
Processing Succinct Matrices and Vectors?

Markus Lohrey1 and Manfred Schmidt-Schauß2

1 Universität Siegen, Department für Elektrotechnik und Informatik, Germany
2 Institut für Informatik, Goethe-Universität, D-60054 Frankfurt, Germany

Abstract. We study the complexity of algorithmic problems for matrices that
are represented by multi-terminal decision diagrams (MTDD). These are a vari-
ant of ordered decision diagrams, where the terminal nodes are labeled with ar-
bitrary elements of a semiring (instead of 0 and 1). A simple example shows
that the product of two MTDD-represented matrices cannot be represented by an
MTDD of polynomial size. To overcome this deficiency, we extended MTDDs
to MTDD+ by allowing componentwise symbolic addition of variables (of the
same dimension) in rules. It is shown that accessing an entry, equality checking,
matrix multiplication, and other basic matrix operations can be solved in polyno-
mial time for MTDD+-represented matrices. On the other hand, testing whether
the determinant of a MTDD-represented matrix vanishes is PSPACE-complete,
and the same problem is NP-complete for MTDD+-represented diagonal ma-
trices. Computing a specific entry in a product of MTDD-represented matrices is
#P-complete. Complete proofs can be found in the full version [19] of this paper.

1 Introduction

Algorithms that work on a succinct representation of certain objects can nowadays be
found in many areas of computer science. A paradigmatic example is the use of OBDDs
(ordered binary decision diagrams) in hardware verification [5, 21]. OBDDs are a suc-
cinct representation of Boolean functions. Consider a boolean function f(x1, . . . , xn)
in n input variables. One can represent f by its decision tree, which is a full binary tree
of height n with {0, 1}-labelled leaves. The leaf that is reached from the root via the
path (a1, . . . , an) ∈ {0, 1}n (where ai = 0 means that we descend to the left child
in the i-th step, and ai = 1 means that we descend to the right child in the i-th step)
is labelled with the bit f(a1, . . . , an). This decision tree can be folded into a directed
acyclic graph by eliminating repeated occurrences of isomorphic subtrees. The result is
the OBDD for f with respect to the variable ordering x1, . . . , xn.1 Bryant was the first
who realized that OBDDs are an adequate tool in order to handle the state explosion
problem in hardware verification [5].

OBDDs can be also used for storing large graphs. A graph G with 2n nodes and ad-
jacency matrix MG can be represented by the boolean function fG(x1, y1, . . . , xn, yn),
where fG(a1, b1, . . . , an, bn) is the entry of MG at position (a, b); here a1 · · · an (resp.,

? The first (second) author is supported by the DFG grant LO 748/8-2 (SCHM 986/9-2).
1 Here, we are cheating a bit: In OBDDs a second elimination rule is applied that removes

nodes for which the left and right child are identical. On the other hand, it is known that
asymptotically the compression achieved by this elimination rule is negligible [31].

b1 · · · bn) is the binary representation of the index a (resp. b). Note that we use the so
called interleaved variable ordering here, where the bits of the two coordinates a and
b are bitwise interleaved. This ordering turned out to be convenient in the context of
OBDD-based graph representation, see e.g. [10].

Classical graph problems (like reachability, alternating reachability, existence of a
Hamiltonian cycle) have been studied for OBDD-represented graphs in [9, 30]. It turned
out that these problems are exponentially harder for OBDD-represented graphs than for
explicitly given graphs. In [30] an upgrading theorem for OBDD-represented graphs
was shown. It roughly states that completeness of a problem A for a complexity class
C under quantifier free reductions implies completeness of the OBDD-variant of A for
the exponentially harder version of C under polynomial time reductions.

In the same way as OBDDs represent boolean mappings, functions from {0, 1}n to
any set S can be represented. One simply has to label the leaves of the decision tree
with elements from S. This yields multi-terminal decision diagrams (MTDDs) [11]. Of
particular interest is the case, where S is a semiring, e.g. N or Z. In the same way as
an adjacency matrix (i.e., a boolean matrix) of dimension 2n can be represented by an
OBDD, a matrix of dimension 2n over any semiring can be represented by an MTDD.
As for OBDDs, we assume that the bits of the two coordinates a and b are interleaved
in the order a1, b1, . . . , an, bn. This implies that an MTDD can be viewed as a set of
rules of the form

A→
(
A1,1 A1,2

A2,1 A2,2

)
or B → a with a ∈ S. (1)

where A, A1,1, A1,2, A2,1, and A2,2 are variables that correspond to certain nodes of
the MTDD (namely those nodes that have even distance from the root node). Every
variable produces a matrix of dimension 2h for some h ≥ 0, which we call the height
of the variable. The variables Ai,j in (1) must have the same height h, and A has height
h+1. The variable B has height 0. We assume that the additive monoid of the semiring
S is finitely generated, hence every a ∈ S has a finite representation.

MTDDs yield very compact representations of sparse matrices. It was shown that
an (n × n)-matrix with m nonzero entries can be represented by an MTDD of size
O(m log n) [11, Thm. 3.2], which is better than standard succinct representations for
sparse matrices. Moreover, MTDDs can also yield very compact representations of non-
sparse matrices. For instance, the Walsh matrix of dimension 2n can be represented by
an MTDD of size O(n), see [11]. In fact, the usual definition of the n-th Walsh matrix
is exactly an MTDD. Matrix algorithms for MTDDs are studied in [11] as well, but no
precise complexity analysis is carried out. In fact, the straightforward matrix multiplica-
tion algorithm for multi-terminal decision diagrams from [11] has an exponential worst
case running time, and this is unavoidable: The smallest MTDD that produces the prod-
uct of two MTDD-represented matrices may be of exponential size in the two MTDDs,
see Thm. 2. The first main contribution of this paper is a generalization of MTDDs that
overcomes this deficiency: An MTDD+ consists of rules of the form (1) together with
addition rules of the formA→ B+C, where “+” refers to matrix addition over the un-
derlying semiring. Here, A, B, and C must have the same height, i.e., produce matrices
of the same dimension. We show that an MTDD+ for the product of two MTDD+-
represented matrices can be computed in polynomial time (Thm. 3). In Sec. 4.1 we also

2

present efficient (polynomial time) algorithms for several other important matrix prob-
lems on MTDD+-represented input matrices: computation of a specific matrix entry,
computation of the trace, matrix transposition, tensor and Hadamard product. Sec. 5
deals with equality checking. It turns out that equality of MTDD+-represented matri-
ces can be checked in polynomial time, if the additive monoid is cancellative, in all
other cases equality checking is coNP-complete.

To the knowledge of the authors, complexity results similar to those from [9, 30] for
OBDDs do not exist in the literature on MTDDs. Our second main contribution fills this
gap. We prove that already for MTDDs over Z it is PSPACE-complete to check whether
the determinant of the generated matrix is zero (Thm. 6). This result is shown by lifting
a classical construction of Toda [27] (showing that computing the determinant of an ex-
plicitly given integer matrix is complete for the counting class GapL) to configuration
graphs of polynomial space bounded Turing machines, which are of exponential size.
It turns out that the adjacency matrix of the configuration graph of a polynomial space
bounded Turing machine can be produced by a small MTDD. Thm. 6 sharpens a recent
result from [14] stating that it is PSPACE-complete to check whether the determinant of
a matrix that is represented by a boolean circuit (see Sec. 4.2) vanishes. We also prove
several hardness results for counting classes. For instance, computing a specific entry
of a matrix power An, where A is given by an MTDD over N is #P-complete (resp.
#PSPACE-complete) if n is given unary (resp. binary). Here, #P (resp. #PSPACE) is
the class of functions counting the number of accepting computations of a nondetermin-
istic polynomial time Turing machine [29] (resp., a nondeterministic polynomial space
Turing machine [15]). An example of a natural #PSPACE-complete counting problem
is counting the number of strings not accepted by a given NFA [15].

2 Related work

Sparse matrices and quad-trees. To the knowledge of the authors, most of the litera-
ture on matrix compression deals with sparse matrices, where most of the matrix entries
are zero. There are several succinct representations of sparse matrices. One of which are
quad-trees, used in computer graphics for the representation of large constant areas in
2-dimensional pictures, see for example [24, 8]. Actually, an MTDD can be seen as a
quad-tree that is folded into a dag by merging identical subtrees.

Two-dimensional straight-line programs. MTDDs are also a special case of 2-dimen-
sional straight-line programs (SLPs). A (1-dimensional) SLP is a context-free grammar
in Chomsky normal form that generates exactly one OBDD. An SLP with n rules can
generate a string of length 2n; therefore an SLP can be seen as a succinct representation
of the string it generates. Algorithmic problems that can be solved efficiently (in poly-
nomial time) on SLP-represented strings are for instance equality checking (first shown
by Plandowski [23]) and pattern matching, see [18] for a survey.

In [3] a 2-dimensional extension of SLPs (2SLPs in the following) was defined.
Here, every variable of the grammar generates a (not necessarily square) matrix (or pic-
ture), where every position is labeled with an alphabet symbol. Moreover, there are two
(partial) concatenation operations: horizontal composition (which is defined for two

3

pictures if they have the same height) and vertical composition (which is defined for
two pictures if they have the same width). This formalism does not share all the nice al-
gorithmic properties of (1-dimensional) SLPs [3]: Testing whether two 2SLPs produce
the same picture is only known to be in coRP (co-randomized polynomial time). More-
over, checking whether an explicitly given (resp., 2SLP-represented) picture appears
within a 2SLP-represented picture is NP-complete (resp.,ΣP

2 -complete). Related hard-
ness results in this direction concern the convolution of two SLP-represented strings
of the same length (which can be seen as a picture of height 2). The convolution of
strings u = a1 · · · an and v = b1 · · · bn is the string (a1, b1) · · · (an, bn). By a result
from [4] (which is stated in terms of the related operation of literal shuffle), the size
of a shortest SLP for the convolution of two strings that are given by SLPs G and H
may be exponential in the size of G and H . Moreover, it is PSPACE-complete to check
for two SLP-represented strings u and v and an NFA T operating on strings of pairs of
symbols, whether T accepts the convolution of u and v [17].

MTDDs restrict 2SLPs by forbidding unbalanced derivation trees. The derivation
tree of an MTDD results from unfolding the rules in (1); it is a tree, where every non-
leaf node has exactly four children and every root-leaf path has the same length.

Tensor circuits. In [2, 7], the authors investigated the problems of evaluating tensor
formulas and tensor circuits. Let us restrict to the latter. A tensor circuit is a circuit
where the gates evaluate to matrices over a semiring and the following operations are
used: matrix addition, matrix multiplication, and tensor product. Recall that the tensor
product of two matrices A = (ai,j)1≤i≤m,1≤i≤m and B is the matrix

A⊗B =

 a1,1B · · · a1,mB
...

...
an,1B · · · an,mB

It is a (mk × nl)-matrix if B is a (k × l)-matrix. In [2] it is shown among other results
that computing the output value of a scalar tensor circuit (i.e., a tensor circuit that yields
a (1 × 1)-matrix) over the natural numbers is complete for the counting class #EXP.
An MTDD+ over Z can be seen as a tensor circuit that (i) does not use matrix multi-
plication and (ii) where for every tensor product the left factor is a (2 × 2)-matrix. To
see the correspondence, note that(

A1,1 A1,2

A2,1 A2,2

)
=
(

1 0
0 0

)
⊗A1,1 +

(
0 1
0 0

)
⊗A1,2 +

(
0 0
1 0

)
⊗A2,1 +

(
0 0
0 1

)
⊗A2,2(

a1,1 a1,2

a2,1 a2,2

)
⊗B =

(
a1,1B a1,2B
a2,1B a2,2B

)
Each of the matrices ai,jB can be generated from B and −B using log |ai,j | many
additions (here we use the fact that the underlying semiring is Z).

3 Preliminaries

We consider matrices over a semiring (S,+, ·) with (S,+) a finitely generated commu-
tative monoid with unit 0. The unit of the monoid (S, ·) is 1. We assume that 0 · a =

4

a·0 = 0 for all a ∈ S. Hence, if |S| > 1, then 1 6= 0 (0 = 1 implies a = 1·a = 0·a = 0
for all a ∈ S). With Sn×n we denote the set of all (n× n)-matrices over S.

All time bounds in this paper implicitly refer to the RAM model of computation
with a logarithmic cost measure for arithmetical operations on integers, where arith-
metic operations on n-bit numbers need time O(n). For a number n ∈ Z let us denote
with bin(n) its binary encoding.

We assume that the reader has some basic background in complexity theory, in par-
ticular we assume that the reader is familiar with the classes NP, coNP, and PSPACE. A
function f : {0, 1}∗ → {0, 1}∗ belongs to the class FSPACE(s(n)) (resp. FTIME(s(n)))
if f can be computed on a deterministic Turing machine in space (resp., time) s(n).2 As
usual, only the space on the working tapes is counted. Moreover, the output is written
from left to right on the output tape, i.e., in each step the machine either outputs a new
symbol on the output tape, in which case the output head moves one cell to the right,
or the machine does not output a new symbol in which case the output head does not
move. Let FP =

⋃
k≥1 FTIME(nk) and FPSPACE =

⋃
k≥1 FSPACE(nk). Note that

for a function f ∈ FPSPACE we have |f(w)| ≤ 2|w|
O(1)

for every input.
The counting class #P consists of all functions f : {0, 1}∗ → N for which there

exists a nondeterministic polynomial time Turing machine M with input alphabet Σ
such that for all x ∈ Σ∗, f(x) is the number of accepting computation paths of M for
input x. If we replace nondeterministic polynomial time Turing machines by nonde-
terministic polynomial space Turing machines (resp. nondeterministic logspace Turing
machines), we obtain the class #PSPACE [15] (resp. #L [1]). Note that for a map-
ping f ∈ #PSPACE, the number f(x) may grow doubly exponential in |x|, whereas
for f ∈ #P, the number f(x) is bounded singly exponential in |x|. Ladner [15] has
shown that a mapping f : Σ∗ → N belongs to #PSPACE if and only if the map-
ping x 7→ bin(f(x)) belongs to FPSPACE. One cannot expect a corresponding re-
sult for the class #P: If for every function f ∈ #P the mapping x 7→ bin(f(x))
belongs to FP, then by Toda’s theorem [28] the polynomial time hierarchy collapses
down to P. For f ∈ #L, the mapping x 7→ bin(f(x)) belongs to NC2 and hence to
FP∩FSPACE(log2(n)) [1, Thm. 4.1]. The class GapL (resp., GapP, GapPSPACE) con-
sists of all differences of two functions in #L (resp., #P, #PSPACE). From Ladner’s
result [15] it follows easily that a function f : {0, 1}∗ → Z belongs to GapPSPACE if
and only if the mapping x 7→ bin(f(x)) belongs to FPSPACE, see also [12, Thm. 6].

Logspace reductions between functions can be defined analogously to the language
case: If f, g : {0, 1}∗ → X with X ∈ {N,Z}, then f is logspace reducible to g if there
exists a function h ∈ FSPACE(log n) such that f(x) = g(h(x)) for all x. Toda [27] has
shown that computing the determinant of a given integer matrix is GapL-complete.

4 Succinct matrix representations

In this section, we introduce several succinct matrix representations. We formally de-
fine multi-terminal decision diagrams and their extension by the addition operation.
Moreover, we briefly discuss the representation of matrices by boolean circuits.

2 The assumption that the input and output alphabet of f is binary is made here to make the
definitions more readable; the extension to arbitrary finite alphabets is straightforward.

5

4.1 Multi-terminal decision diagrams

Fix a semiring (S,+, ·) with (S,+) a finitely generated commutative monoid, and let
Γ ⊆ S be a finite generating set for (S,+). Thus, every element of S can be written as a
finite sum

∑
a∈Γ naa with na ∈ N. A multi-terminal decision diagramG with addition

(MTDD+) of height h is a triple (N,P,A0), where N is a finite set of variables which
is partitioned into non-empty sets Ni (0 ≤ i ≤ h), Nh = {A0} (A0 is called the start
variable), and P is a set of rules of the following three forms:

– A →
(
A1,1 A1,2

A2,1 A2,2

)
with A ∈ Ni and A1,1, A1,2, A2,1, A2,2 ∈ Ni−1 for some

1 ≤ i ≤ h
– A→ A1 +A2 with A,A1, A2 ∈ Ni for some 0 ≤ i ≤ h
– A→ a with A ∈ N0 and a ∈ Γ ∪ {0}

Moreover, for every variable A ∈ N there is exactly one rule with left-hand side A,
and the relation {(A,B) ∈ N ×N | B occurs in the right-hand side for A} is acyclic.
If A ∈ Ni then we say that A has height i. The MTDD+ G is called an MTDD if for
every addition rule (A → A1 + A2) ∈ P we have A,A1, A2 ∈ N0. In other words,
only scalars are allowed to be added. Since we assume that (S,+) is generated by Γ ,
this allows to produce arbitrary elements of S as matrix entries. For every A ∈ Ni
we define a square matrix val(A) of dimension 2i in the obvious way by unfolding
the rules. Moreover, let val(G) = val(A0) for the start variable A0 of G. This is a
(2h × 2h)-matrix. The size of a rule A → a with a ∈ Γ ∪ {0} is 1, all other rules
have size log |N |. The size |G| of the MTDD+ G is the sum of the sizes of its rules;
this is up to constant factors the length of the binary coding of G. An MTDD+ G of
size n log n can represent a (2n × 2n)-matrix. Note that only square matrices whose
dimension is a power of 2 can be represented. Matrices not fitting this format can be
filled up appropriately, depending on the purpose.

An MTDD, where all rules have the form A → a ∈ Γ ∪ {0} or A → B + C
generates an element of the semiring S. Such an MTDD is an arithmetic circuit in which
only input gates and addition gates are used, and is called a +-circuit in the following.
In case the underlying semiring is Z, a +-circuit with n variables can produce a number
of size 2n, and the binary encoding of this number can be computed in timeO(n2) from
the +-circuit (since, we need n additions of numbers with at most n bits). In general, for
a +-circuit over the semiring S, we can compute in quadratic time numbers na (a ∈ Γ)
such that

∑
a∈Γ na · a is the semiring element to which the +-circuit evaluates to.

Note that the notion of an MTDD+ makes sense for commutative monoids, since
we only used the addition of the underlying semiring. But soon, we want to multiply
matrices, for which we need a semiring. Moreover, the notion of an MTDD+ makes
sense in any dimension, here we only defined the 2-dimensional case.

Example 1. It is straightforward to produce the unit matrix I2n of dimension 2n by an
MTDD of size O(n log n):

A0 → 1, 00 → 0, Aj →
(
Aj−1 0j−1

0j−1 Aj−1

)
, 0j →

(
0j−1 0j−1

0j−1 0j−1

)
(1 ≤ j ≤ n).

6

(the start variable is An here). In a similar way, one can produce the lower triangular
(2n× 2n)-matrix, where entries on the diagonal and below are 1. To produce the (2n×
2n)-matrix over Z, where all entries in the k-th row are k, we need the following rules:

E0 → 1, Ej →
(
Ej−1 + Ej−1 Ej−1 + Ej−1

Ej−1 + Ej−1 Ej−1 + Ej−1

)
(1 ≤ j ≤ n)

C0 → 1, Cj →
(
Cj−1 Cj−1

Cj−1 + Ej−1 Cj−1 + Ej−1

)
(1 ≤ j ≤ n).

Here, we are bit more liberal with respect to the format of rules, but the above rules can
be easily brought into the form from the general definition of an MTDD+. Note that
Ej generates the (2j×2j)-matrix with all entries equal to 2j , and that Cn generates the
desired matrix.

Note that the matrix from the last example cannot be produced by an MTDD of poly-
nomial size, since it contains an exponential number of different matrix entries (for
the same reason it cannot be produced by an 2SLP [3]). This holds for any non-trivial
semiring.

Theorem 1. For any semiring with at least two elements, MTDD+ are exponentially
more succinct than MTDDs.

Proof. For simplicity we argue with MTDDs in dimension 1 (which generate vectors).
We must have 1 6= 0 in S. Let m, d > 0 be such that m = 2d. For 0 ≤ i ≤ m − 1 let
Ai such that val(Ai) has length m, the i-th entry is 1 (the first entry is the 0-th entry)
and all other entries are 0. Moreover, let Bi such that val(Bi) is the concatenation of
2i copies of val(Ai). Let C0 produce the 0-vector of length m = 2d, and for 0 ≤ i ≤
m − 1 let Ci+1 → (Ci, Ci + Bi). Then val(Cm) is of length 2d+m and consists of
the concatenation of all binary strings of length m. This MTDD+ for this vector is of
size O(m2 logm), whereas an equivalent MTDD must have size at least 2m, since for
every binary string of length m there must exist a nonterminal. ut

The following result shows that the matrix product of two MTDD-represented matrices
may be incompressible with MTDDs.

Theorem 2. For any semiring with at least two elements there exist MTDDs Gn and
Hn of the same height n and size O(n2 log n) such that val(Gn) · val(Hn) can only be
represented by an MTDD of size at least 2n.

On the other hand, the product of two MTDD+-represented matrices can be represented
by a polynomially sized MTDD+:

Theorem 3. For MTDD+ G1 and G2 of the same height one can compute in time
O(|G1| · |G2|) an MTDD+ G of size O(|G1| · |G2|) with val(G) = val(G1) · val(G2).

For the proof, we compute from G1 and G2 a new MTDD+ G that contains for
all variables A of G1 and B of G2 of the same height a variable (A,B) such that
valG(A,B) = valG1(A) · valG2(B).

The following proposition presents several further matrix operations that can be
easily implemented in polynomial time for an MTDD+-represented input matrix.

7

Proposition 1. Let G,H be a MTDD+ with |G| = n, |H| = m, and 1 ≤ i, j ≤
2height(G)

(1) An MTDD+ for the transposition of val(G) can be computed in time O(n).
(2) +-circuits for the sum of all entries of val(G) and the trace of val(G) can be com-

puted in time O(n).
(3) A +-circuit for the matrix entry val(G)i,j can be computed in time O(n).
(4) MTDD+ of size O(n ·m) for the tensor product val(G)⊗ val(H) (which includes

the scalar product) and the element-wise (Hadamard) product val(G) ◦ val(H)
(assuming height(G) = height(H)) can be computed in time O(n ·m).

4.2 Boolean circuits

Another well-studied succinct representation are boolean circuits [13]. A boolean cir-
cuit with n inputs represents a binary string of length 2n, namely the string of output
values for the 2n many input assignments (concatenated in lexicographic order). In a
similar way, we can use circuits to encode large matrices. We propose two alternatives:

A boolean circuit C(x, y, z) with |x| = m and |y| = |z| = n encodes a (2n × 2n)-
matrix MC,2 with integer entries bounded by 22m

that is defined as follows: For all
a ∈ {0, 1}m and b, c ∈ {0, 1}n, the a-th bit (in lexicographic order) of the matrix entry
at position (b, c) in MC is 1 if and only if C(a, b, c) = 1.

Note that in contrast to MTDD+, the size of an entry in MC,2 can be doubly
exponential in the size of the representation C (this is the reason for the index 2 in
MC,2). The following alternative is closer to MTDD+: A boolean circuit C(x, y) with
|x| = |y| = n andm output gates encodes a (2n×2n)-matrixMC,1 with integer entries
bounded by 2m that is defined as follows: For all a, b ∈ {0, 1}n, C(a, b) is the binary
encoding of the entry at position (a, b) in MC .

Circuit representations for matrices are at least as succinct as MTDD+. More pre-
cisely, from a given MTDD+ G one can compute in logspace a Boolean circuit C such
that MC,1 = val(G). This is a direct corollary of Proposition 1(3) (stating that a given
entry of an MTDD+-represented matrix can be computed in polynomial time) and the
fact that polynomial time computations can be simulated by boolean circuits. Recently,
it was shown that checking whether for a given circuit C the determinant of the ma-
trix MC,1 vanishes is PSPACE-complete [14]. An algebraic version of this result for
the algebraic complexity class VPSPACE is shown in [20]. Thm. 6 from Sec. 6 will
strengthen the result from [14] to MTDD-represented matrices.

5 Testing equality

In this section, we consider the problem of testing equality of MTDD+-represented
matrices. For this, we do not need the full semiring structure, but we only need the
finitely generated additive monoid (S,+). We will show that equality can be checked
in polynomial time if (S,+) is cancellative and coNP-complete otherwise.

First we consider the case of a finitely generated abelian group. The proof of the
following lemma involves only basic linear algebra.

8

Lemma 1. Let ai,1x1 + · · · + ai,nxn = 0 for 1 ≤ i ≤ m ≤ n + 1 be equations over
a torsion-free abelian group A, where ai,1, . . . , ai,n ∈ Z, and the variables x1, . . . , xn
range over A. One can determine in time polynomial in n and max{log |ai,j | | 1 ≤ i ≤
m, 1 ≤ j ≤ n} an equivalent set of at most n linear equations.

Recall that the exponent of an abelian groupA is the smallest integer k (if it exists) such
that kg = 0 for all g ∈ A. The following result is shown in [25]:

Lemma 2. Let k ≥ 2 and let A be an abelian group of exponent k. Let ai,1x1 + · · ·+
ai,nxn = 0 for 1 ≤ i ≤ m ≤ n + 1 be equations, where ai,1, . . . , ai,n ∈ Z, and the
variables x1, . . . , xn range over A. Then one can determine in time polynomial in n,
log(k), and max{log |ai,j | | 1 ≤ i ≤ m, 1 ≤ j ≤ n} an equivalent set of at most n
linear equations.

Proof. We can consider the coefficients ai,j as elements from Zk. By [25] we can com-
pute the Howell normal form of the matrix (ai,j)1≤i≤n+1,1≤j≤n ∈ Z(n+1)×n

k in poly-
nomial time. The Howell normal form is an (n× n)-matrix with the same row span (a
subset of the module Znk) as the original matrix, and hence defines an equivalent set of
linear equations. ut

Theorem 4. Let G be an MTDD+ over a finitely generated abelian group S. Given
two different variables A1, A2 of the same height, it is possible to check val(A1) =
val(A2) in time polynomial in |G|.

Proof. Since every finitely generated group is a finite direct product of copies of Z and
Zk (k ≥ 2), it suffices to prove the theorem only for these groups.

Consider the case S = Z. The algorithm stores a system of m equations (m will
be bounded later) of the form ai,1B1 + · · · + ai,kBk = 0, where all B1, . . . , Bk are
pairwise different variables of the same height h. We treat the variables B1, . . . , Bk as
variables that range over the torsion-free abelian group Z2h×2h

. We start with the single
equation A1−A2 = 0. We use the rules of G to transform the system of equations into
another system of equations whose variables have strictly smaller height. Assume the
current height is h > 1. We iterate the following steps until only variables of height
h− 1 occur in the equations:
Step 1. Standardize equations: Transform all equations into the form a1B1 + · · · +
amBm = 0, where the Bi are different variables and the ai are integers.
Step 2. Reduce the number of equations, using Lemma 1 applied to the torsion-free
abelian group Z2h×2h

.
Step 3. If a variable A of height h occurs in the equations, and the rule for A has the
form A→ A1 +A2, then replace every occurrence of A in the equations by A1 +A2.
Step 4. If none of steps 1–3 applies to the equations, then only rules of the form

A→
(
A1,1 A1,2

A2,1 A2,2

)
(2)

are applicable to a variable A (of height h) occurring in the equations. Applying all
possible rules of this form for the current height results in a set of equations where all

9

variables are (2 × 2)-matrices over variables of height h − 1 (like the right-hand side
of (2)). Hence, every equation can be decomposed into 4 equations, where all variables
are variables of height h− 1.

If the height of all variables is finally 0, then only rules of the form A → a are
applicable. In this case, replace all variables by the corresponding integers, and check
whether all resulting equations are valid or not. If all equations hold, then the input
equation holds, i.e., val(A1) = val(A2). Otherwise, if at least one equation is not valid,
then val(A1) 6= val(A2).

The number of variables in the equations is bounded by the number of variables of
G. An upper bound on the absolute value of the coefficients in the equations is 2|G|,
since only iterated addition can be performed to increase the coefficients. Lemma 1
shows that the number of equations after step 2 above is at most |G|, (the bound for the
number of different variables).

For the case S = Zk the same procedure works, we only have to use Lemma 2
instead of Lemma 1. ut

Corollary 1. Let M be a finitely generated cancellative commutative monoid. Given
an MTDD+ G over M and two variables A1 and A2 of G, one can check val(A1) =
val(A2) in time polynomial in |G|.

Proof. A cancellative commutative monoid M embeds into its Grothendieck group A,
which is the quotient ofM×M by the congruence defined by (a, b) ≡ (c, d) if and only
if a+ d = c+ b in M . This is an abelian group, which is moreover finitely generated if
M is finitely generated. Hence, the result follows from Thm. 1. ut

Let us now consider non-cancellative commutative monoids:

Theorem 5. Let M be a non-cancellative finitely generated commutative monoid. It is
coNP-complete to check val(A1) = val(A2) for a given MTDD+ G over M and two
variables A1 and A2 of G.

Proof. We start with the upper bound. Let {a1, . . . , ak} be a finite generating set of M .
Let G be an MTDD+ over M and let A1 and A2 two variables of G. Assume that A1

and A2 have the same height h. It suffices to check in polynomial time for two given
indices 1 ≤ i, j ≤ 2h whether val(A1)i,j 6= val(A2)i,j . From 1 ≤ i, j ≤ 2h we can
compute +-circuits for the matrix entries val(A1)i,j and val(A2)i,j . From these circuits
we can compute numbers n1, . . . , nk,m1, . . . ,mk ∈ N in binary representation such
that val(A1)i,j = n1a1+· · ·+nkak and val(A2)i,j = m1a1+· · ·+mkak. Now we can
use the following result from [26]: There is a semilinear subset S ⊆ N2k (depending
only on our fixed monoid M) such that for all x1, . . . , xk, y1, . . . , yk ∈ N we have:
x1a1 + · · · + xkak = y1a1 + · · · + ykak if and only if (x1, . . . , xk, y1, . . . , yk) ∈ S.
Hence, we have to check, whether v =: (n1, . . . , nk,m1, . . . ,mk) ∈ S. The semilinear
set S is a finite union of linear sets. Hence, we can assume that S is linear itself. Let

S = {v0 + λ1v1 + · · ·+ λlvl | λ1, . . . , λl ∈ N},

where v0, . . . , vl ∈ N2k. Hence, we have to check, whether there exist λ1, . . . , λl ∈ N
such that v = v0 + λ1v1 + · · ·λlvl. This is an instance of integer programming in the
fixed dimension 2k, which can be solved in polynomial time [16].

10

For the lower bound we take elements x, y, z ∈M such that x 6= y but x+z = y+z.
These elements exist since M is not cancellative. We use an encoding of 3SAT from
[3]. Take a 3CNF formula C =

∧m
i=1 Ci over n propositional variables x1, . . . , xn,

and let Ci = (αj1 ∨ αj2 ∨ αj3), where 1 ≤ j1 < j2 < j3 ≤ n and every αjk is
either xjk or ¬xjk . For every 1 ≤ i ≤ m we define an MTDD Gi as follows: The
variables are A0, . . . , An, and B0, . . . , Bn−1, where Bi produces the vector of length
2i with all entries equal to 0 (which corresponds to the truth value true, whereas z ∈M
corresponds to the truth value false). For the variablesA0, . . . , An we add the following
rules: For every 1 ≤ j ≤ n with j 6∈ {j1, j2, j3} we take the rule Aj → (Aj−1, Aj−1).
For every j ∈ {j1, j2, j3} such that αj = xj (resp. αj = ¬xj) we take the rule

Aj → (Aj−1, Bj−1) (resp. Aj → (Bj−1, Aj−1)).

Finally add the rule A0 → z and let An be the start variable of Gi. Moreover, let
G (resp. H) be the 1-dimensional MTDD that produces the vector consisting of 2n

many x-entries (resp. y-entries). Then, val(G) + val(G1) + · · ·+ val(Gm) = val(H) +
val(G1) + · · ·+ val(Gm) if and only if C is unsatisfiable. ut

It is worth noting that in the above proof for coNP-hardness, we use addition only at
the top level in a non-nested way.

6 Computing determinants and matrix powers

In this section we present several completeness results for MTDDs over the rings Z
and Zn (n ≥ 2). It turns out that over these rings, computing determinants, iterated
matrix products, or matrix powers are infeasible for MTDD-represented input matrices,
assuming standard assumptions from complexity theory. All completeness results in this
section are formulated for MTDDs, but they remain valid if we add addition. In fact, all
upper complexity bounds in this section even hold for matrices that are represented by
circuits as explained in Sec. 4.2.

The value det(val(G)) for an MTDD G may be of doubly exponential size (and
hence needs exponentially many bits): The diagonal (2n×2n)-matrix with 2’s on the di-
agonal has determinant 22n

. We first show that checking whether the determinant of an
MTDD-represented matrix over any of the rings Z or Zn (n ≥ 2) vanishes is PSPACE-
complete, and that computing the determinant over Z is GapPSPACE-complete:

Theorem 6. The following holds for every ring S ∈ {Z} ∪ {Zn | n ≥ 2}:

(1) The set {G | G is an MTDD over S,det(val(G)) = 0} is PSPACE-complete.
(2) The functionG 7→ det(val(G)) withG an MTDD over Z is GapPSPACE-complete.

To prove this result we use a reduction of Toda showing that computing the determinant
of an explicitly given integer matrix is GapL-complete [27]. We apply this reduction
to configuration graphs of polynomial space bounded Turing machines, which are of
exponential size. It turns out that the adjacency matrix of the configuration graph of a
polynomial space bounded machine can be produced by a small MTDD (with terminal
entries 0 and 1). This was also shown in [9, proof of Thm. 7] in the context of OBDDs.

11

Note that the determinant of a diagonal matrix is zero if and only if there is a zero-
entry on the diagonal. This can be easily checked in polynomial time for a diagonal
matrix produced by an MTDD. For MTDD+ (actually, for a sum of several MTDD-
represented matrices) we can show NP-completeness of this problem:

Theorem 7. It is NP-complete to check det(val(G1) + · · · + val(Gk)) = 0 for given
MTDDs G1, . . . , Gk that produce diagonal matrices of the same dimension.

Our NP-hardness proof uses again the 3SAT encoding from [3] that we applied in the
proof of Thm. 5.

Let us now discuss the complexity of iterated multiplication and powering. Comput-
ing a specific entry, say at position (1, 1), of the product of n explicitly given matrices
over Z (resp., N) is known to be complete for GapL (resp., #L) [27]. Corresponding
results hold for the computation of the (1, 1)-entry of a matrix power An, where n is
given in unary notation. As usual, these problems become exponentially harder for ma-
trices that are encoded by boolean circuits (see Sec. 4.2). Let us briefly discuss two
scenarios (recall the matrices MC,1 and MC,2 defined from a circuit in Sec. 4.2).

Definition 1. For a tuple C = (C1, . . . , Cn) of boolean circuits we can define the
matrix product MC =

∏n
i=1MCi,1.

Lemma 3. The function C 7→ (MC)1,1, where every matrixMCi,1 is over N (resp., Z),
belongs to #P (resp., GapP).

Definition 2. A boolean circuitC(w, x, y, z) with k = |w|,m = |x|, and n = |y| = |z|
encodes a sequence of 2k many (2n × 2n)-matrices: For every bit vector a ∈ {0, 1}k,
define the circuit Ca = C(a, x, y, z) and the matrix Ma = MCa,2. Finally, let MC =∏
a∈{0,1}k Ma be the product of all these matrices.

Lemma 4. The function C(w, x, y, z) 7→MC belongs to FPSPACE.

Lemmas 3 and 4 yield the upper complexity bounds in the following theorem. For the
lower bounds we use again succinct versions of Toda’s techniques from [27], similar to
the proof of Thm. 6.

Theorem 8. The following holds:

(1) The function (G,n) 7→ (val(G)n)1,1 with G an MTDD over N (resp. Z) and n a
unary encoded number is complete for #P (resp., GapP).

(2) The function (G,n) 7→ (val(G)n)1,1 with G an MTDD over N (resp. Z) and n a
binary encoded number is #PSPACE-complete (resp., GapPSPACE-complete).

By Thm. 8, there is no polynomial time algorithm that computes for a given MTDD G
and a unary number n a boolean circuit (or even an MTDD+) for the power val(G)n,
unless #P = FP.

By [27] and Thm. 8, the complexity of computing a specific entry of a matrix power
An covers three different counting classes, depending on the representation of the ma-
trix A and the exponent n (let us assume that A is a matrix over N):

12

– #L-complete, if A is given explicitly and n is given unary.
– #P-complete, if A is given by an MTDD and n is given unary.
– #PSPACE-complete, if A is given by an MTDD and n is given binary.

Let us also mention that in [6, 12, 22] the complexity of evaluating iterated matrix prod-
ucts and matrix powers in a fixed dimension is studied. It turns out that multiplying
a sequence of (d × d)-matrices over Z in the fixed dimension d ≥ 3 is complete for
the class GapNC1 (the counting version of the circuit complexity class NC1) [6]. It is
open whether the same problem for matrices over N is complete for #NC1. Moreover,
the case d = 2 is open too. Matrix powers for matrices in a fixed dimension can be
computed in TC0 (if the exponent is represented in unary notation) using the Cayley-
Hamilton theorem [22]. Finally, multiplying a sequence of (d×d)-matrices that is given
succinctly by a boolean circuit captures the class FPSPACE for any d ≥ 3 [12].

For the problem, whether a power of an MTDD-encoded matrix is zero (a variant
of the classical mortality problem) we can finally show the following:

Theorem 9. It is coNP-complete (resp.,PSPACE-complete) to check whether val(G)m

is the zero matrix for a given MTDD G and a unary (resp., binary) encoded number m.

7 Conclusion and future work

We studied algorithmic problems on matrices that are given by multi-terminal decision
diagrams enriched by the operation of matrix addition. Several important matrix prob-
lems can be solved in polynomial time for this representation, e.g., equality checking,
computing matrix entries, matrix multiplication, computing the trace, etc. On the other
hand, computing determinants, matrix powers, and iterated matrix products are compu-
tationally hard. For further research, it should be investigated whether the polynomial
time problems, like equality test, belong to NC.

References

1. C. Àlvarez and B. Jenner. A very hard log-space counting class. Theor. Comput. Sci., 107:3–
30, 1993.

2. M. Beaudry and M. Holzer. The complexity of tensor circuit evaluation. Computational
Complexity, 16(1):60–111, 2007.

3. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity
of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65:332–350, 2002.

4. A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In Proc. IFIP
TCS 2008, volume 273 of IFIP, 87–100. Springer, 2008.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

6. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computa-
tion. Journal of Computer and System Sciences, 57(2):200–212, 1998.

7. C. Damm, M. Holzer, and P. McKenzie. The complexity of tensor calculus. Computational
Complexity, 11(1-2):54–89, 2002.

13

8. D. Eppstein, M. T. Goodrich, and J. Z. Sun. Skip quadtrees: Dynamic data structures for
multidimensional point sets. Int. J. Comput. Geometry Appl., 18:131–160, 2008.

9. J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. The complexity of problems
on graphs represented as obdds. Chicago J. Theor. Comput. Sci., 1999.

10. H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods for ordered
binary decision diagrams. In Proc. ICCAD 1993, 38–41. IEEE Computer Society, 1993.

11. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System Design,
10(2/3):149–169, 1997.

12. M. Galota and H. Vollmer. Functions computable in polynomial space. Inf. Comput.,
198(1):56–70, 2005.

13. H. Galperin and A. Wigderson. Succinct representations of graphs. Inform. and Control,
56:183–198, 1983.

14. B. Grenet, P. Koiran, and N. Portier. On the complexity of the multivariate resultant. J.
Complexity, 29(2): 142–157, 2013.

15. R. E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18:1087–1097, 1989.
16. H. Lenstra. Integer programming with a fixed number of variables. Mathematics of Opera-

tions Research, 8:538–548, 1983.
17. M. Lohrey. Leaf languages and string compression. Inf. Comput., 209:951–965, 2011.
18. M. Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol.,

4:241-299, 2012.
19. M. Lohrey and M. Schmidt-Schauß. Processing Succinct Matrices and Vectors. arXiv, 2014.

http://arxiv.org/abs/1402.3452
20. G. Malod. Succinct algebraic branching programs characterizing non-uniform complexity

classes. In Proc. FCT 2011, LNCS 6914, 205–216. Springer, 2011.
21. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design: OBDD - Foun-

dations and Applications. Springer, 1998.
22. C. Mereghetti and B. Palano. Threshold circuits for iterated matrix product and powering.

ITA, 34(1):39–46, 2000.
23. W. Plandowski. Testing equivalence of morphisms in context-free languages. In Proc. ESA

94, LNCS 855, 460–470. Springer, 1994.
24. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
25. A. Storjohann and T. Mulders. Fast algorithms for for linear algebra modulo N. In Proc. ESA

98, LNCS 1461, 139–150. Springer, 1998.
26. M. A. Taĭclin. Algorithmic problems for commutative semigroups. Dokl. Akda. Nauk SSSR,

9(1):201–204, 1968.
27. S. Toda. Counting problems computationally equivalent to computing the determinant. Tech-

nical Report CSIM 91-07, Tokyo University of Electro-Communications, 1991.
28. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865–877,

1991.
29. L. G. Valiant. Completeness classes in algebra. In Proc. STOC 1979, 249–261. ACM, 1979.
30. H. Veith. How to encode a logical structure by an OBDD. In Proc. 13th Annual IEEE

Conference on Computational Complexity, 122–131. IEEE Computer Society, 1998.
31. I. Wegener. The size of reduced OBDD’s and optimal read-once branching programs for

almost all boolean functions. IEEE Trans. Computers, 43(11):1262–1269, 1994.

14

