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Abstract
A simple linear-time algorithm for constructing a linear context-free tree grammar of size
O(rg + rg log(n/rg)) for a given input tree T of size n is presented, where g is the size of
a minimal linear context-free tree grammar for T , and r is the maximal rank of symbols in
T (which is a constant in many applications). This is the first example of a grammar-based
tree compression algorithm with a good, i.e. logarithmic in terms of the size of the input tree,
approximation ratio. The analysis of the algorithm uses an extension of the recompression
technique from strings to trees.
Keywords: grammar-based compression, tree compression, tree grammars

1. Introduction

Grammar-based compression has emerged to an active field in string compression during
the last decade. The idea is to represent a given string s by a small context-free grammar
that generates only s; such a grammar is also called a straight-line program, briefly SLP. For
instance, the word (ab)1024 can be represented by the SLP with the productions A0 → ab and
Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this grammar is much
smaller than the size (length) of the string (ab)1024. In general, an SLP of size n (the size
of an SLP is usually defined as the total length of all right-hand sides of productions) can
produce a string of length 2Ω(n). Hence, an SLP can be seen as the succinct representation of
the generated word. The principle task of grammar-based string compression is to construct,
from a given input string s, a small SLP that generates s. Unfortunately, finding a minimal
(with respect to size) SLP for a given input string is not achievable in polynomial time, unless
P = NP [1] (recently the same result was shown also in case of a constant-size alphabet [2]).
Therefore, one can concentrate either on heuristic grammar-based compressors [3, 4, 5], or
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compressors whose output SLP is guaranteed to be not much larger than a size-minimal
SLP for the input string [6, 7, 8, 9, 10]. In this paper we are interested mostly in the latter
approach. Formally, in [6] the approximation ratio for a grammar-based compressor G is
defined as the function αG with

αG(n) = max size of the SLP produced by G with input x
size of a minimal SLP for x ,

where the maximum is taken over all strings of length n (over an arbitrary alphabet).
The above statement means that unless P = NP there is no polynomial time grammar-
based compressor with the approximation ratio 1. Using approximation lower bounds for
computing vertex covers, it is shown in [6] that unless P = NP there is no polynomial time
grammar-based compressor, whose approximation ratio is less than the constant 8569/8568.

Apart from this complexity theoretic bound, the authors of [6] prove lower and upper
bounds on the approximation ratios of well-known grammar-based string compressors (LZ78,
BISECTION, SEQUENTIAL, RePair, etc.). The currently best known approximation ratio of
a polynomial time grammar-based string compressor is of the form O(log(n/g)), where g
is the size of a smallest SLP for the input string. Actually, there are several compressors
achieving this approximation ratio [6, 7, 8, 9, 10] and each of them works in linear time (a
property that a reasonable compressor should have).

At this point, the reader might ask, what makes grammar-based compression so attrac-
tive. There are actually several arguments in favour of grammar-based compression:

• The output of a grammar-based compressor is a clean and simple object, which may
simplify the analysis of a compressor or the analysis of algorithms that work on com-
pressed data; see [11] for a survey.

• There are grammar-based compressors which achieve very good compression ratios.
For example RePair [4] performs very well in practice and was for instance used for the
compression of web graphs [12].

• The idea of grammar-based string compression can be generalised to other data types
as long as suitable grammar formalisms are known for them. See for instance the
recent work on grammar-based graph compression [13].

The last point is the most important one for this work. In[14], grammar-based compres-
sion was generalised from strings to trees.3 For this, context-free tree grammars were used.
Context free tree grammars that produce only a single tree are also known as straight-line
context-free tree grammars (SLCF tree grammars). Several papers deal with algorithmic
problems on trees that are succinctly represented by SLCF tree grammars [15, 16, 17, 18, 19,
20]. In [21], RePair was generalised from strings to trees, and the resulting algorithm TreeRe-
Pair achieves excellent results on real XML trees. Other grammar-based tree compressors

3A tree in this paper is always a rooted ordered tree over a ranked alphabet, i.e., every node is labelled
with a symbol and the rank of this symbol is equal to the number of children of the node.
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were developed in [22, 23], but none of these compressors has a good approximation ratio.
For instance, in [21] a series of trees is constructed, where the n-th tree tn has size Θ(n),
there exists an SLCF tree grammar for tn of size O(log n), but the grammar produced by
TreeRePair for tn has size Ω(n) (and similar examples can be constructed for the compressors
in [22, 14]).

In this paper, we give the first example of a grammar-based tree compressor TtoG (for
“tree to grammar”) with an approximation ratio of O(log(n/g)) assuming the maximal rank
r of symbols is bounded and where g denotes the size of the smallest grammar generating the
given tree; otherwise the approximation ratio becomes O(r + r log(n/gr)). Our algorithm
TtoG is based on the work [7] of the first author, where another grammar-based string
compressor with an approximation ratio of O(log(n/g)) is presented (here g denotes the
size of the smallest grammar for the input string). The remarkable fact about this latter
compressor is that in contrast to [6, 8, 9, 10] it does not use the LZ77 factorization of a string
(which makes the compressors from [6, 8, 9, 10] not suitable for a generalization to trees,
since LZ77 ignores the tree structure and no good analogue of LZ77 for trees is known), but is
based on the recompression technique. This technique was introduced in [24] and successfully
applied for a variety of algorithmic problems for SLP-compressed strings [24, 25] and word
equations [26, 27, 28]. The basic idea is to compress a string using two operations:

• block compressions: replace every maximal substring of the form a` for a letter a by a
new symbol a`;

• pair compression: for a given partition Σ` ] Σr replace every substring ab ∈ Σ`Σr by
a new symbol c.

It can be shown that the composition of block compression followed by pair compression (for
a suitably chosen partition of the input letters) reduces the length of the string by a constant
factor. Hence, the iteration of block compression followed by pair compression yields a string
of length one after a logarithmic number of phases. By reversing a single compression step,
one obtains a grammar rule for the introduced letter and thus reversing all such steps yields
an SLP for the initial string. The term “recompression” refers to the fact, that for a given
SLP G, block compression and pair compression can be simulated on G. More precisely, one
can compute from G a new SLP G′, which is not much larger than G such that G′ produces
the result of block compression (respectively, pair compression) applied to the string pro-
duced by G. In [7], the recompression technique is used to bound the approximation ratio
of the above compression algorithm based on block and pair compression.

In this work we generalise the recompression technique from strings to trees. The oper-
ations of block compression and pair compression can be directly applied to chains of unary
nodes (nodes having only a single child) in a tree. But clearly, these two operations alone
cannot reduce the size of the initial tree by a constant factor. Hence we need a third com-
pression operation that we call leaf compression. It merges all children of a node that are
leaves into the node. The new label of the node determines the old label, the sequence of
labels of the children that are leaves, and their positions in the sequence of all children of
the node. Then, one can show that a single phase, consisting of block compression (that we
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call chain compression), followed by pair compression (that we call unary pair compression),
followed by leaf compression reduces the size of the initial tree by a constant factor. As for
strings, we obtain an SLCF tree grammar for the input tree by reversing the sequence of
compression operations. The recompression approach again yields an approximation ratio of
O(log(n/g)) (assuming that the maximal rank of symbols is a constant) for our compression
algorithm TtoG, but the analysis is technically more subtle.

Theorem 1. The algorithm TtoG runs in linear time, and for a tree T of size n, it returns
an SLCF tree grammar of size O(gr+ gr log(n/gr)), where g is the size of a smallest SLCF
grammar for T and r is the maximal rank of a symbol in T .

Note that in some specific cases it could happen that n < gr and so the term log(n/gr)
is in fact negative, we follow the usual practice of bounding the logarithm from below by 0,
i.e. in such a case we assign 0 as the value of the logarithm.

Related work on grammar-based tree compression. We already mentioned that
grammar-based tree compressors were developed in [14, 21, 22], but none of these com-
pressors has a good approximation ratio. Another grammar-based tree compressors was
presented in [29]. It is based on the BISECTION algorithm for strings and has an approxi-
mation ratio of O(n5/6). But this algorithm uses a different form of grammars (elementary
ordered tree grammars) and it is not clear whether the results from [29] can be extended to
SLCF tree grammars, or whether the good algorithmic results for SLCF-compressed trees
[16, 17, 18, 19, 20] can be extended to elementary ordered tree grammars. Let us also men-
tion the work from [30] where trees are compressed by so called top dags. These are another
hierarchical representation of trees. Upper bounds on the size of the minimal top dag are
derived in [30] and compared with the size of the minimal dag (directed acyclic graph). More
precisely, it is shown in [30, 31] that the size of the minimal top dag is at most by a factor
of O(log n) larger than the size of the minimal dag. Since dags can be seen as a special
case of SLCF tree grammars, our main result is stronger. In [23], the worst case size of
the output grammar of grammar-based tree compressors was investigated and an algorithm
that always returns an SLCF tree grammar of size O( n

logσ n
) was given, where σ is the size

of the input alphabet. In fact this algorithm can be implemented in linear time or in log-
arithmic space [32]. Note that (up to constant factors) the upper bound O( n

logσ n
) matches

the information-theoretic lower bound. Slightly weaker results were obtained for the already
mentioned top dags: it was shown that top dags have size at most O( n

logσ n
log log n) [31].

Finally, the performance of grammar-based string compression of trees that are encoded
by preorder traversal string was compared with grammar-based tree compresson [33]: the
smallest string SLP for the preorder traversal of a tree can be exponentially smaller than the
smallest SLCF tree grammar for the same tree. But on a downside there are queries that
can be efficiently (in P) computed, when trees are represented by SLCF tree grammars, but
become PSPACE-complete, when trees are represented by string SLPs.
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Other applications of the technique: context unification. The recompression method
can be applied to word equations and it is natural to hope that its generalization to trees
also applies to appropriate generalizations of word equations. Indeed, the tree recompression
approach is used in [34] to show that the context unification problem can be solved in
PSPACE. It was a long standing open problem whether context unification is decidable [35].

Parallel tree contraction. Our compression algorithm is similar to algorithms for parallel
tree evaluation [36, 37]. Here, the problem is to evaluate an algebraic expression of size n in
time O(log n) on a PRAM. Using parallel tree contraction, this can be achieved on a PRAM
with O(n/ log n) many processors. The rake operation in parallel tree contraction is the
same as our leaf compression operation, whereas the compress operations contracts chains
of unary nodes and hence corresponds to block compression and pair compression. On the
other hand, the specific features of block compression and pair compression that yield the
approximation ratio of O(log(n/g)) have no counterpart in parallel tree contraction.

Computational model. To achieve the linear running time we need some assumption on
the computational model and form of the input. We assume that numbers of O(log n) bits
(where n is the size of the input tree) can be manipulated in time O(1) and that the labels of
the input tree come from an interval [1, . . , nc], where c is some constant. Those assumption
are needed so that we can employ RadixSort, which sorts m many k-ary numbers of length
` in time O(`m + `k), see e.g. [38, Section 8.3]. In fact, we need a slightly more powerful
version of RadixSort that sorts lexicographicallym sequences of digits from [1, . . , k] of lengths
`1, `2, . . . , `m in time O(k + ∑m

i=1 `i). This is a standard generalisation of RadixSort [39,
Theorem 3.2]. If for any reason the labels do not belong to an interval [1, . . , nc], we can sort
them in time O(n log n) and replace them with numbers from {1, 2, . . . , n}.

2. Preliminaries

2.1. Trees
Let us fix for every i ≥ 0 a countably infinite set Fi of letters (or symbols) of rank i, where

Fi∩Fj = ∅ for i 6= j, and let F = ⋃
i≥0 Fi. Symbols in F0 are called constants, while symbols

in F1 are called unary letters. We also write rank(a) = i if a ∈ Fi. A ranked alphabet is a
finite subset of F. Let F be a ranked alphabet. We also write Fi for F ∩ Fi and F≥i for⋃

j≥i Fi. An F -labelled tree is a rooted, ordered tree whose nodes are labelled with elements
from F , satisfying the condition that if a node v is labelled with a then it has exactly rank(a)
children, which are linearly ordered (by the usual left-to-right order). We denote by T (F )
the set of F -labelled trees. In the following we simply speak about trees when the ranked
alphabet is clear from the context or unimportant. When useful, we identify an F -labelled
tree with a term over F in the usual way. The size of the tree t is its number of nodes and
is denoted by |t|. We assume that a tree is given using a pointer representation, i.e., each
node has a list of its children (ordered from left to right) and each node (except for the root)
has a pointer to its parent node.
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Figure 1: The tree f(a(b(c)), a(b(d))), its subpattern a(b(c)), subpatterns a(b(y)), and subpattern
f(a(b(c)), y) in which a is the first child of f .

Fix a countable set Y with Y∩ F = ∅ of (formal) parameters, which are usually denoted
by y, y1, y2, . . .. For the purposes of building trees with parameters, we treat all parameters
as constants, and so F -labelled trees with parameters from Y ⊆ Y (where Y is finite) are
simply (F ∪ Y )-labelled trees, where the rank of every y ∈ Y is 0. However, to stress the
special role of parameters we write T (F, Y ) for the set of F -labelled trees with parameters
from Y . We identify T (F ) with T (F, ∅). In the following we talk about trees with parameters
(or even trees) when the ranked alphabet and parameter set is clear from the context or
unimportant. The idea of parameters is best understood when we represent trees as terms:
For instance f(y1, a, y2, y1) with parameters y1 and y2 can be seen as a term with variables
y1, y2 and we can instantiate those variables later on. A pattern (or linear tree) is a tree
t ∈ T (F, Y ), that contains for every y ∈ Y at most one y-labelled node. Clearly, a tree
without parameters is a pattern. All trees in this paper are patterns, and we do not mention
this assumption explicitly in the following.

When we talk of a subtree u of a tree t, we always mean a full subtree in the sense that
for every node of u all children of that node in t belong to u as well. In contrast, a subpattern
v of t is obtained from a subtree u of t by removing some of the subtrees of u. If we replace
these subtrees by pairwise different parameters, then we obtain a pattern p(y1, . . . , yn) and
we say that (i) the subpattern v is an occurrence of the pattern p(y1, . . . , yn) in t and (ii)
p(y1, . . . , yn) is the pattern corresponding to the subpattern v (this pattern is unique up to
renaming of parameters). This later terminology applies also to subtrees, since a subtree is a
subpattern as well. A context c(y) is a pattern with exactly one parameter, and occurrences
of a context c(y) in a tree are called subcontexts. To make this notions clear, consider for
instance the tree f(a(b(c)), a(b(d))) with f ∈ F2, a, b ∈ F1 and c, d ∈ F0. It contains one
occurrence of the pattern (in fact, tree) a(b(c)), two occurrences of the pattern (in fact,
context) a(b(y)) and one of the pattern (in fact, context) f(a(b(c)), y), see Figure 1.

A chain pattern is a context of the form a1(a2(. . . (ak(y)) . . .)) with a1, a2, . . . , ak ∈ F1. A
chain in a tree t is an occurrence of a chain pattern in t. A chain s in t is maximal if there is
no chain s′ in t with s ( s′. A 2-chain is a chain consisting of only two nodes (which, most
of the time, are labelled with different letters). For a ∈ F1, an a-maximal chain is a chain
such that (i) all nodes are labelled with a and (ii) there is no chain s′ in t such that s ( s′

and all nodes of s′ are labelled with a too. Note that an a-maximal chain is not necessarily
a maximal chain. Consider for instance the tree b(a(a(a(c)))). The unique occurrence of
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Figure 2: The tree b(a(a(a(c)))), its unique a-maximal chain (an occurrence of a(a(a(y)))) and its unique
maximal chain (an occurrence of b(a(a(a(y))))).

the chain pattern a(a(a(y))) is an a-maximal chain, but is not maximal. The only maximal
chain is the unique occurrence of the chain pattern b(a(a(a(y)))), see Figure 2.

We write a1a2 · · · ak for the chain pattern a1(a2(. . . (ak(y)) . . .)) and treat it as a string
(even though this ‘string’ still needs an argument on its right to form a proper term). In
particular, we write a` for the chain pattern consisting of ` many a-labelled nodes and we
write vw (for chain patterns v and w) for what should be v(w(y)).

2.2. SLCF tree grammars
For the further considerations, fix a countable infinite set Ni of symbols of rank i with

Ni ∩Nj = ∅ for i 6= j. Let N = ⋃
i≥0 Ni. Furthermore, assume that F ∩N = ∅. Hence, every

finite subset N ⊆ N is a ranked alphabet. A linear context-free tree grammar, linear CF tree
grammar for short, 4 is a tuple G = (N,F, P, S) such that the following conditions hold:

(1) N ⊆ N is a finite set of nonterminals.

(2) F ⊆ F is a finite set of terminals.

(3) P (the set of productions) is a finite set of pairs (A, t) (for which we write A→ t), where
A ∈ N and t ∈ T (F ∪ N, {y1, . . . , yrank(A)}) is a pattern, which contains exactly one
yi-labelled node for each 1 ≤ i ≤ rank(A).

(4) S ∈ N is the start nonterminal, which is of rank 0.

To stress the dependency of A on its parameters we sometimes write A(y1, . . . , yrank(A))→ t
instead of A→ t. Without loss of generality we assume that every nonterminal B ∈ N \{S}
occurs in the right-hand side t of some production (A → t) ∈ P (a much stronger fact is
shown in [18, Theorem 5]).

A linear CF tree grammar G is k-bounded (for a natural number k) if rank(A) ≤ k for
every A ∈ N . Moreover, G is monadic if it is 1-bounded. The derivation relation ⇒G on
T (F∪N, Y ) is defined as follows: s⇒G s

′ if and only if there is a production (A(y1, . . . , y`)→

4There exist also non-linear CF tree grammars, which we do not need for our purpose.
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A → f(f(y1, c), y2)
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Figure 3: The tree f(c, A(a(f(c, c)), f(a(c), c))) and the result of applying the rule A(y1, y2)→ f(f(y1, c), y2).
The subtrees that are substituted for parameters are within dashed blobs.

t) ∈ P such that s′ is obtained from s by replacing some subtree A(t1, . . . , t`) of s by
t with each yi replaced by ti. Intuitively, we replace an A-labelled node by the pattern
t(y1 . . . , yrank(A)) and thereby identify the j-th child of A with the unique yj-labelled node
of the pattern, see Figure 3. Then L(G) is the set of all trees from T (F ) (so F -labelled
without parameters) that can be derived from S (in arbitrarily many steps).

A straight-line context-free tree grammar (or SLCF grammar for short) is a linear CF
tree grammar G = (N,F, P, S), where

• for every A ∈ N there is exactly one production (A→ t) ∈ P with left-hand side A,

• if (A→ t) ∈ P and B occurs in t then B < A, where < is a linear order on N , and

• S is the maximal nonterminal with respect to <.

By the first two conditions, everyA ∈ N derives exactly one tree from T (F, {y1, . . . , yrank(A)}).
We denote this tree by val(A) (like valuation). Moreover, we define val(G) = val(S), which
is a tree from T (F ). In fact, every tree from T (F ∪N, Y ) derives a unique tree from T (F, Y ),
where Y is an arbitrary finite set of parameters. For an SLCF grammar G = (N,F, P, S)
we can assume without loss of generality that for every production (A→ t) ∈ P the param-
eters y1, . . . , yrank(A) occur in t in the order y1, y2, . . . , yrank(A) from left to right. This can be
ensured by a simple bottom-up rearranging procedure, see [18, proof of Theorem 5]. In the
rest of the paper, when we speak of grammars, we always mean SLCF grammars.

2.3. Grammar size
When defining the size |G| of the SLCF grammar G, one possibility is |G| = ∑

(A→t)∈P |t|,
i.e., the sum of all sizes of all right-hand sides. However, consider for instance the rule
A(y1, . . . , y`) → f(y1, . . . , yi−1, a, yi, . . . , y`). It is in fact enough to describe the right-hand
side as (f, (i, a)), as we have a as the i-th child of f . On the remaining positions we just list
the parameters, whose order is known to us (see the remark in the previous paragraph). In
general, each right-hand side of G can be specified by listing for each node its children that
are not parameters together with their positions in the list of all children. These positions
are numbers between 1 and r (it is easy to show that our algorithm TtoG creates only
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Figure 4: A tree and the results of compression operations: a-chain compression, ab-compression, and
(parallel) leaf compression.

nonterminals of rank at most r, see Lemma 1, and hence every node in a right-hand side
has at most r children) and therefore fit into O(1) machine words. For this reason we define
the size |G| as the total number of non-parameter nodes in all right-hand sides. Note that
such an approach is well-established; see for instance [14].

Should the reader prefer to define the size of a grammar as the total number of all nodes
(including parameters) in all right-hand sides, then the approximation ratio of our algorithm
TtoG has to be multiplied with the additional factor r.

2.4. Notational conventions
Our compression algorithm TtoG takes the input tree and applies to it local compression

operations, each such operation decreases the size of the tree. With T we always denote
the current tree stored by TtoG, whereas n denotes the size of the initial input tree. The
algorithm TtoG relabels the nodes of the tree with fresh letters. With F we always denote
the set of letters occurring in the current tree T . By r we denote the maximal rank of the
letters occurring in the initial input tree. The ranks of the fresh letters do not exceed r.

2.5. Compression operations
Our compression algorithm TtoG is based on three local replacement rules applied to

trees:

(a) a-maximal chain compression (for a unary symbol a),

(b) unary pair compression,

(c) and leaf compression.

Operations (a) and (b) apply only to unary letters and are direct translations of the oper-
ations used in the recompression-based algorithm for constructing a grammar for a given
string [7]. To be more precise, (a) and (b) affect only chains, return chains as well, and
when a chain is treated as a string the results of (a) and (b), respectively, correspond to the
results of the corresponding operations on strings. On the other hand, the last operations
(c) is new and designed specifically to deal with trees. Let us inspect these operations:
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a-maximal chain compression. For a unary letter a replace every a-maximal chain consisting
of ` > 1 nodes with a fresh unary letter a` (for all ` > 1).

(a, b)-pair compression. For two unary letters a 6= b replace every occurrence of ab by a
single node labelled with a fresh unary letter c (which identifies the pair (a, b)).

(f, i1, a1, . . . , i`, a`)-leaf compression:. For f ∈ F≥1, ` ≥ 1, a1, . . . , a` ∈ F0 and 0 < i1 < i2 <
· · · < i` ≤ rank(f) =: m replace every occurrence of f(t1, . . . , tm), where tij = aj for 1 ≤ j ≤
` and ti is a non-constant for i 6∈ {i1, . . . , i`}, with f ′(t1, . . . , ti1−1, ti1+1, . . . , ti`−1, ti`+1, . . . , tm),
where f ′ is a fresh letter of rank rank(f)− ` (which identifies (f, i1, a1, . . . , i`, a`)).
Note that each of these operations decreases the size of the current tree. Also note that
for each of these compression operations one has to specify some arguments: for chain
compression the unary letter a, for unary pair compression the unary letters a and b, and
for leaf compression the letter f (of rank at least 1) as well as the list of positions i1 < i2 <
· · · < i` and the constants a1, . . . , a`.

Despite its rather cumbersome definition, the idea behind leaf compression is easy: For
a fixed occurrence of f in a tree we ‘absorb’ all leaf-children of f that are constants (and do
the same for all other occurrences of f that have the same set of leaf-children on the same
positions).

Every application of one of our compression operations can be seen as the ‘backtracking’
of a production of the grammar that we construct: When we replace a` by a`, we in fact
introduce the new nonterminal a`(y) with the production

a`(y)→ a`(y). (1)

When we replace all occurrences of the chain ab by c, the new production is

c(y)→ a(b(y)). (2)

Finally, for a (f, i1, a1 . . . , i`, a`)-leaf compression the production is

f ′(y1, . . . , yrank(f)−`)→ f(t1, . . . , trank(f)), (3)

where tij = aj for 1 ≤ j ≤ ` and every ti with i 6∈ {i1, . . . , i`} is a parameter (and the
left-to-right order of the parameters in the right-hand side is y1, . . . , yrank(f)−`).

Observe that all productions introduced in (1)–(3) are for nonterminals of rank at most
r.

Lemma 1. The rank of nonterminals defined by TtoG is at most r.

During the analysis of the approximation ratio of TtoG we also consider the nonterminals
of a smallest grammar generating the given input tree. To avoid confusion between these
nonterminals and the nonterminals of the grammar produced by TtoG, we insist on calling
the fresh symbols introduced by TtoG (a`, c, and f ′ in (1)–(3)) letters and add them to the
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set F of current letters, so that F always denotes the set of letters in the current tree. In
particular, whenever we talk about nonterminals, productions, etc. we mean the ones of the
smallest grammar we consider.

Still, the above rules (1), (2), and (3) form the grammar returned by our algorithm TtoG
and we need to estimate their size. In order to not mix the notation, we call the size of the
rule for a new letter a the representation cost for a and say that a represents the subpattern
it replaces in T . For instance, the representation cost of a` in (1) is `, the representation
cost of c in (2) is 2, and the representation cost of f ′ in (3) is ` + 1. A crucial part of the
analysis of TtoG is the reduction of the representation cost for a`. Note that instead of
representing a`(y) directly via the rule (1), we can introduce new unary letters representing
some shorter chains in a` and build a longer chains using the smaller ones as building
blocks. For instance, the rule a8(y)→ a8(y) can be replaced by the rules a8(y)→ a4(a4(y)),
a4(y)→ a2(a2(y)) and a2(y)→ a(a(y)). This yields a total representation cost of 6 instead of
8. Our algorithm employs a particular strategy for representing a-maximal chains. Slightly
abusing the notation we say that the sum of the sizes of the right-hand sides of the generated
subgrammar is the representation cost for a` (for our strategy).

2.6. Parallel compression
The important property of the compression operations is that we can perform many of

them in parallel: Since different a-maximal chains and b-maximal chains do not overlap
(regardless of whether a = b or not) we can perform a-maximal chain compression for all
a ∈ F1 in parallel (assuming that the new letters do not belong to F1). This justifies the
following compression procedure for compression of all a-maximal chains (for all a ∈ F1) in
a tree t:

Algorithm 1 TreeChainComp(F1, t): Compression of chains of letters from F1 in a tree t
1: for a ∈ F1 do . chain compression
2: for `← 1 . . |t| do
3: replace every a-maximal chain of size ` by a fresh letter a` . a` /∈ F1

We refer to the procedure TreeChainComp simply as chain compression. The running time
of an appropriate implementation is considered in the next section and the corresponding
representation cost is addressed in Section 4.

A similar observation applies to leaf compressions: we can perform several different leaf
compressions as long as we do not try to compress the letters introduced by these leaf
compressions.

Algorithm 2 TreeLeafComp(F≥1, F0, t): leaf compression for parent nodes in F≥1, and leaf-
children in F0 for a tree t
1: for f ∈ F≥1, 0 < i1 < i2 < · · · < i` ≤ rank(f) =: m, (a1, a2, . . . , a`) ∈ F `

0 do
2: replace each subtree f(t1, . . . , tm) s.t. tij = aj for 1 ≤ j ≤ ` and ti /∈ F0 for

i 6∈ {i1, . . . , i`} by f ′(t1, . . . , ti1−1, ti1+1, . . . , ti`−1, ti`+1, . . . , tm) . f ′ /∈ F≥1 ∪ F0

11



We refer to the procedure TreeLeafComp as leaf compression. An efficient implementation
is given in the next section, while the analysis of the number of introduced letters is done
in Section 4.

The situation is more subtle for unary pair compression: observe that in a chain abc we
can compress ab or bc but we cannot do both in parallel (and the outcome depends on the
order of the operations). However, as in the case of string compression [7], parallel (a, b)-pair
compressions are possible when we take a and b from disjoint subalphabets F up

1 and F down
1 ,

respectively. In this case we can tell for each unary letter whether it should be the parent
node or the child node in the compression step and the result does not depend on the order
of the considered 2-chains, as long as the new letters do not belong to F up

1 ∪ F down
1 .

Algorithm 3 TreeUnaryComp(F up
1 , F down

1 , t): (F up
1 , F down

1 )-compression for a tree t
1: for a ∈ F up

1 and b ∈ F down
1 do

2: replace each occurrence of ab with a fresh unary letter c . c /∈ F up
1 ∪ F down

1

The procedure TreeUnaryComp is called (F up
1 , F down

1 )-compression in the following. Again,
its efficient implementation is given in the next section and the analysis of the number of
introduced letters is done in Section 4.

3. Algorithm

In a single phase of the algorithm TtoG, chain compression, (F up
1 , F down

1 )-compression
and leaf compression are executed in this order (for an appropriate choice of the partition
F up

1 , F down
1 ). The intuition behind this approach is as follows: If the tree t in question does

not have any unary letters, then leaf compression on its own reduces the size of t by at least
half, as it effectively reduces all constant nodes, i.e., leaves of the tree, and more than half
of the nodes are leaves. On the other end of the spectrum is the situation in which all nodes
(except for the unique leaf) are labelled with unary letters. In this case our instance is in
fact a string. Chain compression and unary pair compression correspond to the operations
of block compression and pair compression, respectively, from the earlier work on string
compression [7], where it is shown that block compression followed by pair compression
reduces the size of the string by a constant factor (for an appropriate choice of the partition
F up

1 , F down
1 of the letters occurring in the string). The in-between cases are a mix of those

two extreme scenarios and it can be shown that for them the size of the instance drops by
a constant factor in one phase as well.

Recall from Section 2.4 that T always denotes the current tree kept by TtoG and that F
is the set of letters occurring in T . Moreover, n denotes the size of the input tree.
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Algorithm 4 TtoG: Creating an SLCF grammar for the input tree T
1: while |T | > 1 do
2: F1 ← list of unary letters in T
3: T ← TreeChainComp(F1, T ) . time O(|T |)
4: F1 ← list of unary letters in T
5: compute partition F1 = F up

1 ] F down
1 using the algorithm from Lemma 6 . time

O(|T |)
6: T ← TreeUnaryComp(F up

1 , F down
1 , T ) . time O(|T |)

7: F0 ← list of constants in T , F≥1 ← list of other letters in T
8: T ← TreeLeafComp(F≥1, F0, T ) . time O(|T |)
9: return constructed grammar

A single iteration of the main loop of TtoG is called a phase. In the rest of this section
we show how to implement TtoG in linear time (a polynomial implementation is straight-
forward), while in Section 4 we analyse the approximation ratio of TtoG.

Since the compression operations use RadixSort for grouping, it is important that right
before such a compression the letters in T form an interval of numbers. As no letters are
replaced in the listing of letters preceding such a compression, it is enough to guarantee
that after each compression, as a post-processing, letters are replaced so that they form an
interval of numbers. Such a post-processing takes linear time.

Lemma 2 (cf. [7, Lemma 1]). After each compression operation performed by TtoG we can
rename in time O(|T ′|) the letters used in T so that they form an interval of numbers, where
T ′ denotes the tree before the compression step. Furthermore, in the preprocessing step we
can, in linear time, ensure the same property for the input tree.

Proof. Recall that we assume that the input alphabet consists of letters that can be iden-
tified with elements from an interval {1, . . . , nc} for a constant c, see the discussion in the
introduction. Treating them as n-ary numbers of length c, we we can sort them using Radix-
Sort in O(cn) time, i.e., in linear time. Then we can renumber the letters to 1, 2, . . . , n′ for
some n′ ≤ n. This preprocessing is done once at the beginning.

Fix the compression step and suppose that before the listing preceding this compression
the letters formed an interval [m, . . ,m + k]. Each new letter, introduced in place of a
compressed subpattern (i.e., a chain a`, a chain ab or a node f together with some leaf-
children) is assigned a consecutive value, and so after the compression the letters occurring
in T are within an interval [m, . . ,m+ k′] for some k′ > k, note also that k′ − k ≤ O(|T |) ≤
O(|T ′|), as each new letter labels a node in T . It is now left to re-number the letters from
[m, . . ,m+ k′], so that the ones occurring in T indeed form an interval. For each symbol in
the interval [m, . . ,m+ k′] we set a flag to 0. Moreover, we set a variable next to m+ k′+ 1.
Then we traverse T (in an arbitrary way). Whenever we spot a letter a ∈ [m, . . ,m + k′]
with flag [a] = 0, we set flag [a] := 1; new[a] := next, and next := next + 1. Moreover,
we replace the label of the current node (which is a) by new[a]. When we spot a symbol
a ∈ [m, . . ,m + k′] with flag [a] = 1, then we replace the label of the current node (which is
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a) by new[a]. Clearly the running time is O(O(|T |) +O(|T ′|)) and after the algorithm the
symbols form a subinterval of [m+ k′ + 1, . . ,m+ 2k′ + 1].

The reader might ask, why we do not assume in Lemma 2 that the letters used in T form
an initial interval of numbers (starting with 1). The above proof can be easily modified so
that it ensures this property. But then, we would assign new names to letters, which makes
it difficult to produce the final output grammar at the end.

3.1. Chain compression
The efficient implementation of TreeChainComp(F1, T ) is very simple: We traverse T .

For an a-maximal chain of size 1 < ` ≤ |T | we create a record (a, `, p), where p is the
pointer to the top-most node in this chain. We then sort these records lexicographically
using RadixSort (ignoring the last component and viewing (a, `) as a number of length 2).
There are at most |T | records and we assume that F can be identified with an interval, see
Lemma 2. Hence, RadixSort needs time O(|T |) to sort the records. Now, for a fixed unary
letter a, the consecutive tuples with the first component a correspond to all a-maximal
chains, ordered by size. It is easy to replace them in time O(|T |) with new letters.
Lemma 3. TreeChainComp(F1, T ) can be implemented in O(|T |) time.

Note that so far we did not care about the representation cost for the new letters that
replace a-maximal chains. We use a particular scheme to represent a`1 , a`2 , . . . , a`k , which
has a representation cost of O(k+∑k

i=1 log(`i−`i−1)), where we take `0 = 0 for convenience.
This is an easy, but important improvement over O(k+∑k

i=1 log `i) obtained using the binary
expansion of the numbers `1, `2, . . . , `k.
Lemma 4 (cf. [7, Lemma 2]). Given a list `1 < `2 < · · · < `k we can represent the
letters a`1 , a`2 , . . . , a`k that replace the chain patterns a`1 , a`2 , . . . , a`k with a total cost of
O(k +∑k

i=1 log(`i − `i−1)), where `0 = 0.
Proof. The proof is identical, up to change of names, to the proof of Lemma 2 in [7], still
we supply it for completeness.

Firstly observe that without loss of generality we may assume that the list `1, `2, . . . , `k

is given in a sorted way, as it can be easily obtained form the sorted list of occurrences of
a-maximal chains. For simplicity define `0 = 0 and let ` = maxk

i=1(`i − `i−1).
In the following, we define rules for certain new unary letters am, each of them derives

am (in other words, am represents am). For each 1 ≤ i ≤ blog `c introduce a new letter a2i

with the rule a2i(y1) → a2i−1(a2i−1(y1)), where a1 simply denotes a. Clearly a2i represents
a2i and the representation cost summed over all 1 ≤ i ≤ blog `c is 2blog `c.

Now introduce new unary letters a`i−`i−1 for each 1 ≤ i ≤ k, which represent a`i−`i−1 .
These letters are represented using the binary expansions of the numbers `i − `i−1, i.e., by
concatenation of blog(`i − `i−1)c + 1 many letters from a1, a2, . . . , a2blog `c . This introduces
an additional representation cost of ∑k

i=1(1 + blog(`i − `i−1)c) ≤ k +∑k
i=1 log(`i − `i−1).

Finally, each a`i is represented as a`i(y1) → a`i−`i−1(a`i−1(y1)), which adds 2k to the
representation cost. Summing all contributions yields the promised value O(k+∑k

i=1 log(`i−
`i−1)).
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In the following we also use a simple property of chain compression: Since no two a-
maximal chains can be next to each other, there are no b-maximal chains (for any unary
letter b) of length greater than 1 in T after chain compression.

Lemma 5 (cf. [7, Lemma 3]). In line 4 of algorithm TtoG there is no node in T such that
this node and its child are labelled with the same unary letter.

Proof. The proof is straightforward: suppose for the sake of contradiction that there is a
node u that is labelled with the unary letter a and u’s unique child v is labelled with a, too.
There are two cases:
Case 1. The letter a was present in T in line 2: But then a was listed in F1 in line 2
and u and v are part of an a-maximal chain that was replaced by a single node during
TreeChainComp(F1, T ).
Case 2. The letter a was introduced during TreeChainComp(F1, T ): Assume that a represents
b`. Hence u and v both replaced b-maximal chains. But this is not possible since the
definition of a b-maximal chain implies that two b-maximal chains are not adjacent.

3.2. Unary pair compression
The operation of unary pair compression is implemented similarly as chain compression.

As already noticed, since 2-chains can overlap, compressing all 2-chains at the same time is
not possible. Still, we can find a subset of non-overlapping chain patterns of length 2 in T
such that a (roughly) constant fraction of unary letters in T is covered by occurrences of
these chain patterns. This subset is defined by a partition of the letters from F1 occurring
in T into subsets F up

1 and F down
1 . Then we replace all 2-chains, whose first (respectively,

second) node is labelled with a letter from F up
1 (respectively, F down

1 ). Our first task is to
show that indeed such a partition exists and that it can be found in time O(|T |).

Lemma 6. Assume that (i) T does not contain an occurrence of a chain pattern aa for some
a ∈ F1 and (ii) that the symbols in T form an interval of numbers. Then, in time O(|T |)
one can find a partition F1 = F up

1 ] F down
1 such that the number of occurrences of chain

patterns from F up
1 F down

1 in T is at least (n1− c+ 2)/4, where n1 is the number of nodes in T
with a unary label and c is the number of maximal chains in T . In the same running time
we can provide for each ab ∈ F up

1 F down
1 occurring in T a lists of pointers to all occurrences

of ab in T .

Proof. For a choice of F up
1 and F down

1 we say that occurrences of ab ∈ F up
1 F down

1 are covered
by the partition F1 = F up

1 ] F down
1 . We extend this notion also to words: a partition covers

also occurrences of a chain pattern ab in a word (or set of words).
The following claim is a slighter stronger version of [7, Lemma 4], the proof is essentially

the same, still, for completeness, we provide it below:
Claim 1 ([7, Lemma 4]). For words w1, w2, . . . , wc that do not contain a factor aa for any
symbol a and whose alphabet can be identified with an interval of numbers of size m, one
can in time O(∑c

i=1 |wi|+m) partition the letters occurring in w1, w2, . . . , wc into sets F up
1
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and F down
1 such that the number of occurrences of chain patterns from F up

1 F down
1 in w1, w2,

. . . , wc is at least (∑c
i=1(|wi| − 1))/4. In the same running time we can provide for each

ab ∈ F up
1 F down

1 occurring in w1, w2, . . . , wc a lists of pointers to all occurrences of ab in w1,
w2, . . . , wc.

It is easy to derive the statement of the lemma from this claim: Consider all maximal
chains in T , and let us treat the corresponding chain patterns as strings w1, w2, . . . , wc. The
sum of their lengths is n1 ≤ |T |. By the assumption from the lemma no two consecutive
letters in strings w1, w2, . . . , wc are identical. Moreover, the alphabet of w1, w2, . . . , wc is
within an interval of size O(|T |). By Claim 1 one can compute in time O(∑c

i=1 |wi|+ |T |) ≤
O(|T |) a partition F up

1 ] F down
1 of F1 such that

∑c

i=1(|wi|−1)
4 many 2-chains from w1, w2, . . . ,

wc are covered by this partition, and hence the same applies to T . Moreover, by Claim 1 one
can also compute in time O(∑c

i=1 |wi|) ≤ O(|T |) for every ab ∈ F up
1 F down

1 occurring in w1,
w2, . . . , wc a lists of pointers to all occurrences of ab in w1, w2, . . . , wc. It is straightforward
to compute from this list a lists of pointers to all occurrences of ab in T .

Let us now provide a proof of Claim 1:
Proof of Claim 1. Observe that finding a partition reduces to the (well-studied and well-
known) problem of finding a cut in a directed and weighted graph: For the reduction, for
each letter a we create a node a in a graph and make the weight of the edge (a, b) the number
of occurrences of ab in w1, w2, . . . , wc. A directed cut in this graph is a partition V1 ] V2 of
the vertices, and the weight of this cut is the sum of all weights of edges in V1 × V2. It is
easy to see that a directed cut of weight k corresponds to a partition of the letters covering
exactly k occurrences of chain patterns (and vice-versa). The rest of the the proof gives the
standard construction [40, Section 6.3] in the terminology used in the paper (the running
time analysis is not covered in standard sources).

The existence of a partition covering at least one fourth of the occurrences can be shown
by a simple probabilistic argument: Divide F1 into F up

1 and F down
1 randomly, where each

letter goes to each of the parts with probability 1/2. Fix an occurrence of ab, then a ∈ F up
1

and b ∈ F down
1 with probability 1/4. There are ∑c

i=1(|wi| − 1) such 2-chains in w1, w2, . . . ,
wc, so the expected number of occurrences of patterns from F up

1 F down
1 in w1, w2, . . . , wc is

(∑c
i=1(|wi| − 1))/4. Hence, there exists a partition that covers at least (∑c

i=1(|wi| − 1))/4
many occurrences of 2-chains. Observe, that the expected number of occurrences of patterns
from F up

1 F down
1 ∪ F down

1 F up
1 is (∑c

i=1(|wi| − 1))/2.
The deterministic construction of a partition covering at least (∑c

i=1(|wi| − 1))/4 occur-
rences follows by a simple derandomisation, using the conditional expectation approach. It
is easier to first find a partition F up

1 ] F down
1 such that at least (∑c

i=1(|wi| − 1))/2 many
occurrences of 2-chains in w1, w2, . . . , wc are covered by F up

1 F down
1 ∪ F down

1 F up
1 . We then

choose F up
1 F down

1 or F down
1 F up

1 , depending on which of them covers more occurrences.
Suppose that we have already assigned some letters to F up

1 and F down
1 and we have to

decide where the next letter a is assigned to. If it is assigned to F up
1 , then all occurrences of

patterns from aF up
1 ∪ F

up
1 a are not going to be covered, while occurrences of patterns from

aF down
1 ∪ F down

1 a are. A similar observation holds if a is assigned to F down
1 . The algorithm

Greedy2Chains makes a greedy choice, maximising the number of covered 2-chains in each
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step. As there are only two options, the choice covers at least half of all occurrences of
2-chains that contain the letter a and a letter from F up

1 ]F down
1 . Finally, as each occurrence

of a pattern ab from w1, w2, . . . , wc is considered exactly once (namely when the second
letter of a and b is considered in the main loop), this procedure guarantees that at least half
of all 2-chains in w1, w2, . . . , wc are covered.

In order to make the selection efficient, the algorithm Greedy2Chains below keeps for
every letter a counters countup[a] and countdown[a], storing the number of occurrences of
patterns from aF up

1 ∪ F
up
1 a and aF down

1 ∪ F down
1 a, respectively, in w1, w2, . . . , wc. These

counters are updated as soon as a letter is assigned to F up
1 or F down

1 .

Algorithm 5 Greedy2Chains
1: F1 ← set of letters used in w1, w2, . . . , wc

2: F up
1 ← F down

1 ← ∅ . organised as a bit vector
3: for a ∈ F1 do
4: countup[a]← countdown[a]← 0 . initialisation
5: for a ∈ F1 do
6: if countdown[a] ≥ countup[a] then . choose the one that guarantees larger cover
7: choice ← up
8: else
9: choice ← down
10: for b ∈ F1 and all occurrences of ab or ba in w1, w2, . . . , wc do
11: countchoice[b]← countchoice[b] + 1
12: F choice

1 ← F choice
1 ∪ {a}

13: if # occurrences of patterns from F down
1 F up

1 in w1, w2, . . . , wc > # occurrences of
patterns from F up

1 F down
1 in w1, w2, . . . , wc then

14: switch F down
1 and F up

1

15: return (F up
1 , F down

1 )

By the argument given above, when F1 is partitioned into F up
1 and F down

1 by Greedy2Chains,
at least half of all 2-chains in w1, w2, . . . , wc are occurrences of patterns from F up

1 F down
1 ∪

F down
1 F up

1 . Then one of the choices (F up
1 , F down

1 ) or (F down
1 , F up

1 ) covers at least one fourth
of all 2-chains in w1, w2, . . . , wc.

It is left to give an efficient variant of Greedy2Chains. The non-obvious operations are
the updating of countchoice[b] in line 11 and the choice of the actual partition in line 14.
All other operation clearly take at most time O(∑c

i=1 |wi|). The latter is simple: since we
organise F up

1 and F down
1 as bit vectors, we can read each w1, w2, . . . , wc from left to right

(in any order) and calculate the number of occurrences of patterns from F up
1 F down

1 as well
as those from F down

1 F up
1 in time O(∑c

i=1 |wi|) (when we read a pattern ab we check in O(1)
time whether ab ∈ F up

1 F down
1 or ab ∈ F down

1 F up
1 ). Afterwards we choose the partition that

covers more 2-chains in w1, w2, . . . , wc.
To implement countup and countdown, for each letter a in w1, w2, . . . , wc we store a right

list right(a) = {b | ab occurs in w}, represented as a list. Furthermore, the element b on the
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right list points to a list of all occurrences of the pattern ab in w1, w2, . . . , wc. There is a
similar left list left(a) = {b | ba occurs in w}. We comment on how to create the left lists
and right lists in linear time later.

Given right and left, performing the update in line 11 is easy: We go through right(a)
(respectively, left(a)) and increment countup[b] for every occurrence of ab (respectively, ba).
Note that in this way each of the lists right(a) (left(a)) is read once during Greedy2Chains,
the same applies also to pointers from those lists. Therefore, all updates of countup and
countdown only need time O(∑c

i=1 |wi|), as the total number of pointers on those lists is
O(|T |).

It remains to show how to initially create right(a) (left(a) is created similarly). We read
w1, w2, . . . , wc. When reading a pattern ab we create a record (a, b, p), where p is a pointer
to this occurrence. We then sort these records lexicographically using RadixSort, ignoring
the last component. There are ∑c

i=1 |wi| records and the alphabet is an interval of size m,
so RadixSort needs time O(∑c

i=1 |wi|+ m). Now, for a fixed letter a, the consecutive tuples
with the first component a can be turned into right(a): for b ∈ right(a) we want to store
a list I of pointers to occurrences of ab. On a sorted list of records the entries (a, b, p) for
p ∈ I form an interval of consecutive records. This shows the first statement from Claim 1.

In order to show the second statement from Claim 1, i.e., in order to get for each
ab ∈ F up

1 F down
1 the lists of pointers to occurrences of ab in w1, w2, . . . , wc, it is enough

to read right and filter the patterns ab such that a ∈ F up
1 and b ∈ F down

1 ; the filtering can
be done in O(1) per occurrence as F up

1 and F down
1 are represented as bitvectors. The total

needed time is O(∑c
i=1 |wi|). This concludes the proof of Claim 1 and thus also the proof of

Lemma 6.

When for each pattern ab ∈ F up
1 F down

1 the list of its occurrences in T is provided, the
replacement of these occurrences is done by going through the list and replacing each of the
occurrences, which is done in linear time. Note that since F up

1 and F down
1 are disjoint, the

considered occurrences cannot overlap and the order of the replacements is unimportant.

Lemma 7. TreeUnaryComp(F up
1 , F down

1 , T ) can be implemented in O(|T |) time.

3.3. Leaf compression
Leaf compression is done in a way similar to chain compression and (F up

1 , F down
1 )-com-

pression: We traverse T . Whenever we reach a node v labelled with a symbol f ∈ F≥1, we
scan the list of its children. Assume that this list is v1, v2, . . . , vm. When no vi is a leaf,
we do nothing. Otherwise, let 1 ≤ i1 < i2 < · · · < i` ≤ m be a list of those positions such
that vik is a leaf, say labelled with a constant ak, for all 1 ≤ k ≤ `. We create a record
(f, i1, a1, i2, a2, . . . , i`, a`, p), where p is a pointer to node v, and continue with the traversing
of T . Observe that the total number of elements in the created tuples is at most 2|T |.
Furthermore each position index is at most r ≤ |T | and by Lemma 2 also each letter is a
number from an interval of size at most |T |. Hence RadixSort sorts those tuples (ignoring
the pointer coordinate) in time O(|T |) (we use the RadixSort version for lists of varying
length). After the sorting the tuples corresponding to nodes with the same label and the
same constant-labelled children (at the same positions) are consecutive on the returned list,
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so we can easily perform the replacement. Given a tuple (f, i1, a1, i2, a2, . . . , i`, a`, p) we use
the last component (i.e. pointer) in the created records to localize the node, replace the
label f with the fresh label f ′ and remove the children at positions i1, i2, . . . , i` (note that in
the meantime some other children might become leaves, we do not remove them, though).
Clearly all of this takes time O(|T |).
Lemma 8. TreeLeafComp(F≥1, F0, T ) can be implemented in O(|T |) time.

3.4. Size and running time
It remains to estimate the total running time of our algorithm TtoG, summed over all

phases. As each subprocedure in a phase has running time O(|T |) and there are constant
number of them in a phase, it is enough to show that |T | is reduced by a constant factor
per phase (then the sum of the running times over all phases is a geometric sum).
Lemma 9. In each phase, |T | is reduced by a constant factor.
Proof. For i ≥ 0 let ni, n′i, n′′i and n′′′i be the number of nodes labelled with a letter of rank
i in T at the beginning of the phase, after chain compression, unary pair compression, and
leaf compression, respectively. Let n≥2 = ∑

i≥2 ni and define n′≥2, n′′≥2, and n′′′≥2 similarly.
We have

n0 ≥ n≥2 + 1 . (4)
To see this, note that there are n0 + n1 + n≥2 − 1 nodes that are children (‘−1’ is for the
root). On the other hand, a node of arity i is a parent node for i children. So the number
of children is at least 2n≥2 + n1. Comparing those two values yields (4).

We next show that
n′′′0 + n′′′1 + n′′′≥2 ≤

3
4(n0 + n1 + n≥2) ,

which shows the claim of the lemma. Let c denote the number of maximal chains in T at the
beginning of the phase, this number does not change during chain compression and unary
pair compression. Observe that

c ≤ n≥2 + 1 . (5)
Indeed, consider a maximal chain. Then the node above the chain has a label from F≥2 or
the maximal chain starts in the root. Summing this up over all chains, we get (5).

Clearly after chain compression we have n′0 = n0, n′1 ≤ n1 and n′≥2 = n≥2. Furthermore,
the number of maximal chains does not change. During unary pair compression, by Lemma 6,
we choose a partition such that at least n′1−c+2

4 many 2-chains are compressed (note that the
assumption of Lemma 6 that no parent node and its child are labelled with the same unary
letter is satisfied by Lemma 5), so the size of the tree is reduced by at least n′1−c+2

4 . Hence,
the size of the tree after unary pair compression is at most

n′′0 + n′′1 + n′′≥2 ≤ n′0 + n′1 + n′≥2 −
n′1 − c+ 2

4
= n′0 + 3n′1

4 + n′≥2 + c

4 −
1
2

≤ n0 + 3n1

4 + n≥2 + c

4 −
1
2 . (6)
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Lastly, during leaf compression the size is reduced by n′′0 = n0. Hence the size of T after all
three compression steps is

n′′′0 + n′′′1 + n′′′≥2 = n′′0 + n′′1 + n′′≥2 − n0 leaf compression

≤ n0 + 3n1

4 + n≥2 + c

4 −
1
2 − n0 from (6)

= 3n1

4 + n≥2 + c

4 −
1
2 simplification

≤ 3n1

4 + n≥2 + n≥2

4 + 1
4︸ ︷︷ ︸

≥c/4

−1
2 from (5)

<
3n1

4 + 5n≥2

4 simplification

<
3
4

(
n0 + n1 + n≥2

)
, from (4)

as claimed.

Theorem 2. TtoG runs in linear time.

Proof. By Lemma 2 there is a linear preprocessing. By Lemmata 2, 3, 7, and 8, each phase
takes O(|T |) time and by Lemma 9, |T | drops by a constant factor in each phase. As the
initial size of T is n, the total running time is O(n).

4. Size of the grammar: recompression

To bound the cost of representing the letters introduced during the construction of the
SLCF grammar, we start with a smallest SLCF grammar Gopt generating the input tree T
(note that Gopt is not necessarily unique) and show that we can transform it into an SLCF
grammar G (also generating T ) of a special normal form, called handle grammar. This form
is described in detail in Section 4.1. The grammar G is of size O(r|Gopt|), where r is the
maximal rank of symbols in F (the set of letters occurring in Gopt). The transformation is
based on known results on normal forms for SLCF grammars [18], see Section 4.1.

To bound the size of G, we assign credits to G: each occurrence of a letter in a right-hand
side of G has two units of credit. If such a letter is removed from G for any reason, its credit
is released and if a new letter is inserted into some right-hand side of a rule, then we issue
its credit.

During the run of TtoG we modify G, preserving its special handle form, so that it
generates T (i.e., the current tree kept by TtoG) after each of the compression steps of
TtoG. In essence, if a compression is performed on T then we also apply it on G and modify
G so that it generates the tree T after the compression step. Then the cost of representing
the letters introduced by TtoG is paid by credits released during the compression of letters
in TtoG. Therefore, instead of computing the total representation cost of the new letters, it
suffices to calculate the total amount of issued credit, which is much easier than calculating
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the actual representation cost. Note that this is entirely a mental experiment for the purpose
of the analysis, as G is not stored or even known by TtoG. We just perform some changes
on it depending on the actions of TtoG.

The analysis outlined above is not enough to bound the representation cost for chain
compression, we need specialised tools for that. They are described in Section 4.6.

In this section we show a slightly weaker bound, the full proof of the bound from Theo-
rem 1 is presented in Section 5.

4.1. Normal form
As explained above, in our mental experiment we modify the grammar G and perform

the compression operations on it. To make the analysis simpler, we want to have a special
form in which the compression operation will not interact too much between different parts
of the grammar. This idea is formalised using handles: We say that a pattern t(y) is a
handle if it is of the form

f(w1(γ1), w2(γ2), . . . , wi−1(γi−1), y, wi+1(γi+1), . . . , w`(γ`)),

where rank(f) = `, every γj is either a constant symbol or a nonterminal of rank 0, every wj

is a chain pattern, and y is a parameter, see Figure 5. Note that a(y) for a unary letter a is a
handle. Since handles have one parameter only, for handles h1, h2, . . . , h` we write h1h2 · · ·h`

for the tree h1(h2(. . . (h`(y)))) and treat it as a string, similarly to chains patterns.
We say that an SLCF grammar G = (N,F, P, S) is a handle grammar (or simply “G is

handle”) if the following conditions hold:

(HG1) N ⊆ N0 ∪ N1

(HG2) For A ∈ N ∩ N1 the unique rule for A is of the form

A→ uBvCw or A→ uBv or A→ u,

where u, v, and w are (perhaps empty) sequences of handles and B,C ∈ N1. We
call B the first and C the second nonterminal in the rule for A, see Figure 6.

(HG3) For A ∈ N ∩ N0 the rule for A is of the (similar) form

A→ uBvC or A→ uBvc or A→ uC or A→ uc,

where u and v are (perhaps empty) sequences of handles, c is a constant, B ∈ N1,
and C ∈ N0, see Figure 6. Again we speak of the first and second nonterminal in
the rule for A.

Note that the representation of the rules for nonterminals from N0 is not unique. Take
for instance the rule A → f(B,C), which can be written as A → h(C) for the handle
h(y) = f(B, y) or as A → h′(B) for the handle h′ = f(y, C). On the other hand, for
nonterminals from N1 the representation of the rules is unique, since there is a unique
occurrence of the parameter y in the right-hand side.
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Figure 5: A handle, where A has rank 0, c is a constant and a is a unary letter.

B

C

y
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C

Figure 6: Two possible shapes of right-hand sides in a handle grammar for a nonterminal of rank 1 (left)
and rank 0 (right), respectively. The dots symbolise the chains of unary letters ended by a nonterminal of
rank 0 or a constant.
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B

C

y

Figure 7: The tree obtained from a rule for nonterminal of rank 1. Each handle and nonterminal represents
a context, each such context is enclosed either by a dotted or fat line, respectively.

What is left is to show how to transform an arbitrary SLCF grammar G′ into an equiva-
lent handle grammar G. There is a known construction that transforms an SLCF grammar
G′ into an equivalent monadic SLCF grammar G [18, Theorem 10] (i.e. every nonterminal
of G′ has rank 0 or 1). While the original paper [18] contains only weaker statement, in
fact this construction returns a handle grammar which has O(|G′|) many occurrences of
nonterminals of arity 1 in the rules and O(r|G′|) occurrences of nonterminals of arity 0 and
letters. This stronger result is repeated in the appendix for completeness.
Lemma 10 (cf. [18, Theorem 10]). From a given SLCF grammar G′ of size g = |G′| one can
construct an equivalent handle grammar G of size O(rg) with only O(g) many occurrences
of nonterminals of arity 1 in the rules (and O(rg) occurrences of nonterminals of arity 0).

The construction and proof of [18, Theorem 10] yield the claim, though the actual state-
ment in [18] is a bit weaker. For completeness, the proof of this stronger statement is given
in the appendix.

When considering handle grammars it is useful to have some intuition about the trees
they derive. Recall that a context is a pattern t(y) ∈ T (F, {y}) with a unique occurrence
of the only parameter y. Observe that each nonterminal A ∈ N1 derives a unique context
val(A), the same applies to a handle f and so we write val(f) as well. Furthermore, we can
‘concatenate’ contexts, so we write them in string notation. Also, when we attach a tree
from T (F) to a context, we obtain another tree from T (F). Thus, when we consider a rule
A → h1 · · ·hiBhi+1 · · ·hjChj+1 · · ·hk in a handle grammar (where h1, . . . , hk are handles
and A, B, and C are nonterminals of rank 1) then

val(A) = val(h1) · · · val(hi) val(B) val(hi+1) · · · val(hj) val(C) val(hj+1) · · · val(hk),
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i.e., we concatenate the contexts derived by the handles and nonterminals, see Figure 7.
Similar considerations apply to other rules of handle grammars as well, also the ones for
nonterminals of rank 0.

4.2. Intuition and invariants
For a given input tree T we start (as a mental experiment) with a smallest SLCF grammar

generating T . Let g be the size of this grammar. We first transform it to a handle grammar
G of size O(gr) using Lemma 10. The number of nonterminals of rank 0 (resp., 1) in G is
bounded by O(gr) (resp., O(g)).

In the following, by T we denote the current tree stored by TtoG. For analysing the size
of the grammar produced by TtoG applied to T , we use the accounting method, see e.g. [38,
Section 17.2]. With each occurrence of a letter from F in G’s rules we associate two units of
credit (no credit is assigned to occurrences of nonterminals in rules). During the run of TtoG
we appropriately modify G, so that val(G) = T (recall that T always denotes the current
tree stored by TtoG). In other words, we perform the compression steps of TtoG also on
G. We thereby always maintain the invariant that every occurrence of a letter from F in
G’s rules has two units of credit. In order to do this, we have to issue (or pay) some new
credits during the modifications, and we have to do a precise bookkeeping on the amount of
issued credit. On the other hand, if we do a compression step in G, then we remove some
occurrences of letters. The credit associated with these occurrences is then released and can
be used to pay for the representation cost of the new letters introduced by the compression
step. For unary pair compression and leaf compression, the released credit indeed suffices
to pay the representation cost for the fresh letters, but for chain compression the released
credit does not suffice. Here we need some extra amount that will be estimated separately
later on in Section 4.6. At the end, we can bound the size of the grammar produced by
TtoG by the sum of the initial credit assigned to G, which is at most O(rg) by Lemma 10,
plus the total amount of issued credit plus the extra cost estimated in Section 4.6.

An important difference between our algorithm and the string compression algorithm
from [7], which we generalise, is that we add new nonterminals to G during its modification.
To simplify notation, we denote with m always the number of nonterminals of the current
grammar G, and we denote its nonterminals with A1, . . . , Am. We assume that i < j if
Ai occurs in the right-hand side of Aj, and that Am is the start nonterminal. With αi we
always denote the current right-hand side of Ai. In other words, the productions of G are
Ai → αi for 1 ≤ i ≤ m.

Again note that the modification of G is not really carried out by TtoG, but is only done
for the purpose of analysing TtoG.

Suppose a compression step, for simplicity say an (a, b)-pair compression, is applied to
T . We should also reflect it in G. The simplest solution would be to perform the same
compression on each of the rules of G, hoping that in this way all occurrences of ab in
val(G) are replaced by c. However, this is not always the case. For instance, the 2-chain
ab may occur ‘between’ a nonterminal and a unary letter. This intuition is made precise
in Section 4.3. To deal with this problem, we modify the grammar, so that the problem
disappears. Similar problems occur also when we want to replace an a-maximal chain or
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perform leaf compression. The solutions to those problems are similar and are given in
Section 4.4 and Section 4.5, respectively.

To ensure that G stays handle and to estimate the amount of issued credit, we show that
the grammar preserves the following invariants, where n0 = O(gr) (respectively, n1 = O(g))
is the initial number of occurrences of nonterminals from N0 (respectively, N1) in G while g0
and g1 are those values at some particular moment. Similarly, g̃0 is the number of occurrences
of nonterminals from Ñ0.

(GR1) G is handle.

(GR2) G has nonterminals N0 ∪ N1 ∪ Ñ0, where Ñ0 ∪ N0 ⊆ N0, |N0| ≤ n0 and N1 ⊆ N1,
|N1| ≤ n1.

(GR3) The number g0 of occurrences nonterminals from N0 in G never increases (and is
initially n0), and the number g1 of occurrences of nonterminals from N1 also never
increases (and is initially n1).

(GR4) The number g̃0 of occurrences of nonterminals from Ñ0 in G is at most n1(r − 1).

(GR5) The rules for Ai ∈ Ñ0 are of the form Ai → wAj or Ai → wc, where w is a string of
unary symbols, Aj ∈ N0 ∪ Ñ0, and c is a constant.

Intuitively, N0 and N1 are subsets of the initial nonterminals of rank 0 and 1, respectively,
while Ñ0 are the nonterminals introduced by TtoG, which are all of rank 0.

Clearly, (GR1)–(GR5) hold for the initial handle grammar G obtained by Lemma 10.

4.3. (F up
1 , F down

1 )-compression
We begin with some necessary definitions that help to classify 2-chains. For a non-empty

tree or context t its first letter is the letter that labels the root of t. For a context t(y) which
is not a parameter its last letter is the label of the node above the one labelled with y. For
instance, the last letter of the context a(b(y)) is b and the last letter of the context f(a(c), y)
is f , which is also the first letter.

A chain pattern ab has a crossing occurrence in a nonterminal Ai if one of the following
holds:

(CR1) aAj is a subpattern of αi and the first letter of val(Aj) is b

(CR2) Aj(b) is a subpattern of αi and the last letter of val(Aj) is a

(CR3) Aj(Ak) is a subpattern of αi, the last letter of val(Aj) is a and the first letter of
val(Ak) is b.

A chain pattern ab is crossing if it has a crossing occurrence in any nonterminal and non-
crossing otherwise. Unless explicitly written, we use this notion only in case a 6= b.
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When every chain pattern ab ∈ F up
1 F down

1 is noncrossing, simulating (F up
1 , F down

1 )-com-
pression on G is easy: It is enough to apply TreeUnaryComp (Algorithm 3) to each right-hand
side of G. We denote the resulting grammar with TreeUnaryComp(F up

1 , F down
1 ,G).

In order to distinguish between the nonterminals, grammar, etc. before and after the
application of TreeUnaryComp (or, in general, any procedure) we use ‘primed’ symbols, i.e.,
A′i, G′, T ′ for the nonterminals, grammar and tree, respectively, after the compression step
and ‘unprimed’ symbols (i.e., Ai, G, T ) for the ones before.

Lemma 11. Let G be a handle grammar and G′ = TreeUnaryComp(F up
1 , F down

1 ,G). Then
the following hold:

• If G satisfies (GR1)–(GR5) then G′ satisfies (GR1)–(GR5) as well.

• If there is no crossing chain pattern from F up
1 F down

1 in G, then

val(G′) = TreeUnaryComp(F up
1 , F down

1 , val(G)).

• The grammar G′ has the same number of occurrences of nonterminals of each rank as
G.

• The credit for new letters in G′ and the cost of representing these new letters are paid
by the released credit.

Proof. Clearly, val(G′) can be obtained from val(G) by compressing some occurrences of
patterns from F up

1 F down
1 . Hence, to show that val(G′) = TreeUnaryComp(F up

1 , F down
1 , val(G)),

it suffices to show that val(G′) does not contain occurrences of patterns from F up
1 F down

1 . By
induction on i we show that for every 1 ≤ i ≤ m, val(A′i) does not contain occurrences of
patterns from F up

1 F down
1 . To get a contradiction, consider an occurrence of ab ∈ F up

1 F down
1

in val(A′i). If it is generated by an explicit occurrence of ab in the right-hand side of A′i
then it was present already in the rule for Ai, since we do not introduce new occurrences
of the letters from G. So, the occurrence of ab is replaced by a new letter in G′. If the
occurrence is contained within the subtree generated by some A′j (j < i), then the occurrence
is compressed by the inductive assumption. The remaining case is that there exists a crossing
occurrence of ab in the rule for A′i. However note that if a is the first (or b is the last) letter
of val(A′j), then it was also the first (respectively, last) letter of val(Aj) in the input instance,
as we do not introduce new occurrences of the old letters. Hence, the occurrence of ab was
crossing already in the input grammar G, which is not possible by the assumption of the
lemma.

Each occurrence of ab ∈ F up
1 F down

1 has 4 units of credit (two for each symbol), which
are released in the compression step. Two of the released units are used to pay for the
credit of the new occurrence of the symbol c (which replaces the occurrence of ab), while
the other two units are used to pay for the representation cost of c (if we replace more than
one occurrence of ab in G, some credit is wasted).

Let us finally argue that the invariants (GR1)–(GR5) are preserved: Replacing an oc-
currence of ab with a single unary letter c cannot make a handle grammar a non-handle
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one, so (GR1) is preserved. Similarly, (GR5) is preserved. The set of nonterminals and
the number of occurrences of the nonterminals is unaffected, so also (GR2)–(GR4) are pre-
served.

By Lemma 11 it is left to assure that indeed all occurrences of chain patterns from
F up

1 F down
1 are noncrossing. What can go wrong? Consider for instance the grammar with

the rules A1(y) → a(y) and A2 → A1(b(c)). The pattern ab has a crossing occurrence. To
deal with crossing occurrences we change the grammar. In our example, we replace A1 by
a in the right-hand side of A2, leaving only A2 → ab(c), which does not contain a crossing
occurrence of ab.

Suppose that some ab ∈ F up
1 F down

1 is crossing because of (CR1). Let aAi be a subpattern
of some right-hand side and let val(Ai) = bt′. Then it is enough to modify the rule for Ai

so that val(Ai) = t′ and replace each occurrence of Ai in a right-hand side by bAi. We call
this action popping-up b from Ai. The similar operation of popping down a letter a from
Ai ∈ N ∩ N1 is symmetrically defined (note that both pop operations apply only to unary
letters). See Figure 8 for an example. A similar operation of popping letters in the context
of tree grammars is used also in [41].

The lemma below shows that popping up and popping down removes all crossing occur-
rences of ab. Note that the operations of popping up and popping down can be performed
for several letters in parallel: The procedure Pop(F up

1 , F down
1 ,G) below ‘uncrosses’ all occur-

rences of patterns from the set F up
1 F down

1 , assuming that F up
1 and F down

1 are disjoint subsets
of F1 (and we apply it only in the cases in which they are disjoint).

Recall that for a handle grammar, right-hand sides can be viewed as sequences of non-
terminals and handles. Hence, we can speak of the first (respectively, last) symbol of a
right-hand side.

Algorithm 6 Pop(F up
1 , F down

1 ,G): Popping letters from F up
1 and F down

1
1: for i← 1 . .m− 1 do
2: if the first symbol of αi is b ∈ F down

1 then . popping up b
3: if αi = b then
4: replace Ai in all right-hand sides of G by b
5: else
6: remove this leading b from αi

7: replace Ai in all right-hand sides of G by bAi

8: if Ai ∈ N1 and the last symbol of αi is a ∈ F up
1 then . popping down a

9: if αi = a then
10: replace Ai in all right-hand sides of G by a
11: else
12: remove this final a from αi

13: replace Ai in all right-hand sides of G by Aia
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Figure 8: A tree before and after Pop({a}, {b}, ·). Affected nodes are encircled, the dotted lines enclose the
patterns generated by a nonterminal.

Lemma 12. Let G be a handle grammar and G′ = Pop(F up
1 , F down

1 ,G), where F up
1 ∩F down

1 =
∅. Then, the following hold:

• val(A′m) = val(Am) and hence val(G) = val(G′).

• All chain patterns from F up
1 F down

1 are non-crossing in G′.

• If G satisfies (GR1)–(GR5), then so does G′.

• The grammar G′ has at most the same number of occurrences of nonterminals of each
rank as G.

• During the computation of G′ from G, at most two letters are popped for each occur-
rence of a nonterminal of rank 1 and at most one letter is popped for each occurrence
of a nonterminal of rank 0. In particular, if G satisfies (GR1)–(GR5) then at most
4g1 + 2g0 + 2g̃0 units of credit are issued during the computation of G′.

Proof. Observe first that whenever we pop up b from some Ai, then we replace each of Ai’s
occurrences in G with bAi (or with b, when val(Ai) = b), and similarly for the popping down
operation, thus the value of val(Aj) is not changed for j 6= i. Hence, in the end we have
val(A′m) = val(Am) = T (note that Am does not pop letters).

Secondly, we show that if the first letter of val(A′i) (where i < m) is b′ ∈ F down
1 then we

popped-up a letter from Ai (which by the code is some b ∈ F down
1 ); a similar claim holds by

symmetry for the last letter of val(Ai). So, suppose that the claim is not true and consider
the nonterminal Ai with the smallest i such that the first letter of val(A′i) is b′ ∈ F down

1 but
we did not pop up a letter from Ai. Consider the first symbol of αi when Pop considered
Ai in line 2. Note, that as Pop did not pop up a letter from Ai, the first letter of val(Ai)
and val(A′i) is the same and hence it is b′ ∈ F down

1 . So αi cannot begin with a letter as then
it is b′ ∈ F down

1 which should have been popped-up. Hence, the first symbol of αi is some
nonterminal Aj for j < i. But then the first letter of val(A′j) is b′ ∈ F down

1 and so by the
inductive assumption Pop popped-up a letter from Aj. Hence, αi begins with a letter when
Ai is considered in line 2. We obtained a contradiction.
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Suppose now that after Pop there is a crossing pattern ab ∈ F up
1 F down

1 . This is due to
one of the bad situations (CR1)–(CR3). We consider only (CR1); the other cases are dealt
in a similar fashion. Hence, assume that aA′i is a subpattern in a right-hand side of G′ and
the first letter of val(A′i) is b. Note that as a /∈ F down

1 is labelling the parent node of an
occurrence of A′i in G′, Ai did not pop up a letter. But the first letter of val(A′i) is b ∈ F down

1 .
So, Ai should have popped up a letter by our earlier claim, which is a contradiction.

Note that Pop introduces at most two new letters for each occurrence of a nonterminal
of rank 1, so from N1 (one letter popped up and one popped down), and at most one new
letter for each occurrence of a nonterminal of rank 0, so from N0 ∪ Ñ0 (as nonterminals of
rank 0 cannot pop down a letter). As each letter has two units of credit, the estimation on
the number of issued credit follows from (GR1)–(GR5).

Concerning the preservation of the invariants, note that Pop does not introduce new
nonterminals or new occurrences of existing nonterminals (occurrences of nonterminals can
be eliminated in line 4 and 10). Therefore, (GR2)–(GR4) are preserved. Moreover, also the
form of the productions guaranteed by (GR1) and (GR5) cannot be spoiled, so (GR1) and
(GR5) are preserved as well.

Hence, to simulate (F up
1 , F down

1 )-compression on G it is enough to first uncross all 2-chains
from F up

1 F down
1 and then compress them all using TreeUnaryComp(F up

1 , F down
1 ,G).

Lemma 13. Let G be a handle grammar and let

G′ = TreeUnaryComp(F up
1 , F down

1 ,Pop(F up
1 , F down

1 ,G)).

Then the following hold:

• val(G′) = TreeUnaryComp(F up
1 , F down

1 , val(G))

• If G satisfies (GR1)–(GR5), then so does G′.

• The grammar G′ has at most the same number of occurrences of nonterminals of each
rank as G.

• At most two new occurrences of letters are introduced for each occurrence of a non-
terminal of rank 1, and at most one new occurrence of a letter is introduced for each
occurrence of a nonterminal of rank 0. In particular, if G satisfies (GR1)–(GR5) then
at most 4g1 + 2g0 + 2g̃0 units of credit are issued during the computation of G′.

• The issued credit and the credit released by TreeUnaryComp cover the representation
cost of fresh letters as well as their credit in G′.

Proof. By Lemma 12, every chain pattern from F up
1 F down

1 is non-crossing in Pop(F up
1 , F down

1 ,G).
We get

val(G′) = val(TreeUnaryComp(F up
1 , F down

1 ,Pop(F up
1 , F down

1 ,G)))
Lemma 11= TreeUnaryComp(F up

1 , F down
1 , val(Pop(F up

1 , F down
1 ,G)))

Lemma 12= TreeUnaryComp(F up
1 , F down

1 , val(G)).
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Moreover, at most 4g1 + 2g0 + 2g̃0 units of credit are issued and this is twice the number
of occurrences of new letters in the grammar. By Lemma 11 and 12 no new occurrences of
nonterminals are introduced. By Lemma 11 the cost of representing new letters introduced
by TreeUnaryComp is covered by the released credit. Finally, both TreeUnaryComp and Pop
preserve the invariants (GR1)–(GR5).

Since by Lemma 9 we apply at most O(log n) many (F up
1 , F down

1 )-compressions (for dif-
ferent sets F up

1 and F down
1 ) and by (GR3)–(GR4) we have g0 ≤ n0, g̃0 ≤ n1(r − 1) and

g1 ≤ n1, we obtain.

Corollary 1. (F up
1 , F down

1 )-compression issues in total O((n0 + n1r) log n) units of credit
during all modifications of G.

4.4. Chain compression
Our notations and analysis for chain compression is similar to those for (F up

1 , F down
1 )-

compression. In order to simulate chain compression on G we want to apply TreeChainComp
(Algorithm 1) to the right-hand sides ofG. This works as long as there are no crossing chains:
A unary letter a has a crossing chain in a rule Ai → αi if aa has a crossing occurrence in
αi, otherwise a has no crossing chain. As for (F up

1 , F down
1 )-compression, when there are no

crossing chains, we apply TreeChainComp to the right-hand sides of G. We denote with
TreeChainComp(F1,G) the grammar obtained by applying TreeChainComp to all right-hand
sides of G.

Lemma 14. Let G be a handle grammar and G′ = TreeChainComp(F1,G). Then the fol-
lowing hold:

• If no unary letter from F1 has a crossing chain in a rule of G, then

val(G′) = TreeChainComp(F1, val(G)).

• The grammar G′ has the same number of occurrences of nonterminals of each rank as
G.

• If G satisfies (GR1)–(GR5), then so does G′.

The proof is similar to the proof of Lemma 11 and so it is omitted. Note that so far
we have neither given a bound on the amount of issued credit nor on the representation
cost for the new letters a` introduced by TreeChainComp. Let us postpone these points and
first show how to ensure that no letter has a crossing chain. The solution is similar to Pop:
Suppose for instance that a has a crossing chain due to (CR1), i.e., some aAi is a subpattern
in a right-hand side and val(Ai) begins with a. Popping up a does not solve the problem,
since after popping, val(Ai) might still begin with a. Thus, we keep on popping up until
the first letter of val(Ai) is not a, see Figure 10. In order to do this in one step we need
some notation: We say that a` is the a-prefix of a tree (or context) t if t = a`t′ and the first
letter of t′ is not a (here t′ might be the trivial context y), see Figure 9. In this terminology,
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Figure 10: A tree before and after RemCrChains. Affected nodes are encircled, the dotted lines enclose the
patterns generated by a nonterminal.

we remove the a-prefix of val(Ai). Similarly, we say that a` is the a-suffix of a context t(y)
if t = t′(a`(y)) for a context t′(y) and the last letter of t′ is not a (again, t′ might be the
trivial context y and then a` is also the a-prefix of t). The following algorithm RemCrChains
eliminates crossing chains from G.
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Algorithm 7 RemCrChains(G): removing crossing chains.
1: for i← 1 . .m− 1 do
2: if the first letter a of val(Ai) is unary then
3: let p be the length of the a-prefix of αi

4: if αi = ap then
5: replace Ai in all right-hand sides by ap

6: else
7: remove ap from the beginning of αi

8: replace Ai by apAi in all right-hand sides
9: if Ai ∈ N1 and the last letter b of val(Ai) is unary then
10: let s be the length of the b-suffix of αi

11: if αi = bs then
12: replace Ai in all right-hand sides by bs

13: else
14: remove bs from the end of αi

15: replace Ai by Aib
s in all right-hand sides

Lemma 15. Let G be a handle grammar and G′ = RemCrChains(G). Then the following
hold:

• val(Am) = val(A′m) and hence val(G) = val(G′).

• No unary letter has a crossing chain in G′.

• If G satisfies (GR1)–(GR5), then so does G′.

• The grammar G′ has at most the same number of occurrences of nonterminals of each
rank as G.

Proof. First observe that whenever we remove the a-prefix api from the rule for Ai we replace
each occurrence of Ai by apiAi and similarly for b-suffixes. Hence, as long as Aj is not yet
considered, it defines the same tree as in the input tree. In particular, after RemCrChains
we have val(A′m) = val(Am), as we do not pop prefixes and suffixes from Am.

Next, we show that when RemCrChains considers Ai, then p from line 3 is the length of the
a-prefix of val(Ai) (similarly, s from line 10 is the length of the a-suffix of val(Ai)). Suppose
that this is not the case and consider Ai with smallest i which violates the statement. Clearly
i > 1 since there are no nonterminals in the right-hand side for A1. Let ak be the a-prefix
of val(Ai). We have p < k. The symbol below ap in αi (which must exist because otherwise
val(Ai) = ap) cannot be a letter (as the a-prefix of val(Ai) is not ap), so it is a nonterminal
Aj with j < i. The first letter of val(Aj) must be a. Let ak′ be the a-prefix of val(Aj).
By induction, Aj popped up ak′ , and at the time when Ai is considered, the first letter of
val(Aj) is different from a. Hence, the a-prefix of val(Ai) is exactly ap, a contradiction.

As a consequence of the above statement, if aA′i occurs in a right-hand side of the output
grammar G′, then a is not the first letter of val(A′i). This shows that (CR1) cannot hold for
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a chain pattern aa. The conditions (CR2) and (CR3) are handled similarly. So there are no
crossing chains after RemCrChains.

The arguments for the last two points of the lemma are the same as in the proof of
Lemma 12 and therefore omitted.

So chain compression is done by first running RemCrChains and then TreeChainComp on
the right-hand sides of G.

Lemma 16. Let G be a handle grammar and G′ = TreeChainComp(F1,RemCrChains(G)).
Then, the following hold:

• If G satisfies (GR1)–(GR5), then so does G′.

• val(G′) = TreeChainComp(F1, val(G))

• During the computation of G′ from G at most two new occurrences of letters are
introduced for each occurrence of a nonterminal of rank 1, and at most one occurrence
of a letter is introduced for each occurrence of a nonterminal of rank 0. In particular,
if G satisfies (GR3)–(GR4) then at most 4g1 + 2g0 + 2g̃0 units of credit are issued in
the computation of G′ and this credit is used to pay the credit for the fresh letters a`

in the grammar introduced by TreeChainComp (but not their representation cost).

Proof. We shall comment only on the amount of new letters and the issued credit, as the
rest follows from Lemma 14 and 15. Note that the arbitrarily long chains popped by Rem-
CrChains are compressed into single letters by TreeChainComp. Hence, as for (F up

1 , F down
1 )-

compression, at most two letters are introduced for each occurrence of a nonterminal of rank
1 (i.e., from N1) and at most one letter is introduced for each occurrence of a nonterminal
of rank 0 (i.e., from N0 ∪ Ñ0). The (GR3)–(GR4) additionally bound the number of occur-
rences of nonterminals, so assuming (GR3)–(GR4) yields the bound on the amount of issued
credit.

Since by Lemma 9 we apply at most O(log n) many chain compressions to G and by
(GR3)–(GR4) we have g0 ≤ n0, g̃0 ≤ n1(r − 1) and g1 ≤ n1, we get:

Corollary 2. Chain compression issues in total O((n0 + n1r) log n) units of credit during
all modifications of G.

The total representation cost for the new letters a` introduced by chain compression is
estimated separately in Section 4.6.

4.5. Leaf compression
In order to simulate leaf compression on G we perform similar operations as in the case

of (F up
1 , F down

1 )-compression: Ideally we would like to apply TreeLeafComp to each rule of G.
However, in some cases this does not return the appropriate result. We say that the pair
(f, a) is a crossing parent-leaf pair in G, if f ∈ F≥1, a ∈ F0, and one of the following cases
holds:
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(FC1) f(t1, . . . , t`) is a subtree of some right-hand side of G, where for some j we have
tj = Ak and val(Ak) = a.

(FC2) For some Ai ∈ N1, Ai(a) is a subtree of some right-hand side of G and the last letter
of val(Ai) is f .

(FC3) For some Ai ∈ N1 and Ak ∈ N0, Aj(Ak) is a subtree of some right-hand side of G,
the last letter of val(Ai) is f , and val(Ak) = a.

When there is no crossing parent-leaf pair, we proceed as in the case of any of the two
previous compressions: We apply TreeLeafComp to each right-hand side of a rule. We
denote the resulting grammar with TreeLeafComp(F≥1, F0,G).

Lemma 17. Let G be a handle grammar and G′ = TreeLeafComp(F≥1, F0,G). Then, the
following hold:

• If there is no crossing parent-leaf pair in G, then val(G′) = TreeLeafComp(F≥1, F0, val(G)).

• The cost of representing new letters and the credits for those letters are covered by the
released credit.

• If G satisfies (GR1)–(GR5), then so does G′.

• The grammar G′ has the same number of occurrences of nonterminals of each rank as
G.

Proof. Most of the proof follows similar lines as the proof of Lemma 11, but there are some
small differences.

Let us first prove that val(G′) = TreeLeafComp(F≥1, F0, val(G)) under the assumption
that there is no crossing parent-leaf pair in G. As in the proof of Lemma 11 it suffices to
show that val(G′) does not contain a subtree of the form f(t1, . . . , tk) with f ∈ F≥1 such that
there exist positions 1 ≤ i1 < i2 < · · · < i` ≤ k (` ≥ 1) and constants a1, . . . , a` ∈ F0 with
tij = aj for 1 ≤ j ≤ ` and ti /∈ F0 for i 6∈ {i1, . . . , i`} (note that the new letters introduced
by TreeLeafComp do not belong to the alphabet F ). Assume that such a subtree exists in
val(A′i). Using induction, we deduce a contradiction. If the root f together with its children
at positions i1, . . . , i` are generated by some other nonterminal A′j occurring in the right-hand
side of A′i, then these nodes are compressed by the induction assumption. If they all occur
explicitly in the right-hand side, then they are compressed by TreeLeafComp(F≥1, F0,G).
The only remaining case is that G′ contains a crossing parent-leaf pair. But then, since
f, a1, . . . , a` are old letters, this crossing parent-leaf pair must be already present in G,
which contradicts the assumption from the lemma.

Concerning the representation cost for the new letters, observe that when f and ` of its
children are compressed, the representation cost for the new letter is `+ 1. There is at least
one occurrence of f with those children in a right-hand side of G. Before the compression
these nodes held 2(` + 1) units of credit. After the compression, only two units are needed
for the new node. The other 2` ≥ `+ 1 units are enough to pay for the representation cost.
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Concerning the preservation of the invariants, observe that no new nonterminals were
introduced, so (GR2)–(GR4) are preserved. Also the form of the rules for Ai ∈ Ñ0 cannot be
altered (the only possible change affecting those rules is a replacement of ac, where a ∈ F1
and c ∈ F0, by a new letter c′ ∈ F0).

So it is left to show that the resulting grammar is handle. It is easy to show that after a
leaf compression a handle is still a handle, with only one exception: assume we have a handle
h = f(w1γ1, . . . , wj−1γj−1, y, wj+1γj+1, . . . , w`γ`) followed by a constant c in the right-hand
side αi of Ai. Such a situation can only occur, if Ai ∈ N0 and αi is of the form vc or uBvc
for sequences of handles u and v, where v = v′h for a possibly empty sequence of handles
v′ (see (HG3)). Then leaf compression merges the constant c into the f from the handle
h. There are two cases: If all wk (which are chains) are empty and all γk are constants
from F0, then the resulting tree after leaf compression is a constant and no problem arises.
Otherwise, we obtain a tree of the form f ′(w′1γ′1, . . . , w′`′γ′`′), where every w′k is a chain, and
every γ′k is either a constant or a nonterminal of rank 0. We must have `′ > 0 (otherwise,
this is in fact the first case). Therefore, f ′(w′1γ′1, . . . , w′`′γ′`′) can be written (in several ways)
as a handle, followed by (a possibly empty) chain, followed by a constant or a nonterminal
of rank 0. For instance, we can write the rule for Ai as Ai → v′f ′(y, w′2γ′2, . . . , w′`′γ′`′)w′1γ′1
or Ai → uBv′f ′(y, w′2γ′2, . . . , w′`′γ′`′)w′1γ′1 (depending on the form of the original rule for Ai).
This rule has one of the forms from (HG3), which concludes the proof. Note that we possibly
add a second nonterminal to the right-hand side of Ai ∈ N0 in the second case (as γ′1 can
be a non-terminal), which is allowed in (HG3).

If there are crossing parent-leaf pairs, then we uncross them all by a generalisation of the
Pop procedure. Observe that in some sense we already have a partition: We want to pop
up letters from F0 and pop down letters from F≥1. The latter requires some generalisation,
becasue when we pop down a letter, it may have rank greater than 1 and so we need to in
fact pop a whole handle. This adds new nonterminals to G as well as a large number of new
letters and hence a large amount of credit, so we need to be careful. There are two crucial
details:

• When we pop down a whole handle h = f(t1, . . . , tk, y, tk+1, . . . , t`), we add to the set
Ñ0 fresh nonterminals for all trees ti that are non-constants, replace these ti in h by
their corresponding nonterminals and then pop down the resulting handle. In this way
on one hand we keep the issued credit small and on the other no new occurrence of
nonterminals from N0 ∪N1 are created.

• We do not pop down a handle from every nonterminal, but do it only when it is needed,
i.e., if for Ai ∈ N1 one of the cases (FC2) or (FC3) holds. This allows preserving
(GR5). Note that when the last symbol in the rule for Ai is not a handle but another
nonterminal, this might cause a need for recursive popping. So we perform the whole
popping down in a depth-first-search style.

Our generalised popping procedure is called GenPop (Algorithm 8) and is shown in Figure 11.
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Figure 11: Popping down during uncrossing a crossing parent-leaf pair. The popped node is encircled, and
dotted lines enclose patterns generated by nonterminals.

Lemma 18. Let G be a handle grammar and G′ = GenPop(F≥1, F0,G). Then, the following
hold:

• val(Am) = val(A′m) and hence val(G) = val(G′).

• If G satisfies (GR1)–(GR5), then so does G′.

• The grammar G′ has at most the same number of occurrences of nonterminals of rank
1 as G.

• The grammar G′ has no crossing parent-leaf pair.

• During the computation of G′ from G at most one new occurrence of a letter is intro-
duced for each occurrence of a nonterminal of rank 0 and at most r new occurrences
of letters are introduced for each occurrence of a nonterminal of rank 1. In particular,
if G satisfies (GR3)–(GR4) then at most 2g1r + 2g0 + 2g̃0 units of credit are issued.

Proof. The identity val(Am) = val(A′m) follows as for Pop. Next, we show that (GR1)–
(GR5) are preserved: so, assume that G satisfies (GR1)–(GR5). Replacing nonterminals
by constants and popping down handles cannot turn a handle grammar into one that is
not a handle grammar, so (GR1) is preserved. The number of nonterminals in N0 and N1
does not increase, so (GR2) also holds. Concerning (GR3), observe that no new occurrences
of nonterminals from N1 are produced and that new occurrences of nonterminals from N0
can be created only in line 15, when a rule Aij → tj is added to G (tj may end with a
nonterminal from N0). However, immediately before, in line 12, we removed one occurrence
of tj from G, so the total count is the same. Hence (GR3) holds.

The rules for the new nonterminals Aij ∈ Ñ0 that are added in line 16 are of the form
Aij → tj, where f(t1, . . . , tk, y, tk+1, . . . , t`) was a handle. So, by the definition of a handle,
every tj is either of the form wc or wAk, where w is a string of unary letters, c a constant,
and Ak ∈ N0 ∪ Ñ0. Hence, the rule for Aij is of the form required in (GR5) and thus (GR5)
is preserved.

It remains to show (GR4), i.e., the bound on the number of occurrences of nonterminals
from Ñ0, which is the only non-trivial task. When we remove the handle f(t1, . . . , tk, y, tk+1, . . . , t`)
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Algorithm 8 GenPop(F≥1, F0,G): uncrossing parent-leaf pairs
1: for i← 1 . .m− 1 do . popping up letters from F0
2: if αi = a ∈ F0 then
3: replace each Ai in the right-hand sides by a
4: for i← m− 1 . . 1 do
5: if Ai(a) with a ∈ F0 occurs in some rule then
6: mark Ai . we need to pop down a handle from Ai

7: if Ai is marked and αi ends with a nonterminal Aj then
8: mark Aj . we need to pop down a handle from Aj as well
9: for i← 1 . .m− 1 do
10: if Ai is marked then . we want to pop down a handle from Ai

11: let αi end with handle f(t1, . . . , tk, y, tk+1, . . . , t`) . αi must end with a handle
12: remove this handle from αi

13: for j ← 1 . . ` do
14: if tj /∈ F0 then . i.e., it is not a constant
15: create a rule Aij → tj for a fresh nonterminal Aij

16: add Aij to Ñ0
17: γj := Aij

18: else
19: γj := tj

20: replace each Ai(t) in a right-hand side by Ai(f(γ1, . . . , γk, t, γk+1, . . . , γ`))

from the rule for Ai and introduce new nonterminals Ai1 , . . . , Ai` then we say that Ai owns
those new nonterminals (note that Ai ∈ N1).5 Furthermore, when we replace an occurrence
of Ai(t) in a right-hand side by Ai(f(Ai1 , . . . , Aik , t, Aik+1 , . . . , Ai`)) in line 20, those new
occurrences of Ai1 , . . . , Ai` are owned by this particular occurrence of Ai. If the owning
nonterminal (or its occurrence) is later removed from the grammar, the owned (occurrences
of) nonterminals get disowned and they remain so till they get removed.

The crucial technical claim is that one occurrence of a nonterminal owns at most r − 1
occurrences of nonterminals, here stated in a slightly stronger form:
Claim 2. When an occurrence of Ai ∈ N1 creates new occurrences of nonterminals (in line 20)
from Ñ0, then right before it does not own any occurrences of other nonterminals from Ñ0.

This is shown in a series of simpler claims.
Claim 3. For a fixed nonterminal Ai ∈ N1, every occurrence of Ai owns occurrences of the
same nonterminals Ai1 , . . . , Ai` .

This is obvious: We assign occurrences of the same nonterminals Ai1 , . . . , Ai` to each
occurrence of Ai in line 20 and the only way that such an occurrence ceases to exist is when

5Some tj might be constants and are not replaced by new nonterminals Aij . For notational simplicity
we assume here that no tj is a constant, which in some sense is the worst case.

37



t

t′

Figure 12: The context t dominates the tree t′.

Aij is replaced with a constant. But this happens for all occurrences of Aij at the same
time.

In order to formulate the next claim, we need some notation: we say that an occurrence
of a subcontext t(y) of T dominates an occurrence of the subtree t′ of T , if T can be
written as T = C1(t(C2(t′))), where t and t′ refer here to the specific occurrences of t and
t′, respectively, see Figure 12 for an illustration.
Claim 4. When Ai owns Aij then each subcontext generated by Ai in T dominates a subtree
generated by Aij .

This is true right after the introduction of an owned nonterminal Aij : Each occurrence
of Ai is replaced by Ai(f(Ai1 , . . . , Aik , t, Aik+1 , . . . , Ai`)) and this occurrence of Ai owns
the occurrence of Aij in this particular f(Ai1 , . . . , Aik , t, Aik+1 , . . . , Ai`). What can change?
Compression of letters does not affect dominance, as we always compress subtrees that are
either completely within val(Ai) or completely outside val(Ai) and the same applies to each
Aij . When popping up from Aij then the new tree generated by this occurrence of Aij is a
subtree of the previous one, so the dominance is not affected. When popping up or popping
down from Ai, then the new context is a subcontext of the previous one, so dominance is
also not affected (assuming that Ai exists afterwards). Hence the claim holds.
Claim 5. When Ai is marked by GenPop, then T contains a subtree of the form t(a) for a
constant symbol a, where the subcontext t is generated by an occurrence of Ai.

If Ai was marked because Ai(a) occurs in some rule then this is obvious, otherwise it
was marked because it is the last nonterminal in the right-hand side of some Aj which is
also marked (and j > i). By induction we conclude that T contains a subtree of the form
t(a) for a constant symbol a, where the subcontext t is generated by an occurrence of Aj.
But as Ai is the last symbol in the right-hand side for Aj, the same is true for Ai.
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Getting back to the proof of Claim 2, suppose that we create new occurrences of the
nonterminals Ai1 , . . . , Ai` in line 20 and right before line 20, Ai already owns a nonterminal
Aq. Then Ai must be marked and so by Claim 5 we know that T contains a subtree of the
form t(a) for a constant a, where the subcontext t is generated by an occurrence of Ai. By
Claim 3 this occurrence of Ai owns an occurrence of Aq. Then by Claim 4 Aq must produce
the constant a. But this is not possible, since in line 1 we eliminate all nonterminals that
generate constants, and there is no way to introduce a nonterminal that produces a constant.
So, we derived a contradiction and thus Claim 2 holds.

Using Claim 2 we can show the bound from (GR4) on the number of occurrences of
nonterminals from Ñ0. The bound clearly holds as long as there are no disowned nontermi-
nals: Each occurrence of a nonterminal from Ñ0 is owned by an occurrence of a nonterminal
from N1. By Claim 2 at most r − 1 of them are owned by an occurrence of a nonterminal
from N1, so there are at most g1(r − 1) such occurrence, where g1 ≤ n1 by (GR3). As the
second subclaim we show that there are at most (n1 − g1)(r − 1) disowned occurrences of
nonterminals from Ñ0, which finally shows (GR4). This is shown by induction and clearly
holds when there are no disowned nonterminals. By (GR3) the number g1 of occurrences of
nonterminals from N1 never increases. So it is left to consider what happens, when a non-
terminal gets disowned. Assume that it was owned by Ai ∈ N1 and now this Ai is removed
from G. Thus g1 decreases by 1 and we know, from Claim 2 that Ai owns at most r − 1
nonterminals, which yields the claim.

Concerning the occurrences of new letters and their credit: We introduce at most one
letter for each occurrence of a nonterminal of rank 0 (i.e., from N0 ∪ Ñ0) during popping up
and at most r letters for each occurrence of a nonterminal of rank 1 (i.e., from N1) during
popping down. As (GR3)–(GR4) give a bound on number of occurrences of nonterminals,
assuming them yields that at most 2rg1 + 2g0 + 2g̃0 units of credit are issued.

Finally, we show that G′ = GenPop(F≥1, F0,G) does not contain crossing parent-leaf
pairs. Observe that after the loop in line 1 there are no nonterminals Ai such that val(Ai) ∈
F0. Afterwards, we cannot create a nonterminal that evaluates to a constant in F0. Hence
there can be no crossing parent-leaf pair that satisfies (FC1) or (FC3).

In order to rule out (FC2), we proceed with a series of claims. We first claim that if
Ai is marked then in line 11 indeed the last symbol in the rule Ai → αi is a handle (so
it can be removed in line 12). Suppose this is wrong and let Ai be the nonterminal with
the smallest i for which this does not hold. As a first technical step observe that if some
Aj is marked then Aj ∈ N1: Indeed, if Aj(a) occurs in a rule of G then clearly Aj ∈ N1
and if Ak is the last nonterminal in the rule for Aj ∈ N1 then Ak ∈ N1 as well. Hence
Ai ∈ N1. So the last symbol in the rule for Ai is either a nonterminal Aj ∈ N1 with
j < i or a handle. In the latter case we are done as there is no way to remove this handle
from the rule for Ai before Ai is considered in line 11. In the former case observe that Aj

is also marked. By the minimality of i, when Aj is considered in line 11, it ends with a
handle f(t1, . . . , tk, y, tk+1, . . . , t`). Hence the terminating Aj(y) in the right-hand side for
Ai is replaced by Aj(f(γ1, . . . , γk, y, γk+1, . . . , γ`)) and there is no way to remove the handle
f(γ1, . . . , γk, y, γk+1, . . . , γ`) from the end until Ai is considered in line 12.
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Finally, suppose that there is a crossing parent-leaf pair because of the situation (FC2)
after GenPop, i.e., Ai(a) occurs in some right-hand side and the last letter of val(Ai) is f .
Then in particular we did not pop down a letter from Ai, so by the earlier claim Ai was not
marked. But Ai(a) occurs in the right-hand already after the loop in line 1, because a cannot
be introduced after the loop. So we should have marked Ai, which is a contradiction.

So in case of leaf compression we can proceed as in the case of (F up
1 , F down

1 )-compression
and chain compression: we first uncross all parent-leaf pairs and then compress each right-
hand side independently.
Lemma 19. Let G be a handle grammar and G′ = TreeLeafComp(F≥1, F0,GenPop(F≥1, F0,G)).
Then, the following hold:

• val(G′) = TreeLeafComp(F≥1 , F0, val(G))

• The grammar G′ has at most the same number of occurrences of nonterminals of rank
1 as G.

• If G satisfy (GR1)–(GR5), then so does G′.

• During the computation of G′ from G at most one new occurrence of a letter is intro-
duced for each occurrence of a nonterminal of rank 0 and at most r new occurrences
of letters are introduced for each occurrence of a nonterminal of rank 1. In particular,
if G satisfies (GR3)–(GR4) then at most 2g1r + 2g0 + 2g̃0 units of credit are issued.

• The issued credit and the credit released by TreeLeafComp cover the representation cost
of fresh letters as well as their credit in G′.

Proof. This is a combination of Lemma 17 and 18: By Lemma 18, GenPop eliminates all
crossing parent-leaf pairs and introduces at most one letter for each occurrence of non-
terminal of rank 0 and at most r letters for each occurrence of a nonterminal of rank 1.
The (GR3)–(GR4) give a bound on number of occurrences of nonterminals, which leads
to bound 2g1r + 2g0 + 2g̃0 of credit. Then by Lemma 17, TreeLeafComp ensures that
val(G′) = TreeLeafComp(F≥1 , F0, val(G)). Furthermore the credit of the new letters and
the representation cost is covered by the credit released by TreeLeafComp. Finally, both
subprocedures preserve (GR1)–(GR5) and do not introduce occurrences of rank 1 nonter-
minals.

By Lemma 9 we apply at most O(log n) many leaf compressions to G. By (GR3)–(GR4)
we have g0 ≤ n0, g̃0 ≤ n1(r − 1) and g1 ≤ n1. Hence, we get:
Corollary 3. Leaf compression issues in total at most O((n0 + n1r) log n) units of credit
during all modifications of G.

From Corollaries 1, 2, and 3 and the observation that the initial credit is O(|G|) ≤ O(gr)
we get:
Corollary 4. The whole credit issued during all modifications of G is in O(gr + (n0 +
n1r) log n).
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4.6. Calculating the cost of representing letters in chain compression
The issued credit is enough to pay the two units of credit for every letter introduced

during popping, whereas the released credit covers the cost of representing the new letters
introduced by (F up

1 , F down
1 )-compression and leaf compression. However, the released credit

does not cover the cost of representation for letters created during chain compression. The
appropriate analysis is presented in this section. The overall plan is as follows: Firstly,
we define a scheme of representing letters introduced by chain compression based on the
grammar G and the way G is changed by TreeChainComp (the G-based representation).
Then, we show that for this scheme the representation cost is bounded by O((n0+n1r) log n).
Lastly, it is proved that the actual representation cost for the letters introduced by chain
compression during the run of TtoG (as defined in Lemma 4 in Section 3.1, called the TtoG-
based representation later on) is smaller than the G-based one. Hence, it is bounded by
O((n0 + n1r) log n) as well.

4.6.1. G-based representation
We now define the G-based representation, which is different from the representation

actually used by TtoG. As noted, G is a tree grammar obtained by modifying the optimal
grammar for the input tree. At each stage, it produces the tree currently stored by TtoG. The
intuition is as follows: While G can produce patterns of the form a`, which have exponential
length in |G|, most patterns of this form are obtained by concatenating explicit a-chains to a
shorter pattern. In such a case, the credit that is released from the explicit occurrences of a
can be used to pay for the representation cost. This does not apply when the new pattern is
obtained by concatenating two patterns (popped from nonterminals) inside a rule. In such
a case we represent the pattern using the binary expansion at the cost of O(log `). However,
this cannot happen too often: When patterns of length p1, p2, . . . , p` are compressed and the
obtained letters are represented (at the cost of O(log∏`

i=1 pi)), then it can be shown that
the size of the derived context in the input tree is at least ∏`

i=1 pi, which is at most n. Thus∑`
i=1 log pi = O(log∏`

i=1 pi) = O(log n); this is formally shown later on.
Let us fix a unary letter a whose chains are compressed and represented. The G-based

representation creates a new letter for each chain pattern from a+ that is either popped from
a right-hand side during RemCrChains or is in a rule at the end of RemCrChains (i.e., after
popping but before the actual replacement in TreeChainComp). Some of those chain patterns
are designated as powers: fix a rule that is considered by RemCrChains. If the a-suffix popped
from the first nonterminal and the a-prefix popped from the second nonterminal are part of
one a-pattern (obtained after those poppings), then this a-pattern is a power. Note that this
power may either stay in this rule or be popped (if one of the nonterminals is removed from
the rule). For each chain pattern a` that is not a power we can identify another represented
pattern ak (where we allow k = 0 here) such that a` is obtained by concatenating explicit
occurrences of a from some right-hand side to ak.

Note that for a fixed length ` there may be many different occurrences of the pattern
a` that are represented. In particular, some of them may be powers and some not. We
arbitrarily choose one of those occurrences and the way it is created and represent a` (once)
according to this choice.
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Example 1. Consider the following grammar, in which only letters of arity 1 are used and
they are written in a string notation: A0 → a, A1 → bcaA0, A2 → A0abc, A3 → A0aA0,
A4 → A1aA0, A5 → A0aA2, A6 → A1aA2, A7 → baaA3. Let us consider a-chains. The
a-chain a in the right-hand side of A0 is not a power; it is obtained by concatenating an
explicit occurrence of a to ε. After replacing A0 by a in all right-hand sides, we obtain
the rules A1 → bcaa, A2 → aabc, A3 → aaa, A4 → A1aa, A5 → aaA2, A6 → A1aA2,
A7 → baaA3 (new occurrences of a in right-hand sides are underlined). The occurrences of
the a-chain a2 in the right-hand sides for A1 and A2 are not powers, since they are obtained
by concatenating an explicit a to the a popped from A0. On the other hand, the occurrence
of the a-chain a3 in the rule for A3 is a power, since it is obtained by concatenating a
popped a, and explicit a, and a popped a. After popping a’s from A1, A2, and A3 we obtain
the following rules for A4, A5, A6, A7: A4 → A1aaaa, A5 → aaaaA2, A6 → A1aaaaaA2,
A7 → baaaaa. The occurrences of the a-chain a4 (resp., a5) in the rules for A4 and A5 (resp.,
A6) are powers, whereas the occurrence of a5 in the rule for A7 is not a power. Note that
the a-chain a5 can be either represented as a power or as a non-power. �

We represent chain patterns as follows:

(a) For a chain pattern a` that is a power we represent a` using the binary expansion, which
costs O(1 + log `).

(b) A chain pattern a` that is not a power is obtained by concatenating ` − k ≥ 1 explicit
occurrences of a from a right-hand side to ak (recall that we fixed some choice in this
case), in particular ak is represented. In this case we represent a` as aka

`−k. The
representation cost is ` − k + 1, which is covered by the 2(` − k) ≥ ` − k + 1 units of
credit released from the `− k ≥ 1 many explicit occurrences of a. Recall that the credit
for occurrences of a fresh letter a` is covered by the issued credit, see Lemma 16. Hence
the released credit is still available.

We refer to the cost in (a) as the cost of representing a power. As remarked above, the cost in
(b) is covered by the released credit. The cost in (a) is redirected towards the rule in which
this power was created. Note that this needs to be a rule for a nonterminal from N0 ∪N1,
as the right-hand side of the rule needs to have two nonterminals to generate a power and
by (GR5) the right-hand sides for nonterminals from Ñ0 have at most one nonterminal. In
Section 4.6.2 we show that the total cost redirected towards a rule during all modifications
of G is at most O(log n). Hence, the total cost in (b) is O((n0 + n1) log n).
Example 2. In Example 1 we can represent a5 as a power, which yields the rules a5 → a4a,
a4 → a2a2 and a2 → aa corresponding to the binary notation of 5, or as a non-power. For
the latter choice we get the rule a4 → a3aa, where a3 is represented elsewhere. �

4.6.2. Cost of G-based representation
We now estimate the cost of representing the letters introduced during chain compression

described in the previous section. The idea is that if we redirect towards Ai the cost of
representing powers of length p1, p2, . . . , p` (which have total representation cost O(∑`

i=1(1+
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Figure 13: During the creation of a power of a the first nonterminal has an a-suffix, while the second one
has an a-prefix, and the letters between them are all a’s.

log pi)) = O(log(∏`
i=1 pi))) during all chain compression steps, then in the initial grammar,

Ai generates a subpattern of the input tree of size at least p1 · p2 · · · · · p` ≤ n and so the
total cost of representing powers is at most log n per nonterminal from N0 ∪ N1. This is
formalised in the lemma below.

Lemma 20. The total cost of representing powers charged towards a single rule for a non-
terminal from N0 ∪N1 is O(log n).

Proof. We first bound the cost redirected towards a rule for Ai ∈ N1. There are two cases:
First, after the creation of a power in the rule Ai → uAjvAkw one of the nonterminals Aj

or Ak is removed from the grammar. But this happens at most once for the rule (there is no
way to reintroduce a nonterminal from N1 to a rule) and the cost of O(log n) of representing
the power can be charged to the rule. Note that here the assumption that we consider
Ai ∈ N1 is important: otherwise it could be that the second nonterminal in a right-hand
side is removed and added several times, see the last sentence in the proof of Lemma 17.

The second and crucial case is when after the creation of a power both nonterminals
remain in the rule. Fix such a rule Ai → uAjvAkw, where u, v, and w are sequences of
handles. Since we create a power, there is a unary letter a such that v ∈ a∗ and val(Aj)
(respectively, val(Ak)) has a suffix (respectively, prefix) from a+, see Figure 13.

Fix this rule and consider all such creations of powers performed in this rule during all
modifications of G. Let the consecutive letters, whose chain patterns are compressed, be
a(1), a(2), . . . , a(`) and their lengths p1, p2, . . . , p`. Let also b(s+1) be the letter that replaces
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the chain (a(s))ps ; note that b(s+1) does not need to be a(s+1), as there might have been
some other compressions performed on the letter b(s+1). Then the cost of the representation
charged towards this rule is bounded by

O(
∑̀
s=1

(1 + log ps)) = O(
∑̀
s=1

log ps) , (7)

as ps ≥ 2 for each 1 ≤ s ≤ `.
Define the weight w(a) of a letter a as follows: in the input tree each letter has weight 1.

When we replace ab by c, set w(c) = w(a) + w(b). Similarly, when a` represents a` then set
w(a`) = ` · w(a), and when f ′ represents f with constant-labelled children a1, . . . , a`, then
set w(f ′) = w(f) + ∑`

i=1 w(ai). The weight of a tree is defined as the sum of the weights
of all node labels. It is easy to see that in this way w(val(Am)) = n is preserved during all
modifications of the grammar G.

For a rule Ai → uAjvAkw we say that the letters in handles from v are between Aj and
Ak. Observe that as long as both Aj and Ak are in the rule, the maximal weight of letters
between Aj and Ak cannot decrease: popping letters and handles from Aj and Ak cannot
decrease this maximal weight, and the same is true for a compression step. Moreover, there
is no way to remove a letter that is between Aj and Ak or to change it into a nonterminal.

Now, directly after the s-th chain compression the only letter between Aj and Ak is
b(s+1) which has weight ps ·w(a(s)) since it replaces (a(s))ps . On the other hand, right before
the (s + 1)-th chain compression the sequence between Aj and Ak is (a(s+1))ps+1 . Since the
maximal weight of a letter between Aj and Ak cannot decrease, we have

w(a(s+1)) ≥ w(b(s+1)) = ps · w(a(s)) .

Since w(a(1)) ≥ 1 it follows that w(b(`+1)) ≥ ∏`
s=1 ps. As w(b(`+1)) ≤ n we have

n ≥
∏̀
s=1

ps ,

and so it can be concluded that

log n ≥ log
(∏̀

s=1
ps

)

=
∑̀
s=1

log ps .

Therefore, the total cost O(∑`
s=1 log ps), as estimated in (7), is O(log n).

It is left to describe the differences, when considering nonterminals from N0. There are
two of them:

• When a power is created in a rule for a nonterminal Ai ∈ N0, then the rule must
contain two nonterminals, i.e., it must be of the form Ai → uAja

kAk for a unary
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symbol a, and afterwards it is of the same form. In particular we do not have to
consider the case when the second nonterminal Ak is removed from the rule (as Ak is
of rank 0, it cannot be replaced with a chain).

• Instead of considering the letters between Aj and Ak, we consider letters that are below
Aj: In a rule Ai → uAjvAk or Ai → uAjvc, these are the letters that are in handles
in v as well as the ending c.

As before, as long as Aj is in the rule, the maximal weight of letters that are below Aj can
only increase (note that the rule for Ai can switch between the forms Ai → uAjvAk and
Ai → uAjvc many times, but this does not affect the claim).

Considering the cost of creating powers: The representation of the power that is created
in the phase when Aj is removed costs at most O(log n) and there is no way to bring a
nonterminal from N1 back to this rule. Hence, this cost is paid once. So, it is enough to
consider the cost of powers that were created when Aj was still present in the rule. Let
as in the previous case the consecutive letters, whose chain patterns are compressed, be
a(1), a(2), . . . , a(`) and let their lengths be p1, p2, . . . , p`. Let also b(s+1) be the letter that
replaces the chain (a(s))ps . It is enough to show that w(a(s+1)) ≥ ps · w(as) as then the rest
of the proof follows as in the case of a nonterminal from N1.

After the s-th compression, the right-hand side of Ai has the form uAjb
(s+1)Ak. Before

the (s + 1)-th compression, the right-hand side of Ai has the form u′Aj(a(s+1))ps+1Ak′ . By
the earlier observation, the maximal weight of letters below by Aj can only increase, hence
w(a(s+1)) ≥ w(b(s+1)) = w((a(s))ps) = ps · w(as), as claimed.

Now, the whole cost of the G-based representation can be calculated:

Corollary 5. The cost of the G-based representation is O(gr + (n0 + n1r) log n).

Proof. Concerning powers, we assign to each nonterminal from N0 ∪ N1 a cost of O(log n)
by Lemma 20. There are at most n0 + n1 such nonterminals, as we do not introduce new
ones. So, the total representation cost for powers is O((n0 + n1) log n). For non-powers, the
representation cost is paid from the released credit. But the released credit is bounded by
the credit assigned to the initial grammar G, which is at most O(rg) by Lemma 10, plus the
total issued credit during all modifications of G, which is O((n0 +n1r) log n) by Corollary 4.
We get the statement by summing all contributions.

4.6.3. Comparing the G-based representation cost and the TtoG-based representation cost
Recall the TtoG-based representation from Lemma 4 in Section 3.1. We now show that

the TtoG-based representation cost is bounded by the G-based representation cost (note that
both costs include the credit released by explicit letters). We first bound the costs of both
representations by edge-weighted graphs: the total cost of a representation is bounded (up to
a constant factor) by the sum of all edge weights of the corresponding graph. Then we show
that we can transform the G-based graph into the TtoG-based graph without increasing the
sum of the edge weights. For an edge-weighted graph G let w(G) be the sum of all edge
weights.
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Let us start with the G-based representation. We define the graph GG as follows: Each
chain pattern that is represented in the G-based representation is a node of GG, and edges
are defined as follows:

• A power a` has an edge with weight 1 + log ` to ε. Recall that the cost of representing
this power is O(1 + log `).

• When a` is represented as aka
`−k (` > k), then node a` has an edge to ak of weight

`− k. The cost of representing a` is `− k + 1 ≤ 2(`− k).

From the definition of this graph the following statement is obvious:

Lemma 21. The G-based representation cost is in Θ(w(GG)).

Next let us define the graph GTtoG of the TtoG-based representation: The nodes of this
graph are all chain patterns that are represented in the TtoG-based representation, and there
is an edge of weight 1 + log(`− k) from a` to ak if and only if ` > k and there is no node aq

with k < q < ` (note that we may have k = 0).

Lemma 22. The TtoG-based cost of representing the letters introduced during chain com-
pression is in O(w(GTtoG)).

Proof. Observe that this is a straightforward consequence of the way chain patterns are
represented in Section 3.1: Lemma 4 guarantees that if a`1 , a`2 , . . . , a`k (`1 < `2 < · · · < `k)
are all chain patterns of the form a+ (for a fixed unary letter a) that are represented by TtoG,
then the TtoG-based representation cost for these patterns is O(∑k

i=1(1 + log(`i − `i−1))),
where `0 = 0.

We now show that GG can be transformed into GTtoG without increasing the sum of edge
weights:

Lemma 23. We have w(GG) ≥ w(GTtoG).

Proof. We transform the graph GG into the graph GTtoG without increasing the sum of edge
weights. Thereby we can fix a letter a and consider only nodes of the form ak in GG and
GTtoG. We start with GG. Firstly, let us sort the nodes from a∗ according to the increasing
length. For each node a` with ` > 0, we redirect its unique outgoing edge to its unique
predecessor ak (i.e., k < ` and there is no node aq with k < q < `), and assign the weight
1 + log(`− k) to this new edge. This cannot increase the sum of edge weights:

• If a` has an edge of weight 1 + log ` to ε in GG, then 1 + log ` ≥ 1 + log(`− k).

• Otherwise it has an edge to some ak′ (k′ ≤ k) with weight `−k′. Then `−k′ ≥ `−k ≥
1 + log(`− k), as claimed (note that 1 + log x ≤ x for x ≥ 1).
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Let G ′ be the graph obtained from GG by this redirecting. Note that G ′ is not necessarily
GTtoG, because GG may contain nodes that are not present in GTtoG. In other words: there
might exist a chain a` which occurs in the G-based representation but which does not occur
in the TtoG-based representation. On the other hand, every node a` that occurs in GTtoG
also occurs in GG: if a` is represented by the TtoG-based representation, then it occurs as an
a-maximal chain in T . But right before chain compression, there are no crossing chains in
G, see Lemma 15. Hence, a` occurs in some right-hand side of G and is therefore represented
by the G-based representation as well.

So, assume that (a`0 , a`k) is an edge in GTtoG but in G ′ we have edges (a`0 , a`1), (a`1 , a`2), . . .,
(a`k−1 , a`k), where k > 1. But the sum of the weights of these edges in G ′ (which is∑k

i=1 1 + log(`i−1 − `i)) is larger or equal than the weight of (a`0 , a`k) in GTtoG (which is
1+log(`0−`k)). This follows from 1+log(x)+1+log(y) ≥ 1+log(x+y) when x, y ≥ 1.

Using (in this order) Lemmata 22, 23, and 21, followed by Corollary 5, we get:

Corollary 6. The total cost of the TtoG-representation is O(gr + (n0 + n1r) log n).

4.7. Total cost of representation
Corollary 7. The total representation cost of the letters introduced by TtoG (and hence the
size of the grammar produced by TtoG) is O(gr + (n0 + n1r) log n) ≤ O(gr + gr log n).

Proof. By Corollary 6 the representation cost of letters introduced by chain compression
is O(gr + (n0 + n1r) log n), while by Lemmata 13 and 19 the representation cost of letters
introduced by unary pair compression and leaf compression is covered by the initial credit
(which is O(gr) by Lemma 10) plus the total amount of issued credit. By Corollary 4 the
latter is O(gr + (n0 + n1r) log n). Recalling that n0 = O(gr) and n1 = O(g) by Lemma 10
ends the proof.

5. Improved analysis

The naive algorithm, which simply represents the input tree T as A1 → T results in a
grammar of size n. In some extreme cases this might be better than O(gr + gr log n) as
guaranteed by TtoG. In fact, even a stronger fact holds: any ‘reasonable’ grammar for a tree
t has size at most 2|t| − 1, where a grammar (for t) is reasonable if

• it has no production of the form A→ α, where |α| = 1 and

• all its nonterminals are used in the derivation of t

(recall that the size of α does not include the parameters in it).

Lemma 24. Let G contain no production A → α with |α| = 1 and assume that every
production is used in the derivation of the tree t defined by G. Then |G| ≤ 2|t| − 1. In
particular, if at any point TtoG already paid k units of credit for the representation of the
letters and the remaining tree is T then the final grammar for the input tree has size at most
k + 2|T | − 1
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Proof. Assume that G has the properties from the lemma. An application of a rule Ai → αi

to the current tree increases its size by |αi|−1 ≥ 1 for each occurrence of Ai in the tree derived
so far. As we assume that each production is used in the derivation, each of |αi| − 1 ≥ 1
is added at least once and so we get ∑m

i=1(|αi| − 1) ≤ |t|. Thus ∑m
i=1 |αi| ≤ |t| + m and so

it is left to estimate m. As there are m productions and each application increases the size
by at least 1, and we start the derivation with a tree of size one, we get m ≤ |t| − 1. Thus∑m

i=1 |αi| ≤ |t|+m ≤ 2|t| − 1.

We show that when |T | ≈ gr at a certain point of TtoG, then up to this point O(gr +
gr log(n/gr)) units of credit are issued so far, where g is the size of an optimal SLCF
grammar for the input tree. It follows that the size of the SLCF grammar returned by TtoG
is O(gr + gr log(n/gr)), as claimed in Theorem 1.

Let Ti be the tree at the beginning of phase i and choose phase i such that |Ti| ≥ gr >
|Ti+1| (for an input tree with at least gr symbols such an i exists, as |T1| = n ≥ gr and
for the ‘last’ i we have |Ti| = 1; the easy special case in which n < gr follows directly from
Lemma 24). We estimate the representation cost (i.e., the issued credit and the cost of the
TtoG-based representation) up to phase i (inclusively). We show that this cost is bounded
by O(gr + gr log(n/gr)), which shows the full claim of Theorem 1.

Lemma 25. If |T | ≥ gr at the beginning of a phase, then till the end of this phase, the
representation cost of the fresh letters introduced by TtoG as well as the credit of the letters
in the current SLCF grammar G is O(gr + gr log(n/gr)).

Proof. We estimate separately the amount of issued credit and the representation cost for
letters replacing chains. This covers the whole representation cost for fresh letters (see
Lemmata 13, 16 and 19) as well as the credit on the letters in the current SLCF grammar.

Credit
Observe first that the initial grammar G has at most gr credit, see Lemma 10. The input

tree has size n and the one at the beginning of the phase is of size s = |T |. Hence, there were
O(log(n/s)) phases before, as in each phase the size of T drops by a constant factor, see
Lemma 9. Adding one phase for the current phase still yields O(log(n/s)) phases. As s ≥ gr,
we obtain the upper bound O(log(n/gr)) on the number of phases. Due to Lemmata 13, 16
and 19, during unary pair compression, chain compression and leaf compression at most
O(n0 + n1r) units of credit per phase are issued, and by Lemma 10 this is at most O(gr).
So in total O(gr+ gr log(n/gr)) units of credit are issued. From Lemmata 13, 16 and 19 we
conclude that this credit is enough to cover the credit of all letters in G’s right-hand sides
as well as the representation cost of letters introduced during unary pair compression and
leaf compression. So it is left to calculate the cost of representing chains.

Representing chains
Observe that the analysis in Section 4.6 did not assume anywhere that TtoG was car-

ried out completely, i.e., the final grammar was returned. So we can consider the cost of
the G-based representation, the TtoG-based representation, and the corresponding graphs.
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Lemma 21 still applies and the cost of theG-based representation is Θ(w(GG)). By Lemma 22
the cost of the TtoG-based representation is O(w(GTtoG)). Lemma 23 shows that we can
transform GG to GTtoG without increasing the sum of weights. Hence it is enough to show
that the G-based representation cost is at most O(gr + gr log(n/gr)).

The G-based representation cost consists of some released credit and the cost of rep-
resenting powers, see its definition. The former was already addressed (the whole issued
credit is O(gr + gr log(n/gr))) and so it is enough to estimate the latter, i.e., the cost of
representing powers.

The outline of the analysis is as follows: When a new power a` is represented, we mark
some letters of the input tree (and perhaps modify some other markings). Those markings
are associated with nonterminals. Formally, for a nonterminal Ai ∈ N0 ∪ N1 we introduce
the notions of an Ai-pre-power marking and Ai-in marking. Such a marking is a subset of
the node set of the initial tree (note that we do not define such markings for a nonterminal
Ai ∈ Ñ0). These marking satisfy the following conditions:

(M1) Each marking contains at least two nodes and two different markings are disjoint.

(M2) For every nonterminal Ai and every X ∈ {pre-power, in} there is at most on Ai-X
marking.

(M3) If p1, p2, . . . , pk ≥ 2 are the sizes of the markings (i.e., the cardinalities of the node
sets), then the cost of representing powers (created up to the current phase) by the
G-based representation is c∑k

i=1 log pi (for some fixed constant c).

Note that in (M3) we must have k ≤ drg for some constant d, because k ≤ 2(|N0|+ |N1|) ≤
O(gr) by Lemma 10.

Using (M1)–(M3) the total cost of representing powers (in the G-based representation)
can be upper-bounded by (a constant times)

k∑
i=1

log pi under the constraints k ≤ drg and
k∑

i=1
pi ≤ n , (8a)

where d is some constant. Let us bound the sum ∑k
i=1 log pi under the above constraints:

Clearly, the sum is maximised for ∑k
i=1 pi = n. For a fixed k and ∑k

i=1 pi = n we have∑k
i=1 log pi = log(∏k

i=1 pi). By the inequality of arithmetic and geometric means we con-
clude that log(∏k

i=1 pi) ≤ log((∑k
i=1 pi/k)k) = k log(n/k), where the maximum k log(n/k)

is achieved if each pi is equal to n/k. Now, the term k log(n/k) is maximised for k = n/e
(independently of the base of the logarithm). Moreover, in the range [0, n/e) the function
f(k) = k log(n/k) is monotonically increasing. Hence, if drg ≤ n/e, then, indeed, the
maximal value of ∑k

i=1 log pi under the constraints in (8a) is in

O
(
gr + gr log

(
n

gr

))
. (8b)

On the other hand, if drg > n/e, then n ≤ O(rg) and the bound in the statement of the
Lemma trivially holds.
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The idea of preserving (M1)–(M3) is as follows: If a new power of length ` is represented,
this yields a cost of O(1 + log `). Since ` ≥ 2, we can treat this cost as O(log `) and choose
c in (M3) so that this is at most c log `. Then either we add a new marking of size ` or we
remove some marking of size `′ and add a new marking of size ` · `′. It is easy to see that in
this way (M1)–(M3) are preserved (still, those details are repeated later in the proof).

Whenever we have to represent powers a`1 , a`2 , . . ., for each power a`, where ` > 1, we find
the last (according to preorder) maximal chain pattern a` in the current tree T . It is possible
that this particular a` was obtained as a concatenation of `−k explicit letters to ak (so, not
as a power). In such a case we are lucky, as the representation of this a` is paid by the credit
and we do not need to separately consider the cost of representing the power a`. Otherwise
a` is a power and we add a new marking which is contained in the subcontext of the input
tree that is derived from the last occurrence of a` in the current tree. Let Ai be the smallest
nonterminal that derives (before RemCrChains) this last occurrence of the maximal chain
pattern a` (clearly there is such non-terminal, as Am derives it). Note that Ai ∈ N0 ∪N1 as
otherwise this a` is not a power, since powers cannot be created inside nonterminals from
Ñ0. The new marking is either an Ai-pre-power marking or an Ai-in marking: If one of
the nonterminals in Ai’s right-hand side was removed during RemCrChains, then we add an
Ai-pre-power marking (note that such a removed nonterminal is necessarily from N1, as no
nonterminal from N0 ∪ Ñ0 is removed during RemCrChains). Otherwise, we add an Ai-in
marking.
Claim 6. At any time, there is at most one Ai-pre-power marking in the input tree.

When an Ai-in marking is added because of a power a`, then after chain compression Ai

has a rule of the form

• Ai → wAja`Akv, where w and v are (perhaps empty) sequences of handles and
Aj, Ak ∈ N1, if Ai ∈ N1, or

• Ai → wAja`Ak where w is a (perhaps empty) sequence of handles, Aj ∈ N1, and
Ak ∈ N0, if Ai ∈ N0.

Proof. Concerning Ai-pre-power markings, let a` be the first power that causes the creation
of an Ai-pre-power marking. So one nonterminal from N1 was removed from the right-hand
side for Ai and there is no way to reintroduce such a nonterminal. Hence, Ai’s rule has
at most one nonterminal from N1 (when Ai ∈ N1) or none at all (when Ai ∈ N0). Thus,
no more powers can be created in Ai’s right-hand side. In particular, neither Ai-pre-power
markings nor Ai-in markings will be added in the future.

Next, suppose that an Ai-in marking is added to the input tree because a new power
a` is created. Thus, the last occurrence of the maximal chain pattern a` is generated by
Ai but not by the nonterminals in the rule for Ai (as then, a different marking would be
introduced). Since a` is a power it is obtained in the rule as the concatenation of an a-prefix
and an a-suffix popped from nonterminals in the rule for Ai. The suffix needs to come from
a nonterminal of rank 1. In particular this means that those two nonterminals in the rule for
Ai generate parts of this last occurrence of a` and in between them only the letter a occurs.
If any of those nonterminals would be removed during the chain compression for a`, then
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an Ai-pre-power marking would be introduced, which is not the case. So both nonterminals
remain in the rule for Ai. Hence after popping prefixes and suffixes, between those two
nonterminals there is exactly a chain pattern a`, which is then replaced by a`. This yields
the desired form of the rule, both in case Ai ∈ N0 or Ai ∈ N1.

Consider the occurrence of a` and the ‘derived’ subcontext w` of the input tree. We show
that if there exists a marking inside w`, then this marking is contained in the last occurrence
of w inside the occurrence of w`.
Claim 7. Let a` be an occurrence of a maximal chain pattern, which is replaced by a`.
Assume that a` derives the subcontext w` of the input tree, where w is a context. If this
occurrence of w` contains a marking, then this marking is contained in the last occurrence
of w inside the occurrence of w`.

Proof. Consider a markingM within w`. Assume it was created, when some bk was replaced
by bk. As bk is a single letter and a` derives it, each a derives at least one bk. Then, the
marking M must be contained in the subcontext derived from the last bk (as we always
create markings within the last occurrence of the chain pattern to be replaced). Clearly
the last bk can be only derived from the last a within a`. So in particular, the marking M
is contained in the last w inside w`. So all markings within w` are in fact within the last
w.

We now demonstrate how to add markings to the input tree. Suppose that we replace
a power a`. Note that we must have ` ≥ 2. Let us consider the last occurrence of this a`

in the current tree T and the smallest Ai that generates this occurrence. This a` generates
some occurrence of w` (for some context w) in the input tree. If this occurrence of w`

contains no marking, then we simply add a marking (either an Ai-pre-power or an Ai-in
marking according to the above rule) consisting of ` ≥ 2 arbitrarily chosen nodes within w`.
In the other case, by Claim 7, we know that all markings within the occurrence of w` are
contained in the last w. If one of them is the (unique, by (M2)) Ai-in marking, let us choose
it. Otherwise choose any other marking in the last w. Let M be the chosen marking and
let `′ = |M | ≥ 2. We proceed, depending on whether M is the only marking in the last w:

• M is the unique marking in the last w: Then we remove it and mark arbitrarily
chosen ` · `′ nodes in w`. This is possible, as |w| ≥ `′ and so |w`| ≥ ` · `′. Since
log(` ·`′) = log `+log `′, (M3) is preserved, as it is enough to account for the 1+log ` ≤
c log ` representation cost for a` as well as the c log `′ cost associated with the previous
marking of size `′.

• M is not the unique marking in the last w: Then |w| ≥ `′ + 2 (the ‘+2’ comes from
the other markings, which are of size at least 2, see (M1)). We first remove the chosen
marking of size `′. Let us calculate how many unmarked nodes are in w` afterwards:
In w`−1 there are at least (`− 1) · (`′+ 2) nodes and by Claim 7 none of them belongs
to a marking. In the last w there are at least `′ unmarked nodes (from the marking
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that we removed). Hence, in total we have

(`− 1) · (`′ + 2) + `′ = ``′ + 2`− `′ − 2 + `′

= ``′ + 2`− 2
> ``′

many unmarked nodes (recall that ` ≥ 2). We arbitrarily choose ` · `′ many unmarked
nodes and add them as a new marking. By the same argument as in the previous case,
(M3) is preserved.

By the above construction, (M1) is preserved. There is one remaining issue concerning (M2):
It might be that we create an Ai-in marking while there already was one, violating (M2).
However, we show that if there already exists an Ai-in marking, then it is within w` (and
so within the last w, by Claim 7). Hence, we could choose this Ai-in marking as the one
that is removed when the new one is created. Consider the previous Ai-in marking. It was
introduced when some power bk was replaced by bk, which, by Claim 6, became the unique
letter between the first and second nonterminal in the right-hand side for Ai. Consider the
last (as usual, with respect to preorder) subpattern of the input tree that is either generated
by the explicit letters between nonterminals of rank 1 in the rule for Ai (when Ai ∈ N1)
or is generated by the explicit letters below the nonterminals of rank 1 (when Ai ∈ N0)
(recall from the proof of Lemma 20 that in a rule Ai → wAjvAk for a nonterminal of rank
0, where w and v are sequences of handles, all letters occurring in handles in v are classified
as being below Aj). The operations performed on G cannot make this subpattern smaller,
in fact popping letters expands it. When bk is created, then this subpattern is generated
by bk, as by Claim 6 this is the unique letter between the nonterminals (resp., below the
nonterminal). When a` is created, it is generated by a`, again by Claim 6, i.e., it is exactly
w`. So in particular w` includes the Ai-in marking that was added when the power bk was
replaced by bk.

This shows that (M1)–(M3) hold and so also the calculations in (8) hold, in particular,
the representation cost of powers is O(gr + gr log(n/gr)).

Now the estimations from Lemma 25 allow to prove Theorem 1.

Proof of the full version of Theorem 1. Suppose first that the input tree T has size smaller
than gr. Then by Lemma 24, TtoG returns a tree of size at most 2gr−3 = O(gr). Otherwise,
consider the phase, such that before it T has size s1 and right after it has size is s2, where
s1 ≥ gr > s2. There is such a phase as in the end T has size 1 and initially it has size at
least gr. Then by Lemma 25 the cost of representing letters introduced till the end of this
phase is O

(
gr + gr log

(
n
gr

))
. By Lemma 24 the cost of representing the remaining tree is

at most 2gr − 3 = O(gr). Hence, the size of the grammar that is returned by TtoG is at
most O

(
gr + gr log

(
n
gr

))
.
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6. Conclusions

We presented a linear-time grammar-based tree compressor with an approximation ratio
of O(r+r log(n/rg)), where n is the size of the input tree T , g is the size of a minimal linear
context-free tree grammar for T , and r is the maximal rank of symbols in T .

Possible future work is listed and discussed below.

Non-linear grammars
One possible direction for future research are non-linear context-free tree grammars.

They are defined in the same way as linear context-free tree grammars with the only ex-
ception that parameters may occur more than once in right-hand sides. With non-linear
context-free tree grammars one can achieve double exponential compression. For instance,
the non-linear grammar with the productions S → A1(a), Ai(x) → Ai+1(Ai+1(x)) for
1 ≤ i ≤ n − 1 and An(x) → f(x, x) produces a perfect binary tree of height 2n. The
authors are not aware of any grammar-based tree compressor that exploits this additional
succinctness of non-linear context-free tree grammars.

Graph grammars
A non-linear context-free tree grammar can be viewed as a context-free graph grammar

that produces a directed acyclic graph. This graph grammar is obtained by merging all
occurrences of the same parameter in a right-hand side. Recently, grammar-based graph
compression via context-free graph grammars was considered in [13]. But no quantitative
results, e.g., concerning the approximation ratio, have been shown so far. Perhaps techniques
used here can help in developing such results.

XML trees
In contrast to trees as considered in this paper, XML trees are usually modelled using

unranked (but ordered) trees, i.e. the rank of a node is not determined by its label. SLCF
grammars can be used to generate such trees: we drop the assumption of the ranked al-
phabet, but keep the ranks for nonterminals. In this way, letters in SLCF grammars are
de facto ranked, as each occurrence in the SLCF grammar has a fixed arity. Thus, when
computing such an SLCF grammar for an unranked tree, we can artificially rank all letters
and proceed as in the case of a ranked alphabet. The approximation guarantee is the same.

There are also more powerful constructs that are intended to capture XML trees, for
instance forest algebras [42], which work on forests instead of trees and allow also horizontal
“concatenation” of trees, and this operation yields a forest. A corresponding grammar model
can, for instance, represent the tree f(c, . . . , c︸ ︷︷ ︸

n

) by a grammar of size O(log n), whereas

this tree is incompressible by SLCF tree grammars. Approximation algorithms for such
grammars have not been investigated so far. Whether the methods proposed here apply in
this model remains an open question.
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Unordered trees
Our method depends very little on the fact that the considered trees are ordered and

it should work also in the unordered (but ranked) case: it is enough that leaf compression
does not take the positions of leaves into the account.

Practical applications
While TtoG achieves the best known approximation bound, the authors doubt that it

beats in practice the known heuristics, especially TreeRePair [21]. These doubts are based
on the fact that in the string case, RePair by far beats the compression algorithms with the
best known approximation bound.

Explicit grammar
In many problems the SLCF grammar is given explicitly and we are interested in pro-

cessing it. The presented “recompression” approach can be naturally applied in this setting,
but there is no bound on the size of the SLCF obtained in this way. However, we can use a
similar trick as in the case of strings [25]: we have two alternating compression phases and
in one of them we proceed as described in Section 3 while in the other we try to make the
SLCF small. The only difference is that during pair compression we choose the partition of
letters so that many occurrences of pairs in the SLCF are covered; see [25] for details.
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Appendix

Figure .14: The partitioning of a tree depending on its parameter nodes. The parameters are the round
nodes, the square nodes are the branching nodes of the spanning tree. Contexts and trees obtained after
the removal of those nodes are enclosed by dashed and dotted lines, respectively.

Proof of Lemma 10 (transforming an SLCF grammar into a handle grammar).
The proof is a slight modification of the original proof of [7, Theorem 10] and it follows

exactly the same lines. Let G be an SLCF grammar of size g.
The idea is as follows, see Figure .14. Consider a nonterminal A(y1, . . . , yk) of G and

the tree val(A) that it generates. Within val(A) take the nodes representing the parameters
y1, . . . , yk and the spanning tree (within val(A)) for those nodes. Consider the nodes of degree
at least 2 within this spanning tree, delete those nodes and delete the parameters. What is
left is a collection of subtrees and subcontexts. We want to construct a grammar that has
for each such subtree and subcontext a nonterminal generating it. This is done inductively
on the structure of G. As the starting nonterminal of G has rank 0, such a decomposition for
val(G) is in fact trivial. So, in particular the constructed grammar generates val(G). Lastly,
the construction guarantees that the introduced nonterminals, which are of rank 0 and 1, are
expressed through each other (plus some rules introduced on the way). So the new grammar
generates the same tree and it is monadic. Moreover, the rules for those nonterminals are
in the form required for a handle grammar, see (HG2) and (HG3).

Formalising this approach, we say that a skeleton tree6 is a pattern from T (N0∪N1∪F,Y),
satisfying the following conditions:

(SK1) The child of a node of degree 1 can be labelled only with a letter of arity at least 2
or with a parameter.

(SK2) If f of arity at least 2 labels a node with children v1, . . . vk, then there are i 6= j such
that the subtrees rooted in vi and vj both contain parameters.

6Note that our definition of a skeleton slightly differs from the one of [7, Lemma 1], but the differences
are inessential.
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Intuitively, the skeleton tree is what one obtains after replacing each context and tree in the
tree constructed above with a nonterminal: (SK1) says that whole context is replaced with a
nonterminal, while (SK2) says that only branching nodes of the spanning tree of parameters
are be labelled with letters.

Our first goal is to construct for each nonterminal A of the input grammar G a skeleton
tree skA together with rules for the nonterminals appearing in skA. These rules allow to
rewrite skA into val(A); note that we do not assume that these introduced rules satisfy
(SK1)–(SK2) and on the other hand, the skeletons do not satisfy (HG2)–(HG3) and they
are not part of the constructed grammar, they are just means of construction. Instead, we
show that in the introduced rules the nonterminals of arity 1 occur at most O(g) times,
while nonterminals of arity 0 and letters occur at most O(rg) times.

As a first step, we transform the grammar into Chomsky normal form (CNF), which is
obtained by a straightforward decomposition of rules. The rules in a CNF grammar are of
two possible forms, where A,B,C ∈ N and f ∈ F:

• A(y1, . . . , yk)→ f(y1, . . . , yk) or

• A(y1, . . . , yk)→ B(y1, . . . , y`, C(y`+1, . . . , y`′), y`′+1, . . . , yk)

Note that the number of parameters can be 0. It is routine to check that any SLCF grammar
G of size g can be transformed into an equivalent CNF grammar of size O(g) and with O(g)
nonterminals [7, Theorem 5].

Given an SLCF grammar in CNF, we build bottom-up skeleton trees for its nonterminals,
During this we introduce O(1) nonterminals per considered nonterminal, their rules have
O(1) occurrences of nonterminals of arity 1 and at most O(r) occurrences of nonterminals
of arity 0 and constants. Moreover, the rules for those nonterminals are in the form required
by the definition of a handle grammar, see (HG2) and (HG3). All nonterminals occurring
in the constructed skeletons use only those introduced nonterminals.

Consider some nonterminalA of the CNF grammar. If its rule has the formA(y1, . . . , yk)→
f(y1, . . . , yk), then skA = f(y1, . . . , yk) and if the arity of A is at most 1 then we add A and
its rule to the set of constructed rules as well (if the rank of A is at least 2, then we do not
add A and its rule). This rule has the desired form (HG2) or (HG3), there is no nonterminal
on the right-hand side and at most 1 letter on the right-hand side. If the rule for A has the
form A(y1, . . . , yk) → B(y1, . . . , y`, C(y`+1, . . . , y`′), y`′+1, . . . , yk), then we take skB and skC

and replace in skB the parameter y`+1 by skC , see Figures .15 and .16 for two different cases.
Let us denote the resulting tree with sk′A; it is transformed into a proper skeleton tree skA

in the following. Let y = y`+1.
Let us inspect what changes are needed, so that sk′A satisfies (SK1)–(SK2). Suppose first

that C is of arity at least 1, see Figure .15. It might be that the root node of skC and the
node above the leaf y in skB are both of arity 1, without loss of generality assume that their
labels are nonterminals C ′ and B′ (the case of letters follows in the same way). We then
introduce a new nonterminal A′ of rank 1 and replace the subpattern B′(C ′) in sk′A with A′
and add a rule A′ → B′C ′. Note that it is in a form required by (HG2). We claim that the
resulting tree satisfies (SK1) and (SK2) and hence can be taken for skA.
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Figure .15: Calculating the skeleton when the lower skeleton is of rank at least 1. On the left-most figure
we see the two skeletons. After substitution, there are two neighbouring rank-1 nonterminals: A2 and A3.
They are replaced with the nonterminal A5.

Since the node above B′ and the node below C ′ are not of degree 1 (by induction
assumption on (SK1)), (SK1) is satisfied. Concerning (SK2), take any node of arity at
most 2 in sk′A. Any node labelled with a letter in skC has the same subtrees in skC and in
sk′A, so (SK2) holds for them. For the nodes in skB the only problem can arise for nodes
that had the replaced y in some of their subtrees. However, as y is replaced with skC , which
has a parameter, the condition is preserved for them.

Suppose now that C is of arity 0, see Figure .16. Then the skeleton skC has no parameters,
which implies that it is either a constant or a nonterminal of arity 0 (skC cannot use letters
of arity larger than 1 by (SK2), and cannot use nonterminals and letters of arity 1, as their
children need to be labelled with letters of arity at least 2). We only consider the former
case (the same argument hold for the latter case). Let skC be the constant c. Firstly, the
node above y (the parameter which is replaced by skC = c) in skB can be a node of arity
1. Without loss of generality suppose that it is a nonterminal B′ (the case of unary letter
follows in the same way). We introduce a fresh nonterminal A′ of arity 0, replace the subtree
B′(c) by A′ and introduce the rule A′ → B′c. The rule is of the form required by (HG3).
For uniformity, if the node above y is not of arity 1, introduce A′ with the rule A′ → c and
replace c by A′. Condition (SK1) now holds.

Concerning (SK2), consider the parent node v of A′. Either it does not exist, in which
case we are done (as skA = A′) or it is labelled with a letter f of arity at least 2. All other
nodes in sk′A labelled with letters of arity at least 2 satisfy (SK2), as the subtree rooted at
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Figure .16: Calculating the skeleton, when the lower skeleton is of rank 0, going from the left-top to bottom-
right. In the first picture there are two skeletons, in the second they are substituted into each other. In the
third we replace A2c by A4 with the rule A4 → A2c. In the fourth we replace g(A4, c, ·) by A5 with the rule
A5(y) → g(A4, c, y) and finally we replace A1A5A2 by A6 with the rule A6 → A1A5A2, which can be split
into two rules.
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v still contains at least one parameter. Focusing on the f -labelled node v, if it still has at
least two children with parameters in their subtrees, then we are done, as (SK2) is satisfied
for v. If not, then exactly one of v’s children is a subtree with a parameter. Without loss of
generality let it be v’s first child, all other children are constants or nonterminals of arity 0.
So let the children of v (except for the first one) be labelled with γ2, γ3, . . . , γ`, where each
γi is either a constant or a nonterminal of rank 0. Introduce a new nonterminal A′ of rank 1
with the rule A′ → f(y1, γ2, γ3, . . . , γ`) and replace the subpattern f(t1, γ2, γ3, . . . , γ`) with
A′(t1) (where, t1 is the subtree rooted at the first child of v). Observe that the rule for A′
is of size ` ≤ r and is of the form (HG2). Lastly, now again (SK1) can be violated, because
the parent node or the child (or both) of the A′-labelled node can be of degree 1. This can
be fixed by replacing those 2 or 3 nodes of degree 1 by one nonterminal of rank 1. This
requires adding at most 2 rules for nonterminals of arity 1 of the required form (HG2).

We constructed O(1) rules of the form (HG2) or (HG3) per nonterminal of the CNF
grammar (there are O(g) of them), each of them has at most r occurrences of letters and
nonterminals of arity 0 and at most 2 of nonterminals of arity 1. By a routine calculation
it can be shown that val(skA) = val(A). If S is the start nonterminal of the CNF grammar,
then skS has no parameters and hence is either a constant (this case is of course trivial) or
a nonterminal of rank 0, which is the start nonterminal of our output grammar.

Concerning the efficiency of the construction, the proof follows in the same way as in [7,
Theorem 10]: It is enough to observe that skA, where A has rank k, has at most 2r(k−1)+2
nodes: By (SK1) nodes of arity 1 constitute at most half of all nodes. Secondly, as it has k
parameters, it has at most k − 1 nodes of arity larger than 1, so at most (k − 1)(r − 1) + 1
leaves. Summing up yields the claim.
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