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1. Introduction

Since the seminal work of Dehn from 1911, algorithmic decision problems are a
classical topic in combinatorial group theory. Dehn [5] introduced the word prob-
lem (Does a given word over the generators represent the identity?), the conjugacy
problem (Are two given group elements conjugate?) and the isomorphism problem
(Are two given finitely presented groups isomorphic?), see [15] for general references
in combinatorial group theory. Starting with the work of Novikov and Boone from
the 1950’s, all three problems were shown to be undecidable for finitely presented
groups in general. A generalization of the word problem is the subgroup membership
problem (also known as the generalized word problem) for finitely generated groups:
Given group elements g, g1, . . . , gn, does g belong to the subgroup generated by
g1, . . . , gn? Explicitly, this problem was introduced by Mihailova in 1959 [17], al-
though Nielsen had already presented an algorithm for the subgroup membership
problem for free groups in his paper from 1921 [18].

Motivated partly by automata theory, the subgroup membership problem was
further generalized to the rational subset membership problem. Assume that the
group G is finitely generated by the set X (we always assume X to be symmetric
in the sense that a ∈ X if and only if a−1 ∈ X). A finite automaton A with
transitions labeled by elements of X defines a subset L(A) ⊆ G in the natural way;
such subsets are the rational subsets of G. The set of rational subsets of G can
be also defined as the smallest set that contains all finite subsets of G and that is
closed under union, product, and the Kleene star operator (which constructs from a
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subset A ⊆ G the submonoid A∗ generated by A). The rational subset membership
problem asks whether a given group element belongs to L(A) for a given finite
automaton (in fact, this problem makes sense for any finitely generated monoid).
The notion of a rational subset of a monoid can be traced back to the work of
Eilenberg and Schützenberger from 1969 [6]. In the same year, Benois [3] proved
that every finitely generated free group has a decidable rational subset membership
problem. Further results on the rational subset membership problem can be found
in [7,8,12,13,14,20], see [11] for a survey.

In this paper, we deal with rational subsets of nilpotent groups, more precisely
unitriangular matrix groups. Let Nr,c be the free nilpotent group of class c generated
by r elements. In 1999, Roman’kov [20] presented at a conference a proof, showing
that there exists an r such that Nr,2 has an undecidable rational subset membership
problem. The proof consists of a highly technical reduction from Hilbert’s 10th
problem (the question whether a polynomial equation p(x1, . . . , xn) = 0, where
p(x1, . . . , xn) is a multivariate polynomial with integer coefficients, has a solution).
Unfortunately, a full version of [20] has never appeared.

Every torsion-free finitely generated nilpotent group embeds into a group of
unitriangular integer matrices [9, Theorem 17.2.5], see Section 3 for precise defini-
tions. We denote with UTd the group of all (d × d)-unitriangular matrices over Z.
Hence, from Roman’kov’s result it follows that for some d ≥ 2 the group UTd has
an undecidable rational subset membership problem. In fact, we must have d ≥ 3,
since UT2

∼= Z. In this paper, we show that undecidability occurs already for a very
specific class of rational subsets: We show that there exist d, ` ≥ 3 and a sequence
C1, . . . , C` of cyclic subgroups of UTd such that the membership problem for the
product C1C2 · · ·C` (a rational subset of UTd) is undecidable (Theorem 5.1). We
emphasize that the cyclic subgroups C1, . . . , C` are fixed in the sense that in prin-
ciple one could explicitly write down a list of generators for these subgroups. The
input of the undecidable problem only consists of a matrix M ∈ UTd and it is asked
whether M ∈ C1C2 · · ·Cl. As Roman’kov’s proof, our undecidability proof is based
on Hilbert’s 10th problem. We split the proof into two steps. In the first step, we
use Hilbert’s 10th problem to show that solvability of certain matrix equations is
undecidable (Proposition 4.1). For this we use a construction by Ben-Or and Cleve
[2] that, roughly speaking, allows to reduce the evaluation of a polynomial to a se-
quence of matrix multiplications. In the second step, we reduce the solvability of the
matrix equations from Proposition 4.1 to the membership problem for a sequence
of cyclic subgroups of UTd (for a fixed d). Let us also mention that one can replace
in our undecidability result every cyclic subgroup Ci = 〈Gi〉 by the one-generator
submonoid G∗i = {Gni | n ≥ 0} and retain undecidability, see Theorem 5.2.

To obtain undecidability we must have l ≥ 3, i.e., we need products of at least
3 cyclic subgroups. This follows from a result of Lennox and Wilson [10], according
to which products of two subgroups H,K of a polycyclic group G are closed in
the profinite topology, i.e., for every g 6∈ HK there exists a homomorphism ϕ
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from G into a finite group such that ϕ(g) 6∈ ϕ(HK). Since every finitely generated
polycyclic group is finitely presented it follows that the membership problem for a
product of two finitely generated subgroups of a finitely generated polycyclic group
is decidable. In this context, one should also mention that [10] contains an example
of a product of 3 subgroups of UT3 (the Heisenberg group), which is not closed in
the profinite topology.

2. Related work

There exist a large number of papers dealing with (variants of) the matrix mor-
tality problem. In this problem, it is asked, whether for given integer matrices
M1, . . . ,Mk, the submonoid {M1, . . . ,Mk}∗ contains the zero matrix. Paterson [19]
proved that the matrix mortality problem is undecidable in dimension 3, whereas
the decidability status for dimension 2 is open.

Theorem 5.1 and 5.2 can be also interpreted by saying that solvability of matrix
equations of the form M = Mx1

1 Mx2
2 · · ·M

xl

l , where M,M1, . . . ,Ml are unitrian-
gluar matrices and x1, . . . , xl are variables that either range over the integers or the
natural numbers, is undecidable. Similar matrix equations were studied in [1], but
there the matrices M,M1, . . . ,Ml are not assumed to be unitriangluar (not even
invertible).

3. Unitriangular groups

A (d × d)-matrix A over Z is unitriangluar if A[i, i] = 1 for all 1 ≤ i ≤ d and
A[i, j] = 0 for all 1 ≤ j < i ≤ d. This means that all diagonal entries are 1 and
all entries below the diagonal are zero. With UTd we denote the set of all (d× d)-
unitriangular matrices over Z. It forms a nilpotent group.

Let 1 ≤ i < j ≤ d. With A
(d)
i,j we denote the (d × d)-matrix with A

(d)
i,j [i, j] = 1

and A
(d)
i,j [k, l] = 0 for (k, l) 6= (i, j). We omit the superscript (d) in A

(d)
i,j , if the

dimension d is clear from the context. In particular, we assume that d ≥ j when
using the notation Ai,j . Note that

Ai,jAk,l =

{
Ai,l if j = k

0 if j 6= k.
(3.1)

For an integer a define T (d)
i,j (a) = Id+a ·A(d)

i,j , where Id is the (d×d)-identity matrix.

Moreover, let T (d)
i,j = T

(d)
i,j (1). Again, we just write Ti,j(a) and Ti,j if the dimension

d is clear from the context. The group UTd is generated by the matrices Ti,i+1 for
1 ≤ i < d, see e.g. [4]. Note that Ti,j(a) = T ai,j for all a ∈ Z.

As usual we denote with [x, y] = x−1y−1xy the commutator of x and y.

Lemma 3.1. For all a, b ∈ Z and 1 ≤ i < j < k ≤ d we have [T ai,j , T
b
j,k] = T abi,k.
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Proof. Using (3.1) we get

[T ai,j , T
b
j,k] = (Id− a ·Ai,j) · (Id− b ·Aj,k) · Ti,j(a) · Tj,k(b)

= (Id + ab ·Ai,k − a ·Ai,j − b ·Aj,k) · (Id + a ·Ai,j) · Tj,k(b)

= (Id + ab ·Ai,k − b ·Aj,k) · (Id + b ·Aj,k)

= (Id + ab ·Ai,k)

= T abi,k,

which proves the lemma.

Lemma 3.2. For all 1 ≤ i < j ≤ d, 1 ≤ k < l ≤ d with j 6= k, i 6= l we have
[Ti,j , Tk,l] = Id, i.e., Ti,j and Tk,l commute.

Proof. Using (3.1) we get

[Ti,j , Tk,l] = (Id−Ai,j) · (Id−Ak,l) · (Id +Ai,j) · (Id +Ak,l)

= (Id−Ai,j −Ak,l) · (Id +Ai,j +Ak,l)

= Id,

which proves the lemma.

4. Exponential expressions

An exponential expression E of dimension d over the variables x1, . . . , xk is a prod-
uct of the form

E = Me1
1 Me2

2 · · ·M
el

l

with e1, . . . , el ∈ Z ∪ {x1, . . . , xk} and M1, . . . ,Ml ∈ UTd. A valuation for E is a
mapping v : {x1, . . . , xk} → Z. We extend v to v : {x1, . . . , xk}∪Z→ Z by v(z) = z

for all z ∈ Z and define the matrix

v(E) = M
v(e1)
1 M

v(e2)
2 · · ·Mv(el)

l .

For the exponential expression E = Me1
1 Me2

2 · · ·M
el

l we define

E−1 = (M−1
l )el(M−1

l−1)el−1 · · · (M−1
1 )e1 .

Clearly, for every valuation v we have v(E−1) = v(E)−1.

Proposition 4.1. There are constants d, k ≥ 1 and a fixed exponential expression
E of dimension d over k variables such that the following problem is undecidable:

input: A matrix M ∈ UTd.
question: Is there a valuation v with v(E) = M?

Proof. By Matiyasevich’s theorem [16], every recursively enumerable set of natural
numbers can be obtained as the intersection of N with the range of a multivariate
polynomial over Z. By taking an undecidable recursively enumerable set (e.g. the
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halting problem) one obtains a fixed polynomial P (x1 . . . , xk) ∈ Z[x1, . . . , xk] such
that the following problem is undecidable:

input: A natural number a ∈ N.
question: Does the equation P (x1, . . . , xk) = a has a solution in Zk?

Let us fix the polynomial P (x1, . . . , xk). We can write P (x1, . . . , xk) as

P (x1, . . . , xk) =
m∑
i=1

n∏
j=1

Qi,j ,

where Qi,j ∈ Z∪{x1, . . . , xk}. We can assume that all products
∏n
j=1Qi,j have the

same length n by simply padding with 1’s. For a valuation v : {x1, . . . , xk} → Z we
also write v(P ) for P (v(x1), . . . , v(xk)).

Let us set d = n + 1 ≥ 2. All matrices will have dimension d in the rest of the
proof. We construct from P a fixed exponential expression E of dimension d over
the variables x1, . . . , xk such that for every valuation v : {x1, . . . , xk} → Z we have
v(E) = T

v(P )
1,d . The following construction uses ideas from Ben-Or and Cleve [2].

The idea is to construct from the product Qi =
∏n
j=1Qi,j (1 ≤ i ≤ m) an

exponential expression Ei of dimension d over the variables x1, . . . , xk such for
every valuation v : {x1, . . . , xk} → Z we have v(Ei) = T

v(Qi)
1,d . Then we can define

E = E1E2 · · ·Em and get for every valuation v:

v(E) =
m∏
i=1

v(Ei) =
m∏
i=1

T
v(Qi)
1,d = T

Pm
i=1 v(Qi)

1,d = T
v(P )
1,d .

So let us fix 1 ≤ i ≤ m. For 1 ≤ l ≤ n let Rl =
∏l
j=1Qi,j . Hence, Rn = Qi.

By induction, we construct for every 1 ≤ l ≤ n = d − 1 an exponential expression
Fl of dimension d over the variables x1, . . . , xk such that for every valuation v :
{x1, . . . , xk} → Z we have

v(Fl) = T
v(Rl)
1,l+1 .

Let us start with l = 1 and let Qi,1 = Q ∈ Z∪ {x1, . . . , xk}. Then we set F1 = TQ1,2.
For the induction step, assume that l ≥ 2 and that the exponential expression Fl−1

with v(Fl−1) = T
v(Rl−1)
1,l has been constructed. Let Qi,l = Q ∈ Z ∪ {x1, . . . , xk}.

Then we set

Fl = [Fl−1, T
Q
l,l+1].

Let v be a valuation. We get

v(Fl) = [v(Fl−1), T v(Q)
l,l+1 ] = [T v(Rl−1)

1,l , T
v(Q)
l,l+1 ] Lemma 3.1= T

v(Rl−1)·v(Q)
1,l+1 = T

v(Rl)
1,l+1 .

This concludes the proof of the proposition.
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5. Membership in products of cyclic subgroups

The main result of this paper is:

Theorem 5.1. There exists a fixed constant e and a fixed list (〈Gi〉)1≤i≤λ of cyclic
subgroups of UTe such that membership in the product

∏λ
i=1〈Gi〉 is undecidable.

Proof. We prove the theorem by a reduction from the problem from Proposi-
tion 4.1. Let d, k ≥ 1 be as in Proposition 4.1 and let

E = Me1
1 Me2

2 · · ·M
el

l

be the fixed exponential expression of dimension d over the variables x1, . . . , xk from
Proposition 4.1. We can assume that ei = 1 whenever ei is not a variable.

Basically, we construct the list of cyclic subgroups from E by replacing every
subexpression Mei

i by the subgroup 〈Mi〉 ≤ UTd generated by the matrix Mi. Two
problems appear:

• We do not gurantee that for 1 ≤ i < j ≤ l with ei = ej ∈ {x1, . . . , xk} we
iterate the matrix Mi the same number of times as the matrix Mj .

• If ei = 1, then we do not gurantee that the generator matrix Mi appears
exactly once.

To achieve these two constraints, we work in the group UTd × UTl+1 ≤ UTd+l+1.
Hence, we can set e = d+ l + 1 in the theorem. For every 1 ≤ i ≤ k (i.e., for every
variable x1, . . . , xk) let

Pi = {j | 1 ≤ j ≤ l, ej = xi}.

Moreover, let

Z = {i | 1 ≤ i ≤ l, ei = 1}.

Note that the sets Z and Pj (1 ≤ j ≤ k) form a partition of {1, . . . , l}.
First of all, for every 1 ≤ i ≤ l we define the cyclic subgroup Ci as follows:

Ci = 〈(Mi, T
−1
1,i+1)〉 ≤ UTd × UTl+1.

Moreover, for every i ∈ Z we define the pair

Ei = (Id, T1,i+1) ∈ UTd × UTl+1.

Finally, for every 1 ≤ i ≤ k (i.e., for every variable x1, . . . , xk) we define the cyclic
subgroup

Di = 〈(Id,
∏
j∈Pi

T1,j+1)〉 ≤ UTd × UTl+1.

Claim. For every matrix M ∈ UTd the following holds: There is a valuation v :
{x1, . . . , xk} → Z such that M = v(E) if and only if

(M, Id) ∈
∏
i∈Z

Ei

k∏
i=1

Di

l∏
i=1

Ci. (5.1)
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Proof of the Claim. Fix a matrix M ∈ UTd. Let us first assume that there is a
valuation v : {x1, . . . , xk} → Z such that M = v(E). Thus,

M = M
v(e1)
1 M

v(e2)
2 · · ·Mv(el)

l . (5.2)

Note that by Lemma 3.2 all the matrices T1,i+1 ∈ UTl+1 (1 ≤ i ≤ l) pairwise
commute. Actually, the matrices T1,i+1 (1 ≤ i ≤ l) generate a copy of Zl inside
UTl+1 Together with (5.2), this implies

∏
i∈Z

=Ei︷ ︸︸ ︷
(Id, T1,i+1)

k∏
i=1

∈Di︷ ︸︸ ︷(
Id,
∏
j∈Pi

T1,j+1

)v(xi)
l∏
i=1

∈Ci︷ ︸︸ ︷
(Mi, T

−1
1,i+1)v(ei) =

(
M,
∏
i∈Z

T1,i+1

k∏
i=1

( ∏
j∈Pi

T1,j+1

)v(xi)
l∏
i=1

T
−v(ei)
1,i+1

)
=

(
M,
∏
i∈Z

T1,i+1

k∏
i=1

∏
j∈Pi

T
v(xi)
1,j+1

l∏
i=1

T
−v(ei)
1,i+1

)
= (M, Id)

and hence (5.1).
For the other direction assume that (5.1) holds. Hence, there exists a valuation

v : {x1, . . . , xk} → Z and numbers hi ∈ Z (1 ≤ i ≤ l) such that

(M, Id) =
∏
i∈Z

(Id, T1,i+1)
k∏
i=1

(
Id,
∏
j∈Pi

T1,j+1

)v(xi)
l∏
i=1

(Mi, T
−1
1,i+1)hi (5.3)

By projecting onto the first component, this implies

M = Mh1
1 Mh2

2 · · ·M
hl

l .

Moreover, by projecting (5.3) onto the second component and using the commuta-
tivity of the matrices T1,i+1 ∈ UTl+1 (1 ≤ i ≤ l), we get

Id =
∏
i∈Z

T1,i+1

k∏
i=1

∏
j∈Pi

T
v(xi)
1,j+1

l∏
i=1

T−hi
1,i+1. (5.4)

Recall that the matrices T1,i+1 (1 ≤ i ≤ l) generate a copy of Zl inside UTl+1.
Hence, (5.4) implies hi = 1 = ei for every i ∈ Z and hj = v(xi) for every 1 ≤ i ≤ k
and every j ∈ Pi. Hence, we have M = M

v(e1)
1 M

v(e2)
2 · · ·Mv(el)

l , i.e., M = v(E).
This proves the claim.

Since (5.1) is equivalent to

(Id,M)
(∏
i∈Z

Ei
)−1 ∈

k∏
i=1

Di

l∏
i=1

Ci,

the above claim proves the theorem.

Recall that g∗ = {gi | i ≥ 0} denotes the submonoid generated by a group ele-
ment g ∈ G. Our construction in the proof of Theorem 5.1 also shows the following
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result. The reason is that Hilbert’s 10th problem remains undecidable if one asks
for solutions in the natural numbers (an integer variable x can be replaced by the
difference y − z for two new variables y and z).

Theorem 5.2. There exists a fixed constant e and a fixed list of matrices M1, . . .,
Mλ ∈ UTe such that membership in the rational subset M∗1M

∗
2 · · ·M∗λ is undecidable.

6. Open problem

One can ask for the minimal dimension e as well as the minimal number λ of cyclic
subgroups such that Theorem 5.1 remains true. In particular, are there three cyclic
subgroups C1, C2, C3 ≤ UT3 of the Heisenberg group such that membership in the
product C1C2C3 is undecidable? We need at least three subgroups by [10].

Another open problem concerns the submonoid membership problem for nilpo-
tent groups. The submonoid membership problem for a finitely generated group
G asks, whether for given group elements g, g1, . . . , gn ∈ G, g belongs to the sub-
monoid {g1, . . . , gn}∗. It is open, whether there exists a finitely generated nilpotent
group with an undecidable submonoid membership problem.

Acknowledgment. The author thanks the anonymous referee for useful com-
ments.
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