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Abstract. Recently, we proved that satisfiability for ECTL∗ with con-
straints over Z is decidable using a new technique based on weak monadic
second-order logic with the bounding quantifier (WMSO+B). Here we
apply this approach to concrete domains that are tree-like. We show
that satisfiability of ECTL∗ with constraints is decidable over (i) semi-
linear orders, (ii) ordinal trees (semi-linear orders where the branches
form ordinals), and (iii) infinitely branching order trees of height h for
each fixed h ∈ N. In contrast, we introduce Ehrenfeucht-Fräıssé-games
for WMSO+B (weak MSO with the bounding quantifier) and use them
to show that our approach cannot deal with the class of order trees.
Missing proofs and details can be found in the long version [6].

1 Introduction

Temporal logics like LTL, CTL or CTL∗ are nowadays standard languages for
specifying system properties in verification. These logics are interpreted over
node labeled graphs (Kripke structures), where the node labels represent abstract
properties of a system. Clearly, such an abstracted system state does in general
not contain all the information of the original system state. This may lead to
incorrect results in model-checking. To overcome this problem, extensions of
temporal logics with constraints have been studied. In this setting, a model of a
formula is not only a Kripke structure but a Kripke structure where every node
is assigned several values from some fixed structure C (called a concrete domain).
The logic is then enriched in such a way that it has access to the relations of
the concrete domain. For instance, if C = (Z,=) then every node of the Kripke
structure gets assigned several integers and the logic can compare the integers
assigned to neighboring nodes for equality.

In our recent papers [4,5] we used a new method (called EHD-method in the
following) to show decidability of the satisfiability problem for extended com-
putation tree logic (ECTL∗, which strictly extends CTL∗) with local constraints
over the integers. This result greatly improves the partial results on fragments
of CTL∗ obtained in [2,3,8]. The idea of the EHD-method is as follows. Let C be
any concrete domain over a relational signature σ. Then, satisfiability of ECTL∗

with constraints over C is decidable if C has the following two properties:
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– The structure C is negation-closed, i.e., the complement of any relation R ∈ σ
is definable in positive existential first-order logic.

– There is a Bool(MSO,WMSO+B)-sentence ϕ such that for any countable
σ-structure A there is a homomorphism from A to C if and only if A |= ϕ.

Here, Bool(MSO,WMSO+B) is the set of all Boolean combinations of MSO-
formulas and formulas of WMSO+B, i.e., weak monadic second-order logic with
the bounding quantifier. The latter allows to express that there is a bound on the
size of finite sets satisfying a certain property. Our decidability result uses the
main result of [1] stating that satisfiability of WMSO+B over infinite trees is de-
cidable. In [4] we proved that the existence of a homomorphism into (Z, <,=) can
be expressed in Bool(MSO,WMSO+B), showing that ECTL∗ with constraints
over this structure is decidable.

These results gave rise to the hope that the EHD-method applies to other
concrete domains. An interesting candidate in this setting is the infinite order
tree T∞ = (N∗, <,⊥,=), where < denotes the prefix order on N∗ and ⊥ denotes
the incomparability relation with respect to < (this structure is negation-closed,
which is the reason for adding the incomparability relation ⊥). Unfortunately,
this hope is destroyed by one of the main results of this work, which is shown in
Section 5 using a new Ehrenfeucht-Fräıssé-game for WMSO+B:

Theorem 1. There is no Bool(MSO,WMSO+B)-sentence ψ such that for every
countable structure A (over the signature {<,⊥,=}) we have: A |= ψ if and only
if there is a homomorphism from A to T∞.

Thm. 1 shows that the EHD-method cannot be applied to the concrete domain
T∞. Of course, this does not imply that satisfiability for ECTL∗ with constraints
over T∞ is undecidable, which remains an open problem (even for LTL instead
of ECTL∗). In fact, we conjecture that satisfiability for ECTL∗ with constraints
over T∞ is decidable. We support this conjecture by applying the EHD-method to
other tree-like structures, such as semi-linear orders, ordinal trees, and infinitely
branching trees of a fixed height. Semi-linear orders are partial orders that are
tree-like in the sense that for every element x the set of all smaller elements
form a linear suborder. If this linear suborder is an ordinal (for every x) then
one has an ordinal tree. Ordinal trees are widely studied in descriptive set theory
and recursion theory. Note that a tree is a connected semi-linear order where for
every element the set of all smaller elements is finite.

In the integer-setting from [4,5], we investigated satisfiability for ECTL∗-
formulas with constraints over one fixed structure (integers with additional re-
lations). For semi-linear orders and ordinal trees it is more natural to consider
satisfiability with respect to a class of concrete domains Γ (over a fixed signature
σ): The question becomes, whether for a given constraint ECTL∗ formula ϕ there
is a concrete domain C ∈ Γ such that ϕ is satisfiable by some model with concrete
values from C? If a class Γ has a universal structure3 U , then satisfiability with

3 A structure U is universal for a class Γ if there is a homomorphic embedding of
every structure from Γ into U and U belongs to Γ .
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respect to the class Γ is equivalent to satisfiability with respect to U because
obviously a formula ϕ has a model with some concrete domain from Γ if and
only if it has a model with concrete domain U . A typical class with a universal
model is the class of all countable linear orders, for which (Q, <) is universal.
Similarly, for the class of all countable trees the tree T∞ as well as the binary
infinite tree are universal. There is also a universal countable semi-linear order.
We formulate our decidability result for classes instead of universal structures
because there is no universal structure for the class of countable ordinal trees
(for a similar reason as the one showing that the class of countable ordinals does
not contain a universal structure).

Application of the EHD-method to semi-linear orders and ordinal trees gives
the following decidability results.

Theorem 2. Satisfiability of ECTL∗-formulas with constraints over each of the
following classes is decidable:

(1) the class of all semi-linear orders (see Section 3),
(2) the class of all ordinal trees (see Section 4), and
(3) for each h ∈ N, the class of all order trees of height h (see Section 4).

Concerning complexity, let us remark that in [4,5] we did not present an upper
bound on the complexity of our decision procedure. The reason for this is that
there is no known upper bound for the complexity of satisfiability of WMSO+B
over infinite trees, even in the case that the input formula has bounded quantifier
depth. Here, the situation is different. Our applications of the EHD-method for
Thm. 2 do not use the bounding quantifier whence classical WMSO (for (1)) and
MSO (for (2) and (3)) suffice. Moreover, the formulas that express the existence of
a homomorphism have only small quantifier depth (at least for semi-linear orders
and ordinal trees; for trees of bounded height, the quantifier depth depends on
the height). These facts yield a triply exponential upper bound on the time
complexity in (1) and (2) from Thm. 2. We skip the proof details, since we still
conjecture the exact complexity to be doubly exponential.

2 Preliminaries

In this section we recall basics concerning Kripke structures, various classes of
tree-like structures, and the logics MSO, WMSO+B, and ECTL∗ with constraints.

2.1 Structures

Let P be a countable set of atomic propositions. A Kripke structure over P is a
triple K = (D,→, ρ), where: (i) D is an arbitrary set of nodes, (ii)→ is a binary
relation on D such that for all u ∈ D there is a v ∈ D with u → v, and (iii)
ρ : D → 2P is a function that assigns to every node a set of atomic propositions.

A (finite relational) signature is a finite set σ = {r1, . . . , rn} of relation
symbols. Every relation symbol r ∈ σ has an associated arity ar(r) ≥ 1. A σ-
structure is a pairA = (A, I), where A is a non-empty set and I maps every r ∈ σ
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to an ar(r)-ary relation over A. Quite often, we will identify the relation I(r) with
the relation symbol r, and we will specify a σ-structure as (A, r1, . . . , rn). Given
A = (A, r1, . . . , rn) and given a subset B of A, we define ri�B = ri ∩Bar(ri) and
A�B = (B, r1�B , . . . , rn�B) (the restriction of A to the set B). For a subsignature
τ ⊆ σ, a τ -structure B = (B, J) and a σ-structure A = (A, I), a homomorphism
from B to A is a mapping h : B → A such that for all r ∈ τ and all tuples
(b1, . . . , bar(r)) ∈ J(r) we have (h(b1), . . . , h(bar(r))) ∈ I(r). We write B � A
if there is a homomorphism from B to A. Note that we do not require this
homomorphism to be injective.

We now introduce constraint graphs. These are two-sorted structures where
one part is a Kripke structure and the other part is some σ-structure called the
concrete domain. To connect the concrete domain with the Kripke structure, we
fix a set of unary function symbols F . The interpretation of a function symbol
from F is a mapping from the nodes of the Kripke structure to the universe
of the concrete domain. Constraint graphs are the structures in which we eval-
uate constraint ECTL∗-formulas. Formally, an A-constraint graph C is a tuple
(A,K, (fC)f∈F ) where: (i) A = (A, I) is a σ-structure (the concrete domain),
(ii) K = (D,→, ρ) is a Kripke structure, and (iii) for each f ∈ F , fC : D → A is
the interpretation of the function symbol f connecting elements of the Kripke
structure with elements of the concrete domain. An A-constraint path P is an
A-constraint graph of the form P = (A,P, (fP)f∈F ), where P = (N,S, ρ) is a
Kripke structure such that S is the successor relation on N.

We use (A,K,FC) as an abbreviation for (A,K, (fC)f∈F ). Moreover, we often
drop the superscript C and also write constraint graph instead of A-constraint
graph if no confusion arises.

2.2 Tree-like structures

A semi-linear order is a partial order P = (P,<) with the additional property
that for all p ∈ P the suborder induced by {p′ ∈ P | p′ ≤ p} forms a linear order.
Note that all (order) trees are semi-linear orders, but not vice-versa. We call a
semi-linear order P = (P,<) an ordinal forest (resp., forest) if for all p ∈ P the
suborder induced by {p′ ∈ P | p′ ≤ p} is an ordinal (resp., a finite linear order).
A (ordinal) forest is a (ordinal) tree if it has a unique minimal element. A tree
has height h (for h ∈ N) if it contains a linear suborder with h+1 many elements
but no linear suborder with h+ 2 elements.

Given a partial order (P,<), we denote by ⊥< the incomparability relation
defined by p ⊥< q iff neither p ≤ q nor q ≤ p. Given a {<,⊥,=}-structure
P = (P,<,⊥,=) such that (P,<) is a semi-linear order (resp., ordinal tree, tree
of height h), = is the equality relation on P , and ⊥ = ⊥<, then we also say that
P is a semi-linear order (resp. ordinal tree, tree of height h).

2.3 Logics

As usual, MSO denotes monadic second-order logic and WMSO its variant Weak
monadic second-order logic where set quantifiers only range over finite sets.
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Throughout the paper Var1 (Var2) denotes the set of element (set, resp.) vari-
ables. Finally, WMSO+B is the extension of WMSO by the bounding quantifier
BX ϕ (see [1]) whose semantics is given by (A, I) |= BX ϕ(X) if and only if
there is a bound b ∈ N such that |B| ≤ b for every finite subset B ⊆ A with
(A, I) |= ϕ(B). The quantifier rank of a WMSO+B-formula is the maximal num-
ber of nested quantifiers (existential, universal, and bounding quantifiers) in the
formula. We write Bool(MSO,WMSO+B) for the set of all boolean combinations
of MSO-formulas and WMSO+B-formulas.

Extended computation tree logic (ECTL∗) is an extension of CTL∗ introduced
in [9,10]. Like CTL∗, ECTL∗ is interpreted on Kripke structures, but while CTL∗

allows to specify LTL properties of infinite paths of such models, ECTL∗ can
describe regular (i.e., MSO-definable) properties of paths. In [5] we introduced
an extension of ECTL∗, called constraint ECTL∗, which enriches ECTL∗ by local
constraints in path formulas.

We now first recall the definition of constraint path MSO-formulas, which take
the role of path formulas in constraint ECTL∗. Since we exclusively consider tree-
like concrete domains over the fixed signature τ = {<,⊥,=} we only introduce
Constraint path MSO(over a signature τ), denoted as MSO(τ).4 This is the usual
MSO for (colored) infinite paths (also known as word structures) with a successor
function S extended by atomic formulas that describe local constraints over the
concrete domain. Thus, MSO(τ) is evaluated over the class of A-constraint paths
for any τ -structure A. So fix a set P of atomic propositions and a set F of unary
function symbols. Formulas of MSO(τ) are defined by the following grammar:

ψ ::= p(x) | Si(x) = Sj(y) | x ∈ X | ¬ψ | (ψ∧ψ) | ∃xψ | ∃X ψ | f1Si(x)◦f2Sj(x)

where ◦ ∈ τ , p ∈ P, x, y ∈ Var1, X ∈ Var2, i, j ∈ N and f1, f2 ∈ F . We
call formulas of the form f1S

i(x) ◦ f2Sj(x) for ◦ ∈ τ atomic constraints. It is
important to notice that in an atomic constraint only one first-order variable x
is used.

Let P = (A,P, (fP)f∈F ) be an A-constraint path where P = (N,S, ρ), and
let η : (Var1 ∪ Var2) → (N ∪ 2N) be a valuation function mapping first-order
variables to elements and second-order variables to sets. The satisfaction relation
|= is defined by induction as follows (we omitted the obvious cases for ¬ and ∧):

– (P, η) |= p(x) iff p ∈ ρ(η(x)).
– (P, η) |= Si(x1) = Sj(x2) iff η(x1) + i = η(x2) + j.
– (P, η) |= x ∈ X iff η(x) + i ∈ η(X).
– (P, η) |= ∃xψ iff there is an n ∈ N such that (P, η[x 7→ n]) |= ψ.
– (P, η) |= ∃X ψ iff there is an E ⊆ N such that (P, η[X 7→ E]) |= ψ.
– (P, η) |= f1S

i(x) ◦ f2Sj(x) iff A |= fP1 (η(x) + i) ◦ fP2 (η(x) + j).

For an MSO(τ)-formula ψ the satisfaction relation only depends on the free
variables of ψ. This motivates the following notation: If ψ(X1, . . . , Xm) is an
MSO(τ)-formula where X1, . . . , Xm ∈ Var2 are the only free variables, we write

4 For a presentation of the general case we refer the reader to [5]
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P |= ψ(A1, . . . , Am) if and only if, for every valuation function η such that
η(Xi) = Ai, we have (P, η) |= ψ.

Having defined MSO(τ)-formulas we are ready to define constraint ECTL∗

over the signature τ (denoted by ECTL∗(τ)):

ϕ ::= Eψ(ϕ, . . . , ϕ︸ ︷︷ ︸
m times

) | (ϕ ∧ ϕ) | ¬ϕ

where ψ(X1, . . . , Xm) is an MSO(τ)-formula in which at most the second-order
variables X1, . . . , Xm ∈ Var2 are allowed to occur freely.

ECTL∗(τ)-formulas are evaluated over nodes of A-constraint graphs. Let C =
(A,K, (fC)f∈F ) be an A-constraint graph, where K = (D,→, ρ). We define an
infinite path π in K as a mapping π : N → D such that π(i) → π(i + 1) for
all i ≥ 0. For an infinite path π in K we define the infinite constraint path
Pπ = (A, (N,S, ρ′), (fPπ )f∈F ), where ρ′(n) = ρ(π(n)) and fPπ (n) = fC(π(n)).
Note that we may have π(i) = π(j) for i 6= j. Given d ∈ D and an ECTL∗(τ)-
formula ϕ, we define (C, d) |= ϕ inductively (again omitting the obvious cases
for ¬ and ∧) by (C, d) |= Eψ(ϕ1, . . . , ϕm) iff there is an infinite path π in K
with d = π(0) and Pπ |= ψ(A1, . . . , Am), where Ai = {j | j ≥ 0, (C, π(j)) |= ϕi}.
Note that for checking (C, d) |= ϕ we may ignore all propositions p ∈ P and all
functions f ∈ F that do not occur in ϕ.

Given a class of τ -structures Γ , SAT-ECTL∗(Γ ) denotes the following com-
putational problem: Given a formula ϕ ∈ ECTL∗(τ), is there a concrete domain
A ∈ Γ and a constraint graph C = (A,K, (fC)f∈F ) such that C |= ϕ? We also
write SAT-ECTL∗(A) instead of SAT-ECTL∗({A}).

2.4 Constraint ECTL∗ and definable homomorphisms

Remember that we focus our interest in this paper on the satisfiability problem
with respect to a class of structures over the signature τ = {<,⊥,=} where = is
always interpreted as equality and ⊥ as the incomparability relation with respect
to<. In [5], we provided a connection between SAT-ECTL∗(A) for a τ -structureA
and the definability of homomorphisms to A in the logic Bool(MSO,WMSO+B).
To be more precise, we are interested in definability of homomorphisms to the
{<,⊥}-reduct of A. In order to facilitate the presentation of this connection, we
fix a class Γ of {<,⊥}-structures.

For every A = (A, I) ∈ Γ we denote by A= its expansion by equality, i.e., the
τ -structure (A, J) where J(<) = I(<), J(⊥) = I(⊥), and J(=) = {(a, a) | a ∈
A}. Similarly, we set Γ= = {A= | A ∈ Γ}. We call Γ= negation-closed if for every
r ∈ {<,⊥,=} there is a positive existential first-order formula ϕr(x1, . . . , xar(r))
(i.e., a formula that is built up from atomic formulas using ∧, ∨, and ∃) such that
for all A = (A, I) ∈ Γ=: Aar(r) \I(r) = {(a1, . . . , aar(r)) | A |= ϕr(a1, . . . , aar(r))}.
In other words, the complement of every relation I(r) must be definable by a
positive existential first-order formula.

Example 3. For any class ∆ of {<,⊥}-structures such that in every A ∈ ∆,
(i) < is interpreted as a strict partial order and (ii) ⊥ is interpreted as the
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incomparability with respect to < (i.e., x ⊥ y iff neither x ≤ y nor y ≤ x), ∆=

is negation-closed: For every A ∈ ∆= the following equalities hold:

– (A2 \<) = {(x, y) | A |= y < x ∨ y = x ∨ x ⊥ y}
– (A2 \ ⊥) = {(x, y) | A |= x < y ∨ x = y ∨ y < x}
– (A2 \=) = {(x, y) | A |= x < y ∨ x ⊥ y ∨ y < x}

In particular, the class of all semi-linear orders and all its subclasses are negation-
closed (to this end, ⊥ is part of our signature).

We say that Γ has the EHD-property (existence of a homomorphism to a struc-
ture from Γ is Bool(MSO,WMSO+B)-definable) if a Bool(MSO,WMSO+B)-
sentence ϕ exists such that for every countable {<,⊥}-structure B: B |= ϕ iff
B � A for some A ∈ Γ . The following result connects SAT-ECTL∗(Γ=) with the
EHD-property for the class Γ .

Proposition 4 ([5]). Let Γ be a class of structures over {<,⊥}. If Γ= is
negation-closed and Γ has the EHD-property, then SAT-ECTL∗(Γ=) is decidable.

In the next two sections, we show that all classes mentioned in Thm. 2 have the
EHD-property. Together with Prop. 4 this implies Thm. 2.

3 Constraint ECTL∗ over semi-linear orders

Let Γ denote the class of all semi-linear orders (over {<,⊥}). The aim of this
section is to prove that Γ has the EHD-property. For this purpose, we char-
acterize all those structures that admit homomorphism to some element of Γ .
The resulting criterion can be easily translated into WMSO. Hence, we do not
need the bounding quantifier from WMSO+B here (the same will be true in the
following Section 4).

It turns out that, in the case of semi-linear orders (and also ordinal forests)
the existence of such a homomorphism is in fact equivalent to the existence of a
compatible expansion. Let us fix a graph5 A = (A,<,⊥). We say that A can be
extended to a semi-linear order (an ordinal forest) if there is a partial order C
such that (A,C,⊥C) is a semi-linear order (a ordinal forest) compatible with A,
i.e.,

x < y ⇒ xC y and x ⊥ y ⇒ x ⊥C y. (1)

Lemma 5. The following are equivalent for every structure A = (A,<,⊥):

1. A can be extended to a semi-linear order (to an ordinal forest, resp.).
2. A � B for some semi-linear order (ordinal tree, resp.) B.

The following compactness result is inspired by Wolk’s work on comparability
graphs of semi-linear orders [11,12]. It extends [12, Thm. 2].

5 We call (A,<,⊥) a graph to emphasize that here the binary relation symbols < and
⊥ can have arbitrary interpretations, whence we see them as two kinds of edges in
an arbitrary graph.
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Fig. 1. A <-cycle of three elements and an “incomparable triple-u”; ⊥-edges are
dashed.

Lemma 6. A structure A = (A,<,⊥) can be extended to a semi-linear order if
and only if every finite substructure of A can be extended to a semi-linear order.

Thanks to Lemma 6, given a {<,⊥}-structure A, proving EHD only requires to
look for a necessary and sufficient condition which guarantees that every finite
substructure of A admits a homomorphism into a semi-linear order.

Given A′ ⊆ A, we say A′ is connected (with respect to <) if and only if, for
all a, a′ ∈ A′ , there are a1, . . . , an ∈ A′ such that a = a1, a′ = an and ai < ai+1

or ai+1 < ai for all 1 ≤ i ≤ n− 1. A connected component of A is an inclusion-
maximal connected subset of A. Given a subset A′ ⊆ A and c ∈ A′, we say that
c is a central point of A′ if and only if for every a ∈ A′ neither a ⊥ c nor c ⊥ a
nor a < c holds. In other words, a central point of a subset A′ ⊆ A is a node,
which has no incoming or outgoing ⊥-edges, and no incoming <-edges in A′.

Example 7. A <-cycle (of any number of elements) does not have a central point,
nor does an incomparable triple-u, see Figure 1. Both structures do not admit
any homomorphism into a semi-linear order. While this statement is obvious for
the cycle, we leave the proof for the incomparable triple-u as an exercise.

Lemma 8. A finite structure A = (A,<,⊥) can be extended to a semi-linear
order if and only if every non-empty connected B ⊆ A has a central point.

Let us extract the main argument for the (⇒)-part of the proof for later reuse:

Lemma 9. Let (A,C,⊥C) be a semi-linear order extending A = (A,<,⊥). If a
connected subset B ⊆ A (with respect to <) contains a minimal element m with
respect to C, then m is central in B (again with respect to A).

Proof. Let b ∈ B. Since B is connected, there are b1, . . . , bn ∈ B such that
b1 = m, bn = b and bi < bi+1 or bi+1 < bi for all 1 ≤ i ≤ n − 1. As C is
compatible with <, this implies that bi C bi+1 or bi+1 C bi for all 1 ≤ i ≤ n− 1.
Given that m is minimal, applying semi-linearity of C, we obtain that m = bi or
mC bi for all 1 ≤ i ≤ n. In particular, we have m = b or mC b. Since (A,C,⊥C)
is a semi-linear order, compatible with (A,<,⊥), we cannot have b < m, m ⊥ b
or b ⊥ m (since this would imply bCm or m ⊥C b). Hence, m is central. ut

Proof of Lemma 8. For the direction (⇒) let B be any non-empty connected
subset of A. Since B is finite, there is a minimal element m. Using the previous
lemma we conclude that m is central in B.
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We prove the direction (⇐) by induction on n = |A|. Suppose n = 1 and let
A = {a}. The fact that {a} has a central point implies that neither a < a nor
a ⊥ a holds. Hence, A is a semi-linear order.

Suppose n > 1 and assume the statement to be true for all i < n. If A is not
connected with respect to <, then we apply the induction hypothesis to every
connected component. The union of the resulting semi-linear orders extends A.
Now assume that A is connected and let c be a central point of A. By the
inductive hypothesis we can find C′ such that (A \ {c},C′,⊥C′) is a semi-linear
order extending A \ {c}. We define C := C′ ∪ {(c, x) | x ∈ A \ {c}} (i.e., we add
c as a smallest element), which is obviously a partial order on A.

To prove that C is semi-linear, let a1Ca and a2Ca. If a1 = c or a2 = c, then
a1 and a2 are comparable by definition. Otherwise, we conclude that a1, a2, a ∈
A \ {c}. Hence, a1 C′ a and a2 C′ a, and semi-linearity of C′ settles the claim.

We finally show compatibility. Suppose that a < b. If a = c, then aC b. The
case b = c cannot occur, because c is central in A. The remaining possibility
a 6= c 6= b implies that a C′ b and hence a C b as desired. Finally, suppose that
a ⊥ b. Then a 6= c 6= b, because c is central. We conclude that a ⊥C′ b and also
a ⊥C b. ut

We are finally ready to state the main result of this section which (together with
Prop. 4) completes the proof of the first part of Theorem2:

Proposition 10. The class of all semi-linear orders Γ has the EHD-property.

Proof. Take A = (A,<,⊥). Thanks to Lemmas 5, 6 and 8, it is enough to show
that WMSO can express the condition that every finite and non-empty connected
substructure of A has a central point. This is straightforward. ut

4 Constraint ECTL∗ over ordinal trees

Let Ω denote the class of all ordinal trees (over the signature {<,⊥}). The aim
of this section is to prove that Ω has the EHD-property as well. We use again the
notions of connected subset and central point introduced in the previous section.

Lemma 11. Let A = (A,<,⊥) be a structure. There exists O ∈ Ω with A � O
if and only if every non-empty (not necessarily finite) and connected B ⊆ A has
a central point.

Proof. We start with the direction (⇒). Due to Lemma 5 we can assume that
there is a relation C that extends (A,<,⊥) to an ordinal forest. Let B ⊆ A be a
non-empty connected set. Since (A,C,⊥C) is an ordinal forest, B has a minimal
element c with respect to C. By Lemma 9, c is a central point of B.

For the direction (⇐) we first define a partition of the domain of A into
subsets Cβ for β @ χ, where χ is an ordinal (whose cardinality is bounded by
the cardinality of A). Here @ denotes the natural order on ordinals. Assume that
the pairwise disjoint subsets Cβ have been defined for all β @ α (which is true
for α = 0 in the beginning). We define Cα as follows. Set C@α =

⋃
β@α Cβ ⊆ A.

9



If A\C@α is not empty, let CCα be the set of connected components of A\C@α.
Then

Cα = {c ∈ A \ C@α | c is a central point of some B ∈ CCα}.

Clearly, Cα is not empty. Hence, there is a smallest ordinal χ such that A = C@χ.
For every ordinal α @ χ and each element c ∈ Cα we define the sequence

of connected components road(c) = (Bβ)(βvα), where Bβ ∈ CCβ is the unique
connected component with c ∈ Bβ . This ordinal-indexed sequence keeps record
of the road we took to reach c by storing information about the connected
components to which c belongs at each stage of our process.

Given road(c) = (Bβ)(βvα) and road(c′) = (B′β)(βvα′) for some c ∈ Cα and
c′ ∈ Cα′ , let us define road(c) C road(c′) if and only if α @ α′ and Bβ = B′β
for all β v α. This is the prefix order for ordinal-sized sequences of connected
components.

Now let O = {road(c) | c ∈ A}. Note that O = (O,C,⊥C) is an ordinal forest,
because for each c ∈ Cα the order ({road(c′) | road(c′) E road(c)},E) forms the
ordinal α (for each β @ α it contains exactly one road of length β).

Now we show that the mapping h with h(c) = road(c) is a homomorphism
from A to O. Take elements a, a′ ∈ A with a ∈ Cα, and a′ ∈ Cα′ for some
α, α′ @ χ. Let road(a) = (Bβ)(βvα) and road(a′) = (B′β)(βvα′).

If a < a′, then (i) α @ α′, because a′ cannot be central point of a set which
contains a, and (ii) Bβ = B′β for all β v α because a and a′ belong to the
same connected component of A \ C@β for all β v α. By these observations
we deduce that road(a) C road(a′). If a ⊥ a′, then, without loss of generality,
suppose that α v α′. At stage α, a is a central point of Bα ∈ CCα. Since α v α′,
the connected component B′α exists. We must have Bα 6= B′α, since otherwise
we would have a ⊥ a′ ∈ Bα contradicting the fact that a is central for Bα.
Therefore, road(a) ⊥C road(a′).

We finally add one extra element road0 and make this the minimal element
of O, thus finding a homomorphism from A into an ordinal tree. ut

We can now complete the proof of the second part of Theorem 2

Proposition 12. The class Ω of all ordinal trees has the EHD-property.

Proof. Given a {<,⊥}-structure A, it suffices by Lemma 11 to find an MSO-
formula expressing the fact that every non-empty connected subset of A has a
central point, which is straightforward. ut

The procedure from the proof of Lemma 11 can be also used to embed a structure
A = (A,<,⊥) into an ordinary tree. For this, the ordinal χ has to satisfy χ ≤ ω,
i.e., every element a ∈ A has to belong to a set Cn for some finite n. We use this
observation in Section 5. Unfortunately, our results from Section 5 show that the
condition χ ≤ ω cannot be expressed in Bool(MSO,WMSO+B). On the other
hand, by unfolding the above fixpoint procedure for h steps (for a fixed h ∈ N),
we obtain an MSO-formula that expresses the existence of a homomorphism into
a tree of heigth h. This shows (3) from Thm. 2. Details can be found in the long
version [6].
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5 Trees do not have the EHD-property

Let Θ be the class of all countable trees (over {<,⊥}). In this section, we prove
that the logic Bool(MSO,WMSO+B) cannot distinguish between graphs that
admit a homomorphism to some element of Θ and those that do not. Thus, Θ
does not have the EHD-property proving our second main result Thm. 1.

Heading for a contradiction, assume that ϕ is a sentence such that a countable
structure A = (A,<,⊥) satisfies ϕ if and only if there is a homomorphism from
A to some T ∈ Θ. Let k be the quantifier rank of ϕ. We construct two graphs
Ek and Uk such that Ek admits a homomorphism into a tree while Uk does not.
We then use the Ehrenfeucht-Fräıssé game for Bool(MSO,WMSO+B) to show
that ϕ cannot separate these two structures, contradicting our assumption.

5.1 The WMSO+B-Ehrenfeucht-Fräıssé-game

The k-round WMSO+B-Ehrenfeucht-Fräıssé-game (k-round game in the follow-
ing) on a pair of structures (A,B) over the same finite relational signature σ
is played by spoiler and duplicator as follows.6 In the following, A denotes the
domain of A and B the domain of B.

The game starts in position p0 = (A, ∅, ∅,B, ∅, ∅). In general, before playing
the i-th round (for 1 ≤ i ≤ k) the game is in a position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2), (2)

where i1 + i2 = i − 1, aj ∈ A and bj ∈ B for all 1 ≤ j ≤ i1, and Aj ⊆ A and
Bj ⊆ B are a finite sets for all 1 ≤ j ≤ i2.

In the i-th round spoiler and duplicator produce the next position as follows.
Spoiler chooses to play one of the following three possibilities: either he plays an
element move or a set move like in the usual WMSO-game (see [7]), or a Bound
move, in which spoiler first chooses one of the structures A or B and a natural
number l ∈ N. Duplicator responds with another number m ∈ N. Then the game
continues as in the case of a set move with the restrictions that spoiler has to
choose a subset of size at least m from his chosen structure and duplicator has
to respond with a set of size at least l.

After k rounds, the game ends in a position

p = (A, a1, . . . , ai1 , A1, . . . , Ai2 ,B, b1, . . . , bi1 , B1, . . . , Bi2).

Duplicator wins the game if

1. aj ∈ Ak ⇔ bj ∈ Bk for all 1 ≤ j ≤ i1 and all 1 ≤ k ≤ i2,
2. aj = ak ⇔ bj = bk for all 1 ≤ j < k ≤ i1, and
3. for all relation symbols R ∈ σ (of arity n) and all j1, j2, . . . , jn ∈ {1, . . . , i1},

(aj1 , . . . , ajn) ∈ RA iff (bj1 , . . . , bjn) ∈ RB.

6 For the ease of presentation we assume that A and B are infinite structures.
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Fig. 2. The standard (5, 3)-triple-u, where we only draw the Hasse diagram for <D,
and where dashed edges are ⊥-edges.

As one expects, the k-round game is closely connected to definability with
WMSO+B-formulas of quantifier rank k: If p is a position as in (2), the structures
(A, a1, . . . , ai1 , A1, . . . , Ai2) and (B, b1, . . . , bi1 , B1, . . . , Bi2) are indistinguishable
by all WMSO+B-formulas of quantifier rank k if and only if duplicator has a
winning strategy in the k-round WMSO+B-EF-game started in p.

5.2 The Embeddable and the Unembeddable Triple-U-Structures

In this section we define for every k ≥ 0 structures Ek and Uk with the follow-
ing properties: (i) Ek can be mapped homomorphically into a tree, whereas Uk
cannot, and (ii) duplicator wins the k-round EF-game for both WMSO+B and
MSO on (Ek,Uk).

The standard plain triple-u is the structure P = (P,<,⊥), where

– P = {l, r, a1, a2, b1, b2, b3},
– <= {(l, b1), (a1, b1), (a1, b2), (a2, b2), (a2, b3), (r, b3)}, and
– ⊥= {(l, r), (r, l)}.

For n,m ∈ N, the standard (n,m)-triple-u is the structure Gn,m = (D,<,⊥),
where D = {l, r, a1, a2, b1, b2, b3}∪ ({1, 2, . . . , n}×{a1})∪ ({1, 2, . . . ,m}×{a2}),
and <,⊥ are the minimal relations such that < is transitive and

– Gn,m restricted to {l, r, a1, a2, b1, b2, b3} is the standard plain triple-u, and
– (a1, 1) < (a1, 2) < · · · < (a1, n) < a1, (a2, 1) < (a2, 2) < · · · < (a2,m) < a2.

We call a structure (V,<,⊥) a plain triple-u (resp. (n,m)-triple-u) if it is iso-
morphic to the standard plain triple-u (resp., standard (n,m)-triple-u). Fig. 2
depicts a (5, 3)-triple-u.

For all n,m ∈ N and each (n,m)-triple-u W we fix an isomorphism ψW
between W and the standard (n,m)-triple-u. This isomorphism is unique if
n 6= m. If n = m, there is an automorphism of Gn,n exchanging the nodes l
and r. Thus, choosing ψW means to fix the left node of the triple-u. For x ∈
{l, r, a1, a2, b1, b2, b3} we write W.x for the node w ∈ W such that ψW(w) = x.

Let k ∈ N be a natural number. Fix a strictly increasing sequence (nk,i)i∈N
such that the linear order of length nk,i and the linear order of length nk,j are
equivalent with respect to WMSO+B-formulas of quantifier rank up to k for
all i, j ∈ N. Such a sequence exists because there are (up to equivalence) only
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finitely many WMSO+B-formulas of quantifier rank k. Since the linear orders
of length nk,i are finite, they are equivalent with respect to both MSO-formulas
and WMSO-formulas of quantifier rank up to k. Using these linear orders, we
define two structures:

Let Ek (for embeddable) be the structure that consists of

1. the disjoint union of ℵ0 many (nk,1, nk,j)-triple-u’s and ℵ0 many (nk,j , nk,1)-
triple-u’s for all j ≥ 2, and

2. one extra node d, and for each triple-u W from 1. a <-edge from W.l to d.

The structure Uk (for unembeddable) is defined in the same way, except that in
1. we take the disjoint union of ℵ0 many (nk,j , nk,j)-triple-u’s for all j ≥ 2. The
following lemma can be shown using the procedure on the central points from
the ordinal tree setting described in the proof of Lemma 11.

Lemma 13. For all k ∈ N, Ek admits a homomorphism to a tree, whereas Uk
does not admit a homomorphism to a tree.

We prove that Θ does not have the EHD-property by showing that duplica-
tor wins the k-round MSO-EF-game and the WMSO+B-EF-game on the pair
(Ek,Uk) for each k ∈ N. Hence, the two structures are not distinguishable by
Bool(MSO,WMSO+B)-formulas of quantifier rank k. For MSO this is rather
simple. Since the linear orders of length nk,i and nk,j are indistinguishable up to
quantifier rank k, it is straightforward to compose the strategies on these pairs of
paths to a strategy on the whole structures for the k-round game. It is basically
the same proof as the one showing that a strategy on a pair (

⊎
i∈I Ai,

⊎
i∈I Bi)

of disjoint unions can be composed from strategies on the pairs (Ai,Bi).
Composing local strategies to a global strategy in the WMSO+B-EF-game is

more difficult because strategies are not closed under infinite disjoint unions. For
instance, let A be the disjoint union of infinitely many copies of the linear order
of size nk,1 and B be the disjoint union of all linear orders of size nk,j for all
j ∈ N. Clearly, duplicator has a winning strategy in the k-round game starting
on the pair that consists of the linear order of size nk,1 and the linear order of size
nk,j . But in A every linear suborder has size bounded by nk,1, while B has linear
suborders of arbitrary finite size. This difference is expressible in WMSO+B.
Nevertheless, composition of local strategies to a global strategy on disjoint
unions A =

⊎
n∈NAn and, B =

⊎
n∈N Bn works if we pose two restrictions:

1. An and Bn are finite for all n ∈ N.
2. For each n ∈ N duplicator has a strategy in the game on (An,Bn) that

preserves a first big set in the sense that there is a c ∈ N such that for all
n ∈ N we have: If spoiler starts the WMSO-EF-game on (An,Bn) with a set
move choosing a set of size m in An or Bn, then duplicator answers with a
set of size at least m

c .

Under these conditions, duplicator has the following strategy for bound moves
in the game on (A,B): If spoiler chooses w.l.o.g structure A and bound l ∈ N,
duplicator chooses the number m1+m2 where m1 is the sum of all the elements of
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all partsAi in which elements or sets have been chosen before andm2 = c·l where
c is the constant denoted above. This forces spoiler to choose m2 many elements
in fresh parts of A Thus, the first big set preserving strategies allow duplicator
to choose at least m2

c = l elements in corresponding fresh parts of B. Using a
variant of this composition result where we choose the pair (An,Bn) of the union
dynamically to be (Gnk,1,nk,j ,Gnk,j ,nk,j ) or (Gnk,j ,nk,1 ,Gnk,j ,nk,j ) (depending on
spoiler’s moves) we can prove the following result.

Proposition 14. For every k, duplicator has a winning strategy in the k-round
WMSO+B-EF-game on (Ek,Uk). Hence, Θ does not have the EHD-property.

6 Open problems

The main open problem that remains is whether the problem SAT-ECTL∗(Θ=)
is decidable for the class Θ of all trees (or equivalently, the single infinite bi-
nary tree). We have only proved that the EHD-method cannot yield decidability.
Currently, we are investigating automata theoretic approaches to this question.

Acknowledgment. We thank Manfred Droste for fruitful discussions on uni-
versal structures and semi-linear orders.
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