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Abstract. Precise complexity results are derived for the model chmeckirob-
lems forMTL andTPTL on (in)finite data words and deterministic one-counter
machines. Depending on the number of register variablestteéncoding of
constraint numbers (unary or binary), the complexitl?isomplete oiP SPACE-
complete. Proofs can be found in the long version [10].

1 Introduction

Linear time temporal logi¢LTL) is nowadays one of the main logical formalisms for
describing system behaviour. Triggered by real time appibos, various timed exten-
sions ofLTL have been invented. Two of the most prominent examplesldie (metric
temporal logic) [13] andT PTL (timed propositional temporal logic) [2]. INTL, the
operators nextX) and until (J) are indexed by time intervals. For instance, the for-
mulap U, 3) ¢ holds at timet, if there is a timet’ € [t 4+ 2,t + 3), whereq holds,
andp holds during the intervdk, ¢'). TPTL is a more powerful logic that is equipped
with a freeze formalism. It uses register variables, whizgh be set to the current time
value and later these register variables can be comparadhétcurrent time value.
For instance, the abovel TL-formulap U, 3y g is equivalent to thel PTL-formula
z.(pU (g A2 <z <3)). Here, the constrairt < z < 3 should be read as: The differ-
ence of the currenttime value and the value storedi#in the interval2, 3). In this pa-
per, we always use the discrete semantics (opposed to thawous semantics), where
formulae are interpreted over (in)finite timed sequeriégsdy)(Py,d;) . . ., where the

d; are time stamps and thi¢ are sets of atomic propositions.

The freeze mechanism froMPTL has also received attention in connection with
data words. A data word is a finite or infinite seque(®g do) (P, d1) . .. of the above
form, where we do not require the data valdeto be monotonic, and we speakrain-
monotonic data wordsAs for TPTL, freezeLTL can store the current data value in a
registerz. But in contrast tol PTL, the value ofr can only be compared for equality
with the current data value.

Satisfiability and model checking f&iTL, TPTL andfreezeL TL have been studied
intensively in the past [2—4, 7, 8, 15-17]. For model chegKipezeL TL the authors of
[8] consider one-counter machines (OCM) as a mechanisneioeigting infinite non-
monotonic data words, where the data values are the coualigzs/along the unique
computation path. WheredsezeL TL model checking for non-deterministic OCM is
XY 1-complete, the problem becom@SPACE-complete for deterministic OCM [8].
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In this paper, we studWTL andTPTL over non-monotonic data words. The latter
logic extends botHireezelL TL over non-monotonic data words aidTL over mono-
tonic data words: As fofreezelL TL, data values are natural numbers that can vary ar-
bitrarily over time. In contrast to the latter, one can exsgrthat the difference of the
current data value and the value stored in a register betoregsertain interval, whereas
freezeL TL only allows to say that this difference is zero. Applicasdor TPTL over
non-monotonic data values can be seen in areas, where deinstof discrete values
have to be analyzed and the focus is on the dynamic variatibewalues (e.g. streams
of discrete sensor data or stock charts). Recently, it has Slkown that (in contrast to
the monotonic setting [1]) in the non-monotonic setting;T L is strictly more powerful
thanMTL [5].

We investigate the complexity of model checking problemsT@TL over non-
monotonic data words. These data words can be either finitdioite periodic; in the
latter case the data word is specified by an initial part, épeand an offset number,
which is added to the data values in the period after eacHitiepeof the period. For
periodic words without data values (i.e;;words of the formuv®), the complexity of
LTL model checking (also known gL path checking) belongs tAC' (LogDCFL)

(a subclass oNC) [14]. This result solved a long standing open problem. Fuitefi
monotonic data words, the same complexity bound has beemsloo MTL in [4].

We show that the latter result of [4] is quite sharp in thedaihg sense: Path
checking forMTL over non-monotonic (finite or infinite) data words as well ashp
checking forTPTL with one register variable over monotonic (finite or infijitata
words isP-complete. Moreover, path checking foPTL (with an arbitrary number of
register variables) over finite as well as infinite perioditadwords becomd3SPACE-
complete. We also show thRISPACE-hardness already holds (i) for the fragment of
TPTL with only two register variables and (ii) for fullPTL, where all interval borders
are encoded in unary (the latter result can be shown by @bktfaiward adaptation of
the PSPACE-hardness proof in [8]). These results yield a rather cotegiécture on
the complexity of path checking féMTL andTPTL, see Fig. 5.

2 Temporal Logics over Data Words

Let P be a finite set oAtomic propositionsA data wordoverP is a finite or infinite
sequencéPy, dy)(Py,d;) - - - of pairs from2” x N. It is monotonidstrictly monotonig,

if d; <d;y1(d; < d;y1) for all appropriate. Itis pure, if P, = () forall i > 0. A pure
data word is just written as a sequence of natural numberslefete with(2” x N)*
and(2”7 x N)«, respectively, the set of finite and infinite, respectiveBta words over
P. Thelengthof a data word: is denoted byu|, where we sefu| = oo for the case
that « is infinite. For the data word = (P, do)(P1,d1) -+, we use the notations
uli] = (Pi, di), ul: i] = (Po,do)(Pr,dy) -+ (Pi, di), uli :] = (P, di)(Pig1, diga) -+
anduty, = (Po,do + k)(P1,d1 + k) ---, wherek € N. We useu;us to denote the
concatenation of two data words andus, whereu; has to be finite. For finite data
wordsu;, us andk € N, let

uy(u2)y ), = urug(uz) 4k (u2)yor (U2) 43k - - - -



For complexity considerations, the encoding of the dataeshnd the offset numbkr
(in an infinite data word) makes a difference. We speaknafry(resp. binary) encoded
data words if all these numbers are given in unary (resparipjrencoding.

The set of formulae of the logiMTL is built up from? by Boolean connectives,
the nextand theuntil modality using the following grammar, whepec P and! C Z
is an interval with endpoints il U { —oo, +00}:

pu=p|loplpAe|Xrp|pUre

Formulae ofMTL are interpreted over data words. ket= (P, dy)(P1,d1)--- be a
data word, and let < |w|. We define thesatisfaction relation foMTL inductively as
follows (we omit the obvious cases ferandA):

— (w,i) =pifandonlyifp € P,

— (w,i) EXrpifandonlyifi +1 < |w|,dit1 —d; € Tand(w,i+ 1) E ¢

— (w, i) E ¢1Urps if and only if there exists a positiofwith ¢ < j < |w|, (w,j) =
©p2, dj —d; €1, and(w,t) ': ©1 forallt [’L,j)

We say that a data worshtisfiesan MTL-formulap, writtenw = ¢, if (w,0) E ¢.
We use the following standard abbreviatiops:V po := —(—p1 A —p2), p1 — @9 :=
-1 V a2, true := p V —p, false := —true, Frp := trueUrp, Gry := =Fr—o.

Next we define formulae of the logiEPTL. For this, letV be a countable set of
register variablesThe set ofTPTL-formulae is given by the following grammar, where
peEP,xe€V,ceZ, and~e {<,<,=,> >}

pu=pla~claplenp|Xe|pUp|ap 1)

We use the same syntactical abbreviations a$f®t.. The fragmenfreezelL TL is ob-
tained by restricting~ in (1) to =. OrdinaryLTL is obtained by disallowing the use
of register variables. Given > 1, we useTPTL" (resp.,freezeLTL") to denote the
fragment ofTPTL (resp.freezeL TL) that uses at mostdifferent register variables.

A register valuatiorv is a function fromV to Z. Given a register valuation, a data
valued € Z, and a variable € V, we define the register valuations-d andv|z + d]
as follows: (v + d)(y) = v(y) + d for everyy € V, (v[z — d])(y) = v(y) for every
y € V\{z}, and(v[z — d])(x) = d.

Letw = (Py,do)(P1,d1) - - - be a data word, let be a register valuation, and let
i € N. The satisfaction relation foaf PTL is inductively defined in a similar way as for
MTL; we only give the definitions for the new formulae:

— (w,i,v) EXgpifandonlyifi 4+ 1 < |w| and(w,i + 1,v) E ¢

— (w,i,v) | p1Ugpq if and only if there exists a positiof with i < j < |w|,
(w, j,v) E @2, and(w, t,v) = ¢ forall t € [i, j)

— (w,i,v) Ex.pifand onlyif (w,i,v[z — d;]) E ¢

- (w,i,v) Ea ~cifandonlyifd;, — v(z) ~ c.

Note thatr ~ ¢ does not mean that the current vatue: v(z) of x satisfiesy ~ ¢, but
expresses that; — v ~ ¢, whered; is the current data value. We say that a data word
w satisfies arPTL-formulay, writtenw = ¢, if (w,0,0) | ¢, where0 denotes the
valuation that maps all variables to the initial data valye



For complexity considerations, it makes a difference, Weethe numbersin con-
straintsz ~ ¢ are binary or unary encoded, and similarly for the intenaiders in
MTL. We write TPTL;,, TPTL,,, MTL,, (resp.,TPTL;, TPTL,, MTL,;) if we want to
emphasize that numbers are encoded in unary (resp., bimatafion. Thdengthof a
(TPTL or MTL) formulai), denoted by, is the number of symbols occurringn

3 Path Checking Problems for TPTL and MTL

In this section, we study the path checking problems for ogicks over data words.
Data words can be (i) finite or infinite, (ii) monotonic or namenotonic, (iii) pure or
non-pure, and (iv) unary encoded or binary encoded. For baerdogicsL and a class
of data word<C, we consider th@ath checking problem fdr overC. It asks whether
for a given data wordv € C and a given formula € L, w | ¢ holds.

3.1 Upper Bounds

In this section we prove our upper complexity bounds. Allthdsihold for non-mono-
tonic and non-pure data words (and we will not mention thidiekly in the theorems).
But we have to distinguish whether (i) data words are unabyirary encoded, and (ii)
whether data words are finite or infinite. For the most gereaith checking problem
(TPTL, over infinite binary encoded data words) we can devise annaltieg poly-
nomial time algorithm (and hence a polynomial space algorjt The only technical
difficulty is to bound the position in the infinite data worddahe values of the register
valuation, so that they can be stored in polynomial spaee[153 for details.

Theorem 1. Path checking fofTPTL,; over infinite binary encoded data words is in
PSPACE.

If the number of register variables is fixed and all data valaiee unary encoded, then
the alternating Turing-machine in the proof of Theorem 1kgdn logarithmic space.
SinceALOGSPACE = P, we obtain the following statement for (i). For (ii) we show
that an infinitebinary encoded monotonic data word can be replaced by an infinite
unaryencoded data word, which allows to apply (i).

Theorem 2. For every fixedr € N, path checking folf PTL! over (i) infinite unary
encoded data words or (ii) infinite binary encoded monotalaita words is irP.

Actually, for finite data words, we obtain a polynomial timgaithm also for binary
encoded data words (assuming again a fixed number of regésiables):

Theorem 3. For every fixedr € N, path checking folTPTL;, over finite binary en-
coded data words is iR.

For infinite data words we have to reduce the number of registeéables to one in
order to get a polynomial time complexity for binary encodednbers:

Theorem 4. Path checking fo PTL; over infinite binary encoded data words isfn



For the proof of Theorem 4 we need the following two lemmas.

Lemma 5. For a givenLTL-formula, wordsuy, ..., ux,u € (27)* and binary en-
coded numberdV;, ..., N;, € N, the question whether) v - - - u, *u® = 1 holds,
belongs tcP (actually, AC* (LogDCFL)).

The crucial point is that for all finite words v € (27)*, every infinite wordw € (27)~
and every numbeN > |¢|, we haveuv™ w |= 9 if and only if uv!¥lw = «. This can
be shown by using the Ehrenfeucht-Fraissé gamé.Tdar from [9]. Hence, one can
replace all exponentd; by small numbers of size at most|. Then, one can use a
polynomial time algorithm (0AC* (LogDCFL) algorithm) forLTL path checking [14].

Lemma 6. Path checking fofTPTL,-formulae, which do not contain subformulae of
the formz.0 for a register variabler, over infinite binary encoded data words isfn
(in fact, AC* (LogDCFL)).

Proof. We reduce the question, whether= « in logspace to an instance of the suc-
cinct LTL path checking problem from Lemma 5. Let= wu;(u2)Y, and letw[i] =
(P;,d;) € 27 x N. Letn; = |ui| andny = |ua|. We can assume that only one register
variablexz appears in) (since we do not use the freeze construg) in ¢ all register
variables remain at the initial valui).

In order to construct ahTL-formula from«), it remains to eliminate occurrences
of constraintst ~ ¢ in . W.l.o.g. all constraints are of the form < corz > c.
Letx ~y c1,...,2 ~p ¢ be alist of all constraints that appear:jn We introduce
for everyl < j < m a new atomic propositiop; and let?’ = P U {p1,...,pm}-

Let ¢/ be obtained from) by replacing every occurrence of ~; ¢; by p;, and let
w' € (27")¢ be thew-word with w'[i] = P, U {p; | 1 < j < m,d; — do ~; ¢;}.
Clearlyw = ¢ ifand only ifw" = +’. We will show that the wordy’ can be written in
the form considered in Lemma 5.

First of all, we can writew’ asw’ = wjus gus uh 5 - - -, wherefuj| = n; and
|us ;| = n2. The wordu; can be computed in logspace by evaluating all constraints at
all positions ofu;. Moreover, every word, , is obtained fromu, (without the data val-
ues) by adding the new propositiomsat the appropriate positions. Consider the equiv-
alence relatior= on N with « = b if and only if us , = u5 ,. The crucial observations
are that (i) every equivalence classofs an interval, and (||) the index af is bounded
by 1+ ny - m (one plus length ofi; times number of constraints). To see this, consider
a position0 < ¢ < ny — 1 in the wordus and a constraint ~; ¢; (1 < j <m). Then,
the truth value of “propositiop; is present at thé" position ofus " switches (from
true to false or from false to true) at most once whegrows. The reason for this is that
the data value at position, +i+no -z iISdn, +itny.z = dn,+i +k-xzforz > 0,i.e.,it
grows monotonically witke. Hence, the truth value @f,, ; +%-z —do ~; ¢; switches
at most once, whem grows. So, we get at most - m many “switching points” inN
which produce at modt+ ns - m many intervals.

Let I1,...,I; be a list of all=-classes (intervals), where < b whenevera €
I;, b € I; andi < j. The borders of these intervals can be computed in logspace
using arithmetic on binary encoded numbers (addition, iplidation and division with
remainder can be carried out in logspace on binary encodaders [12]). Hence, we



level 2(V)

level 3(A)

Fig. 1. An SAM2-circuit

can compute in logspace the lengtis = |I;| of the intervals, wherév; = w. Also,
forall 1 <4 <[ we can compute in logspace the unique woyrduch that; = u5 ,

foralla € I;. Hencew' = wjv;'* - - -v]\". We can now apply Lemma 5. 0

Proof of Theorem 4Consider an infinite binary encoded data ward= ul(ug)ﬁk and
aTPTL,-formulay. Letn = |u;|+|uz|. We check in polynomial time whether |= 4.

A TPTL-formulay is closed if every occurrence of a register variablie o appears
within a subformula of the form.6. The following two claims are straightforward:
Claim 1 If ¢ is closed, then for all valuationsv’, (w,i,v) E ¢iff (w,i,v") | ¢.
Claim 2 If ¢ is closed and > |uq], then for every valuatiow, (w,i,v) E ¢ iff
(w, i+ |uszl,v) E p.

By Claim 1 we can writg(w, i) = ¢ for (w,4,v) | ¢. It suffices to compute for
every (necessarily closed) subformul@ of ¢ the set of all positions € [0,n — 1]
such thatw, i) = z.¢, or equivalentlyw[i :] = ¢. We do this in a bottom-up process.
Consider a subformula.¢ of ¢ and a position € [0, n— 1]. We have to check whether
wli ;] E p. Letz.py, ..., x.¢ be all maximal (with respect to the subformula relation)
subformulae ofp of the formz.0. We can assume that for evety< s < [ we have
already determined the set of positighs [0,n — 1] such tha{w, j) E x.¢,. We can
therefore replace every subformulap, of ¢ by a new atomic proposition, and add
in the data words:; (resp.,uz) the propositiorp; to all positions; (resp.,j — |u1])
such that(w, j) = x.¢s, wherej € [0,n — 1]. Here, we make use of Claim 2. We
denote the resulting formula and the resulting data wortl witandw’ = w7} (u5)%,,
respectively. Next, it is easy to compute frarh andu’, new finite data words; and
vy such thatvy (v9)¥,, = w'[i :]: If i < |uj| then we take; = wi[i :] andvy = uj. If
|uj| < i< n—1,thenwe takey = ¢ andve = ub[i :](ub[: i — 1] + k). Finally, using
Lemma 6 we can check in polynomial time whethéfi ;] = . O

3.2 Lower Bounds

We prove severd-hardness anBSPACE-hardness results for path checking.

P-Hardness. We prove ouiP-hardness results by a reduction from a restricted version
of the Boolean circuit value problem.gynchronous alternating monotone circuit with
fanin 2 and fanout Zbriefly, SAM2-circuit) is a Boolean circuit divided intovels
1,...,1 (I > 2) such that the following properties hold:
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Fig. 2. The induced subgraph between levahd: + 1

— All wires go from a gate in level + 1 to a gate from level (1 < ¢ <1 —1).

— All output gates are in level and all input gates are in levéland the latter are
labelled with input bits. Moreover, there is a distinguidloeitput gate on level.

— All gates in the same level < i < [ — 1 are of the same type\(or V) and the
levels alternate betweenlevels andv-levels.

— All gates except the output gates have fanout 2 and all gatepéethe input gates
have fanin 2. The two input gates for a gate at levell — 1 are different.

By the restriction to fanin 2 and fanout 2, we know that eaefelleontains the same
number of gates. Fig. 1 shows an example of an SAM2-circhitifiode names;, b;, ¢;
will be needed later). The circuit value problem for SAMZ2egiits (i.e., the question
whether the distinguished output gate of a given SAM2-dievaluates td ), which is
called SAM2CVP, iP-complete [11].

Recall that finite path checking foMTL (a fragment ofTPTL') over monotonic
data words is in the parallel complexity clas€* (LogDCFL) [4]. We will show that
for both (i) MTL, over non-monotonic data words and {iP TL} over monotonic data
words the path checking problem becorffebard (and hencB-complete).

Theorem 7. Path checking foMTL,, over finite unary encoded pure data words is
P-hard.

Proof. We reduce from SAM2CVP. Let be the input circuit. We first encode each
two consecutive levels af into a data word, and combine these data words into a data
wordw, which is the encoding of the whole circuit. Then we condtauformulas) such
thatw = ¢ if and only if o evaluates td. The data wordv that we are constructing
contains gate names af(and some copies of the gates) as atomic propositions. These
propositions will be only needed for the construction. A¢ #nd, we can remove all
propositions from the data word and hence obtain a pure data word. The whole con-
struction can be done in logspace. The reader might looleagstample in [10], where

the construction is carried out for the circuit from Fig. 1.

Let o« be an SAM2-circuit withl > 2 levels andn gates in each level. By the
restriction to fanin 2 and fanout 2, the induced undirectdzysaph which contains the
nodesin level andi+ 1 (1 <4 < I) consists of several cycles; see Fig. 2. For instance,
for the circuit in Fig. 1 the number of cycles between levahd?2 (resp.,2 and3) is 2.

We can enumerate in logspace the gates of leaaldi + 1 such that they occur in
the order shown in Fig. 2. For this, lef, . . . , a,, (resp.ps, . .., b,) bethe nodesin level
i (resp.,i + 1) in the order in which they occur in the input description. SYart with
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Fig. 3. The graph obtained from the induced subgraph

ddrt e dn dtjitiat1 . dm—1
dd+1 ... d+5n d' +j1+72+1 . d+m—1

Fig. 4. Labeling the new graph

a1 and enumerate the nodes in the cycle contaimin¢from a; we go to the smaller
neighbor amongy, ..., b,, then the next node on the cycle is uniquely determined
since the graph has degree 2). Thereby we store the currdatinghe cycle and the
starting node:;. As soon as we return i@, we know that the first cycle is completed.
To find the next cycle, we search for the first node from. . . , a,, that is not reachable
from a; (reachability in undirected graphs is in logspace), andinag this way.

So, assume that the nodes in layand: + 1 are ordered as in Fig. 2. In particular,
we haveh cycles. For eachh < ¢ < h, we add a new node, ; (resp.,b; ;) afteray j,
(resp. b ;,)- Then we replace the edge, ,, b: 1) by the edeamt,bj6 D@ <t<h).

In this way we obtain the graph from Fig. 3. Again, the cordion can be done in
logspace by adding the new nodes and new edges once a cyctmateted in the
enumeration procedure from the previous paragraph.

By adding dummy nodes, we can assume that for evety; < [ — 1, the subgraph
between level andi + 1 has the same number (shyof cycles. We still denote by
the number of nodes in each level. Thus, after the above stdawern = n + h nodes
in each level. Letl = (i —1)-2m andd’ = d+m. In Fig. 3, we label the nodes in level
1 (resp.; + 1) with the numberd, d+1,...,d+m—1(respd’,d +1...,d +m—1)
in this order, see Fig. 4. By this labeling, the differenceazen two connected nodes
in leveli and leveli + 1 is alwaysm or m + 1. So we can use the modaliy,), ,,, 11
(resp.,Gpm,m+1)) to jump from anv-gate (resp./-gate) in leveli to a successor gate
in leveli + 1. We now obtain in logspace the data warsgd= w; ; w; 2, where

(a11,d)(a1,2,d+1)---(a1,,,d+ 51 —1)

(a21,d+j1+1)(az2,d+j1+2) - (az,j,, d+ j1 + j2) - -
Wiq,1 = h—1 h—1
(an1,d+ > je+h—1)(an2d+ Y jr+h)--(an, d+m—2)

t=1 t=1



(bl,la d/) T (b1;j17d/ +j1— 1)(b/1,17 d +jl)
w (bo,1,d 4 g1+ 1)+ (bayy,d + j1 + j2)(by 1, d +j1 +ja+ 1)
1,2 = h—1
(bnasd +> jeth—1)(bpj,.d +m—2)(bj,,d +m—1)
t=1
which is the encoding of the wires between leiahd leveli + 1 from Fig. 4. Note that
the new nodes; ;, a3 4, ..., a;, , in leveli of the graph in Fig. 3 do not occur in; ;.
Suppose now that all data words (1 < ¢ < [ — 1) are constructed. We then
combine them to obtain the data wardor the whole circuit as follows. Suppose that

Wi,2 = (61; yl) ce (l;mvym) andwi+1,1 = (b17 Zl) T (bna Zn)

Note that every is either one of thé; or b’ (the copy ofv;). Let

vir11 = (b1, 21) - (b, 23),
where the data values are determined as follows: o = b; orb; = b;-, thenz = z;.
Then, the data word is w = W1,1W1,2V2,1W2.2 * * - V[—1,1W;—1,2-

Let us explain the idea. Consider a gateof level2 < i < [ — 1, and assume
that leveli consists of/-gates. Leb;, andb;, (from leveli 4 1) be the two input gates
for a;. In the above data word; ; there is a unique position where the propositign
occurs, and possibly a position where the capyccurs. If both positions exist, then
they carry the same data value. Let us point to one of thesdqs Using anMTL
formula, we want to branch (existentially) to the positiomthe factor; 1 1, where the
propositions;, , b’ , bj,, b, occur (wheréh;, andb’;, possibly do not exist). For this,
we use the modaliti[,,, ., 1). By the construction, this modality branches existentiall
to positions in the factan; o, where the propositioris, , b’; , b;,, b, occur. Then, using
the iterated modaliti™ (which is an abbreviation fomn copies of theM TL-modality
Xz), we jump to the corresponding positionsuif ; 1.

In the above argument, we assumed that: <[ — 1. If i = 1, then we can argue
similarly, if we assume that we are pointing to the unigydabeled position of the
prefixw; ; of w. Now consider level — 1. Suppose that

Wi—1,2 = ((21,1}1) ‘e (&m,vm).

Letdy,...,d, be the original gates of levelwhich all belong to{d,, . . ., d,, }, and let
x; € {0, 1} be the input value for gat. Define

I={jljel,m],3ie[l,n]:d;c{dd}, z;=1}. 2)

Let the designated output gate be iffenode in levell. We construct th&/ T L-formula
Y = Xk~ wherey; (1 <1i <1 — 1) is defined inductively as follows:

Fimme X" @it1 if i <1—1and leveli is aVv-level,

Gim,m+ )X 0ig1 if i <l —1and level is an-level,
Pi = ) . )

Fim.mt1)(Vjer X™ 77 =Xtrue) if i =1 —1and leveli is av-level,

Glm,mt1)(V ey X"/ =Xtrue) if i =1 —1and leveli is an-level.

9



Note that the formula-X true is only true in the last position of a data word. Suppose
data wordw is the encoding of the circuit. From the above consideratiofollows
thatw = ¢ if and only if the circuita: evaluates td. Note that we do not use any
propositional variables in the formula So we can ignore the propositional part in the
data wordw to get a pure data word. a

Note that the above construction uses non-monotonic datdsw@his is unavoidable
since finite path checking faviTL over monotonic data words is INC [4]. On the
other hand, for the extensiofPTL. of MTL, we can show, using again a reduction
from SAM2CVP (see [10])P-hardness also for monotonic data words:

Theorem 8. Path checking fofTPTL,, over finite unary encoded strictly monotonic
pure data words i®-hard.

PSPACE-Hardness. In [10], we prove thre®SPACE lower bounds, which complete
our complexity picture. The first one is shown by a reductimmf QBF, whereas the
latter two results are shown by a reduction from a quantifaaéhnt of the subset sum
problem [19].

Theorem 9. Path checking fofTPTL, over finite unary encoded strictly monotonic
pure data words i®SPACE-hard.

Theorem 10. Path checking foifPTL] over the infinite strictly monotonic pure data
wordw = 0(1)%, =0,1,2,3,4,...is PSPACE-hard.

Theorem 11. Path checking foffreezeLTL? (and henceTPTLi) over infinite binary
encoded pure data words BSPACE-hard.

Recall from Theorem 2 that for every fixed path checking foiTPTL;, over infinite
binary encoded monotonic data words can be solved in polialdime. Hence, Theo-
rem 11 shows that monotonicity is important for Theorem 2.

3.3 Summary of the Results

Figure 5 collects our complexity results for path checkimghyems (here the super-
script< oo is a place holder for any number> 2). Whether data words are pure or not
does notinfluence the complexity in all cases. Moreovefjiiite data words, the com-
plexity does not depend upon the encoding of data words yuordsinary) and the fact
whether data words are monotonic or non-monotonic. On therdtand, for infinite
data words, these distinctions influence the complexity Hiwary and non-monotonic
data words we get another picture than or unary encoded @sigoonotonic data
words. Note that foMTL;, andMTL,, the complexity isP-complete for all classes of
data words (sinc®TL translates in logspace infcPTL).

One may also study the complexity of path checking problemegdrious fragments
of MTL andTPTL. In this context, it is interesting to note that all lower Indlg already
hold for the corresponding unary fragments (where the 1op@rator is replaced by
F and G) with only one exception: Our proof for Theorem 11 in [10] fesezel TL?

10



infinite data words, unary or quasi-monotonic finite data words
TPTL, TPTL,
/ \\ TPTL,
TPTL, TPTL?
PSPACE-compl. PSPACE-compl.
P-compl. P-compl.
TPTLS®™ TPTL} TPTL;®
/
TPTLS™
|
TPTL} TPTLL
infinite data words, binary and non-monotgnic
TP‘TLb
TP"FLi
TPTL2
PSPACE-compl.
P-compl.
TPTL;
TPTLL

Fig. 5. Complexity results for path checking

needs the until operator. It is not clear, whether path cingdior the unary fragment of
freezeLTL? over infinite binary encoded data words is SHBPACE-complete.

Our complexity results for infinite unary encoded data wati® hold fordeter-
ministic one-counter machines (DOCMsge [10] for a precise definition. A DOCM
produces in general an infinite data word, where the sequeratemic propositions is
the sequence of states of the machine, and the sequenceofadias is the sequence
of counter values produced by the DOCM (the DOCM can blockliictv case it pro-
duces a finite data word). It is an easy observation that tkee wlard produced by a
DOCM A is periodic in case it is infinite, and one can in fact computéogspace
from A two unary encoded finite data words andu, and a unary encoded number
k such thatu (u2)¥, is the data word produced hy, see also [8, Lemma 9]. For
this it is crucial that the counter can be incremented orefeented in each step by
at most one (or, more general, a unary encoded number).ifhig;n implies that for
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each of the logic4 considered in this paper, the model checking problenifover
DOCM (i.e., the question, whether a given formylae L holds in the data word pro-
duced by a given DOCM) is equivalent with respect to logspadections to the path
checking problem fot. over infinite unary encoded data words. Hence, the upper left
diagram from Figure 5 also shows the complexity resultsTiBif L model checking
over DOCM. In particular we strengthen the third authortserg decidability result for
model checking non-monotonid® TL over DOCMSs [18]. Our results also generalizes
the PSPACE-completeness result féreezeL TL over DOCMs from [8].
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