in O(logN) time, where N is the number of nodes of the tree. One advantage
of binary and hybrid dags is that they also support the efficient checking of
equality of (ending) sibling sequences in O(logN) time.

Our experiments over two large XML corpora and one corpus consisting
of term rewriting systems show that dags and binary dags are the quickest
to construct. Out of the dags (1)–(3), the reverse hdag (which uses a last
child/previous sibling encoding) gives the smallest results. On our XML cor-
pora, using the reverse binary encoding instead of the standard first child/next
sibling encoding gives a compression improvement of more than 20%. As a
practical yardstick we observe: For applications where sibling sequence check
is important, or where the uniqueness of the compressed structures is impor-
tant, the hybrid dag is a good choice. If strong compression is paramount,
then structures (4) and (5) are appropriate. The advantage of (4) over (5) is
its support of efficient subtree equality test.

We give generating functions for the exact average sizes of dags and bdags
over unranked trees on n nodes and m labels. We show that asymptotically
the expected edge sizes of dags and bdags coincide, and that the node size of
bdags is twice as large as the node size of dags.

In future work we would like extend our average-case size analysis also
to the hybrid dag and to Repair-compressed trees. Further, we would like to
apply our compression within other recent compression schemes in databases,
such as for instance factorized databases [2].

Acknowledgements The first author acknowledges the hospitality of the Institute of Com-
puter Science, Universität Leipzig, where this work was carried out. The second and fourth
author were supported by the DFG grant LO 748/8. The third author was supported by the
DFG grant INST 268/239 and by the Engineering and Physical Sciences Research Council
project “Enforcement of Constraints on XML streams” (EPSRC EP/G004021/1).

A Appendix: Proofs of the asymptotic results

In this appendix we prove the results from Section 7.2. They rely on methods described
in the book Analytic Combinatorics [12] from Flajolet and Sedgewick; in particular, the
Transfer Theorem in Chapter 6.

A.1 Proof of Proposition 27 (case m = 1)

For notational simplicity, we first show the proof for unlabeled trees (i.e. a singleton alphabet,
m = 1). In Section A.2 we adapt the proof to arbitrary alphabets. By Lemma 21 and
Proposition 22, the generating function for the cumulated node size of compressed binary

40 Mireille Bousquet-Mélou et al.

trees reads

N(z) := NB1 (z) =
X
p≥0

BpCp(z)

with

Bp =
1

p+ 2

“2p+ 2

p+ 1

”
and Cp(z) =

√
1− 4z + 4zp+2 −

√
1− 4z

2z2
. (16)

We want to prove Proposition 27, which, when m = 1, reads as follows.

Proposition 39 The generating function N(z) is analytic in the domain D defined by
|z| < 1

2
and z /∈ [1

4
, 1
2

]. As z tends to 1
4

in D, one has

N(z) =
8κp

(1− 4z) ln((1− 4z)−1)
+O

0B@ 1q
(1− 4z) ln3((1− 4z)−1)

1CA .

where κ =
q

ln 4
π

.

The proof of this proposition works in several steps. We first show that the function N(z)
is analytic in D. Then we split N(z) into three parts. The splitting depends on a threshold
integer n ≡ n(z). We treat each part independently: we estimate precisely one of them,
and simply bound the other two. We then show that these two parts can be neglected for a
suitable choice of n(z).

Step 1: N(z) is analytic in D. We first prove that the series Cp(z) defined by (16) is
analytic in D. This is implied by the following lemma.

Lemma 40 Let ∆p(z) = 1 − 4z + 4zp+2. For p ≥ 1, this polynomial has exactly one
root of modulus less than 1/2. This root is real and larger than 1/4. When p = 0, then
∆p(z) = (1− 2z)2, with a double root at 1/2. In particular, ∆p(z) does not vanish in D.

More generally, the rational function up := 4zp+2/(1 − 4z) does not take any value
from (−∞,−1] for z ∈ D.

Proof To prove the existence of a unique root of modulus less than 1/2, we apply Rouché’s
theorem (see e.g. [12, p. 270]) by comparing ∆p(z) to the auxiliary function 1 − 4z, and
using the integration contour {|z| = 1/2}. Details are very simple, and are left to the reader.

Since ∆p has real coefficients, the unique root of modulus less than 1/2 must be real.
One then concludes the proof by observing that ∆p(1/4) > 0 while ∆p(1/2) < 0.

The proof of the final statement is similar, upon comparing the polynomials c(1− 4z) +
4zp+2 and c(1− 4z), for c ≥ 1. ut

In order to prove that N(z) itself is analytic in the domain D, we rewrite it as follows, still
denoting up = 4zp+2/(1− 4z):

N(z) =

√
1− 4z

2z2

X
p≥0

Bp
“p

1 + up − 1
”

=

√
1− 4z

2z2

X
p≥0

Bp
“up

2
+
p

1 + up − 1−
up

2

”

=
1

√
1− 4z

X
p≥0

Bpz
p +

√
1− 4z

2z2

X
p≥0

Bp
“p

1 + up − 1−
up

2

”

=
1

√
1− 4z

B(z) +

√
1− 4z

2z2

X
p≥0

Bp
“p

1 + up − 1−
up

2

”
, (17)

XML Compression via Directed Acyclic Graphs 41

where

B(z) =
X
p≥0

Bpz
p =

1− 2z −
√

1− 4z

2z2
(18)

is the generating function of the shifted Catalan numbers.

Since
√

1− 4z and B(z) are analytic in D, it suffices to study the convergence of the
sum over p in (17).

Lemma 41 For all u ∈ C \ (−∞,−1], we have

˛̨̨√
1 + u− 1−

u

2

˛̨̨
≤
|u|2

2
.

Proof Write x =
√

1 + u, so that <(x) > 0. Then |u| = |x2 − 1| = |x− 1||x+ 1|, so that the
above inequality reads

|x− 1|2

2
≤
|x− 1|2|x+ 1|2

2
,

or equivalently 1 ≤ |x+ 1|, which is clearly true since <(x) > 0. ut

Recall that all points of D have modulus less than 1/2. Consider a disk included in D. For
z in this disk, the quantity

|up|2 =
16|z|2p+4

|1− 4z|2

is uniformly bounded by crp, for constants c and r < 1/4. By Lemma 40, we can apply
Lemma 41 to up. Hence

X
p≥0

Bp

˛̨̨p
1 + up − 1−

up

2

˛̨̨
≤

1

2

X
p≥0

Bp|up|2

≤
c

2

X
p≥0

Bpr
p <∞.

Hence the series occurring in (17) converges uniformly in the disk, and N(z) is analytic
in D. ut

Step 2: splitting N(z). We fix an integer n and write

N(z) = N(1)(n, z) + N(2)(n, z) + N(3)(n, z), (19)

where

N(1)(n, z) =

√
1− 4z

2z2

nX
p=0

Bp
“p

1 + up − 1
”
,

N(2)(n, z) =
1

√
1− 4z

0@B(z)−
nX
p=0

Bpz
p

1A , (20)

N(3)(n, z) =

√
1− 4z

2z2

X
p>n

Bp
“p

1 + up − 1−
up

2

”
. (21)

One readily checks that (19) indeed holds. Moreover, each N(i)(n, z) is analytic in D for
any i and n.

42 Mireille Bousquet-Mélou et al.

Step 3: an upper bound on N(1).

Lemma 42 For any u ∈ C \ (−∞,−1], we have |
√

1 + u− 1| ≤
p
|u|.

Proof The proof is similar to the proof of Lemma 41. Write x =
√

1 + u, so that <(x) > 0.
Then the inequality we want to prove reads |x− 1| ≤ |x+ 1|, which is clearly true. ut

Lemma 43 Let y > 0, and define

a(n, y) :=
nX
p=0

Bpy
p.

For any c > 1/4, there exists a neighborhood of c such that

a(n, y) = O((4y)nn−3/2),

uniformly in n and y in this neighborhood of c.

Proof Let us form the generating function of the numbers a(n, y). One finds:

X
n≥0

a(n, y)xn =
X
n≥0

nX
p=0

Bpy
pxn =

B(xy)

1− x
=

1− 2xy −
√

1− 4xy

2x2y2(1− x)
.

Thus

a(n, y) =
1− 2y

2y2
− [xn]

√
1− 4xy

2x2y2(1− x)
=

1

2y2
(1− 2y − I(n, y)) ,

where

I(n, y) = [xn+2]

√
1− 4xy

1− x
.

We now estimate I(n, y) using a Cauchy integral:

I(n, y) =
1

2iπ

Z
	

√
1− 4xy

1− x
dx

xn+3
,

where the integral is over a small circle around the origin. Recall that y is taken in a small
neighborhood of c > 1/4. Hence the dominant singularity of the integrand is at x = 1/(4y).
(A second singularity occurs later at x = 1.) Writing x = u/(4y) gives

I(n, y) =
(4y)n+3

2iπ

Z
	

√
1− u

4y − u
du

un+3
,

the integral being again over a small circle around the origin. We now deform the integration
contour as discussed in [12, p. 382]. This gives

I(n, y) =
(4y)n+3

2iπn3/2

Z
H

√
−t

4y − 1− t/n

„
1 +

t

n

«−n−3

dt,

where H is the Hankel contour at distance 1 from the real positive axis described in [12,
p. 382]. Hence the lemma will be proved if we can show that the integral over H is O(1),
uniformly in n and y. As in our favorite reference [12, p. 383], we split it into two parts,
depending on whether <(t) ≤ ln2 n or <(t) ≥ ln2 n. On the first part, 4y − 1− t/n remains
uniformly away from 0, while

Z
H∩{<(t)≤ln2 n}

˛̨̨̨
˛√−t

„
1 +

t

n

«−n−3
˛̨̨̨
˛ dt

XML Compression via Directed Acyclic Graphs 43

can be shown to be O(1), using the techniques of [12, p. 383] or [11]. On the second part,
|4y − 1− t/n| reaches its minimal value 1/n when <(t) = n(4y − 1). Writing t = x + i, we
can bound the modulus of the second part by

2n

Z
x≥ln2 n

√
2x
“

1 +
x

n

”−n−3
dx ≤ 2n exp(− ln2(n))

Z
x≥ln2 n

√
2x
“

1 +
x

n

”−3
dx

≤ 2n3/2 exp(− ln2(n))

Z
u≥0

√
2u(1 + u)−3du

= o(n−α)

for any real α. This completes the proof of the lemma. ut

Combining Lemmas 42 and 43 (with c = 1/2) gives, for z in D close enough to 1/4:

|N(1)(n, z)| ≤
p
|1− 4z|
2|z2|

nX
p=0

Bp

q
|up|

≤
nX
p=0

Bp|z|(p−2)/2

= O
“

4n|z|n/2n−3/2
”
, (22)

uniformly in n and z.

Step 4: an upper bound on N(3). Let us combine Lemma 41 with the expression (21)
of N(3)(n, z). This gives:

N(3)(n, z) ≤
4z2

|1− 4z|3/2
X
p>n

Bp|z|2p

≤
4z2

|1− 4z|3/2
X
p>n

Bn4p−n|z|2p (since Bp+1 ≤ 4Bp)

≤
16|z|2n+4

|1− 4z|3/2
Bn

X
p>n

4p−n−1|z|2(p−n−1)

= O

„
|z|2n

|1− 4z|3/2
Bn

«
(23)

uniformly in n and z, for z in D close enough to 1/4.

Step 5: estimate of N(2). For z fixed, let us determine the generating function of the
numbers N(2)(n, z), given by (20). We find:

X
n≥0

N(2)(n, z)xn =
1

√
1− 4z

B(z)−B(xz)

1− x

where B(z) is defined by (18). Equivalently,

X
n≥0

N(2)(n, z)xn =
1

2x2z2
√

1− 4z

„
(1 + x)

√
1− 4z − 1− x+ 2xz +

4z
√

1− 4xz +
√

1− 4z

«
.

Thus

N(2)(n, z) =
2

z
√

1− 4z
I(n, z)

44 Mireille Bousquet-Mélou et al.

where

I(n, z) = [xn+2]
1

√
1− 4xz +

√
1− 4z

.

Using the same principles as in the proof of Lemma 43, we now estimate I(n, z) using a
Cauchy integral:

I(n, z) =
1

2iπ

Z
	

1
√

1− 4xz +
√

1− 4z

dx

xn+3

where the integral is over a small circle around the origin. The unique singularity of the
integrand is at x = 1/(4z). Writing x = u/(4z) gives

I(n, z) =
(4z)n+2

2iπ

Z
	

1
√

1− u+
√

1− 4z

du

un+3
.

Changing the integration contour into a Hankel one, gives, as in Lemma 43,

I(n, z) =
(4z)n+2

2iπ
√
n

Z
H

1
√
−t+

p
n(1− 4z)

„
1 +

t

n

«−n−3

dt.

Again, we split the integral into two parts, depending on whether <(t) ≤ ln2 n or <(t) ≥
ln2 n. We assume moreover that

n→∞ and n(1− 4z)→ 0. (24)

The first part of the integral is then

(4z)n+2

Γ (1/2)
√
n

“
1 +O(

p
n(1− 4z)) +O(n−1)

”
,

while the second part is found to be smaller than (4z)nn−α, for any real α. Hence

I(n, z) =
(4z)n+2

√
π
√
n

“
1 +O(

p
n(1− 4z)) +O(n−1)

”
,

so that

N(2)(n, z) =
8(4z)n+1

√
π
√

1− 4z
√
n

“
1 +O(

p
n(1− 4z)) +O(n−1)

”
. (25)

Step 6: the threshold n(z). We finally want to correlate n ≡ n(z) and z so that, as z

tends to 1/4 (in the domain D), the function N(z) is dominated by N(2)(n, z). Given the
bounds (22) and (23) on N(1)(n, z) and N(3)(n, z), the estimate Bn ∼ 4nn−3/2 (up to a
multiplicative constant), and the estimate (25) of N(2), we want

4n|z|n/2

n3/2
= o

„
(4z)n

√
1− 4z

√
n

«
and

4n|z|2n

n3/2|1− 4z|3/2
= o

„
(4z)n

√
1− 4z

√
n

«
.

We also want (24) to hold. These four conditions hold for

n = n(z) =

—
ln |1− 4z|

ln |z|

�
.

Indeed, for this choice of n, we have

|z|n = O(1− 4z) and (4z)n = 1 +O
`
|1− 4z| ln |1− 4z|

´
,

XML Compression via Directed Acyclic Graphs 45

so that

N(1)(n, z) = O

„
(1− 4z)−1/2 ln−3/2 1

|1− 4z|

«
,

N(3)(n, z) = O

„
(1− 4z)−1/2 ln−3/2 1

|1− 4z|

«
,

N(2)(n, z) =
8
√

ln 4
√
π
√

1− 4z
q

ln 1
|1−4z|

„
1 +O

„
ln−1 1

|1− 4z|

««
.

Finally, since

ln |1− 4z| = ln(1− 4z)

„
1 +O

„
ln−1 1

|1− 4z|

««
,

and because z is close to 1
4

, we have at last obtained

N(z) =
8
√

ln 4
√
π
√

1− 4z
q

ln 1
1−4z

„
1 +O

„
ln−1 1

1− 4z

««
,

as stated in Proposition 39. ut

A.2 Proof of Proposition 27 (case m ≥ 2)

The proof is a straightforward adaptation of the proof of Theorem 26. We simply describe
here the few necessary changes. We start from the expression of Proposition 22:

Nm(z) := NBm(z) =
1

2z2

X
p≥0

Bpm
p
“p

1− 4mz + 4mzp+2 −
√

1− 4mz
”

(26)

where Bp still denotes the (p+ 1)st-Catalan number.
Let us first prove that the series Nm(z) is analytic in the domain D defined by |z| <

1/(2m) and z 6∈ [1/(4m), 1/(2m)]. The counterpart of Lemma 40 states that 1 − 4mz +
4mzp+2 has exactly one root of modulus less than 1/(2m), and that this root is larger than
1/(4m). This now holds for any p ≥ 0 (provided m ≥ 2). Hence each series CBm,p(z) is thus

analytic in D. We also prove that up := 4mzp+2/(1 − 4mz) avoids the half-line (−∞,−1]
for z ∈ D.

The proof that Nm(z) is also analytic in D transfers verbatim, once we have written

Nm(z) =
m

√
1− 4mz

B(mz) +

√
1− 4mz

2z2

X
p≥0

Bpm
p
“p

1 + up − 1−
up

2

”
.

In Step 2, we split Nm(z) in the three following parts:

N
(1)
m (n, z) =

√
1− 4mz

2z2

nX
p=0

Bpm
p
“p

1 + up − 1
”
,

N
(2)
m (n, z) =

m
√

1− 4mz

0@B(mz)−
nX
p=0

Bpm
pzp

1A ,

N
(3)
m (n, z) =

√
1− 4mz

2z2

X
p>n

Bpm
p
“p

1 + up − 1−
up

2

”
.

Now combining Lemmas 42 and 43 gives an upper bound for N
(1)
m :

N
(1)
m (n, z) = O

“
(4m)n|z|n/2n−3/2

”
,

46 Mireille Bousquet-Mélou et al.

uniformly in n and z taken in some neighborhood of 1/(4m). The upper bound on N
(3)
m is

found to be

N
(3)
m (n, z) = O

„
mn|z|2n

|1− 4mz|3/2
Bn

«
.

Finally, since N
(2)
m (n, z) is simply mN(2)(n,mz) (with N(2) defined by (20)), we derive

from (25) that

N
(2)
m (n, z) =

8(4mz)n+1

√
π
√

1− 4mz
√
n

“
1 +O(

p
n(1− 4mz)) +O(n−1)

”
. (27)

The threshold function is now

n = n(z) =

—
ln |1− 4mz|

ln |z|

�
,

and the rest of the proof follows verbatim, leading to

Nm(z) =
8
p

ln(4m)
√
π
√

1− 4mz
q

ln 1
1−4mz

„
1 +O

„
ln−1 1

1− 4mz

««
,

which concludes the proof of Proposition 27. ut

A.3 Proof of Theorem 28

The series EBm(z) given in Proposition 22 can be written as in (26), upon replacing the
numbers Bp by

B̄p =
3p

2p+ 1
Bp,

with generating function X
p≥0

B̄pz
p =

1− 3z − (1− z)
√

1− 4z

z2
.

One can then adapt the proof of Proposition 27 without any difficulty. The only significant

change is in the estimate (25) (and more generally (27)) of N
(2)
m (n, z), which is multiplied

by a factor 3/2. This leads to the factor 3 in Theorem 28.

A.4 Proof of Theorem 29

The proof is again a variation on the proof of Theorem 26. Let us describe it directly for a
general value of m.

Our first objective is to obtain the following counterpart of Proposition 27: The gener-
ating function NTm(z) is analytic in the domain D defined by |z| < 1

2m
and z /∈ [1

4m
, 1
2m

].

As z tends to 1
4m

in D, one has

NTm(z) =
mκmp

(1− 4mz) ln((1− 4mz)−1)
+O

0B@ 1q
(1− 4mz) ln3((1− 4mz)−1)

1CA , (28)

where κm is defined as in Theorem 26.
The transfer theorem from [12] then gives

NTm,n = [zn]NTm(z) =
κm√
π

4nmn+1

√
n lnn

`
1 +O(ln−1 n)

´
.

XML Compression via Directed Acyclic Graphs 47

Since the number of m-labeled unranked trees of size n is

Tm,n ∼
4nmn+1

√
πn3/2

`
1 +O(n−1)

´
,

this gives for the average number of nodes the expression of Theorem 29.
So let us focus on the proof of (28), which will mimic the proof of Proposition 27. We

start from the expression of Proposition 25:

Nm(z) := NTm(z) =
X
p≥0

Tpm
p+1CTm,p(z)

where

CTm,p(z) =
zp+1 +

√
1− 4mz + 2zp+1 + z2p+2 −

√
1− 4mz

2z

and Tp = T1,p is the p-th Catalan number, with generating function

T(z) =
X
p≥0

Tpz
p =

1−
√

1− 4z

2z
= 1 + zB(z). (29)

Recall that the series B(z) is defined by (18). We follow the same steps as in the proof of
Proposition 27.

Step 1: Nm(z) is analytic in D. With Rouché’s theorem we can prove that CTm,p(z)

is analytic in the domain D. We then define up = zp+1(2 + zp+1)/(1− 4mz) and prove that
up does not meet the half-line (−∞,−1] for z ∈ D. We then write

Nm(z) =
m

2
T(mz)+

mT(mz)

2
√

1− 4z
+
mzT(mz2)

4
√

1− 4mz
+

√
1− 4mz

2z

X
p≥0

Tpm
p+1

“p
1 + up − 1−

up

2

”

to conclude, with the arguments of Sections A.1 and A.2, that Nm(z) is also analytic in D.

Step 2: splitting Nm(z). We fix an integer n and write

Nm(z) = N
(1)
m (n, z) + N

(2)
m (n, z) + N

(3)
m (n, z) + N

(4)
m (n, z),

where

N
(1)
m (n, z) =

√
1− 4mz

2z

nX
p=0

Tpm
p+1

“p
1 + up − 1

”
,

N
(2)
m (n, z) =

m

2
√

1− 4mz

0@T(mz)−
nX
p=0

Tpm
pzp

1A ,

N
(3)
m (n, z) =

√
1− 4mz

2z

X
p>n

Tpm
p+1

“p
1 + up − 1−

up

2

”
,

N
(4)
m (n, z) =

m

2
T(mz) +

zm

4
√

1− 4mz

0@T(mz2)−
nX
p=0

Tpm
pz2p

1A .

One readily checks that (A.4) indeed holds. Moreover, each N
(i)
m (n, z) is analytic in D for

any i and n.

48 Mireille Bousquet-Mélou et al.

Step 3: an upper bound on N(1)
m . Using the same ingredients as before, we find that,

as in the binary case,

N
(1)
m (n, z) = O

“
(4m)n|z|n/2n−3/2

”
uniformly in n and z taken in a neighborhood of 1/(4m).

Step 4: an upper bound on N(3)
m . Again, the behavior remains the same as in the

binary case:

N
(3)
m = O

„
mn|z|2n

|1− 4mz|3/2
Tn

«
,

uniformly in n and z, for z in D close enough to 1/(4m).

Step 5: estimate of N(2)
m . Using (29), we observe that

N
(2)
m (n, z) =

m2z

2
N(2)(n− 1,mz),

with N(2)(z) defined by (20). Hence the estimate (25) gives

N
(2)
m (n, z) =

m(4mz)n+2

√
π
√

1− 4mz
√
n

“
1 +O(

p
n(1− 4mz)) +O(n−1)

”
. (30)

Step 6: an upper bound of N(4)
m . Given that m|z|2 < 1/(4m) ≤ 1/4, we can write˛̨̨

N
(4)
m (n, z)

˛̨̨
≤
m

2
|T(mz)|+

m|z|
4
p
|1− 4mz|

X
p>n

Tpm
p|z|2p

= O

1 +

Tnmnz2np
|1− 4mz|

!

for z in a neighborhood of 1/(4m). The argument is the same as for the bound (23).

Step 7: the threshold n(z). Using the same threshold function as in the binary case, we

see that Nm(n, z) is dominated by N
(2)
m (n, z), and more precisely, that (28) holds.

A.5 Proof of Theorem 30

Comparing the two series of Proposition 25 shows that it suffices to replace the numbers Tp
by

T̄p =
3p

p+ 2
Tp,

with generating function

X
p≥0

T̄pz
p =

1− 3z − (1− z)
√

1− 4z

2z2
,

to go from NTm(z) to ETm(z). One can then adapt the proof of Proposition 29 without any

difficulty. The only significant change is in the estimate (30) of N
(2)
m (n, z), which is multiplied

by a factor 3. This leads to the factor 3 in Theorem 30.

XML Compression via Directed Acyclic Graphs 49

References

1. A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. XQueC: A query-conscious com-
pressed XML database. ACM Trans. Internet Techn., 7(2), 2007.

2. N. Bakibayev, D. Olteanu, and J. Zavodny. Fdb: A query engine for factorised relational
databases. PVLDB, 5(11):1232–1243, 2012.

3. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random
access to grammar-compressed strings. In SODA, pages 373–389, 2011.

4. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In VLDB,
pages 141–152, 2003.

5. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML doc-
ument trees. Inf. Syst., 33(4-5):456–474, 2008.

6. N. G. de Bruijn, D. E. Knuth, and S. O. Rice. The average height of planted plane
trees. In Graph theory and computing, pages 15–22. Academic Press, New York, 1972.

7. N. Dershowitz and S. Zaks. Enumerations of ordered trees. Discrete Mathematics,
31(1):9–28, 1980.

8. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758–771, 1980.

9. A. P. Ershov. On programming of arithmetic operations. Commun. ACM, 1(8):3–9,
1958.

10. P. Flajolet and A. Odlyzko. The average height of binary trees and other simple trees.
J. Comput. System Sci., 25(2):171–213, 1982.

11. P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM J.
Discrete Math., 3(2):216–240, 1990.

12. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

13. P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subex-
pression problem. In ICALP, pages 220–234, 1990.

14. D. E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms.
Addison-Wesley, 1968.

15. C. Koch. Efficient processing of expressive node-selecting queries on XML data in
secondary storage: A tree automata-based approach. In VLDB, pages 249–260, 2003.

16. N. J. Larsson and A. Moffat. Offline dictionary-based compression. In DCC, pages
296–305, 1999.

17. H. Liefke and D. Suciu. XMILL: An efficient compressor for XML data. In SIGMOD
Conference, pages 153–164, 2000.

18. M. Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology, 4:241–299, 2013.

19. M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theor. Comput. Sci., 363(2):196–210, 2006.

20. M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using repair.
Inf. Syst., 38(8):1150–1167, 2013.

21. M. Lohrey, S. Maneth, and E. Noeth. XML compression via dags. In ICDT, pages
69–80, 2013.

22. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata
evaluation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–1669, 2012.

23. S. Maneth and T. Sebastian. Fast and tiny structural self-indexes for XML. CoRR,
abs/1012.5696, 2010.

24. J.-F. Marckert. The rotation correspondence is asymptotically a dilatation. Random
Structures Algorithms, 24(2):118–132, 2004.

25. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design: OBDD
- Foundations and Applications. Springer, 1998.

26. F. Neven. Automata theory for XML researchers. SIGMOD Record, 31(3):39–46, 2002.
27. C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical strcture in sequences:

A linear-time algorithm. J. Artif. Intell. Res. (JAIR), 7:67–82, 1997.
28. W. Plandowski. Testing equivalence of morphisms on context-free languages. In ESA,

pages 460–470, 1994.
29. T. Schwentick. Automata for XML - a survey. J. Comput. Syst. Sci., 73(3):289–315,

2007.
30. D. Suciu. Typechecking for semistructured data. In DBPL, pages 1–20, 2001.

	Introduction
	Trees and dags
	Straight-line tree grammars
	The hybrid dag
	Using the reverse encoding
	Comparison of worst-case sizes of dag, bdag, and hdag
	The average-case sizes of dag and bdag
	Dag and string compression
	Subtree equality check
	Experiments
	Conclusion and future work
	Appendix: Proofs of the asymptotic results

