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Abstract We study the complexity of algorithmic problems for matrices that
are represented by multi-terminal decision diagrams (MTDD). These are a
variant of ordered decision diagrams, where the terminal nodes are labeled
with arbitrary elements of a semiring (instead of 0 and 1). A simple example
shows that the product of two MTDD-represented matrices cannot be rep-
resented by an MTDD of polynomial size. To overcome this deficiency, we
extended MTDDs to +MTDDs by allowing componentwise symbolic addition
of variables (of the same dimension) in rules. It is shown that accessing an
entry, equality checking, matrix multiplication, and other basic matrix oper-
ations can be solved in polynomial time for +MTDD-represented matrices.
On the other hand, testing whether the determinant of a MTDD-represented
matrix vanishes is PSPACE-complete, and the same problem is NP-complete
for +MTDD-represented diagonal matrices. Computing a specific entry in a
product of MTDD-represented matrices is #P-complete.

1 Introduction

Algorithms that work on succinct representations of certain objects can nowa-
days be found in many areas of computer science. A paradigmatic example is
the use of OBDDs (ordered binary decision diagrams) in hardware verification
[7,30]. OBDDs are a succinct representation of Boolean functions. Consider a
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boolean function f(x1, . . . , xn) in n input variables. One can represent f by its
decision tree, which is a full binary tree of height n with {0, 1}-labelled leaves.
The leaf that is reached from the root via the path (a1, . . . , an) ∈ {0, 1}n
(where ai = 0 means that we descend to the left child in the i-th step, and
ai = 1 means that we descend to the right child in the i-th step) is labelled
with the bit f(a1, . . . , an). This decision tree can be folded into a directed
acyclic graph by eliminating repeated occurrences of isomorphic subtrees. The
result is the OBDD for f with respect to the variable ordering x1, . . . , xn.1

Bryant was the first who realized that OBDDs are an adequate tool in order
to handle the state explosion problem in hardware verification [7].

OBDDs can be also used for storing large graphs. A graph G with 2n

nodes and adjacency matrix MG can be represented by the boolean function
fG(x1, y1, . . . , xn, yn), where fG(a1, b1, . . . , an, bn) is the entry of MG at posi-
tion (a, b); here a1 · · · an (b1 · · · bn, respectively) is the binary representation
of the index a (b, respectively). Note that we use the so called interleaved
variable ordering here, where the bits of the two coordinates a and b are bit-
wise interleaved. This ordering turned out to be convenient in the context of
OBDD-based graph representation, see e.g. [13].

Classical graph problems (like reachability, alternating reachability, exis-
tence of a Hamiltonian cycle) have been studied for OBDD-represented graphs
in [12,40]. It turned out that these problems are exponentially harder for
OBDD-represented graphs than for explicitly given graphs. In [40] an upgrad-
ing theorem for OBDD-represented graphs was shown. It roughly states that
completeness of a problem A for a complexity class C under quantifier free re-
ductions implies completeness of the OBDD-variant of A for the exponentially
harder version of C under polynomial time reductions.

In the same way as OBDDs represent boolean mappings, functions from
{0, 1}n to any set S can be represented. One simply has to label the leaves of
the decision tree with elements from S. This yields multi-terminal decision di-
agrams (MTDDs) [14]. Of particular interest is the case, where S is a semiring,
e.g. N or Z. In the same way as an adjacency matrix (i.e., a boolean matrix)
of dimension 2n can be represented by an OBDD, a matrix of dimension 2n

over any semiring can be represented by an MTDD. As for OBDDs, we as-
sume that the bits of the two coordinates a and b are interleaved in the order
a1, b1, . . . , an, bn. This implies that an MTDD can be viewed as a set of rules
of the form

A→
(
A1,1 A1,2

A2,1 A2,2

)
or B → a with a ∈ S, (1)

where A, A1,1, A1,2, A2,1, and A2,2 are variables that correspond to certain
nodes of the MTDD (namely those nodes that have even distance from the
root node). Every variable produces a matrix of dimension 2h for some h ≥ 0,
and this value h is called the height of the variable. The variables Ai,j in (1)

1 Here, we are cheating a bit: In OBDDs a second elimination rule is applied that removes
nodes for which the left and right child are identical. On the other hand, it is known that
asymptotically the compression achieved by this elimination rule is negligible [41].
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must have the same height h, and A has height h + 1. The variable B has
height 0. We assume that the additive monoid of the semiring S is finitely
generated. Hence every a ∈ S has a finite representation as a word over the
generators.

MTDDs yield very compact representations of sparse matrices. It was
shown that an (n × n)-matrix with m nonzero entries can be represented
by an MTDD of size O(m log n) [14, Theorem 3.2], which is better than stan-
dard succinct representations for sparse matrices. Moreover, MTDDs can also
yield very compact representations of non-sparse matrices. For instance, the
Hadamard matrix of dimension 2n can be represented by an MTDD of size
O(n), see [14] and Example 3. In fact, the usual recursive definition of the n-th
Hadamard matrix is exactly an MTDD.

Matrix algorithms for MTDDs are studied in [14] as well, but no precise
complexity analysis is carried out. In fact, the straightforward matrix multipli-
cation algorithm for multi-terminal decision diagrams from [14] has an expo-
nential worst case running time, and this is unavoidable: The smallest MTDD
that produces the product of two MTDD-represented matrices may be of ex-
ponential size in the two MTDDs, see Theorem 6. The first main contribution
of this paper is a generalization of MTDDs that overcomes this deficiency:
A +MTDD consists of rules of the form (1) together with addition rules of
the form A → B + C, where “+” refers to matrix addition over the under-
lying semiring. There, A, B, and C must have the same height, i.e., produce
matrices of the same dimension. We show that a +MTDD for the product
of two +MTDD-represented matrices can be computed in polynomial time
(Theorem 7). In Section 4.1 we also present efficient (polynomial time) algo-
rithms for several other important matrix problems on +MTDD-represented
input matrices: computation of a specific matrix entry, computation of the
trace, matrix transposition, tensor and Hadamard product. Section 5 deals
with equality checking. It turns out that equality of +MTDD-represented ma-
trices can be checked in polynomial time, if the additive monoid is cancellative,
in all other cases equality checking is coNP-complete.

To the knowledge of the authors, complexity results similar to those from
[12,40] for OBDDs do not exist in the literature on MTDDs. Our second main
contribution fills this gap. We prove that already for MTDDs over Z it is
PSPACE-complete to check whether the determinant of the generated matrix
is zero (Theorem 18). This result is shown by lifting a classical construction
of Toda [36] (showing that computing the determinant of an explicitly given
integer matrix is complete for the counting class GapL) to configuration graphs
of polynomial space bounded Turing machines, which are of exponential size.
It turns out that the adjacency matrix of the configuration graph of a poly-
nomial space bounded Turing machine can be produced by a small MTDD.
Theorem 18 sharpens a recent result from [18] stating that it is PSPACE-
complete to check whether the determinant of a matrix that is represented by
a boolean circuit (see Section 4.2) vanishes. We also prove several hardness re-
sults for counting classes. For instance, computing a specific entry of a matrix
power An, where A is given by an MTDD over N is #P-complete (#PSPACE-
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complete, respectively) if n is given unary (binary, respectively). Here, #P
(#PSPACE, respectively) is the class of functions counting the number of ac-
cepting computations of a nondeterministic polynomial time Turing machine
[39] (a nondeterministic polynomial space Turing machine [22], respectively).

2 Related work

Sparse matrices and quad-trees. To the knowledge of the authors, most of
the literature on matrix compression deals with sparse matrices, where most of
the matrix entries are zero. There are several succinct representations of sparse
matrices. One of them are quad-trees, which are used in computer graphics for
the representation of large constant areas in 2-dimensional pictures, see for
example [33,11]. Actually, an MTDD can be seen as a quad-tree that is folded
into a dag by merging identical subtrees.

Two-dimensional straight-line programs. MTDDs are also a special case
of 2-dimensional straight-line programs (SLPs). A (1-dimensional) SLP is a
context-free grammar in Chomsky normal form that generates exactly one
string. An SLP with n rules can generate a string of length 2n. Therefore
an SLP can be seen as a succinct representation of the string it generates.
Algorithmic problems that can be solved efficiently (in polynomial time) on
SLP-represented strings are for instance equality checking (first shown by
Plandowski [32]) and pattern matching, see [26] for a survey.

In [4] a 2-dimensional extension of SLPs (2SLPs in the following) was de-
fined. Here, every variable of the grammar generates a (not necessarily square)
matrix (or picture), where every position is labeled with an alphabet symbol.
Moreover, there are two (partial) concatenation operations: horizontal com-
position (which is defined for two pictures if they have the same height) and
vertical composition (which is defined for two pictures if they have the same
width). An essentially equivalent formalism was introduced in [19] under the
term context-free rectangular image grammar. Unfortunately, 2SLPs do not
share all the nice algorithmic properties of (1-dimensional) SLPs: Berman et
al. [4] proved that testing whether two 2SLPs produce the same picture be-
longs to coRP (co-randomized polynomial time), and recently the upper bound
was improved to coRNC2 [21], but no deterministic polynomial time algorithm
is known for this problem. Moreover, checking whether an explicitly given
(2SLP-represented, respectively) picture appears within a 2SLP-represented
picture is NP-complete (ΣP

2 -complete, respectively) [4]. Related hardness re-
sults in this direction concern the convolution of two SLP-represented strings
of the same length (which can be seen as a picture of height 2). The convolu-
tion of strings u = a1 · · · an and v = b1 · · · bn is the string (a1, b1) · · · (an, bn).
By a result from [5] (which is stated in terms of the related operation of literal
shuffle), the size of a shortest SLP for the convolution of two strings that are
given by SLPs G and H can be exponential in the size of G and H. Moreover,
it is PSPACE-complete to check for two SLP-represented strings u and v and
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an NFA T operating on strings of pairs of symbols, whether T accepts the
convolution of u and v [25].

MTDDs restrict 2SLPs by forbidding unbalanced derivation trees. The
derivation tree of an MTDD results from unfolding the rules in (1); it is a
tree, where every non-leaf node has exactly four children and every root-leaf
path has the same length.

Let us finally mention that straight-line programs are also used for the com-
pact representation of other objects, e.g. polynomials [20], trees [27], graphs
[23], and regular languages [17].

Tensor circuits. In [3,10], the problems of evaluating tensor formulas and
tensor circuits were studied. Let us restrict to tensor circuits. A tensor circuit
is a circuit where the gates evaluate to matrices over a semiring and the fol-
lowing operations are used: matrix addition, matrix multiplication, and tensor
product. Recall that the tensor product of two matrices A = (ai,j)1≤i≤m,1≤i≤m
and B is the matrix

A⊗B =

 a1,1B · · · a1,mB
...

...
an,1B · · · an,mB


It is a (mk × nl)-matrix if B is a (k × l)-matrix. In [3] it is shown among
other results that computing the output value of a scalar tensor circuit (i.e., a
tensor circuit that yields a (1×1)-matrix) over the natural numbers is complete
for the counting class #EXP, and the restriction to so called tame circuits is
#PSPACE-complete. A +MTDD over Z can be seen as a tensor circuit that
(i) does not use matrix multiplication and (ii) where for every tensor product
the left factor is a (2× 2)-matrix. To see the correspondence, note that(

A1,1 A1,2

A2,1 A2,2

)
=
(

1 0
0 0

)
⊗A1,1 +

(
0 1
0 0

)
⊗A1,2 +

(
0 0
1 0

)
⊗A2,1 +

(
0 0
0 1

)
⊗A2,2(

a1,1 a1,2

a2,1 a2,2

)
⊗B =

(
a1,1B a1,2B
a2,1B a2,2B

)
Each of the matrices ai,jB can be generated from B and −B using log |ai,j |
many additions (here we use the fact that the underlying semiring is Z).

Counting classes. There is a large number of #P-complete counting prob-
lems. On the other hand, only a few number of papers deals with the class
#PSPACE and counting problems that are complete for that class. An example
of a natural #PSPACE-complete counting problem is counting the number of
strings not accepted by a given NFA [22]. Recently, it was shown that counting
the number of word models of a given formula of linear time temporal logic,
where the length of the word models is specified in unary (binary, respectively)
notation is complete for #P (#PSPACE, respectively) [38].
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3 Preliminaries

We consider matrices over a semiring (S,+, ·) with (S,+) a finitely generated
commutative monoid with unit 0. The unit of the monoid (S, ·) is 1. We assume
that 0 · a = a · 0 = 0 for all a ∈ S. Hence, if |S| > 1, then 1 6= 0 (0 = 1 implies
a = 1 · a = 0 · a = 0 for all a ∈ S). With Sn×n we denote the set of all
(n× n)-matrices over S.

All time bounds in this paper implicitly refer to the RAM model of compu-
tation with a logarithmic cost measure for arithmetical operations on integers,
where arithmetic operations on n-bit numbers need time O(n). For a number
n ∈ Z let us denote with bin(n) its binary encoding.

We assume that the reader has some basic background in complexity
theory, in particular we assume that the reader is familiar with the classes
NP, coNP, and PSPACE. With polyL (polylogarithmic space) we denote the
class

⋃
k≥1 DSPACE(logk(n)), which by Savitch’s theorem is equal to the class⋃

k≥1 NSPACE(logk(n)). A function f : {0, 1}∗ → {0, 1}∗ belongs to the class
FSPACE(s(n)) (FTIME(s(n)), respectively) if f can be computed on a deter-
ministic Turing machine in space (time, respectively) s(n).2 As usual, only the
space on the working tapes is counted. Moreover, the output is written from
left to right on the output tape, i.e., in each step the machine either outputs
a new symbol on the output tape, in which case the output head moves one
cell to the right, or the machine does not output a new symbol in which case
the output head does not move. We define

FP =
⋃
k≥1

FTIME(nk),

FpolyL =
⋃
k≥1

FSPACE(logk(n)),

FPSPACE =
⋃
k≥1

FSPACE(nk).

Note that for a function f ∈ FPSPACE we have |f(w)| ≤ 2|w|
O(1)

for every
input. The function that maps an explicitly given integer matrix (with binary
encoded entries) to its determinant belongs to uniform NC2 [9] and hence to
FSPACE(log2(n)).

We need the following simple lemma, see e.g. [28, Lemma 1].

Lemma 1 If f ∈ FPSPACE and L ∈ polyL then f−1(L) ∈ PSPACE.

The following result can be shown in the same way as Lemma 1:

Lemma 2 If f ∈ FPSPACE and g ∈ FpolyL then the mapping h defined by
h(x) = g(f(x)) for all inputs x belongs to FPSPACE.

2 The assumption that the input and output alphabet of f is binary is made here to make
the definitions more readable; the extension to arbitrary finite alphabets is straightforward.
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The counting class #P consists of all functions f : {0, 1}∗ → N for which
there exists a nondeterministic polynomial time Turing machine M with input
alphabet {0, 1} such that for all x ∈ {0, 1}∗, f(x) is the number of accepting
computation paths of M for input x. If we replace nondeterministic polynomial
time Turing machines by nondeterministic polynomial space Turing machines
(nondeterministic logspace Turing machines, respectively), we obtain the class
#PSPACE [22] (#L [2], respectively). Note that for a mapping f ∈ #PSPACE,
the number f(x) may grow doubly exponential in |x|, whereas for f ∈ #P, the
number f(x) is bounded singly exponential in |x|. Ladner [22] has shown that
a mapping f : {0, 1}∗ → N belongs to #PSPACE if and only if the mapping
x 7→ bin(f(x)) belongs to FPSPACE. One cannot expect a corresponding result
for the class #P: If for every function f ∈ #P the mapping x 7→ bin(f(x))
belongs to FP, then by Toda’s theorem [37] the polynomial time hierarchy
collapses down to P. For f ∈ #L, the mapping x 7→ bin(f(x)) belongs to NC2

and hence to FP ∩ FSPACE(log2(n)) [2, Theorem 4.1]. The class GapL (GapP,
GapPSPACE, respectively) consists of all differences of two functions in #L
(#P, #PSPACE, respectively). From Ladner’s result [22] it follows easily that
a function f : {0, 1}∗ → Z belongs to GapPSPACE if and only if the mapping
x 7→ bin(f(x)) belongs to FPSPACE, see also [15, Theorem 6].

Logspace reductions between functions can be defined analogously to the
language case: If f, g : {0, 1}∗ → X with X ∈ {N,Z}, then f is logspace
reducible to g if there exists a function h ∈ FSPACE(log n) such that f(x) =
g(h(x)) for all x. Toda [36] has shown that computing the determinant of a
given integer matrix is GapL-complete.

4 Succinct matrix representations

In this section, we introduce several succinct matrix representations. We for-
mally define multi-terminal decision diagrams and their extension by the ad-
dition operation. Moreover, we briefly discuss the representation of matrices
by boolean circuits.

4.1 Multi-terminal decision diagrams

Fix a semiring (S,+, ·) with (S,+) a finitely generated commutative monoid,
and let Γ ⊆ S be a finite generating set for (S,+). Thus, every element of
S can be written as a finite sum

∑
a∈Γ naa with na ∈ N. A multi-terminal

decision diagram G with addition (+MTDD) of height h is a triple (N,P,A0),
where N is a finite set of variables which is partitioned into non-empty sets
Ni (0 ≤ i ≤ h), Nh = {A0} (A0 is called the start variable), and P is a set of
rules, each having one of the following three forms:

– A→
(
A1,1 A1,2

A2,1 A2,2

)
with A ∈ Ni and A1,1, A1,2, A2,1, A2,2 ∈ Ni−1 for some

1 ≤ i ≤ h
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– A→ A1 +A2 with A,A1, A2 ∈ Ni for some 0 ≤ i ≤ h
– A→ a with A ∈ N0 and a ∈ Γ ∪ {0}

Moreover, for every variable A ∈ N there is exactly one rule with left-hand side
A, and the relation {(A,B) ∈ N ×N | B occurs in the right-hand side for A}
is acyclic. If A ∈ Ni then we say that A has height i. The +MTDD G is
called an MTDD if for every addition rule (A → A1 + A2) ∈ P we have
A,A1, A2 ∈ N0. In other words, only scalars are allowed to be added. Since
we assume that (S,+) is generated by Γ , this allows to produce arbitrary
elements of S as matrix entries. For every A ∈ Ni we define a square matrix
val(A) of dimension 2i in the obvious way by unfolding the rules:

val(A) =
(

val(A1,1) val(A1,2)
val(A2,1) val(A2,2)

)
if
(
A→

(
A1,1 A1,2

A2,1 A2,2

))
∈ P

val(A) = val(A1) + val(A2) if (A→ A1 +A2) ∈ P
val(A) = a if (A→ a) ∈ P

Moreover, let val(G) = val(A0) for the start variableA0 ofG. This is a (2h×2h)-
matrix. The size of a rule A → a with a ∈ Γ ∪ {0} is 1, all other rules have
size log |N |. The size |G| of the +MTDD G is the sum of the sizes of its rules;
this is up to constant factors the length of the binary coding of G. A +MTDD
G of size O(n log n) can represent a (2n × 2n)-matrix. Note that only square
matrices whose dimension is a power of 2 can be represented. Matrices not
fitting this format can be filled up appropriately (for example with zeroes, or
with ones on the diagonal), depending on the purpose.

In the same way as 2-dimensional matrices, one can also produce 1-di-
mensional vectors with +MTDDs. In this case, we use rules of the form A→
(A1, A2) to double the dimension. We will refer to 1-dimensional +MTDDs in
this case. In fact, the notion of a +MTDD makes sense in any dimension.

An MTDD, where all rules have the form A→ a ∈ Γ ∪ {0} or A→ B +C
generates an element of the semiring S. Such an MTDD is an arithmetic
circuit in which only input gates and addition gates are used, and is called a
+-circuit in the following. In case the underlying semiring is Z, a +-circuit
with n variables can produce a number of size 2n, and the binary encoding
of this number can be computed in time O(n2) from the +-circuit (since, we
need n additions of numbers with at most n bits). In general, for a +-circuit
over the semiring S, we can compute in quadratic time numbers na (a ∈ Γ )
such that

∑
a∈Γ na ·a is the semiring element to which the +-circuit evaluates

to.
Note that the notion of a +MTDD makes sense for commutative monoids,

since we only used the addition of the underlying semiring. But soon, we want
to multiply matrices, for which we need a semiring.
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Example 3 The n-th Hadamard matrix is produced by the following MTDD,
where Hn is the start variable:

H0 → 1, H ′0 → −1,

Hi →
(
Hi−1 Hi−1

Hi−1 H
′
i−1

)
, H ′i →

(
H ′i−1 H

′
i−1

H ′i−1 Hi−1

)
(1 ≤ i ≤ n)

Note that H ′i produces −val(Hi).

Example 4 It is straightforward to produce the unit matrix I2n of dimension
2n by an MTDD of size O(n log n):

A0 → 1, 00 → 0, Aj →
(
Aj−1 0j−1

0j−1 Aj−1

)
, 0j →

(
0j−1 0j−1

0j−1 0j−1

)
(1 ≤ j ≤ n).

The start variable is An here.
The lower triangular (2n × 2n)-matrix, where entries on the diagonal and

below are 1 is generated by the above rules for the variables 0j together with
the rules

T0 → 1, 10 → 1, Tj →
(
Tj−1 0j−1

1j−1 Tj−1

)
, 1j →

(
1j−1 1j−1

1j−1 1j−1

)
(1 ≤ j ≤ n).

To produce the (2n × 2n)-matrix over Z, where all entries in the k-th row are
k, we need the following rules:

E0 → 1, Ej →
(
Ej−1 + Ej−1 Ej−1 + Ej−1

Ej−1 + Ej−1 Ej−1 + Ej−1

)
(1 ≤ j ≤ n)

C0 → 1, Cj →
(
Cj−1 Cj−1

Cj−1 + Ej−1 Cj−1 + Ej−1

)
(1 ≤ j ≤ n).

Here, we are a bit more liberal with respect to the format of rules, but the
above rules can be easily brought into the form from the general definition of
a +MTDD. Note that Ej generates the (2j × 2j)-matrix with all entries equal
to 2j , and that Cn generates the desired matrix.

Note that the matrix from the last example cannot be produced by an MTDD
of polynomial size, since it contains an exponential number of different matrix
entries (for the same reason it cannot be produced by a 2SLP [4]). This holds
for any non-trivial semiring.

Theorem 5 For any semiring S with at least two elements, +MTDDs are
exponentially more succinct than MTDDs.

Proof For simplicity we argue with 1-dimensional MTDDs, which generate
vectors. We must have 1 6= 0 in S. Let m, d > 0 be such that m = 2d. We
define a +MTDD as follows:

For 0 ≤ i ≤ m− 1 let Ti be a variable such that val(Ti) has length m, the
i-th entry is 1 (the first entry is the 0-th entry) and all other entries are 0.
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Moreover, for 0 ≤ i ≤ m − 1 let the variable Ui be such that val(Ui) is the
concatenation of 2i copies of val(Ti). Let V0 produce the 0-vector of length
m = 2d, and for 0 ≤ i ≤ m − 1 let Vi+1 → (Vi, Vi + Ui). Then val(Vm) is of
length 2d+m and consists of the concatenation of all binary strings of length
m. The +MTDD for this vector contains O(m2) many variables and has size
O(m2 logm). On the other hand, an equivalent MTDD must have size at least
2m, since for every binary string of length m there must exist a variable. ut

The following result shows that the matrix product of two MTDD-represented
matrices may be incompressible with MTDDs.

Theorem 6 For any semiring S with at least two elements there exist MTDDs
Gn and Hn of the same height n and size O(n2 log n) such that val(Gn)·val(Hn)
can only be represented by an MTDD of size at least 2n.

Proof The construction is similar to those in the proof of Theorem 5. We must
have 0 6= 1 in S. Let m = 2d. For 0 ≤ i ≤ m− 1 let Ai be such that val(Ai) is
the (m×m)-matrix with val(Ai)1,i+1 = 1 and all other entries 0. Define Bi,0
by Bi,0 → Ai and

Bi,j →
(
Bi,j−1 Bi,j−1

0 0

)
for 1 ≤ j ≤ i. Then val(Bi,i) is the (2d+i × 2d+i)-matrix, where the first row
is the vector val(Ui) from the proof of Theorem 5, and all other entries are 0.
Finally add variables C0, . . . , Cm, where val(C0) is the (m ×m)-matrix with
all entries 0 and

Ci+1 →
(
Ci Ci
0 Bi,i

)
0 ≤ i ≤ m − 1. In this way we obtain an MTDD of size O(m2 logm) for the
(2m+d × 2m+d)-matrix val(Cm). This matrix has the following properties:

– Only the entries 0 and 1 appear in val(Cm).
– Every column of val(Cm) contains at most one entry that is 1.
– The i-th column of val(Cm) contains an entry that is 1 if and only if the
i-th entry in the vector val(Vm) from the proof of Theorem 5 is 1.

Hence, the product of the (2m+d× 2m+d)-matrix, where every entry is 1, with
the matrix val(Cm) is the matrix, where every row is the vector val(Vm) from
the proof of Theorem 5. ut

On the other hand, the product of two +MTDD-represented matrices can be
represented by a polynomially sized +MTDD:

Theorem 7 For +MTDDs G1 and G2 of the same height one can compute
in time O(|G1| · |G2|) a +MTDD G of size O(|G1| · |G2|) such that val(G) =
val(G1) · val(G2).
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Proof Recall that Γ is a finite generating set for the additive monoid of our
underlying semiring S. For all pairs (a, b) ∈ (Γ ∪{0})×(Γ ∪{0}), we can write
down a +-circuit of constant size that computes ab. Let Sa,b denote its start
variable.

Given two +MTDDs G1 and G2, we compute a new +MTDD G that
contains for all variables A of G1 and B of G2 of the same height a variable
(A,B) such that valG(A,B) = valG1(A)·valG2(B). So, let A and B be variables
of G1 and G2, respectively, of the same height.

1. If A and B are of height 0 and the corresponding rules are A→ a, B → b
with a, b ∈ Γ ∪ {0}, then the rule for (A,B) is (A,B)→ Sa,b (actually, we
should replace Sa,b by its corresponding right-hand side).

2. If the rule for A is of the form A → A1 + A2, then we add the rule
(A,B)→ (A1, B) + (A2, B) to G.

3. If the right-hand side for A is not a sum but the rule for B is of the form
B → B1 +B2, then we add the rule (A,B)→ (A,B1) + (A,B2) to G.

4. Finally, assume that neither the right-hand side for A nor for B is a sum
or from Γ ∪ {0}. Then the rules for A and B have the form

A→
(
A1,1 A1,2

A2,1 A2,2

)
and B →

(
B1,1 B1,2

B2,1 B2,2

)
.

Then we add the following rules to G:

Ci,j → (Ai,1, B1,j) + (Ai,2, B2,j) for 1 ≤ i, j ≤ 2

(A,B)→
(
C1,1 C1,2

C2,1 C2,2

)
Clearly, if Si is the start variable of Gi, then valG(S1, S2) = val(G1) · val(G2).
The bounds from the theorem for the construction and size of G follow imme-
diately from the construction. ut

The following proposition presents several further matrix operations that can
be easily implemented in polynomial time for +MTDD-represented input ma-
trices.

Proposition 8 Let G and H be +MTDDs of heights g and h, respectively,
with |G| = n, |H| = m, and 1 ≤ i, j ≤ 2g.

(1) A +MTDD for the transposition of val(G) can be computed in time O(n).
(2) +-circuits for the sum of all entries of val(G) and the trace of val(G) can

be computed in time O(n).
(3) A +-circuit for the matrix entry val(G)i,j can be computed in time O(n).
(4) +MTDDs of size O(n ·m) for the tensor product val(G)⊗ val(H) (which

includes the scalar product) and the element-wise (Hadamard) product
val(G) ◦ val(H) (assuming g = h) can be computed in time O(n ·m).
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Proof Point (1) (transposition): We replace every rule in G of the form

A→
(
A1,1 A1,2

A2,1 A2,2

)
(2)

by the rule

A→
(
A1,1 A2,1

A1,2 A2,2

)
.

Point (2): The sum of all entries of val(G) can be represented by the +-circuit
that contains all rules A → A1,1 + A1,2 + A2,1 + A2,2 for G-rules of the form
(2). Similarly, we can compute a +-circuit for the trace of val(G) by replacing
every rule (2) by A→ A1,1 +A2,2.

Point (3): We transform the +MTDD G into a +-circuit G′ with the same
set of variables such that val(G′) = (val(G))i,j . Let (ig · · · i1) and (jg · · · j1) be
the binary expansions of i − 1 and j − 1 (numbers in the range [0, 2g − 1]),
respectively, where ig and jg are the most significant bits. Here, we add leading
zeros on the left so that both numbers have exactly g bits.

Now we can define the rules of the +-circuit G′. Rules of the form A→ a
with a a semigroup generator and A→ A1 +A2 are simply copied to G′. For
a rule of the form

A→
(
A0,0 A0,1

A1,0 A1,1

)
,

where A has height k we add to G′ the rule A→ Aik,jk .

Point (4): For every variable C of G and every variable D of H let (C,D) be a
new variable of height height(C) + height(D). We define the rule for (C,D) in
such a way that val(C,D) = val(C)⊗ val(D). The rules reflect the bilinearity
of the tensor product.

If C → a and D → b for a, b ∈ Γ , then (C,D) → Sa,b, where Sa,b is the
start variable for a (constant size) +-circuit that computes a · b.

Now assume that C → a but the rule for D is not terminal. If D → D1+D2,
then (C,D)→ (C,D1) + (C,D2) and if

D →
(
D1,1 D1,2

D2,1 D2,2

)
then

(C,D)→
(

(C,D1,1) (C,D1,2)
(C,D2,1) (C,D2,2)

)
.

Finally, assume that the rule for C is not terminal. If C → C1 + C2, then
(C,D)→ (C1, D) + (C2, D), and if

C →
(
C1,1 C1,2

C2,1 C2,2

)
,

then

(C,D)→
(

(C1,1, D) (C1,2, D)
(C2,1, D) (C2,2, D)

)
.

The proof for the construction of the element-wise product is similar as for
the tensor-product. ut
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4.2 Boolean circuits

In [16] boolean circuits were used for the succinct representation of strings and
graphs. A boolean circuit with n inputs represents a binary string of length
2n, namely the string of output values for the 2n many input assignments
(concatenated in lexicographic order). In a similar way, we can use circuits to
encode large matrices. Here, we restrict to matrices over Z. We propose two
alternatives:

Definition 9 A boolean circuit C(x, y, z) with |x| = m and |y| = |z| = n
encodes a (2n× 2n)-matrix MC,2 with entries of absolute value at most 22m−1

that is defined as follows: For all a ∈ {0, 1}m \ {(0, . . . , 0)} and b, c ∈ {0, 1}n,
the a-th bit (in lexicographic order) of the matrix entry at position (b, c) in
MC,2 is 1 if and only if C(a, b, c) = 1. Moreover, the sign of this entry is +1 if
C(0, . . . , 0, b, c) = 1, otherwise the sign is −1.

Note that in contrast to +MTDDs, the size of an entry in MC,2 can be doubly
exponential in the size of the representation C (this is the reason for the index
2 in MC,2). The following alternative, which is also used in [29], is closer to
+MTDDs:

Definition 10 A boolean circuit C(x, y) with |x| = |y| = n and m output
gates encodes a (2n × 2n)-matrix MC,1 with entries of absolute value at most
2m−1 that is defined as follows: For all a, b ∈ {0, 1}n, C(a, b) is the binary
encoding of the entry at position (a, b) in MC,1, where the sign is encoded by
the first output bit.

Circuit representations for matrices are at least as succinct as +MTDDs. More
precisely, from a given +MTDD G one can compute in logspace a Boolean
circuit C such that MC,1 = val(G). This is a direct corollary of Proposition 8(3)
(stating that a given entry of an +MTDD-represented matrix can be computed
in polynomial time) and the fact that polynomial time computations can be
simulated by boolean circuits.

Recently, it was shown that checking whether for a given circuit C the de-
terminant of the matrix MC,1 vanishes is PSPACE-complete [18]. An algebraic
version of this result for the algebraic complexity class VPSPACE is shown
in [29]. Theorem 18 from Section 6 will strengthen the result from [18] to
MTDD-represented matrices.

5 Testing equality

In this section, we consider the problem of testing equality of +MTDD-rep-
resented matrices. For this, we do not need the full semiring structure, but
we only need the finitely generated additive monoid (S,+). We will show that
equality can be checked in polynomial time if (S,+) is cancellative and coNP-
complete otherwise.

First we consider the case of a finitely generated abelian group. The proof
of the following lemma involves only basic linear algebra.
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Lemma 11 Let ai,1x1 + · · ·+ ai,nxn = 0 (1 ≤ i ≤ n+ 1) be a system of n+ 1
equations over a torsion-free abelian group A, where ai,1, . . . , ai,n ∈ Z, and the
n variables x1, . . . , xn range over A. One can determine in time polynomial in
n and max{log |ai,j | | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n} an equivalent system of at
most n linear equations (having the same solutions in An).

Proof Let ai = (ai,1, . . . , ai,n) ∈ Zn be the vector of coefficients of the i-th
equation. For 0 ≤ i ≤ n let Ui ⊆ Qn be the subspace of the vector space Qn

generated by a1, . . . , ai (U0 is the 0-space). For i = 1, . . . , n + 1, we now test
whether ai ∈ Ui−1. This can be checked by testing whether a system of linear
equations has a solution in Qn. This problem can be solved in time polynomial
in n and log(max{|ak,j | | 1 ≤ k ≤ i, 1 ≤ j ≤ n}), e.g. by Gaussian elimination.
If ai ∈ Ui−1 then we obtain an equation

λiai = λ1a1 + · · ·+ λi−1ai−1

with λ1, . . . , λi ∈ Z and λi 6= 0. Hence, if group elements x1, . . . , xn ∈ A satisfy
aj,1x1 + · · ·+ aj,nxn = 0 for all 1 ≤ j ≤ i− 1, then we get

λi(ai,1x1 + · · ·+ ai,nxn) = 0

in A. Since A is assumed to be torsion-free, we get ai,1x1 + · · · + ai,nxn = 0.
Hence, the i-th equation is redundant. Moreover, there must be an 1 ≤ i ≤ n+1
with ai ∈ Ui−1: If ai 6∈ Ui−1 for 1 ≤ i ≤ n, then a1, . . . , an are linearly
independent and therefore generate the full Qn. But then an+1 ∈ Un. ut

We now prove an analogue of Lemma 11 for abelian groups with torsion. For
this, we make use of an efficient algorithm from [34] for computing the so
called Howell normal form of a matrix. The precise definition of the Howell
normal form is not needed. Recall that the exponent of an abelian group A is
the smallest integer k (if it exists) such that kg = 0 for all g ∈ A.

Lemma 12 Let k ≥ 2 and let A be an abelian group of exponent k. Let

ai,1x1 + · · ·+ ai,nxn = 0 (1 ≤ i ≤ n+ 1)

be a system of n + 1 equations, where ai,1, . . . , ai,n ∈ Z, and the n variables
x1, . . . , xn range over A. Then one can determine in time polynomial in n,
log(k), and max{log |ai,j | | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n} an equivalent system of
at most n linear equations.

Proof We can consider the coefficients ai,j as elements from Zk. By [34] we can
compute the Howell normal form of the matrix (ai,j)1≤i≤n+1,1≤j≤n ∈ Z(n+1)×n

k

in polynomial time. The Howell normal form is an (n × n)-matrix with the
same row span (a subset of the module Znk ) as the original matrix, and hence
defines an equivalent set of linear equations. ut

Theorem 13 Let G be a +MTDD over a finitely generated abelian group S.
Given two different variables A1, A2 of the same height, it is possible to check
val(A1) = val(A2) in time polynomial in |G|.
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Proof Since every finitely generated group is a finite direct product of copies
of Z and Zk (k ≥ 2), it suffices to prove the theorem only for these groups.

Consider the case S = Z. The algorithm stores a system of m equations
(m will be bounded later) of the form ai,1B1 + · · · + ai,kBk = 0, where all
B1, . . . , Bk are pairwise different variables of the same height h. We treat the
variables B1, . . . , Bk as variables that range over the torsion-free abelian group
Z2h×2h

. We start with the single equation A1−A2 = 0. We use the rules of G
to transform the system of equations into another system of equations whose
variables have strictly smaller height. Assume the current height is h > 1. We
iterate the following steps until only variables of height h − 1 occur in the
equations:

Step 1. Standardize equations: Transform all equations into the form

a1B1 + · · ·+ amBm = 0,

where the Bi are different variables and the ai are integers.

Step 2. Reduce the number of equations, using Lemma 11, applied to the
torsion-free abelian group Z2h×2h

.

Step 3. If a variable A of height h occurs in the equations, and the rule for A
has the form A→ B+C, then replace every occurrence of A in the equations
by B + C.

Step 4. If none of steps 1–3 applies to the equations, then only rules of the
form

A→
(
A1,1 A1,2

A2,1 A2,2

)
(3)

are applicable to a variable A (of height h) occurring in the equations. Applying
all possible rules of this form for the current height results in a set of equations
where all variables are (2 × 2)-matrices over variables of height h − 1 (like
the right-hand side of (3)). Hence, every equation can be decomposed into 4
equations, where all variables have height h− 1.

If the height of all variables is finally 0 and none of steps 1–3 applies to the
equations, then only rules of the form A→ a with a ∈ Z are applicable. In this
case, we replace all variables by the corresponding integers, and check whether
all resulting equations are valid or not. If all equations hold, then the input
equation holds, i.e., val(A1) = val(A2). Otherwise, if at least one equation is
not valid, then val(A1) 6= val(A2).

The number of variables in the equations is bounded by the number of
variables of G. An upper bound on the absolute value of the coefficients in
the equations is 2|G|, since only iterated addition can be performed to increase
the coefficients. Hence, O(|G|) bits suffice for storing a coefficient. Lemma 11
shows that the number of equations after step 2 above is at most |G| (the
bound for the number of different variables).

For the case S = Zk the same procedure works, we only have to use
Lemma 12 instead of Lemma 11. ut
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Corollary 14 Let M be a finitely generated cancellative commutative monoid.
Given a +MTDD G over M and two variables A1 and A2 of G of the same
height, one can check val(A1) = val(A2) in time polynomial in |G|.

Proof A cancellative commutative monoid M embeds into its Grothendieck
group A (see e.g. [42]), which is the quotient of M ×M by the congruence
defined by (a, b) ≡ (c, d) if and only if a+ d = c+ b in M .3 This is an abelian
group, which is moreover finitely generated if M is finitely generated. Hence,
the result follows from Theorem 14. ut

Let us now consider non-cancellative commutative monoids:

Theorem 15 Let M be a non-cancellative finitely generated commutative mo-
noid. It is coNP-complete to check val(A1) = val(A2) for a given +MTDD G
over M and two variables A1 and A2 of G of the same height.

Proof We start with the upper bound. Let {a1, . . . , ak} be a finite generating
set of M . Let G be a +MTDD over M and let A1 and A2 two variables of
G of height h. It suffices to check in polynomial time for two given indices
1 ≤ i, j ≤ 2h whether val(A1)i,j = val(A2)i,j . Then, this test has to be done
for all (exponentially many) 1 ≤ i, j ≤ 2h, which corresponds to the universal
quantifier in coNP.

From 1 ≤ i, j ≤ 2h we can compute +-circuits for the matrix entries
val(A1)i,j and val(A2)i,j , see Proposition 8(3). From these circuits we can
compute numbers n1, . . . , nk,m1, . . . ,mk ∈ N in binary representation such
that val(A1)i,j = n1a1 + · · · + nkak and val(A2)i,j = m1a1 + · · · + mkak.
Now we can use the following result from [35]: There is a semilinear subset
S ⊆ N2k (depending only on our fixed commutative monoid M) such that for
all x1, . . . , xk, y1, . . . , yk ∈ N we have: x1a1 + · · · + xkak = y1a1 + · · · + ykak
if and only if (x1, . . . , xk, y1, . . . , yk) ∈ S. Hence, we have to check, whether
v := (n1, . . . , nk,m1, . . . ,mk) ∈ S. The semilinear set S is a finite union of
linear sets. Hence, we can assume that S is linear itself. Let

S = {v0 + λ1v1 + · · ·+ λlvl | λ1, . . . , λl ∈ N},

where v0, . . . , vl ∈ N2k. Thus, we have to check, whether there exist λ1, . . . , λl ∈
N such that v = v0+λ1v1+· · ·λlvl. This is an instance of integer programming
in the fixed dimension 2k, which can be solved in polynomial time [24].

Let us now prove coNP-hardness. We do this for 1-dimensional +MTDDs
that produce vectors instead of matrices. We fix elements x, y, z ∈ M such
that x 6= y but x+z = y+z. These elements exist since M is not cancellative.
We use an encoding of 3SAT from [4]. Take a 3CNF formula C =

∧m
i=1 Ci

over n propositional variables x1, . . . , xn, and let Ci = (αj1 ∨αj2 ∨αj3), where
1 ≤ j1 < j2 < j3 ≤ n and every αjk is either xjk or ¬xjk . With this clause we
associate a 1-dimensional MTDD Gi as follows: The variables are A0, . . . , An
and B0, . . . , Bn−1, where Bi produces the vector of length 2i with all entries

3 This construction generalizes the construction of Z from N.
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equal to 0 (which corresponds to the truth value true, whereas z ∈ M cor-
responds to the truth value false). For the variables A0, . . . , An we add the
following rules: For every 1 ≤ j ≤ n with j 6∈ {j1, j2, j3} we take the rule
Aj → (Aj−1, Aj−1). For every j ∈ {j1, j2, j3} such that αj = xj (αj = ¬xj ,
respectively) we take the rule

Aj → (Aj−1, Bj−1) (Aj → (Bj−1, Aj−1), respectively).

Finally add the rule A0 → z (more formally, we have to use a fixed size
+MTDD to produce z from the monoid generators) and let An be the start
variable of Gi. Then val(Gi) is a vector of length 2n that encodes all truth
values of clause Ci in the following sense: The j-th lexicographic truth as-
signment to the propositional variables x1, . . . , xn makes clause Ci true (false,
respectively) if the j-th component of val(Gi) is 0 (z, respectively).

Next let G (H, respectively) be the 1-dimensional MTDD that produces
the vector consisting of 2n many x-entries (y-entries, respectively). Then,

val(G) + val(G1) + · · ·+ val(Gm) = val(H) + val(G1) + · · ·+ val(Gm)

if and only if for every 1 ≤ j ≤ 2n there exists 1 ≤ i ≤ m such that the
j-th component of val(Gi) is z. The latter holds if and only if for every truth
assignment one of the clauses Ci is false, i.e., if and only if C is unsatisfiable.

ut

6 Computing determinants and matrix powers

In this section we present several completeness results for MTDDs over the
rings Z and Zn (n ≥ 2). It turns out that over these rings, computing determi-
nants, iterated matrix products, or matrix powers are infeasible for MTDD-
represented input matrices, assuming standard assumptions from complexity
theory. All completeness results in this section are formulated for MTDDs, but
they remain valid if we add addition. In fact, all upper complexity bounds in
this section even hold for matrices that are represented by circuits as defined
in Section 4.2.

All hardness results in this section rely on the fact that the adjacency
matrix of the configuration graph of a polynomial space bounded machine can
be produced by a small MTDD (with terminal entries 0 and 1), see Section 6.2.
This was also shown in [12, proof of Theorem 7] in the context of OBDDs. We
will prove this fact using an automata theoretic framework that we introduce
in Section 6.1. This framework will simplify the technical details in the proofs
in Sections 6.3 and 6.4.

6.1 Layered automata and MTDDs

In the following we will use some standard notations concerning finite au-
tomata. A layered DFA (deterministic finite automaton) of depth m is an
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acyclic DFA A for which the state set Q is partitioned into m + 1 layers
Q0, . . . , Qm such that:

– Q0 only contains the initial state q0 of A.
– Qm only contains two states, one of which is the unique final state of A.
– Every transition goes from layer Qi to Qi+1 for some 0 ≤ i < m.
– For every state q ∈ Qi (1 ≤ i < m) and every input letter a there exists

an a-labeled transition from q to a state from layer Qi+1.

The convolution of a string u = a1 · · · an ∈ Σ∗ and a string v = b1 · · · bn ∈ Γ ∗
is the string u⊗v = (a1, b1) · · · (an, bn) over the alphabet Σ×Γ . A layered DFA
A of depth m with input alphabet {0, 1} × {0, 1} defines the directed graph
G(A) with node set {0, 1}m (all binary strings of length m) and an edge from
u ∈ {0, 1}m to v ∈ {0, 1}m if and only if u ⊗ v ∈ L(A). So, A recognizes the
edge relation of G(A). Layered DFAs over the paired alphabet {0, 1} × {0, 1}
are basically the same as MTDDs over {0, 1} (or OBDDs with the interleaved
variable ordering):

Lemma 16 One can construct in logspace from a given layered DFA A over
the paired alphabet {0, 1} × {0, 1} an MTDDs G over {0, 1} such that val(G)
is the adjacency matrix of the graph G(A), and vice versa.

Proof The variables of G are the states of the automaton A, and the start
variable is the initial state q0. Let P0, . . . , Pk be the layers of A and let Pk =
{p0, p1}, where p1 is the final state of A. First, we add the rule pi → i for
i ∈ {0, 1} to G. Next, let p ∈ Pi for some i < k and let

p
(a,b)−−−→ pa,b

for a, b ∈ {0, 1} be the four outgoing transitions from state p. Then we add
the rule

p→
(
p0,0 p0,1

p1,0 p1,1

)
to G. The reverse transformation works similarly. ut

6.2 Generating the configuration graph of a Turing machine by an MTDD

Let M be a nondeterministic Turing machine (NTM). Let Q be the set of
states of M , and let Γ be the tape alphabet of M , where Q ∩ Γ = ∅. As
usual, configurations of M are encoded as words from Γ ∗QΓ ∗. For two con-
figurations c1, c2 ∈ Γ ∗QΓ ∗ we write c1 `M c2 if M can move in one transition
from configuration c1 to configuration c2. Let us fix an injective encoding
fM : Q ∪ Γ → {0, 1}kM \ 0∗, which is extended to a homomorphism from
(Q ∪ Γ )∗ to {0, 1}∗. Here, kM is a large enough constant. We exclude words
only consisting of 0’s from the range of fM for technical reasons. The following
proposition makes use of the folklore fact (see e.g. the work on automatic struc-
tures [6]) that a Turing machine transition only locally modifies the current
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configuration and that this local modification can be recognized by a finite au-
tomaton. This locality is not destroyed by an application of the coding function
fM :

Lemma 17 Let M be a fixed NTM. For m ∈ N, one can compute in space
O(logm) a layered DFA A(M,m) of depth kM (m+1) over the paired alphabet
{0, 1} × {0, 1} such that

L(A(M,m)) = {fM (c1)⊗ fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗,
|c1| = |c2| = m+ 1, c1 `M c2}.

Proof Due to the local nature of Turing machines, there exists a fixed complete
DFA A(M) over the alphabet {(0, 0), (0, 1), (1, 0), (1, 1)} such that

L(A(M)) = {fM (c1)⊗ fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2|, c1 `M c2}.

Using the classical product construction, we intersect this automaton with a
layered DFA of depth kM (m+ 1) for the language

{0, 1}kM (m+1) ⊗ {0, 1}kM (m+1).

Such an automaton can be constructed in logspace. The resulting DFA is
layered and recognized the desired language. ut

For the layered DFA A(M,m) from Lemma 17, the graph G(A(M,m)) is the
configuration graph of M on configurations of tape length m. With Lemma 16
we can compute in space logm an MTDD for the adjacency matrix of this
configuration graph.

6.3 Hardness of the determinant for MTDDs

Recall that the determinant of a matrix A = (ai,j)1≤i,j≤n (over any ring)
can be computed as follows, where Sn denotes the set of all permutations on
{1, . . . , n}:

det(A) =
∑
σ∈Sn

sgn(σ) ·
n∏
i=1

ai,σ(i).

Here, sgn(σ) denotes the signum of the permutation σ, which is 1 (−1, respec-
tively) if σ is a product of an even (odd, respectively) number of transpositions.
If A is the adjacency matrix of a directed graph G, then we can compute det(A)
by taking the sum over all cycle covers of G (a cycle cover of G is a subset of the
edges of G such that the corresponding subgraph is a disjoint union of directed
cycles), where each cycle cover contributes to the sum by the signum of the
corresponding permutation. If the underlying ring R is commutative, then A
is invertible if and only if det(A) is invertible in R. The value det(val(G)) for
an MTDD G over N may be of doubly exponential size (and hence needs expo-
nentially many bits): The diagonal (2n × 2n)-matrix with 2’s on the diagonal
has determinant 22n

.
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By the next theorem, computing the determinant of an MTDD-represented
matrix is indeed difficult. To prove this result we use a reduction of Toda
showing that computing the determinant of an explicitly given integer matrix
is GapL-complete [36] (which in turn is based on Valiant’s classical construc-
tion for the universality of the determinant [39]). We apply this reduction to
configuration graphs of polynomial space bounded Turing machines, whose
adjacency matrices can be produced by small MTDDs.

Theorem 18 The following holds for every ring S ∈ {Z} ∪ {Zn | n ≥ 2}:
(1) The set {G | G is an MTDD over S,det(val(G)) = 0} is PSPACE-com-

plete.
(2) The function G 7→ det(val(G)) with G an MTDD over Z is GapPSPACE-

complete.

Proof Let us start with the upper bounds. Membership in PSPACE in state-
ment (1) can be shown as follows: Since the determinant of an explicitly
given integer matrix can be computed in FSPACE(log2(n)), one can check
in DSPACE(log2(n)) whether the determinant of an explicitly given integer
matrix is zero. Moreover, from a given MTDD G we can compute the ma-
trix val(G) in polynomial space. For this, it suffices to compute for G and
given positions i, j the entry val(G)i,j in PSPACE; then we can iterate over all
(exponentially many) matrix positions (i, j). Actually, a specific matrix entry
val(G)i,j can be even computed in polynomial time by Proposition 8(3). Mem-
bership in PSPACE for MTDDs follows from Lemma 1. Note that the same
argument even applies for matrices that are represented by boolean circuits in
the sense of Definition 9 as well as Definition 10 from Section 4.2.

The upper bounds in (2) can be shown in the same way using Lemma 2
and the fact that a function f : {0, 1}∗ → Z belongs to GapPSPACE if and
only if the mapping x 7→ bin(f(x)) belongs to FPSPACE.

Let us now prove the lower bounds. We start with (1). Let us take a
deterministic polynomial space bounded Turing machine M . Let q0 be the
initial state of M and qf the unique accepting state. Let 2 be the blank
symbol. We can assume that M is non-looping in the sense that there does
not exist a configuration c such that c `+

M c. This property can be ensured by
adding a binary counter to M that is decremented during each transition of the
original machine. Moreover, we can assume that every accepting computation
path of M has odd length (i.e., an odd number of transitions), and that every
tape cell contains 2 as soon as M enters the accepting state qf . Let p(n) (a
polynomial) be the space bound of M and let x be an input for M of length
n. Moreover, let m = p(n) and k = kM (m+1). By Lemma 17 we can compute
in space O(logm) = O(log n) a layered DFA A(M,m) of depth k such that

L(A(M,m)) = {fM (c1)⊗ fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗,
|c1| = |c2| = m+ 1, c1 `M c2}.

Let w0 = fM (q0x2m−n) (wf = fM (qf2m), respectively) be the encoding of
the initial (accepting, respectively) configuration. Recall that we assume that
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0k does not belong to fM (Γ ∗QΓ ∗). By taking the direct product of A(M,m)
with a layered DFA for the language

K = {0k ⊗ w0, wf ⊗ 0k} ∪ {w ⊗ w | w ∈ {0, 1}k \ 0∗}

(which can be computed in space logm), we obtain a layered DFA A(M,x)
with L(A(M,x)) = L(A(M,m)) ∪ K. Let G(M,x) be the directed graph
G(A(M,x)) defined by the DFA A(M,x). Its node set is {0, 1}k and there
is an edge from v to w if and only if v ⊗ w ∈ L(A(M,x)). Let adj(M,x) be
the adjacency matrix of G(M,x). We compute det(adj(M,x)) by considering
cycle covers of the graph G(M,x). Note that node 0k lies on a directed cycle
if and only if there is a path from w0 to wf in G(M,x). Moreover, since M
is non-looping, every cycle cover of G(M,x) consists of a path from w0 to wf
together with the two edges (wf , 0k) and (0k, w0) (such a cycle has odd length
and hence is a product of an even number of transpositions) together with
loops on the remaining nodes. It follows that in Z, det(adj(M,x)) is equal to
the number of paths from w0 to wf in G(M,x). But this number is equal to
the number of accepting computations of the machine M on input x, which
is either 0 or 1 (since M is deterministic). By Lemma 16 applied to the DFA
A(M,x), we obtain in logspace an MTDD G (with integer entries 0 and 1
only) such that val(G) = adj(M,x). This shows the lower bound in (1).

Let us finally prove the lower bound in (2). Let us take two polynomial
space bounded nondeterministic Turing machines M1 and M2 with the same
input alphabet. We can also assume that M1 and M2 have the same state set
Q and tape alphabet Γ . In particular, we can assume that kM1 = kM2 . Let
f = fM1 = fM2 be the binary coding mapping for Q ∪ Γ . Let q0 be the initial
state of M1 and M2 and qf the unique accepting state of M1 and M2. We make
the same assumptions that we have made for M in the lower bound proof for
statement (1). We can also assume that the polynomial p(n) is a space bound
for M1 as well as M2.

Let x be an input for M1 and M2 of length n, and let m = p(n), k =
kM1(m+1) = kM2(m+1). By Lemma 17 we can construct in space O(logm) =
O(log n) layered DFAs A(M1,m) and A(M2,m) of depth k such that

L(A(Mi,m)) = {f(c1)⊗f(c2) | c1, c2 ∈ Γ ∗QΓ ∗, |c1| = |c2| = m+1, c1 `Mi
c2}.

Let w0 = f(q0x2m−n) be the encoding of the initial configuration, and let
wf = f(qf2m) be the encoding of the unique accepting configuration. Recall
that we assumed that 0k does not belong to f(Γ ∗QΓ ∗).

From the layered DFAs A(M1,m) and A(M2,m) we now construct a lay-
ered DFA A(M1,M2,m) of depth k + 1 such that

L(A(M1,M2,m)) = {0u⊗ 0v | u⊗ v ∈ L(A(M1,m))} ∪
{1u⊗ 1v | u⊗ v ∈ L(A(M2,m))}.
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For this we basically take the disjoint union of A(M1,m) and A(M2,m). By
taking the product of A(M1,M2,m) with a layered DFA for the language

K = {0k+1 ⊗ 0w0, 0wf ⊗ 0k+1, 0k+1 ⊗ 1w0, 1wf ⊗ 10k, 10k ⊗ 0k+1} ∪
{w ⊗ w | w ∈ {0, 1}k+1 \ 0∗}

(which can be easily constructed in space O(log k) = O(log n)), we obtain a
layered DFA A(M1,M2, x) with

L(A(M1,M2, x)) = L(A(M1,M2,m)) ∪K.

Let G(M1,M2, x) be the directed graph G(A(M1,M2, x)) defined by the lay-
ered DFA A(M1,M2, x). This graph consists of the disjoint union of the two
graphs G(M1,m) := G(A(M1,m)) and G(M2,m) := G(A(M2,m)) (basically
the configurations graphs of M1 and M2 on configurations of tape length m)
together with two nodes 0k+1 and 10k and the following edges:

– Edges from 0k+1 to 0w0 and 1w0 (the copies of the initial configuration in
the graphs G(M1,m) and G(M2,m)).

– An edge from 0wf (the copy of the accepting configuration in G(M1,m))
back to 0k+1.

– An edge from 1wf (the copy of the accepting configuration in G(M2,m))
to 10k.

– An edge from 10k back to 0k+1.
– Loops at all nodes except for 0k+1.

Let adj(M1,M2, x) be the adjacency matrix of the directed graph G(M1,M2, x).
Let us compute det(adj(M1,M2, x)) by considering cycle covers of the graph
G(M1,M2, x). Note that node 0k+1 lies on a directed cycle if and only if there
is a path from w0 to wf in G(M1, x) or from w0 to wf in G(M2, x). Moreover,
since M1 and M2 are non-looping, every cycle cover of G(M1,M2, x) consists
of loops together with either

– a path from node 0w0 to node 0wf (in G(M1,m)) together with the two
edges (0k+1, 0w0) and (0wf , 0k+1) (every such cycle has odd length, and
hence is a product of an even number of transpositions), or

– a path from node 1w0 to node 1wf (in G(M2,m)) together with the three
edges (0k+1, 1w0), (1wf , 10k), and (10k, 0k+1) (every such cycle has even
length, and hence is a product of an odd number of transpositions).

It follows that det(adj(M1,M2, x)) is equal to the number of paths from 0w0

to 0wf in G(M1,m) minus the number of paths from 1w0 to 1wf in G(M2,m).
But this number is equal to the number of accepting computations of the
machine M1 on input x minus the number of accepting computations of the
machine M2 on input x. ut

Note that the determinant of a diagonal matrix is zero if and only if there is a
zero-entry on the diagonal. This can be easily checked in polynomial time for
a diagonal matrix produced by an MTDD. For +MTDDs (actually, for sums
of several MTDD-represented matrices) we can show NP-completeness of this
problem:
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Theorem 19 It is NP-complete to check det(val(G1) + · · ·+ val(Gk)) = 0 for
given MTDDs G1, . . . , Gk that produce diagonal matrices of the same dimen-
sion 2n.

Proof Membership in NP is easy: Simply guess a position 1 ≤ i ≤ 2n, compute
the values nj = val(Gj)i,i for 1 ≤ j ≤ k and check whether n1 + · · ·+ nk = 0.

Our NP-hardness proof uses again the 3SAT encoding from [4] that we
applied in the proof of Theorem 15. Take a boolean formula C =

∧m
i=1 Ci,

where every Ci is a disjunction of three literals. Assume that x1, . . . , xn are the
boolean variables that occur in C. For each 1 ≤ i ≤ m let wi ∈ {0, 1}2

n

be the
bit vector of length 2n, where the j-th entry of wi (1 ≤ j ≤ 2n) is 1 if and only if
the lexicographically j-th truth assignment to the variables x1, . . . , xn satisfies
clause Ci. As in the proof of Theorem 15 one can construct from Ci in logspace
a 1-dimensional MTDD that produces wi. We can use the same construction
in order to construct in logspace a (2-dimensional) MTDD Gi of height n such
that val(Gi) is a diagonal matrix with the vector wi on the diagonal. Here is
the construction: Let Ci = (αj1 ∨ αj2 ∨ αj3), where 1 ≤ j1 < j2 < j3 ≤ n and
every αjk is either xjk or ¬xjk . We take variables A0, . . . , An, B0, . . . , Bn−1,
Z0, . . . , Zn−1, where Bi produces the (2i×2i)-dimensional identity matrix and
Zi produces the (2i×2i)-dimensional zero matrix. For the variables A0, . . . , An
we add the following rules: For every 1 ≤ j ≤ n with j 6∈ {j1, j2, j3} take the
rule

Aj →

(
Aj−1 Zj−1

Zj−1 Aj−1

)
.

For every j ∈ {j1, j2, j3} such that αj = xj take the rule

Aj →

(
Aj−1 Zj−1

Zj−1 Bj−1

)
.

For every j ∈ {j1, j2, j3} such that αj = ¬xj take the rule

Aj →

(
Bj−1 Zj−1

Zj−1 Aj−1

)
.

Finally we take the rule A0 → 0. Let An be the initial variable of Gi. Then,
indeed, val(Gi) is a diagonal matrix with the bit vector wi on the diagonal for
1 ≤ i ≤ m. Let Gm+1 be an MTDD such that val(Gm+1) = −mI2n , where I2n

is the (2n × 2n)-dimensional identity matrix. Then val(G1) + · · ·+ val(Gm+1)
is a diagonal matrix which has a zero on the diagonal (i.e., det(val(G1) + · · ·+
val(Gm+1)) = 0) if and only if the 3CNF formula C is satisfiable. ut

6.4 Hardness of iterated multiplication and powering for MTDDs

Let us now discuss the complexity of iterated multiplication and powering.
Computing a specific entry, say at position (1, 1), of the product of n explic-
itly given matrices over Z (N, respectively) is known to be complete for GapL
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(#L, respectively) [36]. Corresponding results hold for the computation of the
(1, 1)-entry of a matrix power An, where n is given in unary notation. Hence,
the binary encodings of these numbers can be computed in FSPACE(log2(n)).
As usual, these problems become exponentially harder for matrices that are
encoded by boolean circuits (see Section 4.2). Let us briefly discuss two sce-
narios. Recall the matrices MC,1 (Definition 9) and MC,2 (Definition 10)
defined from a circuit C in Section 4.2.

Definition 20 For a tuple C = (C1, . . . , Cn) of boolean circuits we can define
the matrix product MC =

∏n
i=1MCi,1.

Lemma 21 The function C 7→ (MC)1,1, where every matrix MCi,1 is over N
(Z, respectively), belongs to #P (GapP, respectively).

Proof Let us first show the result for #P. Let C = (C1, . . . , Cn) and let x, y
be the input bits for the circuits Ci (1 ≤ i ≤ n) where m = |x| = |y|. Let

MCi,1 = (a(i)
j,k)1≤j,k≤2m ∈ N2m×2m

be the matrix defined by the circuit Ci. We have

( n∏
i=1

MCi,1

)
1,1

=
2m∑
i1=1

2m∑
i2=1

· · ·
2m∑

in−1=1

a
(1)
1,i1

a
(2)
i1,i2
· · · a(n−1)

in−2,in−1
a
(n)
in−1,1

. (4)

We have to come up with a nondeterministic polynomial time Turing machine
M that has that many accepting computation paths on input (C1, . . . , Cn).
Using (n− 1) ·m binary branchings, the machine M can produce an arbitrary
tuple (i1, . . . , in−1), where the numbers 1 ≤ i1, . . . , in−1 ≤ 2m are written down
in binary notation. By evaluating the circuits Ci on the right input bits, we
can compute in deterministic polynomial time the binary codings of all natural
numbers a(1)

1,i1
, a

(2)
i1,i2

, . . . , a
(n−1)
in−2,in−1

, a
(n)
in−1,1

. Then we compute the product a of
these numbers again deterministically in polynomial time. If a = 0 then we
reject on the current computation path (this corresponds to a 0 in the multiple
sum (4)). Otherwise, using the binary coding of a > 0 the machine branches
dlog ae many times in order to produce a many accepting computation paths.

For the statement concerning GapP one can argue similarly. We have to
come up with two polynomial space bounded Turing machines such that(∏m

i=1MCi,1

)
1,1

is equal to the number of accepting computations of the first
machine minus the number of accepting computations of the second machine.
These two machines work as above, but the first (second, respectively) machine
only produces a = a

(1)
1,i1

, a
(2)
i1,i2

, . . . , a
(n−1)
in−2,in−1

, a
(n)
in−1,1

many accepting computa-
tion paths if a > 0 (a < 0, respectively). ut

An alternative and more succinct way of specifying a long matrix product uses
a single circuit:
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Definition 22 A boolean circuit C(w, x, y, z) with k = |w|, m = |x|, and
n = |y| = |z| encodes a sequence of 2k many (2n × 2n)-matrices: For every
bit vector a ∈ {0, 1}k, define the circuit Ca = C(a, x, y, z) and the matrix
Ma = MCa,2 (see Definition 10). Finally, let MC =

∏
a∈{0,1}k Ma be the

product of all these matrices.

Lemma 23 The function C(w, x, y, z) 7→MC belongs to FPSPACE.

Proof The lemma follows from Lemma 2 and the following two facts: (i) From
the circuit C(w, x, y, z) one can compute the tuple of matrices (MCa,2)a∈{0,1}k

in polynomial space (simply iterate over all valuations for the boolean variables
w, x, y, z), and (ii) computing an iterated matrix product of explicitly given
matrices can be done in FSPACE(log2(n)). ut

Lemmas 21 and 23 yield the upper complexity bounds in the following theorem.

Theorem 24 The following hold:

(1) The function (G,n) 7→ (val(G)n)1,1 with G an MTDD over N (Z, respec-
tively) and n a unary encoded number is complete for #P (GapP, respec-
tively).

(2) The function (G,n) 7→ (val(G)n)1,1 with G an MTDD over N (Z, respec-
tively) and n a binary encoded number is #PSPACE-complete (GapPSPACE-
complete, respectively).

Proof The upper bound in (1) follows from Lemma 21: Simply convert the
MTDD G into an equivalent circuit C and apply Lemma 21 to the circuit
tuple (C, . . . , C) with n copies of C. Similarly, the upper bound in (2) follows
from Lemma 23: From (G,n) (with n in binary encoding) one can compute
a single boolean circuit C such that MC (as defined in Definition 22) is the
matrix val(G)n.

It remains to prove the lower bound, for which we use again succinct ver-
sions of Toda’s techniques from [36], similar to the proof of Theorem 18.

Let us start with the statements concerning #P and #PSPACE. We start
with (1). Let M be a fixed nondeterministic polynomial time Turing machine.
One can assume that all maximal computations of M on an input x of length
n have length p(n) for some polynomial p. Let x be an input for M of length
n, and let m = p(n) and k = kM (m+ 1) (see Section 6.3). We now apply the
construction from the proof of Lemma 17 to M and m. We obtain a layered
DFA A(M,m) such that

L(A(M,m)) = {fM (c1)⊗ fM (c2) | c1, c2 ∈ Γ ∗QΓ ∗,
|c1| = |c2| = m+ 1, c1 `M c2}.

Let w0 = fM (q0x2m−n) be the encoding of the initial configuration, and
wf = fM (qf2m) be the encoding of the unique accepting configuration. Recall
that 0k does not belong to fM (Γ ∗QΓ ∗). As in the proof of Theorem 18 we
obtain a layered DFA A(M,x) such that

L(A(M,x)) = L(A(M,m)) ∪ {0k ⊗ w0, wf ⊗ 0k}.
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Let G(M,x) be the directed graph G(A(M,x)), whose node set is {0, 1}k and
there is an edge from v to w if and only if v⊗w ∈ L(A(M,x)). Let adj(M,x)
be the adjacency matrix of G(M,x). As in the proof of Theorem 18 we obtain
an MTDD G such that val(G) = adj(M,x).

Then the number of accepting computations of the machine M on input x
is equal to the number of paths of length p(n) + 2 in the graph G(M,x) from
node 0k back to node 0k. This number is equal to (val(G)p(n)+2)1,1.

The #PSPACE-hardness in point (2) of the theorem is proven in the same
way. For a nondeterministic polynomial space bounded Turing-machine one
can assume that all maximal computations of M on an input x of length n
have length 2p(n) for some polynomial p. Hence, we only have to replace the
number p(n) + 2 in the above proof by 2p(n) + 2.

Let us now turn to the lower bounds concerning GapP and GapPSPACE
in the theorem. The proofs are very similar to the corresponding proofs for
#P and #PSPACE, respectively. We only consider (2). We have to come up
with an MTDD over {0, 1,−1}. Such an MTDD corresponds to a layered
DFA, where the last layer contains three states, corresponding to the three
possible matrix entries 0, 1, and −1. Now, take two polynomial space bounded
Turing machines M1 and M2 (with the same input alphabet), such that all
accepting computations of M1 and M2 on an input of length n have length
2p(n). Moreover, let x be an input for M1 and M2 of length n and let m = p(n).
Define the two graphs G(M1,m) and G(M2,m) (the configuration graphs of
M1 and M2, respectively, on configurations of length m) as in the lower bound
proof for (2) from Theorem 18.

We have to come up with a layered DFA (with three nodes in the last layer)
that defines the following {1,−1}-labeled directed graph G:

– G consists of a disjoint copy of G(M1,m) and G(M2,m) (all edges are
labelled with 1) together with an additional node s.

– There is a 1-labeled edge from node s to the copy of the initial configuration
of M1 in G(M1,m).

– There is a −1-labeled edge from node s to the copy of the initial configu-
ration of M2 in G(M2,m).

– There are 1-labeled edges from the copies of the unique accepting configu-
rations in M1 and M2, respectively, back to node s.

Analogously to the construction in the proof of (2) from Theorem 18 we can
construct such a layered DFA. For the MTDD G over {0, 1,−1} corresponding
to this layered DFA, (val(G)2

p(m)+2)1,1 is equal to the number of accepting
computations of M1 on input x minus the number of accepting computations
of M2 on input x. ut

By Theorem 24, there is no polynomial time algorithm that computes for a
given MTDD G and a unary number n a boolean circuit (or even a +MTDD)
for the power val(G)n, unless #P = FP.

By [36] and Theorem 24, the complexity of computing a specific entry of
a matrix power An covers three different counting classes, depending on the
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representation of the matrix A and the exponent n (let us assume that A is a
matrix over N):

– #L-complete, if A is given explicitly and n is given unary.
– #P-complete, if A is given by an MTDD and n is given unary.
– #PSPACE-complete, if A is given by an MTDD and n is given binary.

Let us also mention that in [8,15,31] the complexity of evaluating iterated
matrix products and matrix powers in a fixed dimension is studied. It turns
out that multiplying a sequence of (d × d)-matrices over Z in the fixed di-
mension d ≥ 3 is complete for the class GapNC1 (the counting version of the
circuit complexity class NC1) [8]. It is open whether the same problem for
matrices over N is complete for #NC1. Moreover, the case d = 2 is open too.
Matrix powers for matrices in a fixed dimension can be computed in TC0 if
the exponent is represented in unary notation [1,31] (the circuits from [1] are
DLOGTIME-uniform). The same problem for a binary encoded exponent be-

longs to the level PHPPPPPP

of the counting hierarchy [1]. Finally, multiplying
a sequence of (d × d)-matrices that is given succinctly by a boolean circuit
captures the class FPSPACE for any d ≥ 3 [15].

For the problem, whether a power of an MTDD-encoded matrix is zero (a
variant of the classical mortality problem) we can finally show the following:

Theorem 25 It is coNP-complete (PSPACE-complete, respectively) to check
whether val(G)m is the zero matrix for a given MTDD G over N and a unary
(binary, respectively) encoded number m.

Proof The PSPACE-bound for a binary encoded number m follows from the
fact that the matrix val(G)m can be computed from (G,m) in polynomial
space, see Lemma 23 (the upper bound also holds if G is an MTDD over Z).

Now assume that m is unary encoded. Let val(G) = (ai,j)1≤i,j≤2h , where
h is the height of G. Then val(G)m is the zero matrix if and only if every
sequence ai0,i1 , ai1,i2 , . . . , aim−1,im of matrix entries contains a zero. This is a
coNP-property. Note that this argument needs the fact that all matrix entries
ai,j of val(G) are non-negative.

For the lower bound, take the construction from the proof of the lower
bound from point (1) of Theorem 24. Recall that p(n) was the time bound
of the machine M . We assumed that all maximal computation paths for an
input of length n have length exactly p(n). Let m = p(n). We can modify the
Turing machine M in such a way that the graph G(M,m) (the configuration
graph of M on configurations of tape length m) does not have directed paths
of length larger than m (e.g., by splitting the tape of M into two tracks and
incrementing a unary counter on the second track). This means that in the
graph G(M,x) there is a path of length m + 2 if and only if x is accepted
by M . Thus, x is accepted by M if and only if val(G)p(n)+2 is not the zero
matrix. The statement concerning PSPACE-completeness is proven in the same
way (we just have to ensure by adding a binary counter on the second track
that the graph G(M,m) does not have directed paths of length larger than
2p(n)). ut
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For an MTDD G over Z and a unary encoded number m, checking whether
val(G)m is the zero matrix seems to be harder due to possible cancellations.

Here is a more direct proof for the coNP-hardness statement in Theorem 25,
which uses a reduction from the complement of 3SAT.

Alternative proof of Theorem 25. Let C =
∧m
i=1 Ci be a 3CNF formula. In the

proof of Theorem 19 we constructed MTDDs G1, . . . , Gm such that val(Gi) is
the diagonal matrix, where the diagonal is the bit vector of all truth values of
the clause Ci, taken in lexicographic order. From the MTDDs G1, . . . , Gm we
easily obtain an MTDD G such that

val(G) =



0 val(G1) 0 0 · · · 0 0
0 0 val(G2) 0 · · · 0 0
0 0 0 val(G3) · · · 0 0

...
0 0 0 0 · · · val(Gm−1) 0
0 0 0 0 · · · 0 val(Gm)
0 0 0 0 · · · 0 0


.

Here, we have to assume that m+1 is a power of two, which can be enforced by
adding dummy clauses. Since the matrices val(Gi) commute (they are diagonal
matrices) and are idempotent (since all diagonal values are 0 or 1), the matrix
val(G)m contains only 0-blocks except for the top right-most block, which
is
∏m
i=1 val(Gi). Note that

∏m
i=1 val(Gi) is the diagonal matrix, where the

diagonal is the bit vector of all truth values of the formula C. Thus, val(G)m

is the zero matrix if and only if C is unsatisfiable. ut

7 Conclusion and future work

We studied algorithmic problems on matrices that are given by multi-terminal
decision diagrams enriched by the operation of matrix addition. Several impor-
tant matrix problems can be solved in polynomial time for this representation,
e.g., equality checking, computing matrix entries, matrix multiplication, com-
puting the trace, etc. On the other hand, computing determinants, matrix
powers, and iterated matrix products are computationally hard. For further
research, it should be investigated whether the polynomial time problems, like
equality test, belong to NC.

One might also consider MTDDs with variables as entries. Theorem 24
and the results of [29] suggest that the algebraic complexity class VPSPACE
can be characterized by exponential powers of MTDD-represented matrices
with variable entries. In [29], the class VPSPACE is characterized in terms of
succinct branching programs or, alternatively, exponential powers of circuit-
represented matrices.
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