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Abstract We study what languages can be constructed from a non-regular lan-
guage L using Boolean operations and synchronous or non-synchronous rational
transductions. If all rational transductions are allowed, one can construct the whole
arithmetical hierarchy relative to L. In the case of synchronous rational transduc-
tions, we present non-regular languages that allow constructing languages arbi-
trarily high in the arithmetical hierarchy and we present non-regular languages
that allow constructing only recursive languages.

A consequence of the results is that aside from the regular languages, no full
trio generated by a single language is closed under complementation. Another
consequence is that there is a fixed rational Kripke frame such that assigning
an arbitrary non-regular language to some variable allows the definition of any
language from the arithmetical hierarchy in the corresponding Kripke structure
using multimodal logic.

1 Introduction

The study of closure properties of language classes has a long tradition in au-
tomata and language theory; it can be traced back to the introduction of regular
languages [25]. One reason for this interest is that they have numerous appli-
cations. This holds in particular if one considers classes of languages that have
finite representations (e.g., regular languages can be represented by nondetermin-
istic finite automata). In this case, the closure properties can even be effective.
For instance, in the case of regular languages, automata constructions for various
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operations (Boolean operations, concatenation, Kleene star, homomorphic images
and preimages) are available. Closure properties can be also used to show that a
language L does not belong to a language class by constructing from L a language
that is known to be outside of the class. Moreover, closure properties also often
serve as a way to describe language classes without reference to concrete gener-
ating or accepting devices: In many cases, a language class can be described as
the smallest class of languages that possesses a given collection of closure prop-
erties and contains certain languages. For instance, by the theorem of Chomsky
and Schützenberger [8], the class of context free languages is the smallest class of
languages that contains the Dyck languages and that is closed under intersection
with regular languages and homomorphisms. Similar descriptions are available
for various types of counter languages [18,23], the arithmetical hierarchy [5], the
recursively enumerable languages [21,13] and many others [34].

In this paper, we are concerned with language classes that are closed under
Boolean operations and under rational transductions, i.e., we consider Boolean
closed full trios [3]. This particular combination of closure properties is interesting
for several reasons:

1. Automatic structures are an important class of infinite structures in algorithmic
model theory. A relational structure is automatic if its universe is a regular
language and every relation is synchronous rational (i.e., accepted by a two-
head automaton whose heads move synchronously). The first-order theory of
every automatic structure is decidable [24]. To prove this fundamental result,
one uses that
– regular languages can be represented by finite automata (“finite represen-

tation”),
– using this representation, the class of regular languages is effectively closed

under Boolean operations and images and preimages of length-preserving
morphisms1 (“effective closure”), and

– finite automata have a decidable emptiness problem (“decidable empti-
ness”).

The closure properties follow from the fact that the class of regular languages
is a Boolean closed full trio. Thus, identifying a Boolean closed full trio C be-
yond the regular languages that enjoys finite representations, effective closure,
and decidable emptiness would mean that C-automatic structures (i.e., relational
structures with universe in C and synchronous rational relations) guarantee de-
cidability of the first-order theory. Formal language theory has yielded a wealth
of union-closed full trios (i.e., language classes that are closed under union and
rational transductions) with finite representation, effective closure and decid-
able emptiness (see, for example, [3,11,23]). It therefore seems prudent to seek
Boolean closed full trios among them.
Suppose the language class C has finite representation, effective closure, and
decidable emptiness. Then also the universality problem (given a language
L ∈ C, does L equal X∗?) and, more generally, the regular inclusion problem
(given regular R and L ∈ C, does L include R?) are decidable.

2. Bekker and Goranko [2] investigated rational Kripke frames and the model-
checking problem for multimodal logic on rational Kripke frames (see [4] for

1 These latter closure properties are needed in order to realize projection and cylindrification
of relations.
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more details on modal logic). A Kripke frame (which is basically an edge la-
belled graph) is rational if the set of worlds forms a regular language and the
visibility relations are given by rational transductions. Then the languages de-
finable by multimodal logic are always confined to the Boolean closed full trio
generated by the values (that is, languages) assigned to the variables. This was
observed by Bekker and Goranko [2] and then used to show that the model
checking problem for multimodal logic and rational Kripke frames is decid-
able if all variables are assigned regular languages. As in the case of automatic
structures, larger language classes with finite representation, effective closure,
and decidable emptiness would allow extending this result.

3. The principal full trio generated by the language L is the class of images
of L under arbitrary rational transductions. Examples of principal full trios
are the context-free languages, languages accepted by multicounter automata
(for a bounded number of counters and blind, partially blind, or with zero
test [18]), and the languages accepted by valence automata over a finitely
generated monoid [14]. See [3] for more examples.
Since such principal full trios are always closed under union, the closure of
a principal full trio under complementation is equivalent to the class being a
Boolean closed full trio.

Hence, the question arises whether there are language classes beyond the regular
languages that enjoy these closure properties and still admit decision procedures
for simple properties such as emptiness. This work answers this question in an
extremely negative way. Our first main result (Theorem 3.1) states that every
Boolean closed full trio that contains a non-regular language already includes the
whole arithmetical hierarchy relative to this language (and therefore in particular
all recursively enumerable languages) and thus loses virtually all decidability prop-
erties. Our result means that in a full trio beyond the regular languages, virtually

no decidability property can coexist with Boolean closure.

A large number of grammar and automata models are easily seen to exceed the
regular languages but stay within the recursively enumerable languages. Hence,
Theorem 3.1 also implies that the corresponding language classes are never Boolean
closed full trios. We can also conclude that other than the regular languages, no

principal full trio is closed under complementation.

It might seem to be a consequence of our first main result that there is no
class of “C-automatic structures” with decidable first-order theory. However, such
a class C has to be closed under Boolean operations and synchronous rational
transductions [15], only. In other words, C need not really be a Boolean closed full
trio. Since our proofs make heavy use of asynchronous rational transductions, the
question arises whether the situation changes if we use only synchronous rational
transductions. In this context, we present as our second main result non-regular
languages L (e.g., the language {w ∈ {a, b}∗ | |w|a = |w|b}) that allow constructing,
for every n ∈ N, a language that is hard for the n-th level of the arithmetical
hierarchy (Theorem 4.5). Consequently, there are “simple” non-regular languages
L and {L}-automatic structures with first-order theory arbitrarily high in the
arithmetical hierarchy. On the other hand, we also provide examples of non-regular
languages that only produce recursive languages.

Coming back to arbitrary rational transductions, it turns out that three fixed
rational transductions, together with the Boolean operations, suffice to construct
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all arithmetical languages from any non-regular language. Therefore, our third
main result (Theorem 5.1) states that there is a fixed rational Kripke frame with
three modalities such that assigning any non-regular language to a variable allows
the definition of every arithmetical language using multimodal logic.

Related work. Other results of a similar spirit on closure properties of language
classes have been known for a long time. For example, Hartmanis and Hopcroft [20]
proved that every intersection closed full AFL containing E = {anbn | n ∈ N}
already includes the recursively enumerable languages (see [17] for similar results).
Since every Boolean closed full trio is an intersection closed full AFL, compared
to the result of Hartmanis and Hopcroft, we require more closure properties, but
in return, we may replace E by an arbitrary non-regular language. See page 8 for
more information.

Furthermore, Book [5] has shown that the arithmetical languages constitute
the smallest Boolean closed full trio that is closed under homomorphic replica-
tion, a generalization of homomorphisms. Hence, our result means that in Book’s
result one can replace homomorphic replication by containment of a non-regular
language.

Seibert [37] has shown that applying projections and Boolean operations to
asynchronously recognizable relations (a generalization of rational transductions to
arities beyond 2) allows constructing all arithmetical languages and relations over
any fixed alphabet. Differently from Seibert, we do not apply Boolean operations
to relations, but only to languages. Furthermore, we present a single finite set
of rational transductions that allows constructing all arithmetical languages over
{0, 1} from any non-regular language over {0, 1}.

This is an extended version of the conference contribution [26] that, besides
the proofs missing there also contains additional results on synchronous rational
transductions.

2 Preliminaries

For more details on automata and formal languages, the reader can consult [3,
22]. Let Σ be a fixed countable set of abstract symbols, the finite subsets of which
are called alphabets. Given an alphabet X, the set of words over X is denoted
by X∗ and the empty word by λ. A homomorphism is a mapping h : X∗ → Y ∗

(for alphabets X, Y ) such that h(λ) = λ and h(uv) = h(u)h(v) for all u, v ∈ X∗.
Subsets of X∗ for alphabets X are called languages. For a language L, the smallest
alphabet X with L ⊆ X∗ is denoted by α(L). The complement of L is defined as
L = α(L)∗ \ L.

For two languages L,K ⊆ X∗, we define their shuffle as

L K = {u1v1 · · ·unvn | u1, . . . , un, v1, . . . , vn ∈ X∗,
u1 · · ·un ∈ L, v1 · · · vn ∈ K}.

Let M be a monoid with neutral element 1. An automaton over M is a tuple
A = (Q,M,E, q0, Qf ), in which Q is a finite set of states, E is a finite subset of
Q ×M × Q called the set of edges, q0 ∈ Q is the initial state, and Qf ⊆ Q is the
set of final states. A path (from p0 to pm) is a sequence p0 a1 p1 a2 p2 · · · am pm with
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(pi, ai+1, pi+1) ∈ E for all 0 ≤ i < m. Its label is a1a2 · · · am ∈ M . In case m = 0
we have the empty path from p0 to p0 and its label is the neutral element 1 ∈M .
If p0 = q0 is the initial state and pm ∈ Qf is some final state, then this path is
accepting. The set generated by A is then

JAK = {a ∈M | a is the label of some accepting path in A}.

A set R ⊆M is called rational if there is some automaton A over M with R = JAK.
A rational language is also called regular.

Given alphabets X and Y , a rational transduction is a rational subset of the
monoid X∗ × Y ∗. We allow ourselves to abbreviate “rational transduction” to
“transduction”. Automata over the monoid X∗ × Y ∗ are called transducer over

(X,Y ), if X = Y , we simply speak of transducer over the alphabet X. Homomor-
phisms h : X∗ → Y ∗ are the simplest examples of rational transductions (when
viewed as relations {(h(x), x) | x ∈ X∗}).

Let T ⊆ Y ∗ × Z∗ be a rational transduction and let L ⊆ Z∗ be a language.
Then we write TL for {y ∈ Y ∗ | ∃z ∈ L : (y, z) ∈ T} for the image of L under T .

Remark 2.1. Consequently, we view the rational transduction T ⊆ Y ∗ × Z∗ as a
mapping from 2Z

∗
to 2Y

∗
. Now let A be a transducer generating T . Then edges

in A are of the form (p, (y, z), q) where p and q are states, y ∈ Y ∗ and z ∈ Z∗. In

line with our understanding of T as a mapping from 2Z
∗

to 2Y
∗
, the word z is the

input and the word y is the output in such an edge.
This also explains why we consider the homomorphism h : X∗ → Y ∗ as the set

of pairs (h(x), x) ∈ Y ∗ ×X∗ for x ∈ X∗ since only then h(L) = hL.

Furthermore the composition of the rational transductions S ⊆ X∗ × Y ∗ and
T ⊆ Y ∗ × Z∗ is defined as

ST = {(x, z) ∈ X∗ × Z∗ | ∃y ∈ Y ∗ : (x, y) ∈ S, (y, z) ∈ T}.

Note that (ST )L = S(TL) for any language L ⊆ Z∗. Moreover, the product of
R,S ⊆ X∗ × Y ∗ is given by

R · S = {(u0v0, u1v1) ∈ X∗ × Y ∗ | (u0, u1) ∈ R, (v0, v1) ∈ S} .

It is well known that the relations R∪S,R−1, R·S ⊆ X∗×Y ∗ and ST ⊆ X∗×Z∗ are
rational transductions. If the language L is regular, then also TL is regular. Even
more, from transducers for R, S, and T and an automaton for L, one can compute
transducers for these relations and an automaton for TL. These properties and
many more results about rational transductions can be found in [3].

Remark 2.2. In the literature, one often writes S ◦ T for the composition and RS

for the product. We deviate from this convention since we will use the composition
of rational transductions far more often than the product.

A language class is a class of languages that contains at least one non-empty
language. We call a language class Boolean closed if it is closed under all Boolean
operations (union, intersection, and complementation).

A language class C is called a full trio (or cone) if it is closed under (arbitrary)
homomorphisms, inverse homomorphisms, and intersection with regular languages.
According to Nivat’s normal form theorem [30], for every rational transduction
R ⊆ X∗ × Y ∗ there exist a regular language L and two homomorphisms g and h

such that R = {(g(u), h(u)) | u ∈ L}. Consequently, for every language K ⊆ X∗
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we have RK = g(h−1(K) ∩ L). It follows that a class C is a full trio if and only if
it is closed under rational transductions, i.e., for every L ∈ C and every rational
transduction R, we have RL ∈ C. By the full trio generated by the language L we
mean the smallest full trio that contains L. Since the intersection of all full trios
containing L is a full trio, this class exists for every L. It is not difficult to describe
it explicitly: If L is empty, it is the class of regular languages (since {∅} is no
language class, it is no full trio either); if L is non-empty, it is the class of all
languages RL where R is a rational transduction. A full trio is called a principal

full trio if it is generated by some language. Full trios that are closed under finite
unions are called full semi-AFLs (“Abstract Family of Languages”). Note that a
full semi-AFL is closed under complementation if and only if it is a full trio that is
closed under all Boolean operations. A full AFL is a full trio that is closed under
union and Kleene star, i.e., a full semi-AFL that is closed under Kleene star.

For any class of languages C, we write RE(C) for the class of languages accepted
by some Turing machine with an oracle L ∈ C. We also write RE for RE({∅}) and
RE(L) for RE({L}). Then the arithmetical hierarchy (see [36] for more details) is
defined as

Σ1 = RE, Σn+1 = RE(Σn) for n ≥ 1, AH =
⋃
n≥1

Σn.

Languages in AH are called arithmetical. For every n ≥ 1, there exist sets that
are Σn-complete with respect to many-one reductions. An example of such a
set is the set of all (suitable encodings of) first-order sentences of the form θ =
∃x̄1∀x̄2 · · · ∃/∀x̄n : ϕ(x̄1, . . . , x̄n), where x̄1, . . . , x̄n are tuples of variables, ϕ is a
quantifier-free formula such that θ is true in the arithmetical model (N,+,×).

The arithmetical hierarchy relative to the language L is defined as

Σ1(L) = RE(L), Σn+1(L) = RE(Σn(L)) for n ≥ 1, AH(L) =
⋃
n≥1

Σn(L).

Note that every class AH(L) is a Boolean closed full trio. Indeed, each Σn(L) is
a full trio: Given K ∈ Σn(L) and a rational transduction R, then the language
RK = {x | ∃y ∈ K : (x, y) ∈ R} belongs to Σn(L) as well. Moreover, Σn(L) is
closed under union and intersection. Finally, the complement of each member of
Σn(L) is contained in Σn+1(L).

We will often encode words over an alphabet X by words over the Boolean
alphabet B = {0, 1}. If X is an alphabet, then any homomorphism g : X∗ → B∗
with {g(a) | a ∈ X} = {10i | 1 ≤ i ≤ |X|} will be called a standard encoding. It is
an injective homomorphism. Hence, a language L ⊆ X∗ is regular if and only if
g(L) is regular: Clearly, if L is regular, then g(L) is regular, since regular languages
are closed under homomorphic images. On the other hand, if g(L) is regular, then
also g−1(g(L)) is regular, since regular languages are closed under homomorphic
preimages. But this set equals L since g is injective.

For two alphabets X and Y with Y ⊆ X, the homomorphism πY : X∗ → Y ∗

is defined by πY (x) = x for x ∈ Y and πY (x) = λ for x ∈ X \ Y , i.e., πY (u) is
obtained from u by deleting all letters not belonging to Y .
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3 Boolean closed full trios

The first main result of this work is the following.

Theorem 3.1. Let B = {0, 1}. There are rational transductions R,S, T over B such

that for any non-regular language L ⊆ B∗, each K ∈ AH(L), K ⊆ B∗, can be obtained

from L using R,S, T and Boolean operations.

Before proving this theorem, we first record a few of its consequences.

Corollary 3.2. Let X be an alphabet and let L ⊆ X∗ be a non-regular language. Then

AH(L) is the smallest Boolean closed full trio containing L.

Proof. Let T be the smallest Boolean closed full trio containing L. Since, as
remarked earlier, AH(L) is a Boolean closed full trio, we immediately obtain
T ⊆ AH(L).

Let g : X∗ → B be a standard encoding. Note that g(L) and L are images of each
other under the rational transductions g and g−1, respectively. Hence the smallest
Boolean closed full trio Tg(L) containing g(L) equals T . Since L is non-regular,
also g(L) is non-regular and we have AH(L) = AH(g(L)). Hence, also in this case,
Theorem 3.1 implies that AH(L) = AH(g(L)) ⊆ Tg(L) = T which concludes the
proof. ut

A large number of language classes studied in formal language theory are full
semi-AFLs, i.e., union closed full trios [11,18,3,14]. Although the authors are not
aware of any particular full semi-AFL for which it is not known whether com-
plementation closure is available, the following fact is interesting because of its
generality.

Corollary 3.3. Other than the class of regular languages, no full semi-AFL C ⊆ RE

is closed under complementation.

Proof. Suppose C were a complementation closed full semi-AFL (i.e., a Boolean
closed full trio) that contains a non-regular language L. According to Corollary 3.2,
it would already include AH(L) ⊇ AH and thus not be included in RE. ut

Note that the following corollary is not a special case of Corollary 3.3 as it is
not restricted to language classes below RE.

Corollary 3.4. A principal full trio is closed under complementation if and only if it

is the class of regular languages.

Proof. Let T be a principal full trio and let L be a language generating T . If L
is regular, then T is the class of regular languages and is therefore closed under
complementation.

Suppose L is not regular. Since then L is non-empty, T consists of all languages
of the form RL, where R is a rational transduction. Hence, T is contained in RE(L)
and is closed under union. The latter follows from the fact that the class of rational
transductions is closed under union. If T were closed under complementation, it
would be closed under all Boolean operations and thus, by Corollary 3.2, include
AH(L). Since RE(L) ( AH(L), this is a contradiction. ut
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Let us also mention a corollary concerning valence automata. A valence automa-

ton over the monoid M is an automaton A over the monoid X∗×M , where X is an
alphabet. The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ JAK}.
The class of languages accepted by valence automata over M is denoted by VA(M).
We call a monoid M finitely generated if there is an alphabet X and a surjective
monoid morphism ϕ : X∗ →M .

Corollary 3.5. For finitely generated monoids M , the following are equivalent:

(i) VA(M) is closed under complementation.

(ii) VA(M) is the class of all regular languages.

(iii) M has only finitely many right-invertible elements.

Proof. Let X be some alphabet and ϕ : X∗ → M a surjective monoid morphism.
We consider the language L = ϕ−1(1). It is easy to verify that VA(M) is the prin-
cipal full trio generated by L. Hence Corollary 3.4 yields the equivalence between
(i) and (ii). The equivalence between (ii) and (iii) has been shown in [35] (and
independently in [40]). ut

A classic result in the same spirit as Theorem 3.1 has been obtained by Hart-
manis and Hopcroft [20], and it concerns intersection closed full AFLs. A full AFL

is a full trio that is closed under union and Kleene star. Hartmanis and Hopcroft
proved that every intersection closed full AFL that contains E = {anbn | n ∈ N}
already includes the recursively enumerable languages (see [17] for similar results).
Many language classes studied in formal language theory are full AFLs, such as the
context-free languages, the one-counter languages, the languages of higher-order
pushdown automata (see [3] for the first two classes and [9,10] for the last).

A Boolean closed full trio is also closed under the Kleene star (equation (3),
page 17, demonstrates how to express the Kleene star using complementation and
transductions) and thus constitutes an intersection closed full AFL. Therefore,
Theorem 3.1 tells us that if we expand the set of closure properties in the result
by Hartmanis and Hopcroft to Boolean closed full trios, we may replace E with an
arbitrary non-regular language. Note that we cannot replace E with an arbitrary
non-regular language in the case of intersection closed full AFLs. Ginsburg and
Goldstine [17] have constructed non-regular languages L such that the smallest
intersection closed full AFL containing L does not contain all of RE. Another
counterexample is the class of languages defined by labeled transfer Petri nets
with upward-closed target sets: They constitute an intersection closed full AFL [16,
Theorem 7] and contain the non-regular language {anbm | n ≥ m} [16]. Moreover,
the emptiness problem is decidable for this class.

The rest of this section is devoted to the proof of Theorem 3.1.

3.1 Simplifying the task

Theorem 3.1 claims the existence of only three rational transductions over {0, 1}
that allow, for all non-regular languages L ⊆ {0, 1}∗ and all n ∈ N, constructing all
languages K ⊆ {0, 1}∗ from Σn(L). Note that K ∈ Σn+1(L) if there is L′ ∈ Σn(L)
with K ∈ RE(L′) (and we can even assume L′ ⊆ {0, 1}∗). Hence the central problem
is the construction of languages from RE(L). This construction is much easier to
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understand with larger alphabets and more than three rational transductions. For
these reasons, our proof involves the following weaker version of Theorem 3.1:

Theorem 3.6. Let B = {0, 1}. There is a finite set F of rational transductions over

some alphabet Z such that for any languages K,L ⊆ B∗ with K ∈ RE(L) and L non-

regular, the language K can be constructed from the language L using the rational

transductions from F and Boolean operations.

We first show how to derive the main result, Theorem 3.1, from this weaker
version. This proof splits into two lemmas, one dealing with the number of rational
transductions and the other with the alphabets.

Lemma 3.7. Let B = {0, 1}. For each finite set F of rational transductions over B,

there are rational transductions R,S, T over B such that every composition of trans-

ductions from F can be written in the form TnSmR with m,n ∈ N.

Proof. For x ∈ B, let Ax be the transduction that appends x to each input word,
hence Ax = {(wx,w) | w ∈ B∗}. Furthermore, let F = {U0, . . . , Uk−1}, b = k + 1,
and let U ′i be the rational transduction

U ′i = {(u10m, v10bm+i) | (u, v) ∈ Ui,m ∈ N}, U ′k = {(w,w10k) | w ∈ B∗}

for each 0 ≤ i < k. We shall prove that R = A1, S = A0, and T =
⋃

0≤i≤k U
′
i

have the desired property. Let Uin · · ·Ui0 be a composition of elements of F and
let in+1 = k. We claim that

Uin · · ·Ui0 = Tn+2SmR for m =
n+1∑
j=0

ijb
j .

The idea is that the exponent m encodes the sequence of indices in+1, in, . . . , i0 in
base b. Applying SmR appends 10m to each input word. Then, each application
of T to a word w10` chooses some U ′j , but this choice will only lead to a valid
computation of the transducer if ` is congruent to j modulo b. Hence, applying
Tn+1 to w10m has the same effect as applying U ′in · · ·U

′
i0 . Since the most significant

digit in the b-ary representation of m is in+1 = k, applying T once more means
applying U ′k and hence removing the 10k suffix of the input word. In the end, we
applied Uin · · ·Ui0 . ut

Lemma 3.8. Let B = {0, 1}, let X be an arbitrary alphabet and let F be a finite set of

rational transductions over X. There exists a finite set F ′ of rational transductions over

B such that the following holds for all languages K,L ⊆ B∗: If K can be constructed

from L using transductions from F and Boolean operations, then it can be constructed

from L using transductions from F ′ and Boolean operations.

Proof. Let g : X∗ → B∗ be some standard encoding. In F ′, we collect the following
rational transductions over B:

– gRg−1 for R ∈ F ,
– RY = {(g(w), g(w)) | w ∈ Y ∗} for Y ⊆ X,
– Rg = {(g(0), 0), (g(1), 1)}∗ and R−1

g .
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We clearly have g(L ∩ K) = g(L) ∩ g(K) and g(L ∪ K) = g(L) ∪ g(K) for
K,L ⊆ X∗. Since g is injective, the mapping g−1g is the identity on X∗. Hence also
g(RL) = gRg−1(g(L)) for any transduction R over X and any language L ⊆ X∗.
Since g is injective, we also get

g(L) = g(α(L)∗ \ L) = g(α(L))∗ \ g(L) = g(α(L))∗ ∩ g(L) = Rα(L)(g(L))

for L ⊆ X∗.
Let K,L ⊆ B∗ and suppose that K can be constructed from L using transduc-

tions from F and Boolean operations. Then, by induction on the construction of
K from L, the language g(K) can be constructed from g(L) using transductions
from F ′ and Boolean operations. Since K = R−1

g (g(K)) and g(L) = Rg(L), we
can therefore construct K from L using transductions from F ′ and Boolean oper-
ations. ut

Proof of Theorem 3.1 assuming Theorem 3.6. Let B, F and Z be as in Theorem 3.6.
By Lemma 3.8, we find a finite set F ′ of rational transductions over B such that
any language K ⊆ B∗ with K ∈ RE(L) can be constructed from any non-regular
language L ⊆ B∗ using transductions from F ′ and Boolean operations. Applying
Lemma 3.7 to this set gives three rational transductions R, S, and T over B that,
for any non-regular language L ⊆ B∗ allow generating (from L) all languages
K ⊆ B∗ from RE(L) = Σ1(L) using also Boolean operations. By induction, this
allows constructing all languages K ⊆ B∗ in AH(L) from L. Hence, Theorem 3.1
follows indeed from Theorem 3.6. ut

Given this proof, it remains to demonstrate the correctness of Theorem 3.6.
To this aim, we will proceed in three steps:

1. As a kind of warm-up (and for later use), we show how to generate all regular
languages from X∗ with a fixed finite set of rational transductions (without
using any Boolean operations, Lemma 3.9).

2. The central part of the proof is the second step: Let H ⊆ {0, 1}∗ be recursively
enumerable and L ⊆ {0, 1}∗ be non-regular. Then H can be accepted by some 2-
counter automaton. We encode the computations of this 2-counter automaton
by certain words. The main idea is that counter values are not encoded in any
particular number system, but by the infinitely many equivalence classes of
the Myhill-Nerode-equivalence of the non-regular language L. As a result, any
recursively enumerable language H can be constructed from any non-regular
language L (Lemma 3.16).

3. In the third and final step, let K ⊆ {0, 1}∗ be recursively enumerable in
L ⊆ {0, 1}∗ (with L non-regular), i.e., K ∈ RE(L). Then there is an oracle
Turing machine accepting K with oracle L. The set of accepting computations
of this oracle Turing machine (when ignoring the correctness of the oracle an-
swers) is computable. Consequently, the sequence of oracle answers in accepting
computations is recursively enumerable and therefore in RE. Hence it can be
constructed from L (by the second step of our proof) and, again using L, we
can also verify that all the oracle answers are correct (this is the sketch of the
final proof of Theorem 3.6 from page 17).
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3.2 Constructing regular languages

In this subsection, we show that using a fixed set of rational transductions, one
can obtain every regular language from X∗.

Lemma 3.9. Let X be an alphabet and Y = X ] {#, $}. There is a finite set F of

rational transductions over Y such that for any languages K,L ⊆ X∗ with K regular

and L 6= ∅, the language K can be constructed from the language L using the rational

transductions from F .

Proof. We may assume that K is accepted by an automaton

A = (Q,X∗, E, 1, Qf ),

where Q = {1, . . . , k}, Qf ⊆ Q, and E ⊆ Q×X ×Q.
Our goal is to produce the language TA of all encodings of accepting runs

of A, i.e., of all words $i0x1$i1 · · ·xn$in , such that i0 = 1, in ∈ Qf , xj ∈ X and
(ij , xj+1, ij+1) ∈ E for 0 ≤ j < n. Then, clearly, the rational transduction P that
outputs only the xj (i.e., deletes all occurrences of $) will satisfy PTA = K. In the
following, the additional symbol # is called a marker.

First we use the initial transduction

I = $(X$+)∗ ×X∗

to produce the set $(X$+)∗ = IL from L 6= ∅. In the following, a word

$i0x1$i1 · · ·xn$in

is called an encoding. Its factors $ij are called state blocks and its factors $ijx$ij+1

are called transition blocks.
The transduction I already guarantees that the leftmost state block corre-

sponds to the initial state. We now wish to remove all words that contain a state
block of length greater than k. In order to do this, we use the transduction S,
which inserts the marker # in the beginning of every state block. Furthermore, we
have the transduction M , which moves each occurrence of the marker one position
to the right (i.e. outputs $# on input #$) if its right neighbor is a $, and drops the
occurrence otherwise. We also have the transduction R, which rejects all inputs
that contain the marker #. All other words are unchanged by R. Then applying
RMk+1S yields the set of encodings with state blocks of length at most k.

In the next step, we wish to remove from the language all encodings whose
rightmost state block does not correspond to any accepting state from Qf . To
this end, we use the transduction S′ that inserts a marker in the beginning of
the last state block. The transduction R′ rejects all words that end with # and
removes all occurrences of # from any other word. Then R′M iS′ yields the set of
encodings with rightmost state block not of length i. Hence, applying R′M iS for
each i ∈ Q \ Qf in succession yields the set of encodings whose rightmost state
block represents an accepting state.

In the final step, we wish to remove from the language all encodings that
contain a transition block $`x$m with x ∈ X, 0 ≤ `,m ≤ k, and (`, x,m) /∈ E.
Again, we use S to introduce # at the beginning of each state block. Then, we
use M` to move every # by ` positions to the right. Next, we apply Mx, which
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replaces #x by x#. Occurrences of # that are not followed by x are removed by
Mx. Then we apply Mm. At the end, we use R′′, which rejects all words that have a
factor #X or that end with #, and removes all # that are followed by $. In total,
applying R′′MmMxM

`S clearly yields the set of encodings that do not contain
the transition block $`x$m. Therefore, we apply this sequence of transductions
for each triple (`, x,m) with 0 ≤ `,m ≤ k, x ∈ X, and (`, x,m) /∈ E. This clearly
produces the language TA and hence K = PTA is obtained. Since we only used
transductions in F = {I, S, S′,M,R,R′, R′′} ∪ {Mx | x ∈ X}, the lemma is proved.

ut

Lemmas 3.7, 3.8, and 3.9 together immediately imply the following byproduct,
which might be of independent interest.

Corollary 3.10. Let B = {0, 1}. There are rational transductions S, T in B∗ × B∗
and a regular language L ⊆ B∗ such that every regular language over B can be written

as TnSmL for some m,n ∈ N.

Proof. By Lemma 3.9, there is a finite set of rational transductions over B∪{$,#}
that allows constructing any regular language over B from B∗. By Lemma 3.8,
there is a finite set of rational transductions over B that allows constructing any
regular language over B from B∗. Hence, by Lemma 3.7, there are three rational
transductions R,S, T such that any regular language K ⊆ B∗ equals TnSmRB∗ for
some m,n ∈ N. Hence, the corollary holds with L = RB∗. ut

3.3 Constructing the counter language C

This subsection is the technical heart of the proof of Theorem 3.6. Here, we show
that from an arbitrary non-regular language and using a fixed finite set of rational
transductions and Boolean operations, one can construct the language C of valid
sequences of counter operations.

We define the alphabet ∆ = {+,−, z}, whose elements will represent the oper-
ations increment, decrement, and zero test, respectively.

Definition 3.11. Let C ⊆ ∆∗ be the set of words δ1 · · · δm, δ1, . . . , δm ∈ ∆ for
which there are numbers x0, . . . , xm ∈ N such that x0 = 0 and for 1 ≤ i ≤ m:

1. if δi = +, then xi = xi−1 + 1,
2. if δi = −, then xi = xi−1 − 1, and
3. if δi = z, then xi = xi−1 = 0.

The main difficulty in proving Theorem 3.6 is to construct C from a language L,
where the only information we have about L is that it is not regular. A central
role in this construction is played by the Myhill-Nerode equivalence (and the non-
regularity of L is used since only then, we have infinitely many equivalence classes):
Let X be an alphabet and L ⊆ X∗. For words u, v ∈ X∗, we write u ≡L v if for
each w ∈ X∗, we have

uw ∈ L if and only if vw ∈ L.

The equivalence relation ≡L is called the Myhill-Nerode equivalence. The well-known
Myhill-Nerode Theorem (see e.g. [22]) states that L is regular if and only if ≡L has
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a finite index. Using the Myhill-Nerode equivalence, we define another language
from C, which can be thought of as making the counter values xi explicit and
encoding them as Myhill-Nerode classes.

Definition 3.12. Consider the alphabets B = {0, 1} and ∆ = {+,−, z}, some
symbol # /∈ B ∪∆ and a language L ⊆ B∗. Let ĈL ⊆ (∆ ∪ B ∪ {#})∗ be the set of
all words

v0δ1v1 · · · δmvm#u0 · · ·#un (1)

with m,n ≥ 0, δi ∈ ∆, vi, uj ∈ B∗, such that uk 6≡L u` for k 6= `, v0 ≡L u0, and for
each 1 ≤ i ≤ m and 0 ≤ j ≤ n, we have

1. if δi = + and vi−1 ≡L uj , then vi ≡L uj+1,
2. if δi = − and vi−1 ≡L uj , then vi ≡L uj−1, and
3. if δi = z, then vi−1 ≡L vi ≡L u0.

The idea behind this definition is that counter values are represented by Myhill-
Nerode classes (with respect to L), which are denoted by the words ui and vj in (1).
This means, words that are Myhill-Nerode equivalent represent the same counter
value. The words v0, . . . , vm describe the counter values as they are attained over
time (the class of vi represents the value at time i ∈ {0, . . . ,m}), and the words
u0, . . . , un describe the counter values sorted by their magnitude (the class uj
represents the value j ∈ {0, . . . , n}). Therefore, to distinguish different counter
values, we require that uk 6≡L u` for k 6= `. The word vi−1 (resp., vi) in (1)
represents the counter value before (resp., after) the counter operation δi. For
instance, if δi = +, then the counter value represented by vi should be one more
than the counter value represented by vi−1. This is expressed by requiring that for
some j, vi−1 ≡L uj and vi ≡L uj+1.

Note that since in ĈL, the counter values are represented by Myhill-Nerode
classes, ĈL can mimic counter operations up to the number of these classes: En-
coding k distinct counter values requires k Myhill-Nerode classes. This means, if L
is non-regular, projecting to the counter instruction symbols yields precisely C. If
L is regular, this is not true: In that case, the projection only contains instruction
sequences where the counter value stays below the index of ≡L.

Lemma 3.13. Let B = {0, 1}. If the language L ⊆ B∗ is not regular, then we have

π∆(ĈL) = C.

Proof. In order to prove the inclusion “⊇”, let δ1 . . . δm ∈ C. Then there are num-
bers x0, . . . , xm ∈ N as in Definition 3.11. There is n ∈ N such that {x0, . . . , xm}
is included in {0, . . . , n}. Since L is not regular, we can find words u0, . . . , un ∈ B∗
such that uk 6≡L u` for k 6= `. Now for each 0 ≤ i ≤ m, let vi = uxi . Then it
can be checked straightforwardly that v0δ1v1 · · · δmvm#u0 · · ·#un ∈ ĈL and hence
δ1 · · · δm ∈ π∆(ĈL).

For the inclusion “⊆”, suppose δ1 · · · δm ∈ π∆(ĈL). Then there are words
v0, . . . , vm, u0, . . . , un ∈ B∗ with

v0δ1v1 · · · δmvm#u0 · · ·#un ∈ ĈL.

Using the fact that the uk are pairwise incongruent w.r.t. ≡L and by induction
on i, one can easily verify that for each 0 ≤ i ≤ m, there is a unique xi ∈ {0, . . . , n}
such that vi ≡L uxi . By the definition of ĈL, this choice of x0, . . . , xn satisfies the
conditions 1–3 of Definition 3.11. ut
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The following lemma is the central ingredient in our proof. We show that from
each language L, one can construct ĈL using Boolean operations and a fixed finite
set of rational transductions. Then, when L is non-regular, Lemma 3.13 allows us
to obtain C.

Lemma 3.14. Let B = {0, 1} and Y = B ∪ ∆ ∪ {#}. There exists a finite set F

of rational transductions such that for any (possibly regular) language L ⊆ B∗, the

language ĈL ⊆ Y ∗ can be obtained from L using transductions in F and Boolean

operations.

Proof. We construct ĈL from L using a sequence of Boolean operations and trans-
ductions T1, . . . , T19 over Y for which it will be clear that they do not depend on
L. Then Lemma 3.8 ensures that these transductions over Y can be replaced by
transductions over B.

There are clearly rational transductions T1 and T2 with

W1 = {u#v#w | u, v, w ∈ B∗, uw ∈ L} = T1L,

W2 = {u#v#w | u, v, w ∈ B∗, vw ∈ L} = T2L,

which means we can construct W1 and W2. Hence,

W ′ = {u#v#w | u, v, w ∈ B∗, (uw ∈ L, vw /∈ L) or (uw /∈ L, vw ∈ L)}
= (W1 ∩W2) ∪ (W1 ∩W2)

can also be constructed. We can clearly find a rational transduction T3 with

W = {u#v | u, v ∈ B∗, u 6≡L v}
= {u#v | u#v#w ∈W ′ for some w ∈ B∗}
= T3W

′.

This means P = {u#v | u, v ∈ B∗, u ≡L v} = B∗#B∗ \W = B∗#B∗∩W = T4W , for
some transduction T4, can be constructed. With suitable rational transductions
T5, T6, we have

S = {u0#u1 · · ·#un | ui 6≡L uj for all i 6= j}
= (B∗#)∗B∗ \ {ru#svt | r, s ∈ (B∗#)∗, t ∈ (#B∗)∗, u#v ∈ P}
= T6T5P ,

meaning that S can be constructed as well. Let M (matching) be the set of all
words v1δv2#u1#u2 where v1, v2, u1, u2 ∈ B∗ and δ ∈ ∆ with

– if δ = +, then v1 ≡L u1 and v2 ≡L u2,
– if δ = −, then v1 ≡L u2 and v2 ≡L u1, and
– if δ = z, then v1 ≡L v2 ≡L u1.

Since

M = {v1+v2#u1#u2 | v1#u1 ∈ P, v2#u2 ∈ P}
∪ {v1−v2#u1#u2 | v1#u2 ∈ P, v2#u1 ∈ P}
∪ {v1zv2#u1#u2 | v1#v2 ∈ P, v1#u1 ∈ P, u2 ∈ B∗}

= (T7P ∩ T8P ) ∪ (T9P ∩ T10P ) ∪ (T11P ∩ T12P )
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for suitable rational transductions T7, . . . , T12, we can also construct M .

Let E (which stands for error) be the set of words v1δv2#u0 · · ·#un such that
for every 1 ≤ j ≤ n, we have v1δv2#uj−1#uj /∈M or we have δ = z and v1 6≡L u0.
Since

E′ = {v1δv2r#u1#u2s | v1δv2#u1#u2 ∈M, r, s ∈ (#B∗)∗}
= T13M

for some rational transduction T13, we can construct E′. Furthermore, since

E =
[
(B∗∆B∗#B∗(#B∗)∗ \ E′

]
∪ {v1zv2#u0r | v1 6≡L u0, r ∈ (#B∗)∗, v2 ∈ B∗}

= T14E′ ∪ T15P ,

for some rational transductions T14, T15, we can construct E.

Let N (no error) be the set of words v0δ1v1 · · · δmvm#u0 · · ·#un such that for
every 1 ≤ i ≤ m, there is a 1 ≤ j ≤ n with vi−1δivi#uj−1#uj ∈ M and if δi = z,
then vi−1 ≡L u0. Since

N ′ = {w ∈ (B∗∆)∗v1δv2(∆B∗)∗#u0 · · ·#un | v1δv2#u0 · · ·#un ∈ E} = T16E

and

N = (B∗∆)+B∗#B∗(#B∗)∗ \N ′ = T17N ′

for some rational transductions T16, T17, we can construct N .

Finally, we define I (initial condition) to be the language of those

v0δ1v1 · · · δmvm#u0 · · ·#un ∈ N

with v0 ≡L u0. Since

I = N ∩ {v0(∆B∗)∗#u0(#B∗)∗ | v0#u0 ∈ P} = N ∩ T18P,

for some rational transduction T18, we can construct I.

Now we have ĈL = I∩(B∗∆)∗B∗#S = I∩T19S for some rational transduction
T19, meaning we can construct ĈL. This proves our claim and hence the lemma.

ut

Lemma 3.15. Let B = {0, 1}. There is a finite set F of rational transductions such

that for any non-regular language L ⊆ B∗, the language C can be obtained from L using

transductions in F and Boolean operations.

Proof. Let L ⊆ B∗ be non-regular. By Lemma 3.13, we have C = π∆(ĈL). Thus,
if we add π∆ to the set of transductions from Lemma 3.14, we obtain a finite set
that allows constructing C from L. ut
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3.4 Constructing all recursively enumerable languages

This subsection is the last technical step in proving Theorem 3.6. Using the counter
language constructed in Section 3.3, we construct all recursively enumerable lan-
guages. To this aim, we use two-counter automata. Recall that ∆ is the alphabet
{+,−, z}. A two-counter automaton is a tuple

A = (Q,X,E, q0, Qf ),

where (i) Q is a finite set of states, (ii) X is its input alphabet, (iii) E is a finite
subset of Q × X∗ × ∆ × ∆ × Q whose elements are called edges, (iv) q0 ∈ Q is
its initial state, and (v) Qf ⊆ Q is its set of final states. A configuration is an
element of Q×X∗ × N× N. For configurations (q, u, n0, n1) and (q′, u′, n′0, n

′
1), we

write (q, u, n0, n1) `A (q′, u′, n′0, n
′
1) if there is an edge (q, v, δ0, δ1, q

′) ∈ E such that
u′ = uv and for each i ∈ {0, 1}, we have

1. δi = + and n′i = ni + 1,
2. δi = − and n′i = ni − 1, or
3. δi = z and n′i = ni = 0.

The language accepted by A is then

L(A) = {w ∈ X∗ | ∃f ∈ Qf , n0, n1 ∈ N : (q0, λ, 0, 0) `∗A (f, w, n0, n1)}.

The definition here forces the automaton to operate on both counters in each step,
whereas in the usual definition, these automata can also use only one counter at
a time. This is not a serious restriction: A two-counter automaton that accesses
only one counter at a time can be simulated as follows. Instead of incrementing
counter i, we first increment both counters and then decrement counter 1− i and
increment counter i again. If we proceed analogously for decrement (decrement i
and increment 1 − i, then decrement i and decrement 1 − i) and zero test (zero
test on i and increment on 1 − i, then zero test on i and decrement on 1− i), we
represent the counter values (n0, n1) of the old automaton by the values (2n0, 2n1)
and thus accept the same language.

Lemma 3.16. Let B = {0, 1} and X = B ∪ ∆ ∪ {#, $}. There is a finite set F of

rational transductions over X such that for any non-regular language L ⊆ B∗, every

language K ⊆ B∗ with K ∈ RE can be obtained from L using transductions in F and

Boolean operations.

Proof. Let F1 be the set of rational transductions provided by Lemma 3.9 when
the alphabet X is used. Furthermore, let F2 be the set of rational transductions
provided by Lemma 3.15.

Suppose K ⊆ B∗ is recursively enumerable. There is a two-counter automaton
A = (Q,B, E, 1, {2}) that accepts K and satisfies Q = {1, . . . , k}. Let R be the
regular language of all words

$m0

n∏
i=1

#wi#δ
(0)
i δ

(1)
i $mi

with (mi−1, wi, δ
(0)
i , δ

(1)
i ,mi) ∈ E for every 1 ≤ i ≤ n, m0 = 1, and mn = 2. By the

choice of F1, we can obtain R from L using only transductions in F1.
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Recall the definition of the language C from Definition 3.11. Clearly, there are
rational transductions T1 and T2 such that

U =

{
$m0

n∏
i=1

#wi#δ
(0)
i δ

(1)
i $mi ∈ R

∣∣∣∣∣ δ
(j)
1 · · · δ(j)n ∈ C for j ∈ {0, 1}

}
= R ∩ T1C ∩ T2C.

By the choice of F2, we can obtain U from L using only Boolean operations and
transductions in F1 ∪ F2 ∪ {T1, T2}. Finally, applying to U the transduction πB
that outputs all occurrences of letters from B clearly yields K. Therefore, setting
F = F1 ∪ F2 ∪ {T1, T2, πB} proves the lemma. ut

3.5 Proof of Theorem 3.6

Let F ′ be the set of transductions provided by Lemma 3.16 and let K,L ⊆ B∗ with
K ∈ RE(L) and L non-regular. This means that there is an oracle Turing machine
A such that K is accepted by AL. We turn the oracle Turing machine AL into
an ordinary Turing machine A′ as follows. The Turing machine A′ simulates AL,
except for oracle queries: Whenever AL uses the oracle for a word, A′ just guesses
an answer nondeterministically. Moreover, A′ has two additional tapes where it
records all oracle queries for which it guessed “yes” and “no”, respectively. After
simulating AL, the Turing machine A′ outputs

u1#1 · · ·un#1v1#2 · · · vm#2w, (2)

where w ∈ B∗ is the input read by the computation, u1, . . . , un ∈ B∗ are the queries
where A′ guessed “yes”, and v1, . . . , vm ∈ B∗ are the queries where A′ guessed “no”.
Let K′ ⊆ Y ∗ with Y = B ∪ {#1,#2} be the set of words (2) output by A′. Then,
by construction, K′ is a recursively enumerable language. We have

K = {w ∈ B∗ |∃u1, . . . , un ∈ L, v1, . . . , vm ∈ B∗ \ L :

u1#1 · · ·un#1v1#2v1#2 · · · vm#2w ∈ K′}.

Let g : Y ∗ → B∗ be a standard encoding. Then also g(K′) is recursively enumerable.
By Lemma 3.16, g(K′) can be obtained from L by transductions in F ′ and Boolean
operations. Hence, we can obtain K′ = g−1(g(K′)) from L.

Furthermore, since

(L#1)∗ = (B∗#1)∗L#1(B∗#1) ∩ (B∗#1)∗ = T2

(
T1L

)
, (3)

(L#2)∗ = (B∗#2)∗L#2(B∗#2) ∩ (B∗#2)∗ = T4
(
T3L

)
for some rational transductions T1, T2, T3, T4, we can construct (L#1)∗ and (L#2)∗

from K. Moreover, since

K′′ := {u1#1 · · ·un#1v1#2 · · · vm#2w ∈ K′ | u1, . . . , un ∈ L, v1, . . . , vm ∈ L}

= K′ ∩ (L#1)∗(B∗#2)∗B∗ ∩ (B∗#1)∗(L#2)∗B∗

= K′ ∩ T5(L#1)∗ ∩ T6(L#2)∗
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for suitable rational transductions T5, T6, we can construct K′′ from L. Finally, we
apply a transduction T7 that, for an input from Y ∗, outputs the longest suffix in
B∗. This yields K from L. Since, apart from the transductions in F ′, we only used
g−1 and T1, . . . , T7, Theorem 3.6 follows. ut

4 Synchronous rational transductions

Let L ⊆ {0, 1}∗ be any non-regular language. Then, by Theorem 3.1, we can con-
struct from L any arithmetical language K ⊆ {0, 1}∗ using rational transductions
and Boolean operations. The proof makes crucial use of asynchronous rational
transductions, i.e., transductions accepted by automata whose edges are labeled
by pairs of words of possibly different length. In this section, we study the question
of whether this is avoidable. We give two answers to this question:

1. If L is non-regular and has a neutral word (see Definition 4.4 below), then we
can construct a non-recursively-enumerable language from L using synchronous
rational transductions and Boolean operations. Moreover, if L is also recursive,
then we can construct for each n ∈ N a language that is hard for Σn.

2. There is a non-regular language L such that only recursive languages can be
constructed from L using synchronous rational transductions and Boolean op-
erations.

We start with the definition of synchronous rational transductions. We fol-
low [15, Def. 4.1].

Definition 4.1. Let X be an alphabet. A transducer A = (Q,X∗ ×X∗, E, q0, Qf )
over the alphabet X is synchronous if (p, (u, v), q) ∈ E implies |u| = |v| = 1. A
relation R ⊆ X∗×X∗ is a synchronous rational transduction if it is a finite union of
relations of the form

JAK · (L× {λ}) or JAK · ({λ} × L)

where A is a synchronous transducer over X and L ⊆ X∗ is a regular language.

It is easily verified that the relations R∪S, R−1 and ST ⊆ X∗×Z∗ are effectively
synchronous rational transductions whenever R,S ⊆ X∗ × Y ∗ and T ⊆ Y ∗ × Z∗
are synchronous rational transductions. As in the case of arbitrary rational trans-
ductions, the language TL is effectively regular if L ⊆ Z∗ is regular. Differently
from the general case, the product R ·S of two synchronous rational transductions
R and S need not be synchronous rational (e.g., consider R = {a}∗ × {λ} and
S = {(bn, bn) | n ∈ N}). The following shows that R · S is synchronous rational
whenever S is the direct product of two regular languages.

Example 4.2. If R is a synchronous rational transduction and K and L are regular

languages (all over the alphabet X), then also R · (K × L) is a synchronous rational

transduction:

Since for languages K1,K2, L1, L2, the relation (K1 × L1) · (K2 × L2) equals

(K1K2) × (L1L2), it suffices to consider the case R = JAK for some synchronous

transducer A. For x ∈ X∗, let x−1K = {y | xy ∈ K}. Then JAK · (K ×L) is the union

of all relations of the form
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– JAK · {(x′, y) | |x′| = |y|, x′−1K = x−1K, y ∈ L}︸ ︷︷ ︸
=Kx

·(x−1K × {λ}) for x ∈ X∗ and

– JAK · {(x, y′) | |x| = |y′|, y′−1L = y−1L, x ∈ K}︸ ︷︷ ︸
=Ly

·({λ} × y−1L) for y ∈ X∗.

Since K and L are regular, we have the following:

1. There are only finitely many sets x−1K and y−1L, i.e., the union above is finite.

2. For any x ∈ X∗, the set of words x′ with x′−1K = x−1K is regular (and similarly

for L). Hence the relations Kx and Ly can be accepted by synchronous transducers.

It will be convenient to have a shorthand for “can be constructed from L using
synchronous rational transductions and Boolean operations”:

Definition 4.3. For a language L, let ST BL denote the class of all languages
(over arbitrary alphabets) that can be constructed from L by synchronous rational
transductions and Boolean operations.

4.1 Languages that generate undecidable languages

In this section, we identify languages L such that ST BL contains complicated
languages.

Definition 4.4. Let L ⊆ X∗. A neutral word for L is a word v ∈ X+ such that
uvw ∈ L if and only if uw ∈ L for any u,w ∈ X∗.

An example of non-regular languages with a neutral word is the language
{w ∈ {0, 1}∗ | |w|0 = |w|1} with neutral word 01 or, more generally, every identity
language of a finitely generated group. Another example is the one-sided Dyck
language, which consists of all w ∈ {a, b}∗ such that |w|a = |w|b and for every prefix
p of w, we have |p|a ≥ |p|b. Here, ab is a neutral word. Note that the alphabet of
every non-regular language with a neutral word contains at least two letters.

The following main result of this section is similar to Theorem 3.1.

Theorem 4.5. Let L ⊆ {0, 1}∗ be a non-regular language with a neutral word. Us-

ing synchronous rational transductions and Boolean operations, one can construct a

non-recursively-enumerable language from L. If, in addition, L is recursive, one can

construct for each n ∈ N, a Σn-hard language from L.

Remark 4.6. There are a few differences between this theorem and Theorem 3.1:

– We allow only synchronous rational transductions.
– We construct only some arithmetical languages, but these languages are arbi-

trarily high in the arithmetical hierarchy.
– We do not show that a fixed finite set of synchronous rational transductions

suffices. In our proof, the used synchronous rational transductions will depend
on the language L and the level n we want to reach.

The rest of Section 4.1 prepares the proof of Theorem 4.5. This proof can be
found on page 28.



20 Georg Zetzsche et al.

4.1.1 Languages with neutral words and synchronous rational transductions

The aim of this section is to rescue as much as possible from the proof of The-
orem 3.1, namely Lemma 3.14. To this end, we observe that its proof only uses
a certain type of transducers, which we call end-erasing. Furthermore we show
that, in the presence of neutral words, transducers of this type can be replaced by
synchronous rational transductions.

Suppose A = (Q,X∗ × X∗, E, q0, Qf ) is a transducer over an arbitrary al-
phabet X. We call A end-erasing if E ⊆ Q × (X ∪ {λ}) × (X ∪ {λ}) × Q and if
(p, (λ, x), q), (q, (y, z), r) ∈ E implies y = λ. In other words, if the transducer out-
puts nothing on the first tape in one step, it will never output anything again on
the first tape. In particular, every computation consists of two parts: The first part
uses only edges with labels X× (X∪{λ}) and the second part uses only those with
labels in {λ} × (X ∪ {λ}). Transductions generated by an end-erasing transducer
are also called end-erasing. The following lemma will allow us to replace the trans-
ductions used in the proof of Lemma 3.14 by synchronous rational transductions
(provided L has a neutral word).

Lemma 4.7. Let X be any alphabet and L ⊆ X∗ be a language with a neutral word

and T be an end-erasing rational transduction. Then there is a synchronous rational

transduction S such that SL = TL.

Proof. We call a transducer non-erasing if the label of each of its edges belongs to
X × (X ∪ {λ}). A transduction is non-erasing if it is generated by a non-erasing
transducer. Then, a transduction is end-erasing if and only if it can be written as
a finite union of transductions R · ({λ}×L), where R is a non-erasing transduction
and L is a regular language. Using Example 4.2, it suffices to prove the lemma in
the case that T is non-erasing.

Let A be a non-erasing transducer for T and let w ∈ X+ be a neutral word
for L. We transform A into a transducer A′ as follows. At each state of A, we
attach a cycle that reads the pair (λ,w). Then JAK ⊆ JA′K implies JAKL ⊆ JA′KL.
For the other inclusion, let u ∈ JA′KL, i.e., there is v ∈ L with (u, v) ∈ JA′K.
Consider an accepting path in A′ that is labeled by (u, v). By the construction
of A′, we can write v as v = v0wv1wv2 . . . wvn for some words v1, v2, . . . , vn such
that (u, v0v1 . . . vn) ∈ JAK. Since w is a neutral word for L, we get v0v1 . . . vn ∈ L
and therefore u ∈ JAKL. Consequently, JAKL = JA′KL.

Suppose q0(x0, y0)q1 · · · (xn, yn)qn is a path in a transducer. The delay of this
path is

max
0≤i≤n

{||x0 · · ·xi| − |y0 · · · yi||}.

If B is a transducer, then the delay of

autB is the maximal delay in an accepting path of B. Moreover, for k ∈ N, we
write JBKk for the set of labels of accepting paths of B with delay at most k.

We let k = |w| and claim that JA′KkL = JA′KL. Since JA′Kk ⊆ JA′K by definition,
we have to show JA′KL ⊆ JA′KkL. Given a word u ∈ JA′KL = JAKL, we consider
a path labeled (u, v) in A with v ∈ L. Since A is non-erasing, in each state, the
output word produced so far is at least as long as the read input word. We turn
this path into a path of A′ as follows. Whenever the delay grows to k, we execute
a cycle (λ,w), which reduces the length difference to 0. This new path exists in A′
and has delay at most k since, in every step in A, the delay can grow by at most
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one. Since w is a neutral word, the path also reads a word from L, so that we have
u ∈ JA′KkL.

Clearly, one can turn A′ into a transducer A′′ that has delay at most k and
satisfies JA′′K = JA′Kk. In particular, we have JA′′KL = JA′KkL = TL. Since every
transducer with finite delay generates a synchronous rational transduction [15],
this completes our proof. ut

Remark 4.8. One can show that Lemma 4.7 fails in general for languages without
a neutral word. Take for instance the language L = {anbn | n ≥ 0} (which does
not have a neutral word). There is an end-erasing rational transduction T such
that TL = {ancmbn | n,m ≥ 0}. On the other hand, using pumping arguments
one can show that there is no synchronous rational transduction S such that
SL = {ancmbn | n,m ≥ 0}.

Lemma 4.9. Let L ⊆ {0, 1}∗ be a (possibly regular) language with a neutral word.

Then ĈL belongs to ST BL.

Proof. An inspection of the proof of Lemma 3.14 shows that the rational transduc-
tions T1, . . . , T19, which, together with Boolean operations, are used to construct
ĈL are all end-erasing. Furthermore, every language obtained in the process has a
neutral word, namely the neutral word of L. Hence, by Lemma 4.7, ĈL ∈ ST BL.

ut

4.1.2 Construction of encodings of recursively enumerable relations

Notation We consider the alphabets B = {0, 1}, ∆ = {+,−, z} and Y = B∪∆∪{#}.
For i ∈ N, define Bi = {0i, 1i}, ∆i = {+i,−i, zi}, and Yi = Bi ∪∆i ∪ {#i}. Then
we have a homomorphism hi : Y

∗ → Y ∗i given by hi(y) = yi for all y ∈ Y .

Analogous to the proof of Lemma 3.14, we assign to a language L ⊆ B∗ the
language

SL = {v0+v1+v2 · · ·+vm | vi ∈ B∗, vi 6≡L vj for all 0 ≤ i < j ≤ m}

= {w | w ∈ ({+} ∪ B)∗, ∃y ∈ Y ∗ : w#y ∈ ĈL} .

Note that the language SL here differs from the language S of Lemma 3.14 only
by replacing # with +. A word w = v0+v1+v2 · · ·+vm (with v0, v1, . . . , vm ∈ B∗)
from this language will serve as an encoding of the natural number m = |w|+. In
the same spirit, a word h1(w1)h2(w2) . . . hn(wn) (with w1, w2, . . . , wn ∈ SL) will
serve as an encoding of the tuple (|w1|+, |w2|+, . . . , |wn|+) ∈ Nn.

Definition 4.10. Let A ⊆ Nn be some numerical relation and let L ⊆ B∗ be some
language. The encoding of A wrt. L is the language

EncA,L = {h1(w1)h2(w2) . . . hn(wn) | w1, w2, . . . , wn ∈ SL,
(|w1|+, |w2|+, . . . , |wn|+) ∈ A} .

In this section, we show that EncA,L ∈ ST BL whenever L ⊆ B∗ is non-regular
with a neutral word and A ⊆ Nn is recursively enumerable. Since EncA,L for
A ⊆ Nn is a subset of h1(SL) · · ·hn(SL), we start by showing that this language
belongs to ST BL.
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Lemma 4.11. Let L ⊆ B∗ be a language with a neutral word. Then the languages SL
and h1(SL) · · · hn(SL) belong to ST BL for each n ∈ N.

Proof. An inspection of the proof of Lemma 3.14 shows that SL can be constructed
from L by end-erasing transductions and Boolean operations. In addition, any of
the intermediate languages has a neutral word, namely the neutral word of L.
Hence, by Lemma 4.7, the language SL belongs to ST BL.

Since the length-preserving homomorphisms h1, . . . , hn can be realized by syn-
chronous rational transductions, the languages h1(SL), . . . , hn(SL) all belong to
ST BL. The end-erasing rational transduction

(Y ∗1 · · ·Y ∗i−1 × {λ}) · {(w,w) | w ∈ Y ∗i } · (Y
∗
i+1 · · ·Y

∗
n × {λ})

maps hi(SL) to Hi = Y ∗1 · · ·Y ∗i−1hi(SL)Y ∗i+1 · · ·Y
∗
n . Since any neutral word w for L

is also neutral for SL, each language hi(SL) also has a neutral word, namely hi(w).
Consequently, Lemma 4.7 implies that also each Hi belongs to ST BL.

Hence, the language h1(SL) · · ·hn(SL) =
⋂n
i=1Hi is the intersection of n lan-

guages from ST BL and therefore belongs to ST BL as well. ut

Machines with n counters are the main tool in our proof that EncA,L belongs to
ST BL for recursively enumerable sets A ⊆ Nn−2. An n-counter machine is a tuple
M = (Q,E, q0, Qf ), where Q is the finite set of states, E ⊆ Q ×

⋃
1≤i≤n∆i × Q is

the set of edges, q0 ∈ Q is the initial state, and Qf ⊆ Q is the set of accepting states.
Tuples from Q × Nn are called configurations of M. The one-step relation `M is
defined by

(p,m1, . . . ,mn) `M (q,m′1, . . . ,m
′
n)

if there exists a transition (p, δi, q) ∈ E with δi ∈ ∆i such that m′j = mj for all
j 6= i and

– δi = +i and m′i = mi + 1 or
– δi = −i and m′i = mi − 1 or
– δi = zi and m′i = mi = 0.

The machine M accepts the input (m1, . . . ,mn) ∈ Nn if there exist q ∈ Qf and a
tuple (n1, . . . , nn) ∈ Nn such that (q0,m1, . . . ,mn) `∗M (q, n1, . . . , nn). The crucial
property of these counter machines is that a set A ⊆ Nn is recursively enumerable
if and only if the set A×{(0, 0)} is accepted by some (n+2)-counter machine [27].

Lemma 4.12. Let L ⊆ B∗ be some non-regular language with neutral word and let

A ⊆ Nn be accepted by an n-counter machine. Then the encoding EncA,L of A wrt. L

belongs to ST BL.

Proof. Let A be accepted by the n-counter machineM = (Q,E, q0, Qf ). Note that

M′ = (Q,
(⋃

1≤i≤n∆i

)∗
, E, q0, Qf ) is an automaton, which we call the underlying

automaton. Then R = JM′K is a regular language, namely the set of all sequences
of counter operations permitted by M irrespective of whether

– a counter has a positive value when it should be decremented and
– a counter has value 0 when it is tested for emptiness.
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Intermezzo: proof idea. We explain the general idea of the proof ignoring the factors
from B∗i : Then, the aim is to generate the language

{+m1
1 · · · +mn

n | (m1, . . . ,mn) ∈ A} (4)

(which is the projection of EncA,L to {+i | 1 ≤ i ≤ n}∗). Recall that the language
C is the set of valid sequences of counter operations, i.e., this language ensures that
the two conditions ignored by R are satisfied (for a single counter). Consequently,

1≤i≤nhi(C) is the set of valid sequences of operations on n different counters. It
follows that the language

+m1
1 · · · +mn

n R ∩ 1≤i≤nhi(C)

is the set of valid counter operations where first, the n counters are initialized to
m1, m2, etc, and then the n-counter machine M is started. Therefore, for any
m1, . . . ,mn ∈ N, we have the following:

M accepts (m1, . . . ,mn)

⇐⇒
+m1

1 · · · +mn
n R ∩ 1≤i≤nhi(C) 6= ∅

Now suppose the language

+∗1 · · · +∗nR ∩ 1≤i≤nhi(C) (5)

can be generated from L. Then also the language from (4) can be generated since
it is the image of this latter language under the synchronous rational transduction

{(w,w) | w ∈ +∗1 +∗2 · · ·+∗n} · ({λ} ×R).

The main tasks of the actual proof are therefore:

1. To generate the language from (5) from L.
2. To not ignore the factors from B∗i .

Back to the actual proof. Recall the definition of the language ĈL from (1): it is
the set of words w#y where w ∈ (B∪∆)∗ is a valid sequence of counter operations
from C interspersed with words over B∗ that encode counter values, the actual
meaning of such an encoding is defined by the word y ∈ (B ∪ {#})∗. We consider
the language

D̂L = {w ∈ (∆ ∪ B)∗ | w#Y ∗ ∩ ĈL 6= ∅}

= {w ∈ (∆ ∪ B)∗ | ∃y ∈ Y ∗ : w#y ∈ ĈL}

of all words w of the above form (i.e., w gives a valid sequence of counter operations
and the “proof of validity” is given by the maximal factors from B∗). Then D̂L is
the image of ĈL under the synchronous rational transduction

{(w,w) | w ∈ (B ∪∆)∗} · ({λ} ×#Y ∗) .

Since ĈL ∈ ST BL by Lemma 4.9, we obtain D̂L ∈ ST BL. It follows that also
hi(D̂L) ∈ ST BL for all 1 ≤ i ≤ n.
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Consider the projection πi :
(⋃

1≤i≤n Yi

)∗
→ Y ∗i defined by

πi(y) =


y if y ∈ Yi
λ if y ∈

⋃
1≤j≤n,j 6=i

Yj

Then π−1
i can be realized by an end-erasing transducer since it nondeterministi-

cally inserts factors over
⋃

1≤j≤n,j 6=i Yj into words over Y (whose letters are first

indexed by i). Since D̂L has a neutral word (e.g. the neutral word of L), so does
hi(D̂L). Hence, by Lemma 4.7, there is a synchronous rational transduction map-
ping hi(D̂L) to π−1

i (hi(D̂L)), i.e., this language belongs to ST BL. It follows that
also the language

H =
⋂

1≤i≤n
π−1
i (hi(D̂L))

belongs to ST BL since it is the intersection of n languages from ST BL.

We want to select words from H that correspond to computations of M. To
this end, recall that the language R of the underlying automatonM′ is regular. In-
tersecting R and H directly makes little sense: R encodes computations using only
operations in ∆, whereas H also contains representatives for ≡L-classes. Therefore,
we pad R with words from B∗i . Let R′ be the set of all words

δ1w1 · · · δkwk ,

where δ1 · · · δk ∈ R and for each j ∈ {1, . . . , k}, there is an i ∈ {1, . . . , n} with
δj ∈ ∆i and wj ∈ B∗i . In other words, after each symbol δ ∈ ∆i in a word from R,
we add a word from B∗i . Clearly, R′ is regular. Therefore, the language

h1(SL) · · · hn(SL)R′

is the image of h1(SL) · · ·hn(SL) under a synchronous rational transduction. Since
h1(SL) · · · hn(SL) ∈ ST BL by Lemma 4.11, also the language

h1(SL) · · ·hn(SL)R′ ∩ H (6)

belongs to ST BL since it is the intersection of two languages from ST BL (note
that the projection of this language to the alphabet

⋃
1≤i≤n∆i is the language

from (4)). A word belongs to this language if

– its projection to the counter operations
⋃

1≤i≤n∆i first increments the counters
1, . . . , n to some values and then follows some accepting path in the underlying
automaton M′,

– its projection to the counter operations is valid,
– the “proof of validity” is provided by the maximal factors from

⋃
1≤i≤n B

∗
i ,

and
– these maximal factors from B∗i (apart from the first one) immediately follow

some counter operation of counter i.
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Consequently, also the language

K = {w ∈ h1(SL) · · · hn(SL) | ∃y ∈ R′ : wy ∈ H}

belongs to ST BL since it can be obtained from the language from (6) by the
synchronous rational transduction

{(w,w) | w ∈ Z∗1 · · ·Z∗n} · ({λ} ×R′),

where Zi = {+i, 0i, 1i} for 1 ≤ i ≤ n. We claim that K = EncA,L:

– Suppose w ∈ K. There are w1, . . . , wn ∈ SL with w = h1(w1) · · ·hn(wn). For
1 ≤ i ≤ n, let mi = |wi|+. Since w ∈ K, there is a y ∈ R′ such that wy ∈ H.
Let z be the sequence of counter operations in y, i.e., z = π{+i,−i,zi|1≤i≤n}(y).
Then z ∈ R and

π{+i,−i,zi|1≤i≤n}(wy) = +m1
1 · · ·+mn

n z

belongs to 1≤i≤nhi(C) (since wy belongs to H). Since z ∈ R, it follows that
z is the sequence of counter operations of an accepting computation ofM with
input (m1, . . . ,mn). Thus, the tuple (m1, . . . ,mn) belongs to A. This ensures
w ∈ EncA,L by the very definition.

– Conversely suppose w ∈ EncA,L. There are w1, . . . , wn ∈ SL such that we have
w = h1(w1) · · ·hn(wn). For 1 ≤ i ≤ n, let mi = |wi|+. Since w ∈ EncA,L,
there is an accepting computation of M with input (m1, . . . ,mn). Let z be the
sequence of counter operations of this computation. Then the word

+m1
1 · · ·+mn

n z

belongs to 1≤i≤nhi(C). Since this sequence of counter operations is valid, we
find y = δ1w1 · · · δkwk ∈ R′ with z = δ1 · · · δk such that wy ∈ H. Hence, we have
w ∈ K.

ut

Lemma 4.13. Let L ⊆ B∗ be nonempty and suppose that H ⊆ Y ∗1 Y
∗
2 · · ·Y ∗n belongs

to ST BL. Then also

H∃ = {w ∈ Y ∗1 Y ∗2 · · ·Y ∗n−1 | ∃y ∈ Y ∗n : wy ∈ H}

and

H∀ = {w ∈ Y ∗1 Y ∗2 · · ·Y ∗n−1 | ∀y ∈ Y ∗n : wy ∈ H}

belong to ST BL.

Proof. Note that H∃ is the image of H under the synchronous rational relation(w,w) | w ∈

 ⋃
1≤i<n

Yi

∗ · ({λ} × Y ∗n )

and does therefore belong to ST BL.
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Since L is nonempty, any regular language K is the image of L under the

synchronous rational relation K×
(⋃

1≤i≤n Yi
)∗

, i.e., any regular language belongs

to ST BL. This applies in particular to the regular language Y ∗1 Y
∗
2 · · ·Y ∗n , hence

Y ∗1 Y
∗
2 · · ·Y ∗n \H

belongs to ST BL. It follows as above that

{w ∈ Y ∗1 Y ∗2 · · ·Y ∗n−1 | ∃y ∈ Y ∗n : wy /∈ H}

belongs to ST BL. From

H∀ = Y ∗1 Y
∗
2 · · ·Y ∗n−1 \ {w ∈ Y ∗1 Y ∗2 · · ·Y ∗n−1 | ∃y ∈ Y ∗n : wy /∈ H} ,

we get H∀ ∈ ST BL as a Boolean combination of languages from ST BL. ut

Lemma 4.14. Let L ⊆ B∗ be some non-regular language with a neutral word and let

A ⊆ Nn be recursively enumerable. Then the encoding EncA,L of A wrt. L belongs to

ST BL.

Proof. Since A ⊆ Nn is recursively enumerable, there is an (n+2)-counter machine
M accepting A′ = A× {(0, 0)} [27]. Then, we have

EncA,L ⊆ Y ∗1 · · ·Y ∗n , EncA′,L ⊆ Y ∗1 · · ·Y ∗n+2,

and, in the notation of Lemma 4.13, we have EncA,L = ((EncA′,L)∃)∃. Hence,
according to Lemma 4.12, the language EncA′,L belongs to ST BL. By Lemma 4.13,
the same is true of EncA,L. ut

4.1.3 Construction of Σn-hard languages

Theorem 4.15. Let L ⊆ B∗ be some non-regular and recursive language with a neu-

tral word and let n ∈ N. There exists a Σn-hard language in ST BL. If, in addition,

the Myhill-Nerode equivalence ≡L is recursive, then ST BL contains even some Σn-

complete language.

Proof. We only spell out the proof for n = 3, the general case can be easily deduced
from our exposition (but is notationally cumbersome and therefore omitted here).
Let K ⊆ N be some Σ3-complete set. We prove that the language EncK,L belongs
to ST BL and is Σ3-hard (Σ3-complete if ≡L is decidable).

Since K is in Σ3, there exists a recursive relation P ⊆ N4 such that

K = {m1 | ∃m2∀m3∃m4 : (m1,m2,m3,m4) ∈ P} .

We consider the following relations:

K0 = {(m1,m2,m3) ∈ N3 | ∃m4 : (m1,m2,m3,m4) ∈ P}

K1 = {(m1,m2) ∈ N2 | ∀m3∃m4 : (m1,m2,m3,m4) ∈ P}

= {(m1,m2) ∈ N2 | ∀m3 : (m1,m2,m3) ∈ K0}
K2 = {m1 ∈ N | ∃m2∀m3∃m4 : (m1,m2,m3,m4) ∈ P}

= {m1 ∈ N | ∃m2 : (m1,m2) ∈ K1}
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We will show that EncKi,L ∈ ST BL for all 0 ≤ i ≤ 2. Since K = K2, this will in
particular imply EncK,L ∈ ST BL.

Since P is recursive, the relation K0 is recursively enumerable. Hence, by
Lemma 4.14, the language EncK0,L belongs to ST BL. Note that

EncK1,L = {w ∈ h1(w1)h2(w2) | w1, w2 ∈ SL,
∀w3 ∈ SL : h1(w1)h2(w2)h3(w3) ∈ EncK0,L}

= (EncK0,L)∀ .

Hence, by Lemma 4.13, EncK1,L belongs to ST BL.

Similarly note that

EncK2,L = {w ∈ h1(w1) | w1 ∈ SL,
∃w2 ∈ SL : h1(w1)h2(w2) ∈ EncK1,L}

= (EncK1,L)∃ .

Again by Lemma 4.13, EncK2,L = EncK,L belongs to ST BL.

Next, we show that EncK,L is Σ3-hard, i.e., that we can reduce K to EncK,L.
So let m ∈ N. Since L is recursive2 and non-regular, we can compute words
x0, x1, . . . , xm that are mutually non-equivalent with respect to the Myhill-Nerode-
equivalence ≡L. Let

w = h1(x0+x1+ · · ·+xm) .

Then m ∈ K if and only if w ∈ EncK,L.

Finally, suppose that ≡L is decidable. We demonstrate that then, EncK,L can
be reduced to K: First, fix some number n /∈ K. Furthermore, let w ∈ Y ∗1 be
an arbitrary word. Then we have w = h1(v) for some (unique) v ∈ Y ∗. The
recursiveness of ≡L allows us to decide whether v ∈ SL. If this is not the case,
we map the word w to n. Otherwise, we map w to m = |v|+. Then, by the very
definition, w ∈ EncK,L iff m belongs to K. ut

Remark 4.16. Note that when L is recursive, ≡L is not necessarily recursive. In
fact, there are even context-free languages with an undecidable Myhill-Nerode
equivalence. For instance, there exist fixed alphabets X, Y and homomorphisms
α, β : X∗ → Y ∗ such that that given u ∈ Y ∗, it is undecidable whether there is a
v ∈ X∗ with uα(v) = β(v) [19]. Consider the language

L ={u$α(v)#β(v)rev | u ∈ Y ∗, v ∈ X∗}
∪ {usv#wrev | s ∈ {$,#}, u, v, w ∈ Y ∗, uv 6= w} ,

where wrev denotes w in reverse. The language L is (linear) context-free and we
have u$ 6≡L u# if and only if there is a v ∈ X∗ with uα(v) = β(v). Hence, ≡L is
undecidable. On the other hand, the identity language of any infinite group with
a decidable word problem satisfies all conditions in Theorem 4.15.

2 This is the only point were we need the recursiveness of L.
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4.1.4 Proof of Theorem 4.5

Let L ⊆ {0, 1}∗ be a non-regular language with a neutral word. If L is not recur-
sively enumerable, then ST BL contains (trivially) some language that is not recur-
sively enumerable (namely, L). If L is recursively enumerable, but not recursive,
then the complement of L is not recursively enumerable and an element of ST BL.
It remains to consider the case when L is recursive. But then, by Theorem 4.15,
ST BL contains some Σn-hard language that cannot be recursively enumerable.
This finishes the proof of the first claim. The second is Theorem 4.15. ut

4.2 Languages that generate only recursive languages

The main tool in this section will be Büchi-automata or, more precisely, regular
ω-languages. For an alphabet X, let Xω denote the set of ω-words, i.e., of sequences
a0a1a2 . . . of elements of X. Subsets of Xω are called ω-languages.

A Büchi-automaton over X is an automaton A = (Q,X∗, E, q0, Qf ) over the
monoid X∗ with E ⊆ Q×X×Q, i.e., edges are labeled by single letters. An infinite

path from p0 in A is a sequence p0 a1 p1 a2 p2 . . . with (pi, ai+1, pi+1) ∈ E for all
i ≥ 0, its label is the ω-word a1a2 . . . . The path is accepting if p0 = q0 and there
are infinitely many i ≥ 0 with pi ∈ Qf . The ω-language accepted by A is the set

JAKω = {u ∈ Xω | there is some accepting path in A labeled u} .

An ω-language L is regular if there is some Büchi-automaton A over X such that
L = JAKω.

In order to state the main technical property, we need a final definition: Let
ui = a0,ia1,i . . . be ω-words over the alphabet X for 1 ≤ i ≤ k. Then we define the
ω-word

⊗(u1, u2, . . . , uk) = (a0,1, a0,2, . . . , a0,k)(a1,1, a1,2, . . . , a1,k)(a2,1, a2,2, . . . , a2,k) . . .

over the alphabet Xk. For ⊗(u1, u2), we often write u1 ⊗ u2. For an alphabet X
with � /∈ X, we set X(k) = (X ∪ {�})k.

Lemma 4.17. Let X be an alphabet with � /∈ X, let u ∈ Xω and let Pu ⊆ X∗ be its

set of prefixes. Let the language K be constructed from Pu using synchronous rational

transductions and Boolean operations. From a description of this construction one can

effectively construct a Büchi-automaton AK over X(2) such that, for all words w ∈ X∗,
we have

u⊗ (w�ω) ∈ JAKKω ⇐⇒ w ∈ K . (7)

Proof. We prove the lemma by induction on the construction of K from Pu. If
K = Pu, then w ∈ K if and only if

u⊗ (w�ω) ∈ {(a, a), (a,�) | a ∈ X}ω .

The ω-language {(a, a), (a,�) | a ∈ X}ω is effectively regular. Hence, one can
construct a Büchi-automaton APu

that describes the language Pu in the sense
of (7).

For the induction step, suppose we have Büchi-automata AK1
and AK2

that
describe the languages K1 and K2, resp., in the sense of (7).



On Boolean closed full trios and rational Kripke frames 29

The class of regular ω-languages is effectively closed under Boolean operations.
Hence we can construct a Büchi-automaton AK describing K from AK1

and AK2

if K = K1 ∪K2, K = K1 ∩K2 or K = α(K1)∗ \K1.
It remains to consider the case K = RK1 where R is a synchronous rational

transduction. Then R is the union of finitely many synchronous rational transduc-
tions Ri of the form

JAK · (L× {λ}) or JAK · ({λ} × L) , (8)

where A is a synchronous transducer over X and L ⊆ X∗ is a regular language
(see Definition 4.1). Since K = RK1 =

⋃
1≤i≤nRiK1, it suffices to consider R to

be of the form (8). We will handle the case

R = JAK · (L× {λ});

the other one can be dealt with analogously. From the synchronous transducer A,
an automaton accepting the language L, and the Büchi-automaton AK1

, we can
easily build a Büchi-automaton A′ over X(3) accepting the set of ω-words of the
form

⊗(x, y�ω, z�ω)

with x ∈ Xω and y, z ∈ X∗ such that

– x⊗ (z�ω) is accepted by the Büchi-automaton AK1
and

– (y, z) ∈ R.

Let AK be obtained from A′ by projecting away the third component of every
letter.

Now let w ∈ X∗. Then we have u⊗ (w�ω) ∈ JAKKω if and only if there is some
finite word z ∈ X∗ with ⊗(u,w�ω, z�ω) ∈ JA′Kω. But this is equivalent to saying
“there is some word z ∈ K1 with (w, z) ∈ R”. Hence, indeed, the Büchi-automaton
AK describes the language K in the sense of (7). ut

Note that the Büchi-automaton AK does not depend on the ω-word u, but
only on the expression that constructs K from Pu. In other words, the same Büchi-
automaton AK works for all ω-words u.

We now come to the main result of this section.

Theorem 4.18. There is a non-regular language L ⊆ X∗ such that for languages

constructed from L using synchronous rational transductions and Boolean operations,

emptiness is decidable. Furthermore, all these languages are (effectively) recursive.

A remark regarding the decidability of emptiness is in order: In order for this
statement to make sense, we have to agree on a finite description of languages
from ST BL. Here, we chose an expression using Boolean operations, synchronous
rational transductions (which are represented by synchronous transducers) and
the language L as a constant. Given such an expression, emptiness of the resulting
language K is decidable and a Turing machine accepting K can be constructed.

Proof of Theorem 4.18. There exists an ω-word u such that the following hold:

– The ω-word u is not ultimately periodic, i.e., the language Pu of prefixes of u
is not regular.

– The set of Büchi-automata A with u ∈ JAKω is decidable.
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(Examples of such ω-words are the characteristic sequences of the set of factorial
numbers n!, of the set of k-th powers nk for any fixed k, of the set of powers of
k [12], and of the set of Fibonacci numbers and, more generally, any not ultimately
periodic morphic ω-word [7]. See [38,33,32] for complete characterizations of these
ω-words.) Now let K ⊆ X∗ be constructed from L = Pu using synchronous ra-
tional transductions and Boolean operations. Then, by the above lemma, we can
construct a Büchi-automaton AK such that, for any word w ∈ X∗, we have

u⊗ (w�ω) ∈ JAKKω ⇐⇒ w ∈ K .

From AK , we can build a Büchi-automaton A with

u ∈ JAKω ⇐⇒ ∃w ∈ X∗ : u⊗ (w�ω) ∈ JAKKω.

Since it is decidable whether u is accepted by a given Büchi-automaton, we can
decide whether u ∈ JAKω, i.e. whether K 6= ∅. Since intersecting with the regular
language {w} can be realized by a synchronous rational transduction, this means,
in particular, that all languages obtained from L by synchronous rational trans-
ductions and Boolean operations are recursive. ut

5 Rational Kripke frames

Theorem 3.1 can be also restated in terms of multimodal logic. See [4] for more
details on modal logic. A Kripke structure (or edge- and node-labeled graph) is a
tuple

K = (V, (Ea)a∈A, (Up)p∈P ),

where V is a set of nodes (also called worlds), A and P are finite sets of actions
and propositions, respectively, for every a ∈ A, Ea ⊆ V × V , and for every p ∈ P ,
Up ⊆ V . The tuple F = (V, (Ea)a∈A) is then also called a Kripke frame. We say
that K (and F) is word-based if V = X∗ for some finite alphabet X. Formulas of
multimodal logic are defined by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �aϕ | ♦aϕ.

The semantics [[ϕ]]K ⊆ V of formulas ϕ in K is defined inductively as follows:

[[p]]K = Up,

[[¬ϕ]]K = V \ [[ϕ]]K,

[[ϕ ∧ ψ]]K = [[ϕ]]K ∩ [[ψ]]K,

[[ϕ ∨ ψ]]K = [[ϕ]]K ∪ [[ψ]]K,

[[�aϕ]]K = {v ∈ V | ∀u ∈ V : (v, u) ∈ Ea → u ∈ [[ϕ]]K},
[[♦aϕ]]K = {v ∈ V | ∃u ∈ V : (v, u) ∈ Ea ∧ u ∈ [[ϕ]]K}.

A word-based Kripke frame F = (X∗, (Ea)a∈A) is called rational if every Ea is a
rational transduction. Rational Kripke frames with a single relation are also known
as rational graphs and have been studied intensively [6,28,29]. A word-based Kripke
structure K = (X∗, (Ea)a∈A, (Up)p∈P ) is called rational if every relation Ea is a
rational transduction and every Up is a regular language. The closure properties
of regular languages imply that for every rational Kripke structure K and every
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multimodal formula ϕ, the set [[ϕ]]K is a regular language that can be effectively
constructed from ϕ and (automata describing the structure) K. Using this fact,
Bekker and Goranko [2] proved that the model-checking problem for rational Kripke
structures and multimodal logic is decidable. This problem has as input a rational
Kripke structure K (given by a tuple of automata and transducers), a word w ∈ X∗
(where X∗ is the node set of K), and a multimodal formula ϕ, and it is asked
whether w ∈ [[ϕ]]K holds. In contrast, there exist rational graphs (even acyclic
ones) with an undecidable first-order theory [6,39], but every rational tree has a
decidable first-order theory [6]. Rational Kripke structures and frames were also
considered in the context of querying graph databases [1].

Our reformulation of Theorem 3.1 in terms of multimodal logic is:

Theorem 5.1. Let X = {0, 1}. There are rational transductions Er, Es, Et in X∗ such

that the rational Kripke frame F = (X∗, Er, Es, Et) has the following property: For

every non-regular language Up ⊆ X∗ and every language K ∈ AH(Up), K ⊆ X∗, there

exists a multimodal formula ϕ such that K = [[ϕ]]K, where K = (X∗, Er, Es, Et, Up).

Proof. Take the rational transductions R,S, T provided by Theorem 3.1. Suppose
Up ⊆ X∗ is a non-regular language and let K = (X∗, Er, Es, Et, Up) be the Kripke
structure with Er = R, Es = S, and Et = T . By induction, we can construct for
every language K obtainable from Up by the transductions R,S, T and Boolean
operations a multimodal formula ϕ with K = [[ϕ]]K. For instance, if K = [[ψ]]K,
then RK = [[♦rψ]]K. The theorem follows immediately. ut

The question arises whether an analogous statement holds when we allow
choosing an arbitrary non-rational transduction instead of an arbitrary non-regular
language. In other words: Are there rational transductions R1, . . . , Rn and regular
languages L1, . . . , Lm over an alphabet X such that for any non-rational transduc-
tion T , the Kripke structure (X∗, R1, . . . , Rn, T, L1, . . . , Lm) allows the definition of
every arithmetical language in multimodal logic? The answer is no, since there are
non-rational transductions T that preserve regularity, i.e., for which TL is regular
whenever L is regular. Take, for example, the transduction T = {(w,ww) | w ∈ X∗}.
It is clearly not rational, since T−1X∗ = {ww | w ∈ X∗} is not regular. However,
it is not hard to see that TL is effectively regular for regular languages L [31]. In
particular, for every choice of R1, . . . , Rn and L1, . . . , Lm as above, every language
definable in (X∗, R1, . . . , Rn, T, L1, . . . , Lm) is regular and effectively constructible,
implying that the model-checking problem is decidable.

6 Open problems

An interesting open question is whether the number of rational transductions in
Theorem 3.1 can be reduced to 1 or 2.

Finally, Corollary 3.10 raises the question whether therein, one rational trans-
duction would suffice: Is there a rational transduction S and a regular language L
such that any regular language can be written as SmL for some m ∈ N?
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