
Evaluating matrix circuits

Daniel König and Markus Lohrey

Universität Siegen, Germany

Abstract. The circuit evaluation problem (also known as the compressed word
problem) for finitely generated linear groups is studied. The best upper bound for
this problem is coRP, which is shown by a reduction to polynomial identity test-
ing (PIT). Conversely, the compressed word problem for the linear group SL3(Z)
is equivalent to PIT. In the paper, it is shown that the compressed word problem
for every finitely generated nilpotent group is in DET ⊆ NC2. Within the larger
class of polycyclic groups we find examples where the compressed word problem
is at least as hard as PIT for skew arithmetical circuits.

1 Introduction

The study of circuit evaluation problems has a long tradition in theoretical computer
science and is tightly connected to many aspects in computational complexity theory.
One of the most important circuit evaluation problems is polynomial identity testing
(PIT): The input is an arithmetic circuit, whose internal gates are labelled with either
addition or multiplication and its input gates are labelled with variables (x1, x2, . . .)
or constants (−1, 0, 1), and it is asked whether the output gate evaluates to the zero
polynomial (in this paper, we always work in the polynomial ring over the coefficient
ring Z or Zp for a prime p). Based on the Schwartz-Zippel-DeMillo-Lipton Lemma,
Ibarra and Moran [10] proved that PIT over Z or Zp belongs to the class coRP (co-
randomized polynomial time). Whether PIT ∈ P is an important problem. In [11] it was
shown that if there is a language in DTIME(2O(n)) with circuit complexity 2Ω(n), then
P = BPP (and hence P = RP = coRP). On the other hand, Kabanets and Impagliazzo
[12] proved that if PIT belongs to P, then (i) there is a language in NEXPTIME that does
not have polynomial size circuits, or (ii) the permanent is not computable by polynomial
size arithmetic circuits. Both conclusions are major open problem in complexity theory.
Hence, although it is quite plausible that PIT ∈ P, it is difficult to prove.

Circuit evaluation problems can be also studied for other structures than polynomial
rings, in particular non-commutative structures. For finite monoids, the circuit evalua-
tion was studied in [6], where it was shown that for every non-solvable finite monoid the
circuit evaluation problem is P-complete, whereas for every solvable finite monoid, the
circuit evaluation problem belongs to the parallel complexity class DET ⊆ NC2. Start-
ing with [17] the circuit evaluation problem has been also studied for infinite finitely
generated (f.g) monoids, in particular infinite f.g. groups. In this context, the input gates
of the circuit are labelled with generators of the monoid, the internal gates compute the
product of the two input gates, and it is asked whether the circuit evaluates to the iden-
tity element. In [17] and subsequent work, the circuit evaluation problem is also called

the compressed word problem (CWP). This is due to the fact that if one forgets the un-
derlying monoid structure of a multiplicative circuit, the circuit simply evaluates to a
word over the monoid generators labelling the input gates. This word can be of length
exponential in the number of circuit gates, and the circuit can be seen as a compressed
representation of this word. In this context, circuits are also known as straight-line pro-
grams and are intensively studied in the area of string compression [18].

Concerning the CWP, polynomial time algorithms have been developed for many
important classes of groups, e.g., finite groups, f.g. nilpotent groups, f.g. free groups,
graph groups (also known as right-angled Artin groups), and virtually special groups.
The latter contain all Coxeter groups, one-relator groups with torsion, fully residually
free groups, and fundamental groups of hyperbolic 3-manifolds; see [19]. For the im-
portant class of f.g. linear groups, i.e., f.g. groups of matrices over a field, the CWP
reduces to PIT (over Z or Zp, depending on the characteristic of the field) and hence
belongs to coRP [19]. Vice versa, in [19] it was shown that PIT over Z reduces to the
CWP for the linear group SL3(Z). This result indicates that derandomizing the CWP
for a f.g. linear group will be in general very difficult.

In this paper, we further investigate the tight correspondence between commutative
circuits over rings and non-commutative circuits over linear groups. In Sec. 6 we study
the complexity of the CWP for f.g. nilpotent groups. It is known to be in P [19]. Here,
we show that for every f.g. nilpotent group the CWP belongs to the parallel complexity
class DET ⊆ NC2, which is the class of all problems that are NC1-reducible to the
computation of the determinant of an integer matrix, see [8]. To the knowledge of the
authors, f.g. nilpotent groups are the only examples of infinite groups for which the
CWP belongs to NC. Even for free groups, the CWP is P-complete [17]. The main step
of our proof for f.g. nilpotent groups is to show that for a torsion-free f.g. nilpotent
group G the CWP belongs to the logspace counting class C=L (and is in fact C=L-
complete if G 6= 1). To show this, we use the fact that a f.g. torsion-free nilpotent group
embeds into the group UTd(Z) of d-dimensional unitriangular matrices over Z for some
d. Then, we reduce the CWP for UTd(Z) to the C=L-complete problem, whether two
additive circuits over the naturals evaluate to the same number. Let us mention that there
are several C=L-complete problems related to linear algebra [1].

We also study the CWP for the matrix group UTd(Z) for the case that the dimension
d is not fixed, i.e., part of the input (Sec. 7). In this case, the CWP turns out to be
complete for the counting class C=LogCFL, which is the LogCFL-analogue of C=L.

Finally, in Sec. 8 we move from nilpotent groups to polycyclic groups. These are
solvable groups, where every subgroup is finitely generated. By results of Maltsev, Aus-
lander, and Swan these are exactly the solvable subgroups of GLd(Z) for some d. We
prove that polynomial identity testing for skew arithmetical circuits reduces to the CWP
for a specific 2-generator polycyclic group of Hirsch length 3. A skew arithmetical cir-
cuit is an arithmetic circuit (as defined in the first paragraph of the introduction) such
that for every multiplication gate, one of its input gates is an input gate of the circuit, i.e.,
a variable or a constant. These circuits exactly correspond to algebraic branching pro-
grams. Even for skew arithmetical circuits, no polynomial time algorithm is currently
known (although the problem belongs to coRNC).

Full proofs can be found in the long version [14].

2

2 Arithmetical circuits

We use the standard notion of (division-free) arithmetical circuits. Let us fix a set X =
{x1, x2, . . .} of variables. An arithmetical circuit is a triple C = (V, S, rhs), where
(i) V is a finite set of gates, (ii) S ∈ V is the output gate, and (iii) for every gate A,
rhs(A) (the right-hand side of A) is either a variable from X , one of the constants
−1, 0, 1, or an expression of the form B + C (then A is an addition gate) or B · C
(then A is a multiplication gate), where B and C are gates. Moreover, there must exist
a linear order < on V such that B < A whenever B occurs in rhs(A). A gate A with
rhs(A) ∈ X ∪ {0,−1, 1} is an input gate. Over a fixed ring (R,+, ·) (which will be
(Z,+, ·) in most cases) we can evaluate every gate A ∈ V to a polynomial valC(A)
with coefficients from R and variables from X (val stands for “value”). Moreover let
val(C) = valC(S) be the polynomial to which C evaluates. Two arithmetical circuits C1
and C2 are equivalent over the ring (R,+, ·) if val(C1) = val(C2).

Fix an arithmetical circuit C = (V, S, rhs). We can view C as a directed acyclic graph
(dag), where every node is labelled with a variable or a constant or an operator +, ·. If
rhs(A) = B ◦ C (for ◦ one of the operators), then there is an edge from B to A and C
to A. The depth depth(A) (resp., multiplication depth mdepth(A)) of the gate A is the
maximal number of gates (resp., multiplication gates) along a path from an input gate
to A. So, input gates have depth one and multiplication depth zero. The depth (resp.,
multiplication depth) of C is depth(C) = depth(S) (resp., mdepth(C) = mdepth(S)).
The formal degree deg(A) of a gate A is 1 if A is an input gate, max{deg(B), deg(C)}
if rhs(A) = B + C, and deg(B) + deg(C) if rhs(A) = B · C. The formal degree
of C is deg(C) = deg(S). A positive circuit is an arithmetical circuit without input
gates labelled by the constant −1. An addition circuit is a positive circuit without mul-
tiplication gates. A variable-free circuit is a circuit without variables. It evaluates to an
element of the underlying ring. A skew circuit is an arithmetical circuit such that for
every multiplication gateA with rhs(A) = B ·C, one of the gatesB,C is an input gate.

In the rest of the paper we will also allow more complicated expressions in right-
hand sides for gates. For instance, we may have a gate with rhs(A) = (B + C) · (D +
E). When writing down such a right-hand side, we implicitly assume that there are
additional gates in the circuit, with (in our example) right hand sidesB+C andD+E,
respectively. The proof of the following lemma uses standard ideas.

Lemma 1. Given an arithmetical circuit C one can compute in logspace positive cir-
cuits C1, C2 such that val(C) = val(C1)−val(C2) for every ring. Moreover, for i ∈ {1, 2}
we have deg(Ci) ≤ deg(C), depth(Ci) ≤ 2 · depth(C), and mdepth(Ci) ≤ mdepth(C).

Polynomial identity testing (PIT) for a ring R is the following computational problem:
Given an arithmetical circuit C (with variables x1, . . . , xn), does val(C) = 0 hold, i.e.,
does C evaluate to the zero-polynomial in R[x1, . . . , xn]? It is an outstanding open
problem in complexity theory, whether PIT for Z can be solved in polynomial time.

3 Complexity classes

The counting class #L consists of all functions f : Σ∗ → N for which there is a
logspace bounded nondeterministic Turing machine M such that for every w ∈ Σ∗,

3

f(w) is the number of accepting computation paths of M on input x. The class C=L
contains all languages A for which there are two functions f1, f2 ∈ #L such that for
every w ∈ Σ∗, w ∈ A if and only if f1(w) = f2(w). The class C=L is closed under
logspace many-one reductions. The canonical C=L-complete problem is the following:
The input consists of two dags G1 and G2 and vertices s1, t1 (in G1) and s2, t2 (in G2),
and it is asked whether the number of paths from s1 to t1 inG1 is equal to the number of
paths from s2 to t2 in G2. A reformulation of this problem is: Given two variable-free
addition circuits C1 and C2, does val(C1) = val(C2) hold?

We use standard definitions concerning circuit complexity, see e.g. [26]. In particu-
lar we will consider the class TC0 of all problems that can be solved by a polynomial
size circuit family of constant depth that uses NOT-gates and unbounded fan-in AND-
gates, OR-gates, and majority-gates. For DLOGTIME-uniform TC0 it is required in
addition that for binary coded gate numbers u and v, one can (i) compute the type of
gate u in timeO(|u|) and (ii) check in timeO(|u|+ |v|) whether u is an input gate for v.
Note that the circuit for inputs of length n has at most p(n) gates for a polynomial p(n).
Hence, the binary codings u and v have length O(log n), i.e., the above computations
can be done in DTIME(log n). This is the reason for using the term “DLOGTIME-
uniform”. If majority gates are not allowed, we obtain the class (DLOGTIME-uniform)
AC0. The class (DLOGTIME-uniform) NC1 is defined by (DLOGTIME-uniform) poly-
nomial size circuit families of logarithmic depth that use NOT-gates and fan-in-2 AND-
gates and OR-gates. A language A is AC0-reducible to languages B1, . . . , Bk if A
can be solved with a DLOGTIME-uniform polynomial size circuit family of constant
depth that uses NOT-gates and unbounded fan-in AND-gates, OR-gates, and Bi-gates
(1 ≤ i ≤ k). Here, a Bi-gate (it is also called an oracle gate) receives an ordered tuple
of inputs x1, x2, . . . , xn and outputs 1 if and only if x1x2 · · ·xn ∈ Bi. Sometimes, also
the term “uniform constant depth reducibility” is used for this type of reductions. In the
same way, the weaker NC1-reducibility can be defined. Here, one counts the depth of a
Bi-gate with inputs x1, x2, . . . , xn as log n. The class DET contains all problems that
are NC1-reducible to the computation of the determinant of an integer matrix, see [8].
It is known that C=L ⊆ DET ⊆ NC2, see e.g. [4, Sec.4].

An NAuxPDA is a nondeterministic Turing machine with an additional pushdown
store. The class LogCFL ⊆ NC2 is the class of all languages that can be accepted by a
polynomial time bounded NAuxPDA whose work tape is logarithmically bounded (but
the pushdown store is unbounded). If we assign to the input the number of accepting
computation paths of such an NAuxPDA, we obtain the counting class #LogCFL. In
[25] it is shown that a function f : {0, 1}∗ → N belongs to #LogCFL if and only if
there exists a logspace-uniform family (Cn)n≥1 of positive arithmetic circuits such that
Cn computes the mapping f restricted to {0, 1}n and there is a polynomial p(n) such
that the formal degree of Cn is bounded by p(n). The class C=LogCFL contains all
languages A for which there are two functions f1, f2 ∈ #LogCFL such that for every
w ∈ Σ∗, w ∈ A if and only if f1(w) = f2(w). We need the following lemma, whose
proof is based on folklore ideas:

Lemma 2. There is an NAuxPDA P that gets as input a positive variable-free arith-
metic circuit C and such that the number of accepting computations of P on input C is
val(C). Moreover, the running time is bounded polynomially in depth(C) · deg(C).

4

4 Matrices and groups

In this paper we are concerned with certain subclasses of linear groups. A group is
linear if it is isomorphic to a subgroup of GLd(F) (the group of all invertible (d × d)-
matrices over the field F) for some field F .

A (n-step) solvable group G is a group G, which has a a subnormal series G =
GnBGn−1 BGn−2 B · · ·BG1 BG0 = 1 (i.e., Gi is a normal subgroup of Gi+1 for all
0 ≤ i ≤ n− 1) such that every quotient Gi+1/Gi is abelian (0 ≤ i ≤ n− 1). If every
quotient Gi+1/Gi is cyclic, then G is called polycyclic. The number of 0 ≤ i ≤ n− 1
such that Gi+1/Gi ∼= Z is called the Hirsch length of G; it does not depend on the
chosen subnormal series. If Gi+1/Gi ∼= Z for all 0 ≤ i ≤ n − 1 then G is called
strongly polycyclic. A group is polycyclic if and only if it is solvable and every subgroup
is finitely generated. Polycyclic groups are linear. Auslander and Swan [5,24] proved
that the polycyclic groups are exactly the solvable groups of integer matrices.

For a group G its lower central series is the series G = G1 B G2 B G3 B · · · of
subgroups, whereGi+1 = [Gi, G], which is the subgroup generated by all commutators
[g, h] with g ∈ Gi and h ∈ G. Indeed, Gi+1 is a normal subgroup of Gi. The group G
is nilpotent, if its lower central series terminates after finitely many steps in the trivial
group 1. Every f.g. nilpotent group is polycyclic.

Let G be a f.g. group and let G be finitely generated as a group by Σ. Then, as
a monoid G is finitely generated by Σ ∪ Σ−1 (where Σ−1 = {a−1 | a ∈ Σ} is a
disjoint copy of Σ and a−1 stands for the inverse of the generator a ∈ Σ). Recall that
the word problem for G is the following computational problem: Given a string w ∈
(Σ∪Σ−1)∗, doesw evaluate to the identity ofG. Kharlampovich proved that there exist
finitely presented 3-step solvable groups with an undecidable word problem. On the
other hand, for every f.g. linear group the word problem can be solved in deterministic
logarithmic space by results of Lipton and Zalcstein [16] and Simon [23]. This applies
in particular to polycyclic groups. Robinson proved in his thesis that the word problem
for a polycyclic group belongs to TC0 [21], but his circuits are not uniform. Waack
considered in [27] arbitrary f.g. solvable linear groups (which include the polycyclic
groups) and proved that their word problems belong to logspace-uniform NC1. In [14]
we combine Waack’s technique with the famous division breakthrough result by Hesse,
Allender, and Barrington [9] to show that for every f.g. solvable linear group the word
problem belongs to DLOGTIME-uniform TC0.

5 Straight-line programs and the compressed word problem

A straight-line program (briefly, SLP) is basically a multiplicative circuit over a monoid.
We define an SLP over the finite alphabet Σ as a triple G = (V, S, rhs), where V is a
finite set of variables (or gates), S ∈ V is the start variable (or output gate), and rhs
maps every variable to a right-hand side rhs(A), which is either a symbol a ∈ Σ, or of
the form BC, where B,C ∈ V . As for arithmetical circuits we require that there is a
linear order < on V such that B < A, whenever B occurs in rhs(A). The terminology
“(start) variable” (instead of “(output) gate”) comes from the fact that an SLP is quite
often defined as a context-free grammar that produces a single string overΣ. This string

5

is defined in the obvious way by iteratively replacing variables by the corresponding
right-hand sides, starting with the start variable. We denote this string with val(G). The
unique string over Σ, derived from the variable A ∈ V , is denoted with valG(A). We
will also allow more general right-hand sides from (V ∪ Σ)∗, but by introducing new
variables we can always obtain an equivalent SLP in the above form.

If we have a monoid M , which is finitely generated by the set Σ, then there exists
a canonical monoid homomorphism h : Σ∗ → M . Then, an SLP G over the alphabet
Σ can be evaluated over the monoid M , which yields the monoid element h(val(G)).
In this paper, we are only interested in the case that the monoid M is a f.g. group G.
Let G be finitely generated as a group by Σ. An SLP over the alphabet Σ ∪ Σ−1 is
also called an SLP over the group G. In this case, we will quite often identify the string
val(G) ∈ (Σ ∪ Σ−1)∗ with the group element g ∈ G to which it evaluates. We will
briefly write “val(G) = g in G” in this situation.

The main computational problem we are interested in is the compressed word prob-
lem for a f.g. group G (with a finite generating set Σ), briefly CWP(G). The input for
this problem is an SLP G over the alphabetΣ∪Σ−1, and it is asked whether val(G) = 1
in G (where of course 1 denotes the group identity). The term “compressed word prob-
lem” comes from the fact that this problem can be seen as a succinct version of the clas-
sical word problem forG, where the input is an explicitly given string w ∈ (Σ∪Σ−1)∗

instead of an SLP-compressed string.
The compressed word problem is related to the classical word problem. For in-

stance, the classical word problem for a f.g. subgroup of the automorphism group of
a group G can be reduced to the compressed word problem for G, and similar results
are known for certain group extensions, see [19] for more details. There are several
important classes of groups, for which the compressed word problem can be solved in
polynomial time, and for finitely generated linear groups the compressed word prob-
lem belongs to co-randomized polynomial time, see the introduction. In [6] the parallel
complexity of the compressed word problem (there, called the circuit evaluation prob-
lem) for finite groups was studied, and the following result was shown:

Theorem 1 ([6]). Let G be a finite group. If G is solvable, then CWP(G) belongs to
the class DET ⊆ NC2. If G is not solvable, then CWP(G) is P-complete.

6 CWP for finitely generated nilpotent groups

In [19] it was shown that the compressed word problem for a finitely generated nilpotent
group can be solved in polynomial time. The main result of this section is:

Theorem 2. Let G 6= 1 be a f.g. torsion-free nilpotent group. Then CWP(G) is com-
plete for the class C=L.

For the lower bound letG be a non-trivial f.g. torsion-free nilpotent group. SinceG 6= 1,
G contains Z. Hence, it suffices to prove the following:

Lemma 3. CWP(Z) is hard for C=L.

6

Proof. An SLP G over the generator 1 of Z and its inverse −1 is nothing else than a
variable-free arithmetical circuit C without multiplication gates. Using Lemma 1 we can
construct in logspace two addition circuits C1 and C2 such that val(C) = 0 if and only if
val(C1) = val(C2). Checking the latter is complete for C=L as remarked in Sec. 3. ut

For the upper bound in Thm. 2, we use the fact that every torsion-free f.g. nilpotent
group can be represented by unitriangluar integer matrices. Let A be a (d × d)-matrix
over Z. With A[i, j] we denote the entry of A in row i and column j. The matrix A is
triangular if A[i, j] = 0 whenever i > j, i.e., all entries below the main diagonal are 0.
A unitriangular matrix is a triangular matrix A such that A[i, i] = 1 for all 1 ≤ i ≤ d,
i.e., all entries on the main diagonal are 1. We denote the set of unitriangular (d × d)-
matrices over Z with UTd(Z). This is a group with respect to matrix multiplication. Let
1 ≤ i < j ≤ d. With Ti,j we denote the matrix from UTd(Z) such that Ti,j [i, j] = 1 and
Ti,j [k, l] = 0 for all k, l with 1 ≤ k < l ≤ d and (k, l) 6= (i, j). The notation Ti,j does
not specify the dimension d of the matrix, but the dimension will be always clear from
the context. The group UTd(Z) is generated by the finite set Γd = {Ti,i+1 | 1 ≤ i < d},
see e.g. [7]. For every torsion-free f.g. nilpotent group G there exists some d ≥ 1 such
that G ≤ UTd(Z) [13, Thm. 17.2.5]. Hence, the upper bound in Thm. 2 follows from:

Lemma 4. For every d ≥ 1, CWP(UTd(Z)) belongs to C=L.

For the rest of this section let us fix a number d ≥ 1 and consider the unitriangluar
matrix group UTd(Z). Consider an SLP G = (V, S, rhs) over the alphabet Γd ∪ Γ−1

d ,
where Γd is the finite generating set of UTd(Z) from Sec. 4. Note that for every variable
A ∈ V , valG(A) is a word over the alphabet Γd ∪ Γ−1

d . We identify in the following
this word with the matrix to which it evaluates. Thus, valG(A) ∈ UTd(Z).

Assume we have given an arithmetical circuit C. A partition
⊎m
i=1 Vi of the set of

all multiplication gates of C is called structure-preserving if for all multiplication gates
u, v of C the following holds: If there is a non-empty path from u to v in (the dag
corresponding to) C then there exist 1 ≤ i < j ≤ d such that u ∈ Vi and v ∈ Vj . In a
first step, we transform our SLP G in logspace into a variable-free arithmetical circuit
C of multiplication depth at most d such that G evaluates to the identity matrix if and
only if C evaluates to 0. Moreover, we also compute a structure-preserving partition of
the multiplication gates of C. This partition will be needed for the further computations.
The degree bound in the following lemma will be needed in Sec. 7.

Lemma 5. From the SLP G = (V, S, rhs) we can compute in logspace a variable-
free arithmetical circuit C with mdepth(C) ≤ d and deg(C) ≤ 2(d − 1), such that
val(G) = Idd if and only if val(C) = 0. In addition we can compute in logspace a
structure-preserving partition

⊎d
i=1 Vi of the set of all multiplication gates of C.

Proof. The set of gates of C is W = {Ai,j | A ∈ V, 1 ≤ i < j ≤ d}] {T},
where T is the output gate. The idea is simple: Gate Ai,j will evaluate to the matrix
entry valG(A)[i, j]. To achieve this, we define the right-hand side mapping of the circuit
G (which we denote again with rhs) as follows: If rhs(A) = M ∈ Γd ∪ Γ−1

d , then
rhs(Ai,j) = M [i, j] ∈ {−1, 0, 1}, and if rhs(A) = BC, then rhs(Ai,j) = Bi,j+Ci,j+∑
i<k<j Bi,k · Ck,j (which is the rule for matrix multiplication taking into account

7

that all matrices are unitriangular). Finally, we set rhs(T) =
∑

1≤i<j≤d S
2
i,j . Then,

val(C) = 0 iff valG(S)[i, j] = 0 for all 1 ≤ i < j ≤ d iff val(G) is the identity matrix.
Concerning the multiplication depth, note that the multiplication depth of the gate

Ai,j is bounded by j− i: The only multiplications in rhs(Ai,j) are of the formBi,kCk,j
(and these multiplications are not nested). Hence, by induction, the multiplication depth
of Ai,j is bounded by 1 + max{k − i, j − k | i < k < j} = j − i. It follows that
every gate Si,j has multiplication depth at most d − 1, which implies that the output
gate T has multiplication depth at most d. Similarly, it can be shown by induction that
deg(Ai,j) ≤ j− i. Hence, deg(Ai,j) ≤ d− 1 for all 1 ≤ i < j ≤ d, which implies that
the formal degree of the circuit is bounded by 2(d− 1).

The structure-preserving partition
⊎d
i=1 Vi of the set of all multiplication gates of

C can be defined as follows: All gates corresponding to multiplications Bi,k · Ck,j in
rhs(Ai,j) are put into the set Vj−i. Finally, all gates corresponding to multiplications
S2
i,j in rhs(T) are put into Vd. It is obvious that this partition is structure-preserving. ut

In a second step we apply Lemma 1 and construct from the above circuit C two variable-
free positive circuits C1 and C2, both having multiplication depth at most d such that
val(C) = val(C1) − val(C2). Hence, our input SLP G evaluates to the indentity matrix
if and only if val(C1) = val(C2). Moreover, using the construction from Lemma 1 it is
straightforward to compute in logspace a structure-preserving partition

⊎d
i=1 Vk,i of the

the set of all multiplication gates of Ck (k ∈ {1, 2}).
The following lemma concludes the proof that CWP(UTd(Z)) belongs to C=L. For

the proof one eliminates in a single phase all multiplication gates in a layer. This can be
achieved by a logspace reduction, and since the total number of layers is constant, the
whole elimination procedure works in logspace.

Lemma 6. Let d be constant. From a given variable-free positive circuit C of multipli-
cation depth d together with a structure-preserving partition

⊎d
i=1 Vi of the set of all

multiplication gates of C, we can compute in logarithmic space a variable-free addition
circuit D such that val(C) = val(D).

So far, we have restricted to torsion-free f.g. nilpotent groups. For general f.g. nilpotent
groups, we use the fact that every f.g. nilpotent group contains a torsion-free normal
f.g. nilpotent subgroup of finite index [13, Thm. 17.2.2], in order to show that the com-
pressed word problem for every f.g. nilpotent group belongs to the complexity class
DET: To do this we need the following result. For the proof one can adopt the proof of
[19, Thm.4.4], where the statement is shown for polynomial time many-one reducibility
instead of AC0-reducibility.

Theorem 3. Let G be a finitely generated group. For every normal subgroup H of G
with a finite index, CWP(G) is AC0-reducible to CWP(H) and CWP(G/H).

We can now show:

Theorem 4. For every f.g. nilpotent group, the compressed word problem is in DET.

Proof. LetG be a f.g. nilpotent group. IfG is finite, then the result follows from Thm. 1
(every nilpotent group is solvable). If G is infinite, then G has a f.g. torsion-free normal

8

subgroup H of finite index [13, Thm. 17.2.2]. Subgroups and quotients of nilpotent
groups are nilpotent too [22, Chapter 5], hence H and G/H are nilpotent; moreover
H is finitely generated. By Thm. 2, CWP(H) belongs to C=L ⊆ DET. Moreover, by
Thm. 1, CWP(G/H) ∈ DET as well. Finally, Thm. 3 implies CWP(G) ∈ DET. ut

Actually, Thm. 4 can be slightly extended to groups that are (f.g. nilpotent)-by-(finite
solvable) (i.e., groups that have a normal subgroup, which is f.g. nilpotent, and where
the quotient is finite solvable. This follows from Thm. 3 and the fact that the compressed
word problem for a finite solvable group belongs to DET (Thm. 1).

7 The uniform CWP for unitriangular groups

For Lemma 4 it is crucial that the dimension d is a constant. In this section, we consider
a uniform variant of the compressed word problem for UTd(Z). We denote this problem
with CWP(UT∗(Z)). The input consists of a unary encoded number d and an SLP,
whose terminal symbols are generators of UTd(Z) or their inverses. Alternatively, we
can assume that the terminal symbols are arbitrary matrices from UTd(Z) with binary
encoded entries (given such a matrixM , it is easy to construct an SLP over the generator
matrices that produces M). The question is whether the SLP evaluates to the identity
matrix. We show that this problem is complete for the complexity class C=LogCFL.

Theorem 5. The problem CWP(UT∗(Z)) is complete for C=LogCFL.

Proof. We start with the upper bound. Consider an SLP G, whose terminal symbols are
generators of UTd(Z) or their inverses. The dimension d is clearly bounded by the input
size. Consider the variable-free arithmetic circuit C constructed from G in Lemma 5
and let C1 and C2 be the two variable-free positive arithmetic circuits obtained from
C using Lemma 1. Then G evaluates to the identity matrix if and only if val(C1) =
val(C2). Moreover, the formal degrees deg(C1) and deg(C2) are bounded by 2(d − 1),
i.e., polynomially bounded in the input length. Finally, we compose a logspace machine
that computes from the input SLP G the circuit Ci with the NAuxPDA from Lemma 2
to get an NAuxPDA Pi such that the number of accepting computation paths of Pi on
input G is exactly val(Ci). Moreover, the running time of Pi on input G is bounded
polynomially in (2d− 1) · depth(Ci) ∈ O(d · |G|).

Let us now show that CWP(UT∗(Z)) is hard for C=LogCFL. Let (C1,n)n≥0 and
(C2,n)n≥0 be two logspace-uniform families of positive arithmetical circuits of poly-
nomially bounded size and formal degree. Let w = a1a2 · · · an ∈ {0, 1}n be an input
for the circuits C1,n and C2,n. Let Ci be the variable-free positive arithmetical circuit
obtained from Ci,n by replacing every xj-labelled input gate by aj ∈ {0, 1}. By [3,
Lemma 3.2] we can assume that every gate of Ci is labelled by its formal degree. By
adding if necessary additional multiplication gates, where one input is set to 1, we can
assume that C1 and C2 have the same formal degree d ≤ p(n) for a polynomial p. Anal-
ogously, we can assume that if A is an addition gate in C1 or C2 with right-hand side
B+C, then deg(B) = deg(C) = deg(A). All these preprocessing steps can be carried
out in logarithmic space.

9

We will construct in logarithmic space an SLP G over the alphabet Γd+1 ∪ Γ−1
d+1,

where Γd+1 is our canonical generating set for the matrix group UTd+1(Z), such that
G evaluates to the identity matrix if and only if val(C1) = val(C2). Let vi be the output
value of Ci. We first construct in logspace an SLP G1 that evaluates to the matrix T v11,d.
In the same way we can construct in logspace a second SLP G2 that evaluates to T−v21,d .
Then, by concatenating the two SLPs G1 and G2 we obtain the desired SLP.

The variables of G1 are Abi,j , where A is a gate of C1, b ∈ {−1, 1}, and 1 ≤ i <
j ≤ d such that j − i is the formal degree of A. The SLP G1 will be constructed
in such a way that valG1(A

b
i,j) = T b·vi,j , where v = valC1(A). If rhsC1(A) = 0, then

we set rhsG1(A
b
i,j) = Id and if rhsC1(A) = 1, then we set rhsG1(A

b
i,j) = T bi,j . If

rhsC1(A) = B + C, then we set rhsG1(A
b
i,j) = Bbi,jC

b
i,j . Correctness follows im-

mediately by induction. Note that deg(B) = deg(C) = deg(A) = j − i, which
implies that the gates Bbi,j and Cbi,j exist. Finally, if rhsC1(A) = B · C, then we set
rhsG1(A

1
i,j) = B−1

i,kC
−1
k,jB

1
i,kC

1
k,j and rhsG1(A

−1
i,j) = C−1

k,jB
−1
i,kC

1
k,jB

1
i,k, where k is

such that deg(B) = k − i and deg(B) = j − k. Such a k exists since j − i =
deg(A) = deg(B)+deg(C). Correctness follows by induction and the simple fact that
T−ai,j , T

−b
j,kT

a
i,j , T

b
j,k = T abi,k for all a, b ∈ Z and 1 ≤ i < j < k ≤ d; see [20]. ut

8 CWP for polycyclic groups

In this section we look at the compressed word problem for polycyclic groups. Since ev-
ery polycyclic group is f.g. linear, the compressed word problem for a polycyclic group
can be reduced to PIT. Here, we show a lower bound: There is a polycyclic group G
such that PIT for skew arithmetical circuits can be reduced to CWP(G). In this context,
it is interesting to note that PIT for arbitrary circuits can be reduced to the compressed
word problem to the linear (but not polycyclic) group SL3(Z) [19, Thm.4.16].

Let us start with a specific example of a polycyclic group. Consider the two matrices

ga =
(
a 0
0 1

)
and h =

(
1 1
0 1

)
, (1)

where a ∈ R, a ≥ 2. Let Ga = 〈ga, h〉 ≤ GL2(R). Let us remark that, for instance, the
group G2 is not polycyclic, see e.g. [28, p. 56]. On the other hand, we have:

Proposition 1. The group G = G1+
√

2 is polycyclic.

The main result of this section is:

Theorem 6. Let a ≥ 2. Polynomial identity testing for skew arithmetical circuits is
logspace-reducible to the compressed word problem for the group Ga.

In particular, there exist polycyclic groups for which the compressed word problem
is at least as hard as polynomial identity testing for skew circuits. Recall that it is not
known, whether there exists a polynomial time algorithm for polynomial identity testing
restricted to skew arithmetical circuits.

For the proof of Thm. 6, we use the following result from [2] (see the proof of [2,
Prop. 2.2], where the result is shown for a = 2, but the proof works for any a ≥ 2):

10

Lemma 7. Let C be an arithmetical circuit of size n with variables x1, . . . , xm and
let p(x1, . . . , xm) = val(C). Let a ≥ 2 be a real number. Then p(x1, . . . , xn) is the

zero-polynomial if and only if p(α1, . . . , αn) = 0, where αi = a2i·n2

for 1 ≤ i ≤ m.

Proof of Thereom 6. Let us fix a skew arithmetical circuit C of size n with m variables
x1, . . . , xm. We will define an SLP G over the alphabet {ga, g−1

a , h, h−1} such that
val(G) = Id in Ga if and only if val(C) = 0. First of all, using iterated squaring, we can
construct an SLP H with variables A1, A

−1
1 . . . , Am, A

−1
m (and some other auxiliary

variables) such that

valH(Ai) = g2i·n2

a =
(
αi 0
0 1

)
and valH(A−1

i) = g−2i·n2

a =
(
α−1
i 0
0 1

)
.

We now construct the SLP G as follows: The set of variables of G consists of the gates of
C and the variables ofH. We copy the right-hand sides fromH and define the right-hand
side for a gate A of C as follows: (i) rhsG(A) = hn if rhsC(A) = n ∈ {0,−1, 1}, (ii)
rhsG(A) = BC if rhsC(A) = B+C, and (iii) rhsG(A) = AiBA

−1
i if rhsC(A) = xi ·B.

A straightforward induction shows that for every gate A of C we have the follow-
ing, where we denote for better readability the polynomial valC(A) to which gate A
evaluates with pA:

valG(A) =
(

1 pA(α1, . . . , αn)
0 1

)
We finally take the output gate S of the skew circuit C as the start variable of G. Then,
val(G) yields the identity matrix in the group Ga if and only if pS(α1, . . . , αn) = 0. By
Lemma 7 this is equivalent to val(C) = pS(x1, . . . , xn) = 0. ut
Actually, we can carry out the above reduction for a class of arithmetical circuits that is
slightly larger than the class of skew arithmetical circuits. Let us define a powerful skew
circuit as an arithmetical circuit, where for every multiplication gate A, rhs(A) is of the
form xei · B, where e ≥ 0 is a binary coded number. Such a circuit can be converted
into an ordinary arithmetical circuit, which, however is no longer skew. To extend the
reduction from the proof of Thereom 6 to powerful skew circuits, we set for a gate A
with rhsC(A) = xei · B: rhsG(A) = AeiBA

−e
i . The powers Aei and A−ei can be defined

using additional multiplication gates. In our recent paper [15], we introduced powerful
skew circuits, and proved that for this class, PIT belongs to coRNC. We applied this
result to the compressed word problem for wreath products.

Let us look again at the group G = G1+
√

2 from Prop. 1. A closer inspection (see
[14]) shows that [G,G] ∼= Z× Z and G/[G,G] ∼= Z× Z2. Hence, G has a subnormal
series of the formGBHBZ×ZBZB1, whereH has index 2 inG andH/(Z×Z) ∼= Z.
The group H is strongly polycyclic and has Hirsch length 3. By Thm. 3 we obtain:

Corollary 1. There is a strongly polycyclic group H of Hirsch length 3 such that poly-
nomial identity testing for skew circuits is polynomial time reducible to CWP(H).

References

1. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems
of linear equations. Comput. Complex., 8(2):99–126, 1999.

11

2. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of
numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

3. E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth
reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47–86, 1998.

4. C. Àlvarez and B. Jenner. A very hard log-space counting class. Theor. Comput. Sci.,
107(1):3–30, 1993.

5. L. Auslander. On a problem of Philip Hall. Annals of Mathematics, 86(2):112–116, 1967.
6. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit

evaluation. SIAM J. Comput., 26(1):138–152, 1997.
7. D. K. Biss and S. Dasgupta. A presentation for the unipotent group over rings with identity.

Journal of Algebra, 237(2):691–707, 2001.
8. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inform. Control, 64:2–22,

1985.
9. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits

for division and iterated multiplication. J. Comput. System Sci., 65:695–716, 2002.
10. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line

programs. J. Assoc. Comput. Mach., 30(1):217–228, 1983.
11. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomiz-

ing the XOR lemma. In Proc. STOC 1997, 220–229. ACM Press, 1997.
12. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving

circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004.
13. M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups. Springer,

1979.
14. D. König M. Lohrey. Evaluating matrix circuits. arXiv.org, 2015.
15. D. König M. Lohrey. Parallel identity testing for algebraic branching programs with big

powers and applications. arXiv.org, 2015.
16. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. J. Assoc. Comput. Mach.,

24(3):522–526, 1977.
17. M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Com-

put., 35(5):1210 – 1240, 2006.
18. M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryp-

tology, 4(2):241–299, 2012.
19. M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.

Springer, 2014.
20. M. Lohrey. Rational subsets of unitriangular groups. International Journal of Algebra and

Computation, 2015. DOI: 10.1142/S0218196715400068.
21. D. Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, UCSD, 1993.
22. J. J. Rotman. An Introduction to the Theory of Groups (fourth edition). Springer, 1995.
23. H.-U. Simon. Word problems for groups and contextfree recognition. In Proceedings of

Fundamentals of Computation Theory, FCT 1979, pages 417–422. Akademie-Verlag, 1979.
24. R. Swan. Representations of polycyclic groups. Proc. Am. Math. Soc., 18:573–574, 1967.
25. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In

Proc. Structure in Complexity Theory Conference, 270–284. IEEE Computer Society, 1991.
26. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
27. S. Waack. On the parallel complexity of linear groups. ITA, 25(4):265–281, 1991.
28. B. A. F. Wehrfritz. Infinite Linear Groups. Springer, 1977.

12

