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Abstract
Recent decidability results on the satisfiability problem for temporal logics, in particular LTL,
CTL∗ and ECTL∗, with constraints over external structures like the integers with the order or
infinite trees are surveyed in this paper.
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1 Linear Time Temporal Logic with Constraints

Temporal logics are a very popular family of logical languages, used to specify properties
of abstracted systems. Pnueli [27] was the first who used linear temporal logic, briefly
denoted by LTL, for reasoning about reactive systems. Since then, LTL has become one of
the most prominent specification languages used in verification and model checking. Both,
model-checking and satisfiability for LTL are PSPACE-complete [28].

In the last few years, many extensions of temporal logics have been proposed in order to
address the need to express more than just abstract properties, see for instance [2, 4, 16, 17, 32].
In some of these studies we can find languages which allow to reason about time intervals,
space regions, data values from dense domains like the real numbers or discrete domains like
the integers or natural numbers.

A general approach for creating such formalisms is described by Demri and D’Souza
in [15], where they show how to extend LTL with the ability to express properties of data
values from an arbitrary relational structure D, which is often called a concrete domain. An
example of a concrete domain can be (Z, <), whose universe is the set Z of integers and <
is the standard linear order on Z, viewed as a binary relation. The approach from [15] is
also used in the field of description logics (DLs), where Baader and Hanschke first described
a way to integrate arbitrary concrete domains into the knowledge-representation language
ALC [3].

The logic defined in [15] is called constraint LTL, briefly CLTL. The idea behind this
language is the following: Fix a set of variables X and another one of propositions P, both
countably infinite, for the rest of the paper. Moreover, fix a relational signature σ, which is
a set of relational symbols R, each having an arity aR. We assume that σ is either finite or
countably infinite. A σ-structure is a tuple D = (D, (RD)R∈σ), where RD ⊆ DaR is a relation
of arity aR. In the following, we always identify the relational symbol R with the associated
relation RD if the structure D is clear from the context. Then the set of CLTL-formulas
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2 Temporal logics with local constraints

over D is defined by the following syntax, where p ∈ P, R ∈ σ, k = aR, i1, . . . , ik ∈ N, and
x1, . . . , xk ∈ X :

ϕ ::= p | R(Xi1x1, . . . ,Xikxk) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ (1)

A formula of the form

R(Xi1x1, . . . ,Xikxk) (2)

is called a D-constraint, or simply constraint if D is clear from the context. We do not assume
that the variables x1, . . . , xk are pairwise distinct. A CLTL-formula over D is interpreted
over an infinite word

w = (A0, η0)(A1, η1)(A2, η2) · · · , (3)

where for i ≥ 0, Ai ⊆ P is a set of propositions and ηi : X → D assigns a value from D to
every variable. One can think of D-registers attached to the system states. Words of the
form (3) are also known as multi-data words. For i ≥ 0 we define the suffix w[i :] as the
multi-data word (Ai, ηi)(Ai+1, ηi+1)(Ai+2, ηi+2) · · · .

The satisfaction relation w |= ϕ where w = (A0, η0)(A1, η1)(A2, η2) · · · is a multi-data
word and ϕ is a CLTL-formulas over D is inductively defined as follows (all cases except for
the case that ϕ is a constraint of the form (2) are as for ordinary LTL without constraints):

w |= p iff p ∈ A0 for p ∈ P.
w |= R(Xi1x1, . . . ,Xikxk) iff (ηi1(x1), . . . , ηik(xk)) ∈ R.
w |= ¬ϕ iff w |= ϕ does not hold.
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.
w |= Xϕ iff w[1 :] |= ϕ.
w |= ϕ1Uϕ2 iff there is an i ≥ 0 with w[i :] |= ϕ2 and w[j :] |= ϕ1 for all 0 ≤ j ≤ i− 1.

I Example 1. Take the structure D = (Z, <,=, (=a)a∈Z), where < is the order relation
defined above, and =a is the unary predicate that only holds for a. Instead of =a (x) we
write x = a. The CLTL-formula (x < X1y) U (y = 100) holds on a multi-data word if and
only if there is a position where variable y holds the value 100 and for all previous positions
t, the value of x at position t is strictly smaller than the value of y at position t+ 1.

2 Satisfiability for Linear Time Temporal Logic with Constraints

A CLTL-formula ϕ over D is satisfiable if there exists a multi-data word w of the form (3)
such that w |= ϕ. Of course, if Pϕ ⊆ P (resp. Xϕ ⊆ X ) is the finite set of propositions (resp.,
variables) that occur in ϕ then we can assume that Ai ⊆ Pϕ and ηi : Xϕ → D in (3).

Balbiani and Condotta [4] proved a general decidability result for CLTL over concrete
domains D satisfying certain properties. The following outline follows [15], where the result
of Balbiani and Condotta is reproved in an automata theoretic framework. First of all, let us
fix a concrete domain D = (D,R1, . . . , Rn) with only finitely many relations. If ij = 0 for
all 1 ≤ j ≤ k in (2), then we call the D-constraint a point D-constraint (since it refers to
one time point). For a point D-constraint R(x1, . . . , xk) and a mapping η : V → D, where
x1, . . . , xk ∈ V ⊆ X we write η |= R(x1, . . . , xk) if (η(x1), . . . , η(xk)) ∈ R. Given a finite
subset V ⊆ X of variables and a mapping η : V → D we denote with frame(V, η) the set
of all constraints R(x1, . . . , xk) with x1, . . . , xk ∈ V and η |= R(x1, . . . , xk). A frame over
the finite subset V ⊆ X is a set of constraints of the form frame(V, η) for some mapping
η : V → D. In other words, a frame over V is a maximal set of constraints which is still
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satisfiable. We say that frame-checking is decidable for D if there exists an algorithm, whose
input is a finite set of constraints C and which checks, whether C is a frame.

For a set of constraints C and a set of variables U ⊆ X we denote with C�U ⊆ C the
set of all constraints R(x1, . . . xk) ∈ C such that x1, . . . , xk ∈ U . A structure D has the
completion property, if for every frame C over V , every subset V ′ ⊆ V , and every mapping
η′ : V ′ → D such that C�V ′ = frame(V ′, η′) there exists an extension η of η′ (meaning that
η′(x) = η(x) for all x ∈ V ′) such that C = frame(V, η).

Now we can present the result of Balbiani and Condotta [4] in the form stated in [15]:

I Theorem 2 ([4, 15]). Let D = (D,R1, . . . , Rn) be a structure having the completion
property. If frame-checking is decidable (resp., in PSPACE), then satisfiability for CLTL over
D is decidable (resp., PSPACE-complete).

Recall that satisfiability for ordinary LTL (without constraints) is already PSPACE-complete.
For the proof of Theorem 2 one follows the classical translation of an LTL-formula (without
constraints) to a Büchi automaton. In addition to a set of subformulas, the Büchi automaton
also has to store a frame over the variables appearing in the CLTL-formula. Along its run,
the Büchi automaton checks whether successive frames fit together in the sense that they can
be extended to a single frame. Moreover, the automaton checks whether the constraints that
belong to the current set of subformulas hold in that combined frame (for this, one has to
assume that i1, . . . , ik ≤ 1, which indeed can be enforced by adding further variables). The
resulting Büchi automaton accepts a non-empty language if and only if the CLTL-formula is
satisfiable. The completion property ensures the correctness of the construction.

Instances of domains with the completion property and decidable frame-checking are
(D,<,=) withD = R orD = Q, and (R2, sw, s, se, w, e, nw, n, ne,=), where the nine relations
illustrate the mutual position of two points in the Cartesian plane (eg. (a, b) sw (c, d) iff
a < c and b < d). In these cases, the dense structure of the real and rational numbers is
fundamental for the completion property. On the other hand, the structures (N, <) and (Z, <)
do not have the completion property: Take for instance the frame consisting of the constraints
x < y, y < z, x < z. Then the mapping η′ : {x, z} → N with η′(x) = 1 and η′(z) = 2 cannot be
extended to a mapping η : {x, y, z} → N such that frame({x, y, z}, η) = {x < y, y < z, x < z}.
In fact, it was shown in [15] that a structure (D,<,=) where (D,<) is an infinite linear order
satisfies the completion property if and only if (D,<) is dense and has neither a smallest nor a
largest element. This originated the question whether satisfiability of CLTL over (Z, <,=) or
(N, <,=) is still decidable. Demri and D’Souza [15] finally answered this question positively
(as in Example 1, =a denotes the unary relation {a}):

I Theorem 3 ([15]). Satisfiability for CLTL over the structures (Z, <,=, (=a)a∈Z) and
(N, <,=, (=a)a∈N) is PSPACE-complete.

In [16], Demri and Gascon extend this result to CLTL with so called IPC∗-constraints. If we
disregard succinctness aspects, this logic is equivalent to CLTL over the structure

Z = (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), (4)

where ≡a,b denotes the unary relation {a + xb | x ∈ Z} (expressing that an integer is
congruent to a modulo b). The main result from [16] states that satisfiability of CLTL with
IPC∗-constraints is still PSPACE-complete.

Constraints over the above structure (4) do not allow to express the successor relation
y = x+ 1, which would be very useful for analyzing counter systems. There is a good reason
for this: Using successor constraints it is easy to reduce the halting problem (and even the
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Σ1
1-complete recurrent reachability problem) for two-counter machines to the satisfiability

problem for CLTL over (Z, {(x, x+ 1) | x ∈ Z}). In [15] the authors extend this observation
by showing undecidability of satisfiability for CLTL over every structure with a so called
implicit counting mechanism. A relational structure D with universe D has an implicit
counting mechanism if it contains the equality relation and a binary relation R such that (i)
R = {(x, y) ∈ D ×D | f(x) = y}, where f : D → D is injective and (ii) (D,R) is acyclic.

I Theorem 4 ([15]). If D has an implicit counting mechanism, then satisfiability for CLTL
over D is hard for Σ1

1 (the first existential level of the analytical hierarchy).

Using the structure Z from (4) one can still specify an abstracted version of increment
operations. For example x = y+1 can be abstracted by (y > x)∧

∨2k−1
i=−2k(≡i,2k(x)∧≡i+1,2k(y))

where k is a large natural number. This is why CLTL over Z seems to be a good compromise
between (unexpressive) total abstraction and (undecidable) high concretion.

3 Branching Time Temporal Logics with Constraints

In the same way as outlined for LTL in Section 1, constraints can be also added to branching
time logics like CTL∗ and even ECTL∗ (extended computation tree logic), obtaining CCTL∗

and CECTL∗, respectively. Formulas from these logics are interpreted over decorated Kripke
structures. Fix again a σ-structure D = (D, (RD)R∈σ). A D-decorated Kripke structure is a
tuple K = (V,R, λ, ζ), where V is the set of nodes (or states), R ⊆ V × V is a binary edge
relation such that for every v ∈ V there exists v′ ∈ V with (v, v′) ∈ R, and for every node
v ∈ V , λ(v) ⊆ P is the set of propositions that hold in v, whereas ζ(v) : X → D assigns
values from D to the variables (or registers). Instead of (ζ(v))(x) we also write ζ(v, x). For
v ∈ V , a (K, v)-path is an infinite sequence of nodes ρ = (v0, v1, v2, . . .) such that v0 = v and
(vi, vi+1) ∈ R for i ≥ 0. As for multi-data words we define ρ[i :] = (vi, vi+1, vi+2, . . .).

The syntax of CCTL∗ over D is given by the following grammar, where p ∈ P, R ∈ σ,
k = aR is the arity of R, i1, . . . , ik ∈ N, and x1, . . . , xk ∈ X :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ (5)
ψ ::= ϕ | R(Xi1x1, . . . ,Xikxk) | ¬ψ | ψ ∧ ψ | Xψ | ψUψ (6)

Formulas of the form (5) are state formulas and are interpreted over nodes of a D-decorated
Kripke structure, whereas formulas of the form (6) are path formulas and are interpreted
over paths in K. Note that constraints are path formulas. Here is the inductive definition of
the satsifiability relation, where K = (V,R, λ, ζ) is a D-decorated Kripke structure, v ∈ V
and ρ = (v0, v1, v2, . . .) is a (K, v0)-path (we omit here the obvious cases for the boolean
operators ¬ and ∧):

(K, v) |= p iff p ∈ λ(v) for p ∈ P.
(K, v) |= Eψ iff there is a (K, v)-path % such that (K, %) |= ψ.
(K, ρ) |= ϕ if (K, v0) |= ϕ for a state formula ϕ.
(K, ρ) |= R(Xi1x1, . . . ,Xikxk) if (ζ(vi1 , x1), . . . , ζ(vik , xk)) ∈ R.
(K, ρ) |= Xϕ iff (K, ρ[1 :]) |= ϕ.
(K, ρ) |= ϕ1Uϕ2 iff there is an i ≥ 0 with (K, ρ[i :]) |= ϕ2 and (K, ρ[j :]) |= ϕ1 for all
0 ≤ j ≤ i− 1.

A CCTL∗ state formula ψ over D is satisfiable if there exists a D-decorated Kripke structure
K and a node v from D such that (K, v) |= ψ.

A weak form of CCTL∗ over Z, where only integer variables at the same state can be
compared, was first introduced in [13] and used to describe properties of so called relational
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automata. It was shown in [13] that the model checking problem for the above fragment of
CCTL∗ over relational automata is undecidable.

Demri and Gascon [16] asked whether satisfiability of CCTL∗ over the structure Z from
(4) is decidable. This problem was further investigated in [6, 20], where several partial results
where shown: If we replace in Z the binary predicate < by unary predicates <c = {x | x < c}
for c ∈ Z, then satisfiability of CCTL∗ was shown to be decidable in [20]. For the full structure
Z satisfiability was shown to be decidable for CEF+, a fragment of CCTL∗ which contains
both the existential and the universal fragment of CCTL∗, see [6] for details. Later in [7]
Bozzelli and Pinchinat proved that satisfiability of the existential and universal fragment of
CCTL∗ over the domain (Z,=, <) are PSPACE-complete. Finally, in [11], we answered the
question of Demri and Gascon positively:

I Theorem 5 ([11]). CCTL∗ over Z is decidable.

Before we explain the proof techniques from [11], let us first discuss an extension of Therem 5
to ECTL∗ (extended CTL∗) with constraints over Z, which was shown in the long version
[12] of [11] using a straightforward extension of the techniques from [11].

The logic ECTL∗ (without constraints) is a proper extension of CTL∗ (see [29, 31]) in
which path formulas are defined by Büchi-automata or, equivalently, MSO-formulas. In
contrast, CTL∗ can only specify LTL-properties or, equivalently, first-order properties along
paths. To define the constraint version of ECTL∗ over D = (D, (RD)R∈σ) we first have to
define a constraint version of MSO (monadic second-order logic) over infinite words, which
is interpreted over multi-data words. We speak of CMSO (constraint MSO) over D. Fix a
countably infinite set Vel (resp., Vset) of element variables (resp., set variables). The set of
CMSO-formulas over D is defined by the following grammar, where y, y1, y2 ∈ Vel, Y ∈ Vset,
p ∈ P, R ∈ σ, k = aR is the arity of R, i1, . . . , ik ∈ N, and x1, . . . , xk ∈ X :

ϕ ::= p(y) | y1 < y2 | y ∈ Y | [R(Xi1x1, . . . ,Xikxk)](y) | ¬ϕ | ϕ ∧ ϕ | ∃y ϕ | ∃Y ϕ

To define the semantics of CMSO over D we need interpretation functions I1 : Vel → N
and I2 : Vset → 2N. Then, for a multi-data word w = (A0, η0)(A1, η1)(A2, η2) · · · we define
(w, I1, I2) |= ϕ inductively as follows (again we omit the obvious cases for boolean operators):

(w, I1, I2) |= p(y) iff p ∈ Aj where j = I1(y).
(w, I1, I2) |= y1 < y2 iff I1(y1) < I2(y2).
(w, I1, I2) |= y ∈ Y iff I1(y) ∈ I2(Y ).
(w, I1, I2) |= [R(Xi1x1, . . . ,Xikxk)](y) iff (ηj+i1(x1), . . . , ηj+ik(xk)) ∈ R, where j = I1(y).
(w, I1, I2) |= ∃y ϕ iff there exists j ∈ N such that (w, I1[y 7→ j], I2) |= ϕ.
(w, I1, I2) |= ∃y ϕ iff there exists J ⊆ N such that (w, I1, I2[Y 7→ J ]) |= ϕ.

Here, the function I1[y 7→ j] is defined by I1[y 7→ j](y) = j and I1[y 7→ j](y′) = I1(y′) for
y′ 6= y, and similarly for I2[Y 7→ J ]. Moreover, for a pair (K, ρ) consisting of a D-decorated
Kripke structure K = (D,R, λ, ζ) and a (K, v0)-path ρ = (v0, v1, v2, . . .) (for some node
v0 of K) we write (K, ρ, I1, I2) |= ϕ if (w, I1, I2) |= ϕ, where w is the multi-data word
(λ(v0), ζ(v0))(λ(v1), ζ(v1))(λ(v2), ζ(v2)) · · · .

Now we can define CECTL∗ (constraint ECTL∗) over D = (D, (RD)R∈σ) as follows, where
ϕ is an arbitrary CMSO-formula over D in which only the set variables Y1, . . . , Yn occur
freely:

ϕ ::= ¬ϕ | ϕ ∧ ϕ | Eϕ[Y1/ϕ, . . . , Yn/ϕ]

Such a formula is evaluated in a node v ∈ D of a D-decorated Kripke structure K =
(V,R, λ, ζ) by the following rule (the definition for boolean operator is the obvious one):
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(K, v0) |= Eϕ[Y1/ϕ1, . . . , Yn/ϕn] iff there is a (K, v0)-path ρ = (v0, v1, v2, . . .) such that
(K, ρ, I1, I2) |= ϕ, where I1 is arbitrary (note that ϕ is not allowed to have free element
variables) and I2 satisfies I2(Yi) = {j | (K, vj) |= ϕi}. Note that for a CMSO-formula ϕ
without free variables, Eϕ is a CECTL∗ formula that holds in a node v if there is a path
starting in v along which ϕ holds. Satisfiability for CECTL∗-formulas over D is defined as for
CCTL∗. The main result of [12] is:

I Theorem 6 ([12]). Satisfiability for CECTL∗ over Z is decidable.

In the next section, we explain the method that we use to obtain the results from [11, 12],
which we call the EHD-method.

4 EHD-method

The EHD-method yields sufficient conditions on a relational structure D which guarantee
that satisfiability of CECTL∗ over D is decidable. Then, one can show that the structure Z
satisfies these properties.

The structure D = (D, (RD)R∈σ) is negation closed, if for every R ∈ σ the complement
of RD is definable in positive existential first-order logic over D. Moreover, since σ can be
countably infinite we have to require that a positive existential first-order formula for the
complement of RD is computable from the relational symbol R ∈ σ. For instance (Z,=, <)
is negation closed, because ¬x < y iff (x = y ∨ y < x) and ¬x = y iff (x < y ∨ y < x).
Negation closure is needed in order to achieve a strong kind of negation normal form for
CECTL∗, in which the constraints only appear positively.

The second condition on D, the EHD-property, expresses the fact that we can provide
a characterization of all structures which allow a homomorphism into D using a suitable
logical language. Let τ ⊆ σ be a subsignature of σ. A homomorphism h : C → D from a
τ -structure C = (C, (RC)R∈τ ) to the σ-structure D is a mapping h : C → D such that for
every R ∈ τ and every tuple (c1, . . . , ck) ∈ RC (where k = aR is the arity of R) we have
(h(c1), . . . , h(ck)) ∈ RD. We say that the σ-structure D has the property EHD(L) for some
logic L if and only if there is a computable function that maps a finite subsignature τ ⊆ σ to
an L-sentence ϕτ such that for any countable τ -structure C one has:

∃h : C → D homomorphism ⇐⇒ C |= ϕτ .

To make use of this condition for proving satisfiability of CECTL∗, the logic L has to satisfy
two properties: (i) it has to be at least as expressive as MSO and (ii) the satisfiability problem
over the class of infinite node labelled rooted trees has to be decidable for L. In [11, 12] we
used for L the logic Bool(MSO,WMSO+B) (in short BMWB), whose formulas are all boolean
combinations of MSO and WMSO+B formulas. Here, WMSO+B is the extension of weak
monadic second-order logic (where only quantification over finite subsets is allowed) with the
bounding quantifier B: A formula BX ϕ holds in a structure A if and only if there exists a
bound b ∈ N such that for every finite subset B of the domain of A with A |= ϕ(B) we have
|B| ≤ b. Recently, Bojańczyk and Toruńczyk have shown that satisfiability of WMSO+B
over infinite node-labeled trees is decidable [5]. They translate WMSO+B-formulas into a
certain kind of tree automata, which they call puzzles. Since puzzles are equipped with a
parity acceptance condition, it follows easily from [5] that satisfiability over infinite node
labelled trees remains decidable for BMWB. The technical main result from [12] is:

I Theorem 7 ([12]). Let D be a relational structure which is (i) negation closed and (ii) has
the property EHD(BMWB). Then satisfiability of CECTL∗ over D is decidable.
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Let us sketch the proof of this result for CCTL∗, which is notationally a bit simpler than
the proof for CECTL∗. So, let ϕ be a CCTL∗ state formula. Using negation closure, we can
assume that ϕ is in a strong negation normal form where negations only appear directly in
front of atomic propositions p ∈ P. For this we have to add dual operators to the logic (e.g.,
the universal path quantifier A). Negation closure allows to eliminate a negation in front of
a constraint. Let r be 1+ the number of subformulas of ϕ of the form Eθ.

Next, it is easy to show that ϕ is satisfiable if and only if it has a model T = (V,R, λ, ζ),
where (V,R) is a rooted tree of degree r, meaning that (T , v0) |= ϕ, where v0 is the root of
(V,R). We call such a structure a D-decorated r-tree. The proof for this tree model property
is the same as for classical CTL∗.

We use the following notation for ancestors in a tree: Let (V,R) be a rooted tree and
let v ∈ V . Then we denote with v1 the parent node of v if it exists. Moreover, for i ≥ 0 let
v0 = v and vi+1 = (vi)1 (the latter does not necessarily exist). So, vi is the i-th ancestor of
v if it exists.

Next we define an abstracted version of ϕ, where every occurrence of a constraint
θ = R(Xi1x1, . . . ,Xikxk) is replaced by Xdpθ, where pθ is a fresh proposition associated with
θ. Here d = max{i1, . . . , ik} is the depth of the constraint. We call the resulting formula
ϕa; it is a pure CTL∗-formula. For a D-decorated r-tree T = (V,R, λ, ζ) we also define an
abstracted version T a = (V,R, λa) (we call it an undecorated r-tree), which is obtained
from T by removing the decoration mapping ζ and adding propositions. More precisely, the
labelling function λa : V → 2P is defined as follows: For every node v ∈ V , λa(v) is the
union of λ(v) and the set of all fresh propositions pθ, where θ is a constraint in ϕ of depth
d and θ holds in the path starting in vd and passing through v. Since θ looks only d steps
into the future, it does not matter how the chosen path continues from v downwards in the
tree; only the initial segment from the d-th ancestor of v to v is relevant. Note that if the
D-decorated r-tree T is a model for ϕ, then T a is a model for ϕa, but the converse does in
general not hold. In order to get an equivalence, we have to add a further condition.

Let P0 be the set of propositions that appear in the abstracted formula ϕa (which contains
the fresh propositions pθ for constraints θ) and let X0 ⊆ X be the finite set of variables that
occur in the initial CCTL∗-formula ϕ. Assume now that S = (V,R, λ) is an undecorated
r-tree, where the propositions from P0 occur. We define a σ-structure CS as follows (σ is the
signature of D): Its universe is the set of all pairs (v, x) ∈ V ×X0. Moreover, for every k-ary
relation symbol R ∈ σ let RCS (the interpretation of R in the structure CS) consist of all
tuples ((vd−i1 , x1), . . . , (vd−ik , xk)) such that v ∈ V , λ(v) contains the proposition θ, θ is the
constraint R(Xi1(x1), . . . ,Xik(xk)), and d is the depth of the constraint. The intuition here
is the following: The universe of CS is obtained by attaching to each node of S copies of the
variables from X0. That a node v is labelled with the proposition pθ indicates that in the
unabstracted version of S (imagine S is the abstracted version T a of a D-decorated r-tree T )
the constraint θ holds in the path starting in vd and passing through v. The relation RCS
contains therefore all tuples that are forced to exist due to the labels pθ for the constraints θ.

With the above definitions, it is not difficult to prove that the following two statements
are equivalent (here, we actually need the fact that constraints only occur positively in ϕ):

There is a D-decorated r-tree T with root v0 such that (T , v0) |= ϕ

There is an undecorated r-tree S with root v0 and a homomorphism h : CS → D such
that (S, v0) |= ϕa.

Now it is fairly easy to finish the proof of Theorem 7. By the EHD(BMWB)-property, there
exists a BMWB-sentence ψ such that CS |= ψ if and only if there is a homomorphism
h : CS → D. From the definition of the structure CS it is easy to see that it can be obtained
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by a so called copying first-order transduction from S. One can therefore construct from
the BMWB-sentence ψ another BMWB-sentence ψ′ such that CS |= ψ if and only if S |= ψ′.
Finally, since CTL∗ can be translated into MSO, one can construct an MSO sentence ψ′′ such
that (S, v0) |= ϕa if and only if S |= ψ′′. Altogether we have that our initial CCTL∗-formula
ϕ is satisfiable if and only if there exists an r-tree S such that S |= ψ′ ∧ ψ′′. By the result of
Bojańczyk and Toruńczyk [5] the latter is decidable. This concludes our proof sketch for
Theorem 7.

By Theorem 7, to prove Theorem 6 it suffices to show that the structure Z from (4) is
negation closed and has the property EHD(BMWB). Negation closure is straightforward to
show. For the EHD(BMWB)-property let us briefly argue why the reduct (Z, <) of Z has
the property EHD(BMWB). For a structure C = (C,R) (where R is an arbitrary binary
relation on C) one can show that there exists a homomorphism from C to (Z, <) if and
only if (i) R is acyclic and (ii) for all a, b ∈ C there is a bound on the length of all paths
in C from a to b. These properties can be easily expressed in WMSO+B, which shows that
(Z, <) has the property EHD(BMWB). Moreover, the above characterization of the existence
of homomorphisms to (Z, <) can be extended to Z. Let us only remark that one has to
consider also structures C (over the same signature as Z), where the equality symbol = is
not interpreted by the identity relation on the universe of C.

Our proof that Z has the property EHD(BMWB) actually only needs rather weak as-
sumptions on the unary predicates (which are satisfied for the unary relations =a and ≡a,b).
In particular, Theorem 6 can be extended to expansions of Z that contain additional unary
predicates like the set of primes and even some undecidable subsets of Z, see [12] for details.

The EHD-method is quite general, and it is tempting to try applying it to other structures.
An interesting candidate in this context (as mentioned in [16]) is the infinite order tree

T∞ = (N∗, <,=,⊥),

where < denotes the prefix order on N∗ and ⊥ denotes the incomparability relation with
respect to <. We add the latter relation in order to obtain a negation closed structure.
Unfortunately, using an Ehrenfeucht-Fraïssé-game for WMSO+B, we proved in [10] that T∞
does not satisfy the property EHD(BMWB):

I Theorem 8 ([10]). There is no BMWB-sentence ψ such that for every countable structure
A over the signature {<,=,⊥} one has: A |= ψ if and only if there is a homomorphism
h : A → T∞.

In other words, BMWB is not expressive enough to distinguish between those {<,=,⊥}-
structures which can be mapped homomorphically to the infinite order tree and those that
cannot.

This shows that the EHD-method cannot be applied to the concrete domain T∞ (or,
equivalently, to the infinite binary tree), but it does not imply that satisfiability for CECTL∗

over T∞ is undecidable. In fact, recently Demri and Deters [14] gave a positive answer for
CCTL∗ over T∞:

I Theorem 9 ([14]). Satisfiability for CCTL∗ over T∞ is decidable and PSPACE-completeness
for the corresponding CLTL-fragment.

The result for CLTL has been recently reproved in [21] using a direct automata theoretic
approach. Demri and Deters prove their results actually for a richer logic, which allows to
compare the length of the longest common prefix for pairs of elements from T∞. Decidability
is obtained by a reduction to the satisfiability problem of CLTL (resp., CCTL∗) over the
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domain (N,=, <, (=a)a∈N), which is PSPACE-complete (resp., decidable) by [16] (resp., [11]).
We conjecture that the decidability result for CCTL∗ over T∞ can be extended to CECTL∗.

Despite the fact that the EHD-method fails for T∞, one can apply it to other tree-like
structures, such as semi-linear orders, ordinal trees, and infinitely branching trees of a fixed
height. Semi-linear orders are partial orders that are tree-like in the sense that for every
element x the set of all smaller elements ↓x forms a linear suborder. If this linear suborder
↓x is an ordinal (for every x) then one has an ordinal tree. Ordinal trees are widely studied
in descriptive set theory and recursion theory. Note that a tree is a particular instance of a
semi-linear order which has a smallest element and where for every x the set ↓x is finite.

So far, we have investigated satisfiability for CECTL∗ over one fixed structure D. For
semi-linear orders and ordinal trees it is more natural to consider satisfiability with respect
to a class of concrete domains Γ (over a fixed signature σ): The question becomes, whether
for a given CECTL∗-formula ϕ there is a concrete domain D ∈ Γ such that ϕ holds in a
D-decorated Kripke structure. If a class Γ has a universal structure1 U , then satisfiability
with respect to the class Γ is equivalent to satisfiability with respect to U because there is
a D ∈ Γ such that ϕ holds in a D-decorated Kripke structure if and only if ϕ holds in a
U-decorated Kripke structure. A typical class with a universal structure is the class of all
countable linear orders, for which (Q, <) is universal. Similarly, for the class of all countable
trees the tree T∞ as well as the infinite binary tree are universal.

Using the EHD-method, we proved the following decidability results in [10]:

I Theorem 10 ([10]). Satisfiability of CECTL∗ over each of the following classes is decidable:
the class of all semi-linear orders,
the class of all ordinal trees, and
for each h ∈ N, the class of all order trees of height h.

5 Adding Non-Local Constraints

Notice that the constraints of the form R(Xi1x1, . . . ,Xikxk) which we have considered so
far are local, in the sense that they can compare data values in an n-sized neighborhood
of the state in which they are evaluated, where n = max{i1, . . . , ik} + 1. Other proposed
extensions of temporal logics have the ability to compare data values at arbitrary distance.
Metric temporal logic (MTL) [2] and FreezeLTL [17] are two prominent examples of such
logics. In [15], Demri and D’Souza ask whether satisfiability of CLTL with constraints over
the integers is preserved when adding non-local constraints of the form x = Fy, stating that
there exists a future state where the value of y is equal to the current value of x. Using a
reduction from the Π0

1-complete problem of deciding the existence of an infinite accepting
run of an incrementing counter automaton (see [17]), we answered this question negatively
in [12]:

I Theorem 11 ([12]). Satisfiability for CLTL over (Z,=, <) extended with non-local con-
straints of the form x = Fy is undecidable.

On the other hand, if one adds non-local constraints of the form x < Fy and Fx < y to CLTL,
then one still gets a decidable logic:

1 A structure U is universal for the class Γ if (i) U ∈ Γ and (ii) every structure from Γ is an induced
substructure of U .
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I Theorem 12. Satisfiability for CLTL over Z from (4) extended with non-local order
constraints of the form x < Fy and Fx < y is PSPACE-complete.

This result was shown in the PhD thesis of the first author [8], where it is shown that
non-local order constraints of the form x < Fy and Fx < y can be replaced by local order
constraints. It remains open, whether CCTL∗ over Z (or the reduct (Z,=, <)) extended with
non-local constraints of the form x < Fy and Fx < y is still decidable.

6 Related Work.

In the area of knowledge representation, extensions of description logics with constraints on
different concrete domains have been intensively studied, see [23] for a survey. In [24], it
was shown that the extension of the description logic ALC with constraints from (Q, <,=)
has a decidable (EXPTIME-complete) satisfiability problem even in the presence of general
TBoxes. A TBox can be seen as a second ALC-formula that has to hold in all nodes of
a model. Our decidability proof is partly inspired by the construction from [24], which in
contrast to our proof is purely automata-theoretic. Further results for description logics and
concrete domains can be found in [25, 26].

There are other extensions of temporal logics that allow to reason about structures
with data values, especially in the linear time setting. Logical languages like MTL [22, 2]
and TPTL [1] are extensions of LTL often used to specify properties of timed words, i.e.
data words over the real numbers in which the data sequence is monotonically growing, or
monotonic data words over the natural numbers. These logics have however also received
some attention on non-monotonic data words [9, 19]. In general, as soon as one drops the
monotonicity requirement, satisfiability for these logics becomes undecidable and research
has been concentrating on some decidable fragments. An example is freezeLTL, a syntactical
restriction of TPTL that has the ability to check data values only for equality. Satisfiability
for freezeLTL has been shown to be decidable over finite data words, but undecidable over
infinite data words [17]. In contrast to CLTL, the constraints of freezeLTL are of a global
nature.

7 Open problems

The most important open problem that remains from this work concerns the complexity of
satisfiability for CCTL∗ over (Z, <,=) (or even Z). Clearly, this problem is 2EXPTIME-hard,
since satisfiability of (unconstrained) CTL∗ is 2EXPTIME-complete [18, 30]. To get an upper
complexity bound, one should investigate the complexity of the emptiness problem for puzzles
(the tree automata used in [5] to show that satisfiability of WMSO+B over infinite node
labelled trees is decidable). The WMSO+B-properties used in our decidability result for the
structure (Z, <,=) are very simple, in particular there quantifier nesting depth is small. One
may hope to derive a reasonable complexity bound from this observation. At the same time,
we believe that our decidability result based on the EHD-method, whose upside is its general
nature, may not be the most effective way to devise an efficient decidability procedure for
the specific case of the structure (Z, <,=). The reason behind this statement is the following:
Recall from our proof sketch for Theorem 7 that we have to check whether there exists a
tree S which (i) is a model of the abstracted CTL∗-formula ϕa and (ii) such that there is a
homomorphism from the structure CS to D. Property (i) can be checked in 2EXPTIME. The
complexity theoretic bottleneck in our proof is property (ii). We simply translate it to BMWB
over trees, for which we have no complexity bound. But CS has some interesting properties:
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It has bounded degree and bounded tree-width, where the tree-width is determined by the
number of variables occurring in the input formula. Maybe one can exploit this fact to come
up with a more efficient solution. Let us remark that for CECTL∗ satisfiability over any
concrete domain is non-elementary since path properties are specified in MSO (for which
satisfiability is non-elementary). Of course one may replace MSO by Büchi automata (as in
[29, 31]), which might then lead to an elementary complexity bound.

Another interesting question is whether there exists a linear order (A,<) such that
satisfiability for CECTL∗ (or even CCTL∗ or CLTL) over (A,<,=) is undecidable. Such a
linear order must be necessarily scattered, i.e., (Q, <) cannot be embedded into (A,<).
If (Q, <) can be embedded into (A,<), then satisfiability over (A,<,=) is equivalent to
satisfiability over (Q, <,=). Finally, it would be interesting to know, whether there exists
a concrete domain D such that satisfiability for CLTL over D is decidable but the more
expressive CCTL∗ over D is undecidable.
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