
Path Checking for MTL and TPTL over Data Words

Shiguang Feng1⋆, Markus Lohrey2, and Karin Quaas1

1 Institut für Informatik, Universität Leipzig, Germany
2 Department für Elektrotechnik und Informatik, Universität Siegen, Germany

Abstract. Precise complexity results are derived for the model checking prob-
lems forMTL andTPTL on (in)finite data words and deterministic one-counter
machines. Depending on the number of register variables andthe encoding of
constraint numbers (unary or binary), the complexity isP-complete orPSPACE-
complete. Proofs can be found in the long version [10].

1 Introduction

Linear time temporal logic(LTL) is nowadays one of the main logical formalisms for
describing system behaviour. Triggered by real time applications, various timed exten-
sions ofLTL have been invented. Two of the most prominent examples areMTL (metric
temporal logic) [13] andTPTL (timed propositional temporal logic) [2]. InMTL, the
operators next (X) and until (U) are indexed by time intervals. For instance, the for-
mula pU[2,3) q holds at timet, if there is a timet′ ∈ [t + 2, t + 3), whereq holds,
andp holds during the interval[t, t′). TPTL is a more powerful logic that is equipped
with a freeze formalism. It uses register variables, which can be set to the current time
value and later these register variables can be compared with the current time value.
For instance, the aboveMTL-formula pU[2,3) q is equivalent to theTPTL-formula
x.(pU (q ∧ 2 ≤ x < 3)). Here, the constraint2 ≤ x < 3 should be read as: The differ-
ence of the current time value and the value stored inx is in the interval[2, 3). In this pa-
per, we always use the discrete semantics (opposed to the continuous semantics), where
formulae are interpreted over (in)finite timed sequences(P0, d0)(P1, d1) . . . , where the
di are time stamps and thePi are sets of atomic propositions.

The freeze mechanism fromTPTL has also received attention in connection with
data words. A data word is a finite or infinite sequence(P0, d0)(P1, d1) . . . of the above
form, where we do not require the data valuesdi to be monotonic, and we speak ofnon-
monotonic data words. As for TPTL, freezeLTL can store the current data value in a
registerx. But in contrast toTPTL, the value ofx can only be compared for equality
with the current data value.

Satisfiability and model checking forMTL, TPTL andfreezeLTL have been studied
intensively in the past [2–4,7, 8, 15–17]. For model checking freezeLTL the authors of
[8] consider one-counter machines (OCM) as a mechanism for generating infinite non-
monotonic data words, where the data values are the counter values along the unique
computation path. WhereasfreezeLTL model checking for non-deterministic OCM is
Σ1

1 -complete, the problem becomesPSPACE-complete for deterministic OCM [8].

⋆ The author is supported by the German Research Foundation (DFG), GRK 1763.

In this paper, we studyMTL andTPTL over non-monotonic data words. The latter
logic extends bothfreezeLTL over non-monotonic data words andTPTL over mono-
tonic data words: As forfreezeLTL, data values are natural numbers that can vary ar-
bitrarily over time. In contrast to the latter, one can express that the difference of the
current data value and the value stored in a register belongsto a certain interval, whereas
freezeLTL only allows to say that this difference is zero. Applications for TPTL over
non-monotonic data values can be seen in areas, where data streams of discrete values
have to be analyzed and the focus is on the dynamic variation of the values (e.g. streams
of discrete sensor data or stock charts). Recently, it has been shown that (in contrast to
the monotonic setting [1]) in the non-monotonic setting,TPTL is strictly more powerful
thanMTL [5].

We investigate the complexity of model checking problems for TPTL over non-
monotonic data words. These data words can be either finite orinfinite periodic; in the
latter case the data word is specified by an initial part, a period, and an offset number,
which is added to the data values in the period after each repetition of the period. For
periodic words without data values (i.e.,ω-words of the formuvω), the complexity of
LTL model checking (also known asLTL path checking) belongs toAC1(LogDCFL)
(a subclass ofNC) [14]. This result solved a long standing open problem. For finite
monotonic data words, the same complexity bound has been shown for MTL in [4].

We show that the latter result of [4] is quite sharp in the following sense: Path
checking forMTL over non-monotonic (finite or infinite) data words as well as path
checking forTPTL with one register variable over monotonic (finite or infinite) data
words isP-complete. Moreover, path checking forTPTL (with an arbitrary number of
register variables) over finite as well as infinite periodic data words becomesPSPACE-
complete. We also show thatPSPACE-hardness already holds (i) for the fragment of
TPTL with only two register variables and (ii) for fullTPTL, where all interval borders
are encoded in unary (the latter result can be shown by a straightforward adaptation of
the PSPACE-hardness proof in [8]). These results yield a rather complete picture on
the complexity of path checking forMTL andTPTL, see Fig. 5.

2 Temporal Logics over Data Words

Let P be a finite set ofatomic propositions. A data wordoverP is a finite or infinite
sequence(P0, d0)(P1, d1) · · · of pairs from2P×N. It is monotonic(strictly monotonic),
if di ≤ di+1 (di < di+1) for all appropriatei. It is pure, if Pi = ∅ for all i ≥ 0. A pure
data word is just written as a sequence of natural numbers. Wedenote with(2P × N)∗

and(2P × N)ω, respectively, the set of finite and infinite, respectively,data words over
P . The lengthof a data wordu is denoted by|u|, where we set|u| = ∞ for the case
that u is infinite. For the data wordu = (P0, d0)(P1, d1) · · · , we use the notations
u[i] = (Pi, di), u[: i] = (P0, d0)(P1, d1) · · · (Pi, di), u[i :] = (Pi, di)(Pi+1, di+1) · · · ,
andu+k = (P0, d0 + k)(P1, d1 + k) · · · , wherek ∈ N. We useu1u2 to denote the
concatenation of two data wordsu1 andu2, whereu1 has to be finite. For finite data
wordsu1, u2 andk ∈ N, let

u1(u2)
ω
+k = u1u2(u2)+k(u2)+2k(u2)+3k · · · .

2

For complexity considerations, the encoding of the data values and the offset numberk
(in an infinite data word) makes a difference. We speak ofunary(resp.,binary) encoded
data words if all these numbers are given in unary (resp., binary) encoding.

The set of formulae of the logicMTL is built up fromP by Boolean connectives,
thenextand theuntil modality using the following grammar, wherep ∈ P andI ⊆ Z

is an interval with endpoints inZ ∪ {−∞,+∞}:

ϕ ····= p | ¬ϕ | ϕ ∧ ϕ | XIϕ | ϕUIϕ

Formulae ofMTL are interpreted over data words. Letw = (P0, d0)(P1, d1) · · · be a
data word, and leti ≤ |w|. We define thesatisfaction relation forMTL inductively as
follows (we omit the obvious cases for¬ and∧):

– (w, i) |= p if and only if p ∈ Pi
– (w, i) |= XIϕ if and only if i+ 1 ≤ |w|, di+1 − di ∈ I and(w, i+ 1) |= ϕ

– (w, i) |= ϕ1UIϕ2 if and only if there exists a positionj with i ≤ j ≤ |w|, (w, j) |=
ϕ2, dj − di ∈ I, and(w, t) |= ϕ1 for all t ∈ [i, j).

We say that a data wordsatisfiesanMTL-formulaϕ, writtenw |= ϕ, if (w, 0) |= ϕ.
We use the following standard abbreviations:ϕ1 ∨ϕ2 ··= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ··=
¬ϕ1 ∨ ϕ2, true ··= p ∨ ¬p, false ··= ¬true, FIϕ ··= trueUIϕ, GIϕ ··= ¬FI¬ϕ.

Next we define formulae of the logicTPTL. For this, letV be a countable set of
register variables. The set ofTPTL-formulae is given by the following grammar, where
p ∈ P , x ∈ V , c ∈ Z, and∼∈ {<,≤,=,≥, >}:

ϕ ····= p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | x.ϕ (1)

We use the same syntactical abbreviations as forMTL. The fragmentfreezeLTL is ob-
tained by restricting∼ in (1) to =. OrdinaryLTL is obtained by disallowing the use
of register variables. Givenr ≥ 1, we useTPTLr (resp.,freezeLTLr) to denote the
fragment ofTPTL (resp.,freezeLTL) that uses at mostr different register variables.

A register valuationν is a function fromV to Z. Given a register valuationν, a data
valued ∈ Z, and a variablex ∈ V , we define the register valuationsν+d andν[x 7→ d]
as follows:(ν + d)(y) = ν(y) + d for everyy ∈ V , (ν[x 7→ d])(y) = ν(y) for every
y ∈ V \{x}, and(ν[x 7→ d])(x) = d.

Let w = (P0, d0)(P1, d1) · · · be a data word, letν be a register valuation, and let
i ∈ N. The satisfaction relation forTPTL is inductively defined in a similar way as for
MTL; we only give the definitions for the new formulae:

– (w, i, ν) |= Xϕ if and only if i+ 1 ≤ |w| and(w, i+ 1, ν) |= ϕ

– (w, i, ν) |= ϕ1Uϕ2 if and only if there exists a positionj with i ≤ j ≤ |w|,
(w, j, ν) |= ϕ2, and(w, t, ν) |= ϕ1 for all t ∈ [i, j)

– (w, i, ν) |= x.ϕ if and only if (w, i, ν[x 7→ di]) |= ϕ

– (w, i, ν) |= x ∼ c if and only if di − ν(x) ∼ c.

Note thatx ∼ c does not mean that the current valuev = ν(x) of x satisfiesv ∼ c, but
expresses thatdi − v ∼ c, wheredi is the current data value. We say that a data word
w satisfies aTPTL-formulaϕ, writtenw |= ϕ, if (w, 0, 0̄) |= ϕ, where0̄ denotes the
valuation that maps all variables to the initial data valued0.

3

For complexity considerations, it makes a difference, whether the numbersc in con-
straintsx ∼ c are binary or unary encoded, and similarly for the interval borders in
MTL. We writeTPTLru, TPTLu, MTLu (resp.,TPTLrb , TPTLb, MTLb) if we want to
emphasize that numbers are encoded in unary (resp., binary)notation. Thelengthof a
(TPTL or MTL) formulaψ, denoted by|ψ|, is the number of symbols occurring inψ.

3 Path Checking Problems for TPTL and MTL

In this section, we study the path checking problems for our logics over data words.
Data words can be (i) finite or infinite, (ii) monotonic or non-monotonic, (iii) pure or
non-pure, and (iv) unary encoded or binary encoded. For one of our logicsL and a class
of data wordsC, we consider thepath checking problem forL overC. It asks whether
for a given data wordw ∈ C and a given formulaϕ ∈ L, w |= ϕ holds.

3.1 Upper Bounds

In this section we prove our upper complexity bounds. All bounds hold for non-mono-
tonic and non-pure data words (and we will not mention this explicitly in the theorems).
But we have to distinguish whether (i) data words are unary orbinary encoded, and (ii)
whether data words are finite or infinite. For the most generalpath checking problem
(TPTLb over infinite binary encoded data words) we can devise an alternating poly-
nomial time algorithm (and hence a polynomial space algorithm). The only technical
difficulty is to bound the position in the infinite data word and the values of the register
valuation, so that they can be stored in polynomial space, see [10] for details.

Theorem 1. Path checking forTPTLb over infinite binary encoded data words is in
PSPACE.

If the number of register variables is fixed and all data values are unary encoded, then
the alternating Turing-machine in the proof of Theorem 1 works in logarithmic space.
SinceALOGSPACE = P, we obtain the following statement for (i). For (ii) we show
that an infinitebinary encoded monotonic data word can be replaced by an infinite
unaryencoded data word, which allows to apply (i).

Theorem 2. For every fixedr ∈ N, path checking forTPTLru over (i) infinite unary
encoded data words or (ii) infinite binary encoded monotonicdata words is inP.

Actually, for finite data words, we obtain a polynomial time algorithm also for binary
encoded data words (assuming again a fixed number of registervariables):

Theorem 3. For every fixedr ∈ N, path checking forTPTLrb over finite binary en-
coded data words is inP.

For infinite data words we have to reduce the number of register variables to one in
order to get a polynomial time complexity for binary encodednumbers:

Theorem 4. Path checking forTPTL1
b over infinite binary encoded data words is inP.

4

For the proof of Theorem 4 we need the following two lemmas.

Lemma 5. For a givenLTL-formulaψ, wordsu1, . . . , uk, u ∈ (2P)∗ and binary en-
coded numbersN1, . . . , Nk ∈ N, the question whetheruN1

1 uN2

2 · · ·uNk

k uω |= ψ holds,
belongs toP (actually,AC1(LogDCFL)).

The crucial point is that for all finite wordsu, v ∈ (2P)∗, every infinite wordw ∈ (2P)ω

and every numberN ≥ |ψ|, we haveuvNw |= ψ if and only if uv|ψ|w |= ψ. This can
be shown by using the Ehrenfeucht-Fraı̈ssé game forLTL from [9]. Hence, one can
replace all exponentsNi by small numbers of size at most|ψ|. Then, one can use a
polynomial time algorithm (orAC1(LogDCFL) algorithm) forLTL path checking [14].

Lemma 6. Path checking forTPTLb-formulae, which do not contain subformulae of
the formx.θ for a register variablex, over infinite binary encoded data words is inP
(in fact,AC1(LogDCFL)).

Proof. We reduce the question, whetherw |= ψ in logspace to an instance of the suc-
cinct LTL path checking problem from Lemma 5. Letw = u1(u2)

ω
+k and letw[i] =

(Pi, di) ∈ 2P × N. Letn1 = |u1| andn2 = |u2|. We can assume that only one register
variablex appears inψ (since we do not use the freeze constructx.() in ψ all register
variables remain at the initial valued0).

In order to construct anLTL-formula fromψ, it remains to eliminate occurrences
of constraintsx ∼ c in ψ. W.l.o.g. all constraints are of the formx < c or x > c.
Let x ∼1 c1, . . . , x ∼m cm be a list of all constraints that appear inψ. We introduce
for every1 ≤ j ≤ m a new atomic propositionpj and letP ′ = P ∪ {p1, . . . , pm}.
Let ψ′ be obtained fromψ by replacing every occurrence ofx ∼j cj by pj, and let
w′ ∈ (2P

′

)ω be theω-word with w′[i] = Pi ∪ {pj | 1 ≤ j ≤ m, di − d0 ∼j cj}.
Clearlyw |= ψ if and only ifw′ |= ψ′. We will show that the wordw′ can be written in
the form considered in Lemma 5.

First of all, we can writew′ asw′ = u′1u
′
2,0u

′
2,1u

′
2,2 · · · , where|u′1| = n1 and

|u′2,i| = n2. The wordu′1 can be computed in logspace by evaluating all constraints at
all positions ofu1. Moreover, every wordu′2,i is obtained fromu2 (without the data val-
ues) by adding the new propositionspj at the appropriate positions. Consider the equiv-
alence relation≡ on N with a ≡ b if and only if u′2,a = u′2,b. The crucial observations
are that (i) every equivalence class of≡ is an interval, and (ii) the index of≡ is bounded
by 1 + n2 ·m (one plus length ofu2 times number of constraints). To see this, consider
a position0 ≤ i ≤ n2 − 1 in the wordu2 and a constraintx ∼j cj (1 ≤ j ≤ m). Then,
the truth value of “propositionpj is present at theith position ofu′2,x” switches (from
true to false or from false to true) at most once whenx grows. The reason for this is that
the data value at positionn1 + i+n2 ·x is dn1+i+n2·x = dn1+i+k ·x for x ≥ 0, i.e., it
grows monotonically withx. Hence, the truth value ofdn1+i+k ·x−d0 ∼j cj switches
at most once, whenx grows. So, we get at mostn2 ·m many “switching points” inN
which produce at most1 + n2 ·m many intervals.

Let I1, . . . , Il be a list of all≡-classes (intervals), wherea < b whenevera ∈
Ii, b ∈ Ij and i < j. The borders of these intervals can be computed in logspace
using arithmetic on binary encoded numbers (addition, multiplication and division with
remainder can be carried out in logspace on binary encoded numbers [12]). Hence, we

5

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

level 1(∧)

level 2(∨)

level 3(∧)

Fig. 1. An SAM2-circuit

can compute in logspace the lengthsNi = |Ii| of the intervals, whereNl = ω. Also,
for all 1 ≤ i ≤ l we can compute in logspace the unique wordvi such thatvi = u′2,a

for all a ∈ Ii. Hence,w′ = u′1v
N1

1 · · · vNl

l . We can now apply Lemma 5. ⊓⊔

Proof of Theorem 4.Consider an infinite binary encoded data wordw = u1(u2)
ω
+k and

aTPTL1
b-formulaψ. Letn = |u1|+|u2|. We check in polynomial time whetherw |= ψ.

A TPTL-formulaϕ is closed if every occurrence of a register variablex in ϕ appears
within a subformula of the formx.θ. The following two claims are straightforward:

Claim 1: If ϕ is closed, then for all valuationsν, ν′, (w, i, ν) |= ϕ iff (w, i, ν′) |= ϕ.

Claim 2: If ϕ is closed andi ≥ |u1|, then for every valuationν, (w, i, ν) |= ϕ iff
(w, i+ |u2|, ν) |= ϕ.

By Claim 1 we can write(w, i) |= ϕ for (w, i, ν) |= ϕ. It suffices to compute for
every (necessarily closed) subformulax.ϕ of ψ the set of all positionsi ∈ [0, n − 1]
such that(w, i) |= x.ϕ, or equivalentlyw[i :] |= ϕ. We do this in a bottom-up process.
Consider a subformulax.ϕ of ψ and a positioni ∈ [0, n−1]. We have to check whether
w[i :] |= ϕ. Letx.ϕ1, . . . , x.ϕl be all maximal (with respect to the subformula relation)
subformulae ofϕ of the formx.θ. We can assume that for every1 ≤ s ≤ l we have
already determined the set of positionsj ∈ [0, n− 1] such that(w, j) |= x.ϕs. We can
therefore replace every subformulax.ϕs of ϕ by a new atomic propositionps and add
in the data wordsu1 (resp.,u2) the propositionps to all positionsj (resp.,j − |u1|)
such that(w, j) |= x.ϕs, wherej ∈ [0, n − 1]. Here, we make use of Claim 2. We
denote the resulting formula and the resulting data word with ϕ′ andw′ = u′1(u

′
2)
ω
+k,

respectively. Next, it is easy to compute fromu′1 andu′2 new finite data wordsv1 and
v2 such thatv1(v2)ω+k = w′[i :]: If i < |u′1| then we takev1 = u′1[i :] andv2 = u′2. If
|u′1| ≤ i ≤ n− 1, then we takev1 = ε andv2 = u′2[i :](u′2[: i− 1] + k). Finally, using
Lemma 6 we can check in polynomial time whetherw′[i :] |= ϕ′. ⊓⊔

3.2 Lower Bounds

We prove severalP-hardness andPSPACE-hardness results for path checking.

P-Hardness. We prove ourP-hardness results by a reduction from a restricted version
of the Boolean circuit value problem. Asynchronous alternating monotone circuit with
fanin 2 and fanout 2(briefly, SAM2-circuit) is a Boolean circuit divided into levels
1, . . . , l (l ≥ 2) such that the following properties hold:

6

a1,1 a1,2 a1,j1

b1,1 b1,2 b1,j1

a2,1 a2,2 a2,j2

b2,1 b2,2 b2,j2

ah,1 ah,2 ah,jh

level i

bh,1 bh,2 bh,jh

level i+1

Fig. 2. The induced subgraph between leveli andi + 1

– All wires go from a gate in leveli+ 1 to a gate from leveli (1 ≤ i ≤ l − 1).
– All output gates are in level1 and all input gates are in levell, and the latter are

labelled with input bits. Moreover, there is a distinguished output gate on level1.
– All gates in the same level1 ≤ i ≤ l − 1 are of the same type (∧ or ∨) and the

levels alternate between∧-levels and∨-levels.
– All gates except the output gates have fanout 2 and all gates except the input gates

have fanin 2. The two input gates for a gate at leveli ≤ l − 1 are different.

By the restriction to fanin 2 and fanout 2, we know that each level contains the same
number of gates. Fig. 1 shows an example of an SAM2-circuit (the node namesai, bi, ci
will be needed later). The circuit value problem for SAM2-circuits (i.e., the question
whether the distinguished output gate of a given SAM2-circuit evaluates to1), which is
called SAM2CVP, isP-complete [11].

Recall that finite path checking forMTL (a fragment ofTPTL1) over monotonic
data words is in the parallel complexity classAC1(LogDCFL) [4]. We will show that
for both (i)MTLu over non-monotonic data words and (ii)TPTL1

u over monotonic data
words the path checking problem becomesP-hard (and henceP-complete).

Theorem 7. Path checking forMTLu over finite unary encoded pure data words is
P-hard.

Proof. We reduce from SAM2CVP. Letα be the input circuit. We first encode each
two consecutive levels ofα into a data word, and combine these data words into a data
wordw, which is the encoding of the whole circuit. Then we construct a formulaψ such
thatw |= ψ if and only if α evaluates to1. The data wordw that we are constructing
contains gate names ofα (and some copies of the gates) as atomic propositions. These
propositions will be only needed for the construction. At the end, we can remove all
propositions from the data wordw and hence obtain a pure data word. The whole con-
struction can be done in logspace. The reader might look at the example in [10], where
the construction is carried out for the circuit from Fig. 1.

Let α be an SAM2-circuit withl ≥ 2 levels andn gates in each level. By the
restriction to fanin 2 and fanout 2, the induced undirected subgraph which contains the
nodes in leveli andi+1 (1 ≤ i < l) consists of several cycles; see Fig. 2. For instance,
for the circuit in Fig. 1 the number of cycles between level1 and2 (resp.,2 and3) is 2.

We can enumerate in logspace the gates of leveli andi+ 1 such that they occur in
the order shown in Fig. 2. For this, leta1, . . . , an (resp.,b1, . . . , bn) be the nodes in level
i (resp.,i + 1) in the order in which they occur in the input description. Westart with

7

a1,1 a1,2 a1,j1
a′

1,1

b1,1 b1,2 b1,j1
b′1,1

a2,1 a2,2 a2,j2
a′

2,1

b2,1 b2,2 b2,j2
b′2,1

ah,1 ah,2 ah,jh
a′

h,1

bh,1 bh,2 bh,jh
b′h,1

Fig. 3. The graph obtained from the induced subgraph

d d+1 · · · d+j1

d′ d′ + 1 · · · d′ +j1

· · · d+j1+j2+1

· · · d′+j1+j2+1

· · · d+m−1

· · · d′+m−1

Fig. 4.Labeling the new graph

a1 and enumerate the nodes in the cycle containinga1 (from a1 we go to the smaller
neighbor amongb1, . . . , bn, then the next node on the cycle is uniquely determined
since the graph has degree 2). Thereby we store the current node in the cycle and the
starting nodea1. As soon as we return toa1, we know that the first cycle is completed.
To find the next cycle, we search for the first node froma2, . . . , an that is not reachable
from a1 (reachability in undirected graphs is in logspace), and continue this way.

So, assume that the nodes in layeri andi+ 1 are ordered as in Fig. 2. In particular,
we haveh cycles. For each1 ≤ t ≤ h, we add a new nodea′t,1 (resp.,b′t,1) afterat,jt
(resp.,bt,jt). Then we replace the edge(at,jt , bt,1) by the edge(at,jt , b

′
t,1) (1 ≤ t ≤ h).

In this way we obtain the graph from Fig. 3. Again, the construction can be done in
logspace by adding the new nodes and new edges once a cycle wascompleted in the
enumeration procedure from the previous paragraph.

By adding dummy nodes, we can assume that for every1 ≤ i ≤ l− 1, the subgraph
between leveli andi + 1 has the same number (sayh) of cycles. We still denote byn
the number of nodes in each level. Thus, after the above step we havem = n+h nodes
in each level. Letd = (i−1) ·2m andd′ = d+m. In Fig. 3, we label the nodes in level
i (resp.,i+1) with the numbersd, d+1, . . . , d+m−1 (resp.d′, d′+1 . . . , d′+m−1)
in this order, see Fig. 4. By this labeling, the difference between two connected nodes
in level i and leveli + 1 is alwaysm orm + 1. So we can use the modalityF[m,m+1]

(resp.,G[m,m+1]) to jump from an∨-gate (resp.,∧-gate) in leveli to a successor gate
in level i+ 1. We now obtain in logspace the data wordwi = wi,1wi,2, where

wi,1 =

(a1,1, d)(a1,2, d+ 1) · · · (a1,j1 , d+ j1 − 1)

(a2,1, d+ j1 + 1)(a2,2, d+ j1 + 2) · · · (a2,j2 , d+ j1 + j2) · · ·

(ah,1, d+

h−1
∑

t=1

jt + h− 1)(ah,2, d+

h−1
∑

t=1

jt + h) · · · (ah,jh , d+m− 2)

8

wi,2 =

(b1,1, d
′) · · · (b1,j1 , d

′ + j1 − 1)(b′1,1, d
′ + j1)

(b2,1, d
′ + j1 + 1) · · · (b2,j2 , d

′ + j1 + j2)(b
′
2,1, d

′ + j1 + j2 + 1) · · ·

(bh,1, d
′ +

h−1
∑

t=1

jt + h− 1) · · · (bh,jh , d
′ +m− 2)(b′h,1, d

′ +m− 1)

which is the encoding of the wires between leveli and leveli+1 from Fig. 4. Note that
the new nodesa′1,1, a

′
2,1, . . . , a

′
h,1 in level i of the graph in Fig. 3 do not occur inwi,1.

Suppose now that all data wordswi (1 ≤ i ≤ l − 1) are constructed. We then
combine them to obtain the data wordw for the whole circuit as follows. Suppose that

wi,2 = (b̃1, y1) · · · (b̃m, ym) andwi+1,1 = (b1, z1) · · · (bn, zn).

Note that everỹbi is either one of thebj or b′j (the copy ofbj). Let

vi+1,1 = (b̃1, z
′
1) · · · (b̃m, z

′
m),

where the data valuesz′i are determined as follows: If̃bi = bj or b̃i = b′j, thenz′i = zj.
Then, the data wordw isw = w1,1w1,2v2,1w2,2 · · · vl−1,1wl−1,2.

Let us explain the idea. Consider a gateaj of level 2 ≤ i ≤ l − 1, and assume
that leveli consists of∨-gates. Letbj1 andbj2 (from leveli+ 1) be the two input gates
for aj . In the above data wordvi,1 there is a unique position where the propositionaj
occurs, and possibly a position where the copya′j occurs. If both positions exist, then
they carry the same data value. Let us point to one of these positions. Using anMTL

formula, we want to branch (existentially) to the positionsin the factorvi+1,1, where the
propositionsbj1 , b

′
j1
, bj2 , b

′
j2

occur (whereb′j1 andb′j2 possibly do not exist). For this,
we use the modalityF[m,m+1]. By the construction, this modality branches existentially
to positions in the factorwi,2, where the propositionsbj1 , b

′
j1
, bj2 , b

′
j2

occur. Then, using
the iterated modalityXm (which is an abbreviation form copies of theMTL-modality
XZ), we jump to the corresponding positions invi+1,1.

In the above argument, we assumed that2 ≤ i ≤ l − 1. If i = 1, then we can argue
similarly, if we assume that we are pointing to the uniqueaj-labeled position of the
prefixw1,1 of w. Now consider levell − 1. Suppose that

wl−1,2 = (d̃1, v1) . . . (d̃m, vm).

Let d1, . . . , dn be the original gates of levell, which all belong to{d̃1, . . . , d̃m}, and let
xi ∈ {0, 1} be the input value for gatedi. Define

I = {j | j ∈ [1,m], ∃i ∈ [1, n] : d̃j ∈ {di, d
′
i}, xi = 1}. (2)

Let the designated output gate be thekth node in level1. We construct theMTL-formula
ψ = Xk−1ϕ1, whereϕi (1 ≤ i ≤ l − 1) is defined inductively as follows:

ϕi =

F[m,m+1]X
mϕi+1 if i < l − 1 and leveli is a∨-level,

G[m,m+1]X
mϕi+1 if i < l − 1 and leveli is a∧-level,

F[m,m+1](
∨

j∈I Xm−j¬X true) if i = l − 1 and leveli is a∨-level,

G[m,m+1](
∨

j∈I Xm−j¬X true) if i = l − 1 and leveli is a∧-level.

9

Note that the formula¬X true is only true in the last position of a data word. Suppose
data wordw is the encoding of the circuit. From the above consideration, it follows
thatw |= ψ if and only if the circuitα evaluates to1. Note that we do not use any
propositional variables in the formulaψ. So we can ignore the propositional part in the
data wordw to get a pure data word. ⊓⊔

Note that the above construction uses non-monotonic data words. This is unavoidable
since finite path checking forMTL over monotonic data words is inNC [4]. On the
other hand, for the extensionTPTL1

u of MTLu we can show, using again a reduction
from SAM2CVP (see [10]),P-hardness also for monotonic data words:

Theorem 8. Path checking forTPTL1
u over finite unary encoded strictly monotonic

pure data words isP-hard.

PSPACE-Hardness. In [10], we prove threePSPACE lower bounds, which complete
our complexity picture. The first one is shown by a reduction from QBF, whereas the
latter two results are shown by a reduction from a quantified variant of the subset sum
problem [19].

Theorem 9. Path checking forTPTLu over finite unary encoded strictly monotonic
pure data words isPSPACE-hard.

Theorem 10. Path checking forTPTL2
b over the infinite strictly monotonic pure data

wordw = 0(1)ω+1 = 0, 1, 2, 3, 4, . . . is PSPACE-hard.

Theorem 11. Path checking forfreezeLTL2 (and henceTPTL2
u) over infinite binary

encoded pure data words isPSPACE-hard.

Recall from Theorem 2 that for every fixedr, path checking forTPTLru over infinite
binary encoded monotonic data words can be solved in polynomial time. Hence, Theo-
rem 11 shows that monotonicity is important for Theorem 2.

3.3 Summary of the Results

Figure 5 collects our complexity results for path checking problems (here the super-
script<∞ is a place holder for any numberr ≥ 2). Whether data words are pure or not
does not influence the complexity in all cases. Moreover, forfinite data words, the com-
plexity does not depend upon the encoding of data words (unary or binary) and the fact
whether data words are monotonic or non-monotonic. On the other hand, for infinite
data words, these distinctions influence the complexity: For binary and non-monotonic
data words we get another picture than or unary encoded or (quasi-)monotonic data
words. Note that forMTLb andMTLu the complexity isP-complete for all classes of
data words (sinceMTL translates in logspace intoTPTL1).

One may also study the complexity of path checking problems for various fragments
of MTL andTPTL. In this context, it is interesting to note that all lower bounds already
hold for the corresponding unary fragments (where the until-operator is replaced by
F andG) with only one exception: Our proof for Theorem 11 in [10] forfreezeLTL2

10

TPTL
1

u

TPTL
<∞

u TPTL
1

b

TPTLu TPTL
2

b

TPTLb

infinite data words, unary or quasi-monotonic

infinite data words, binary and non-monotonic

finite data words

P-compl. P-compl.

P-compl.

PSPACE-compl. PSPACE-compl.

PSPACE-compl.

TPTL
1

u

TPTL
<∞

u

TPTL
<∞

b

TPTLu

TPTLb

TPTL
1

u

TPTL
1

b

TPTL
2

u

TPTL
2

b

TPTLb

Fig. 5. Complexity results for path checking

needs the until operator. It is not clear, whether path checking for the unary fragment of
freezeLTL2 over infinite binary encoded data words is stillPSPACE-complete.

Our complexity results for infinite unary encoded data wordsalso hold fordeter-
ministic one-counter machines (DOCMs), see [10] for a precise definition. A DOCM
produces in general an infinite data word, where the sequenceof atomic propositions is
the sequence of states of the machine, and the sequence of data values is the sequence
of counter values produced by the DOCM (the DOCM can block in which case it pro-
duces a finite data word). It is an easy observation that the data word produced by a
DOCM A is periodic in case it is infinite, and one can in fact compute in logspace
from A two unary encoded finite data wordsu1 andu2 and a unary encoded number
k such thatu1(u2)

ω
+k is the data word produced byA, see also [8, Lemma 9]. For

this it is crucial that the counter can be incremented or decremented in each step by
at most one (or, more general, a unary encoded number). This,in turn implies that for

11

each of the logicsL considered in this paper, the model checking problem forL over
DOCM (i.e., the question, whether a given formulaϕ ∈ L holds in the data word pro-
duced by a given DOCM) is equivalent with respect to logspacereductions to the path
checking problem forL over infinite unary encoded data words. Hence, the upper left
diagram from Figure 5 also shows the complexity results forTPTL model checking
over DOCM. In particular we strengthen the third author’s recent decidability result for
model checking non-monotonicTPTL over DOCMs [18]. Our results also generalizes
thePSPACE-completeness result forfreezeLTL over DOCMs from [8].

References

1. R. Alur and T. A. Henzinger. Real-Time Logics: Complexityand Expressiveness.Inf. Com-
put., 104(1):35–77, 1993.

2. R. Alur and T. A. Henzinger. A really temporal logic.J. ACM, 41(1):181–204, 1994.
3. P. Bouyer, K. G. Larsen, and N. Markey. Model checking one-clock priced timed automata.

Log. Meth. Comput. Sci., 4(2), 2008.
4. D. Bundala and J. Ouaknine. On the complexity of temporal-logic path checking. In

Proc. ICALP 2014, Part II, LNCS 8573, pages 86–97. Springer, 2014.
5. C. Carapelle, S. Feng, O. F. Gil, and K. Quaas. On the expressiveness of TPTL and MTL

overω-data words. InProc. AFL 2014, volume 151 ofEPTCS, pages 174–187, 2014.
6. C. Carapelle, S. Feng, O. F. Gil, and K. Quaas. Satisfiability for MTL and TPTL over non-

monotonic data words. InProc. LATA 2014, LNCS 8370, pages 248–259. Springer, 2014.
7. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata.ACM Trans.

Comput. Log., 10(3), 2009.
8. S. Demri, R. Lazić, and A. Sangnier. Model checking memoryful linear-time logics over

one-counter automata.Theor. Comput. Sci., 411(22-24):2298–2316, 2010.
9. K. Etessami and T. Wilke. An until hierarchy and other applications of an Ehrenfeucht-

Fraı̈ssé game for temporal logic.Inf. Comput., 160(1-2):88–108, 2000.
10. S. Feng, M. Lohrey, and K. Quaas. Path-Checking for MTL and TPTL.

http://arxiv.org/abs/1412.3644. arXiv.org, 2014.
11. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-completeness

Theory.Oxford University Press, 1995.
12. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits

for division and iterated multiplication.J. Comput. System Sci., 65:695–716, 2002.
13. R. Koymans. Specifying real-time properties with metric temporal logic.Real-Time Systems,

2(4):255–299, 1990.
14. L. Kuhtz and B. Finkbeiner. Efficient parallel path checking for linear-time temporal logic

with past and bounds.Log. Meth. Comput. Sci., 8(4), 2012.
15. F. Laroussinie, N. Markey, and Ph. Schnoebelen. On modelchecking durational Kripke

structures. InProc. FoSSaCS 2002, LNCS 2303, pages 264–279. Springer, 2002.
16. J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. In

Proc. FoSSaCS 2006, LNCS 3921, pages 217–230. Springer, 2006.
17. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal logic over

finite words.Log. Meth. Comput. Sci., 3(1), 2007.
18. K. Quaas. Model checking metric temporal logic over automata with one counter. In

Proc. LATA 2013, LNCS 7810, pages 468–479. Springer, 2013.
19. S. Travers. The complexity of membership problems for circuits over sets of integers.

Theor. Comput. Sci., 369(1):211–229, December 2006.

12

