
Compressed Tree Canonization

Markus Lohrey1, Sebastian Maneth2, and Fabian Peternek2

1 Universität Siegen, Germany
2 University of Edinburgh, UK

Abstract. Straight-line (linear) context-free tree (slt) grammars have
been used to compactly represent ordered trees. Equivalence of slt gram-
mars is decidable in polynomial time. Here we extend this result and
show that isomorphism of unordered trees given as slt grammars is de-
cidable in polynomial time. The result generalizes to isomorphism of un-
rooted trees and bisimulation equivalence. For non-linear slt grammars
which can have double-exponential compression ratios, we prove that un-
ordered isomorphism and bisimulation equivalence are pspace-hard and
in exptime. Full proofs can be found in the long version [13].

1 Introduction

Deciding isomorphism between various mathematical objects is an important
topic in theoretical computer science that has led to intriguing open problems
like the precise complexity of the graph isomorphism problem. An example of
an isomorphism problem, where the knowledge seems to be rather complete, is
tree isomorphism. Aho, Hopcroft and Ullman [1, page 84] proved that isomor-
phism of unordered trees (rooted or unrooted) can be decided in linear time.
An unordered tree is a tree, where the children of a node are not ordered. The
precise complexity of tree isomorphism was finally settled by Lindell [11], Buss
[5], and Jenner et al. [9]: tree isomorphism is logspace-complete if the trees
are represented by pointer structures [11,9] and alogtime-complete if the trees
are represented by expressions [5,9]. All these results deal with trees that are
given explicitly (either by an expression or a pointer structure). In this paper,
we deal with the isomorphism problem for trees that are given in a succinct way.
Several succinct encoding schemes for graphs exist in the literature. Galperin
and Wigderson [8] considered graphs that are given by a Boolean circuit for the
adjacency matrix. Subsequent work showed that the complexity of a problem
undergoes an exponential jump when going from the standard input representa-
tion to the circuit representation; this phenomenon is known as upgrading, see
[7] for more details and references. Concerning graph isomorphism, it was shown
in [7] that its succinct version is pspace-hard, even for very restricted classes of
Boolean circuits (dnfs and cnfs).

In this paper, we consider another succinct input representation that has
turned out to be more amenable to efficient algorithms, and, in particular, does
not show the upgrading phenomenon known for Boolean circuits: straight-line
context-free grammars, i.e., context-free grammars that produce a single object.

Such grammars have been intensively studied for strings and recently also for
trees. Using a straight-line grammar, repeated patterns in an string or tree can
be abbreviated by a nonterminal which can be used in different contexts. For
strings, this idea is known as grammar-based compression [6,12], and it was
extended to trees in [4]. In fact this approach can be also extended to general
graphs by using hyperedge replacement graph grammars; the resulting formalism
is known as hierarchical graph representation [10].

The main topic of this paper is the isomorphism problem for trees that are
succinctly represented by straight-line context-free tree grammars (st gram-
mars). An example of such a grammar contains the productions S → A0(a),
Ai(y) → Ai+1(Ai+1(y)) for 0 ≤ i ≤ n − 1, and An(y) → f(y, y) (here y is
called a parameter and in general several parameters may occur in a rule). This
grammar produces a full binary tree of height 2n and hence has 22n+1− 1 many
nodes. Thus, an st grammar may produce a tree, whose size is doubly exponen-
tial in the size of the grammar. The reason for this double exponential blow-up
is copying: the parameter y occurs twice in the right-hand side of the production
An(y) → f(y, y). If this is not allowed, i.e., if every parameter occurs at most
once in every right-hand side, then the grammar is a straight-line linear context-
free tree grammar (slt grammar). The latter generalize dags (directed acyclic
graphs) that allow to share repeated subtrees of a tree, whereas slt grammars
can also share repeated patterns that are not complete subtrees.

Several algorithmic problems are harder for trees represented by st gram-
mars than trees represented by slt grammars. A good example is the member-
ship problem for tree automata (ptime-complete for slt grammars and pspace-
complete for st grammars, see [12, Theorem 39]). A similar situation arises for
the isomorphism problem: we prove that the isomorphism problem for (rooted or
unrooted) unordered trees that are given by slt grammars (resp., st grammars)
is ptime-complete (resp., pspace-hard and in exptime). Our polynomial time
algorithm for slt grammars constructs from a given slt grammar G a new slt
grammar G′ that produces a canonical representation (based on lexicographic
ordering of depth-first left-to-right traversals) of the tree produced by G. For
unrooted slt-compressed trees, we first compute a compressed representation of
the center node of a given slt-compressed unrooted tree t. Then we compute an
slt grammar that produces the rooted version of t that is rooted in the center
node. This is also the standard reduction of the unrooted isomorphism problem
to the rooted isomorphism problem in the uncompressed setting, but it requires
some work to carry out this reduction in polynomial time on slt grammars.

Our techniques can be also used to show that checking bisimulation equiv-
alence of trees that are represented by slt grammars is ptime-complete. This
generalizes the well-known ptime-completeness of bisimulation for dags [2].

2 Preliminaries

For k ≥ 0 let [k] = {1, . . . , k}. Let Σ be an alphabet. By TΣ we denote the
set of all (ordered, rooted) trees over the alphabet Σ. It is defined recursively

2

as the smallest set of strings such that if t1, . . . , tk ∈ TΣ and k ≥ 0 then also
σ(t1, . . . , tk) ∈ TΣ . For the tree a() we simply write a. The set D(t) of Dewey
addresses of a tree t = σ(t1, . . . , tk) is the subset of N∗ defined recursively as
{ε} ∪

⋃
i∈[k] i ·D(ti). Thus ε is the root node of t and u · i is the i-th child of u.

For u ∈ D(t), we denote by t[u] ∈ Σ the symbol at u, i.e., if t = σ(t1, . . . , tk),
then t[ε] = σ and t[i · u] = ti[u]. The size of t is |t| = |D(t)|.

A ranked alphabet N is a finite set of symbols each of which equipped with a
non-negative integer, called its “rank”. We write N (k) for the set of symbols in
N that have rank k. For an alphabet Σ and a ranked alphabet N , we denote by
TN∪Σ the set of trees t over N ∪ Σ with the property that if t[u] = A ∈ N (k),
then u · i ∈ D(t) if and only if i ∈ [k]. Thus, if a node is labeled by a ranked
symbol, then the rank determines the number of children of the node. We fix
a set Y = {y1, y2, . . . } of parameters, which are symbols of rank 0. For y1 we
also write y. We write TΣ∪N (Y) for TΣ∪N∪Y . For trees t, t1, . . . , tk ∈ TΣ∪N (Y)
we denote by t[yj ← tj | j ∈ [k]] the tree obtained from t by replacing in
parallel every occurrence of yj (j ∈ [k]) by tj . A context is a tree in TΣ∪N ({y})
with exactly one occurrence of y. Let CΣ∪N be the set of all contexts and let
CΣ = CΣ∪N ∩TΣ({y}). For a context t(y) and a tree t′ we write t[t′] for t[y ← t′].

A context-free tree grammar is a tuple G = (N,Σ, S, P) where N is a
ranked alphabet of nonterminal symbols, Σ is an alphabet of terminal sym-
bols with Σ ∩ N = ∅, S ∈ N (0) is the start nonterminal, and P is a finite
set of productions of the form A(y1, . . . , yk) → t where A ∈ N (k), k ≥ 0, and
t ∈ TN∪Σ({y1, . . . , yk}). Occasionally, we consider context-free tree grammars
without a start nonterminal. Two trees ξ, ξ′ ∈ TN∪Σ(Y) are in the one-step
derivation relation ⇒G induced by G, if ξ has a subtree A(t1, . . . , tk) with
A ∈ N (k), k ≥ 0 such that ξ′ is obtained from ξ by replacing this subtree
by t[yj ← tj | j ∈ [k]], where A(y1, . . . , yk) → t is a production in P . The tree
language L(G) produced by G is {t ∈ TΣ | S ⇒∗G t}. The size of the grammar G
is |G| =

∑
(A(y1,...,yk)→t)∈P |t|. The grammar G = (N,Σ, S, P) is deterministic if

for every A ∈ N there is exactly one production of the form A → t. The gram-
mar G is acyclic, if there is a linear order < on N such that A < B whenever
B occurs in a tree t with (A → t) ∈ P . A deterministic and acyclic grammar
is called straight-line. Note that |L(G)| = 1 for a straight-line grammar. We de-
note the unique tree t produced by the straight-line tree grammar G by val(G).
Moreover, for a tree t ∈ TΣ∪N (Y) we denote with valG(t) the unique tree from
TΣ(Y) such that t ⇒∗G valG(t). If G is clear from the context, we simply write
val(t) for valG(t). The grammar G is linear if for every production (A→ t) ∈ P
and every y ∈ Y , y occurs at most once in t.

For a straight-line context-free tree grammar (resp., straight-line linear con-
text-free tree grammar) we say st grammar (resp.. slt grammar.) Occasionally,
we also consider slt grammars, where the start nonterminal belongs to N (1),
i.e., has rank 1. For such a 1-slt grammar G it holds that val(G) ∈ CΣ . Most
of this paper is about slt grammars, only at the very end of the paper we
consider general st grammars. slt grammars generalize rooted node-labelled
dags (directed acyclic graph), where the tree defined by such a dag is obtained

3

by unfolding the dag starting from the root (formally, the nodes of the tree
are the directed paths in the dag that start in the root). A dag can be viewed
as an slt grammar, where all nonterminals have rank 0 (the nodes of the dag
correspond to the nonterminal of the slt grammar). Dags are less succinct than
slt grammars (take the tree fN (a) for N = 2n), which in turn are less succinct
than general st grammars (take a full binary tree of height 2n).

In the literature, slt grammars are usually defined over ranked terminal
alphabets. The proof of the following result from [14] also works for an unranked
alphabet Σ.

Lemma 1. One can transform in polynomial time an slt grammar into an
equivalent slt grammar, where every nonterminal has rank at most one and each
production has one of the following four types (σ ∈ Σ, A,B,C,A1, . . . , Ak ∈ N):
(1) A→ σ(A1, . . . , Ak),
(2) A→ B(C),

(3) A(y)→ σ(A1, . . . , Ai, y, Ai+1, . . . , Ak), or
(4) A(y)→ B(C(y)).

In the following, we will only deal with slt grammars G having the property
from Lemma 1. For i ∈ [4], we denote with G(i) the slt grammar (without start
nonterminal) consisting of all productions of G of type (i) from Lemma 1.

A straight-line program (slp) can be seen as a 1-slt grammar G containing
only productions of the form A(y)→ B(C(y)) and A(y)→ σ(y) with B,C ∈ N
and σ ∈ Σ. Thus, G contains ordinary rules of a context-free string grammar in
Chomsky normal form (but written as monadic trees). Intuitively, if val(G) =
a1(· · · an(y) · · ·) then G produces the string a1 · · · an and we also write val(G) =
a1 · · · an. For a string w = a1 · · · an and two numbers l, r ∈ [n] with l ≤ r we
denote by w[l, r] the substring alal+1 · · · ar. The following result is well-known,
see e.g. [12].

Lemma 2. For a given slp G and two binary encoded numbers l, r ∈ [|val(G)|]
with l ≤ r one can compute in polynomial time an slp G′ such that val(G′) =
val(G)[l, r].

3 Isomorphism of Rooted Unordered SLT-Compressed
Trees

Let us fix an alphabet Σ. For t ∈ TΣ we denote with uo(t) the unordered rooted
version of t. It is the node-labeled directed graph (V,E, λ) where V = D(t) is
the set of nodes, E = {(u, u · i) | i ∈ N, u ∈ N∗, u · i ∈ D(t)} is the edge relation,
and λ is the node-labelling function with λ(u) = t[u]. For an slt grammar G,
we also write valuo(G) for uo(val(G)).

For reasons that will become clear in a moment we have to restrict in this
section to ranked trees, i.e., trees t ∈ TΣ such that for all u, v ∈ D(t), if t[u] = t[v]
then u and v have the same number of children (nodes with the same label have
the same number of children). For the purpose of deciding the isomorphism
problem for unordered slt-represented trees this is not a real restriction. Denote
for a tree t ∈ TΣ the ranked tree ranked(t) such that D(t) = D(ranked(t)) and

4

for every u ∈ D(t) with t[u] = σ: if u has k children in t, then ranked(t)[u] = σk,
where σk is a new symbol. Clearly, uo(s) and uo(t) are isomorphic if and only if
uo(ranked(s)) and uo(ranked(t)) are isomorphic. Moreover, for an slt grammar
G we construct in polynomial time the slt grammar ranked(G) obtained from
G by changing every production A → t into A → ranked(t), where ranked is
extended to trees over Σ and nonterminals by defining ranked(t)[u] = t[u] if
t[u] is a nonterminal. Then val(ranked(G)) = ranked(val(G)) holds. Hence, in the
following we will only consider ranked trees, and all slt grammars will produce
ranked trees as well.

For a tree t ∈ TΣ we denote by dflr(t) ∈ Σ∗ its depth-first left-to-right
traversal string. It is defined as dflr(σ(t1, . . . , tk)) = σ dflr(t1) · · · dflr(tk) for σ ∈
Σ, k ≥ 0, and t1, . . . , tk ∈ TΣ . Note that for ranked trees s and t it holds that:
dflr(s) = dflr(t) if and only if s = t. This is the reason for restricting to ranked
trees: for unranked trees this equivalence fails. For instance, dflr((a(a(a))) =
a3 = dflr(a(a, a)).

Let <Σ be an order on Σ; it induces the length-lexicographical ordering <lex

on Σ by u <lex v iff (i) |u| < |v| or (ii) |u| = |v| and there exist p, u′, v′ ∈ Σ∗
and a, b ∈ Σ with a <Σ b, u = pau′, and v = pbv′. We extend <llex to TΣ by
s <llex t iff dflr(s) <llex dflr(t).

Statement (1) in the following lemma was shown in [4] by computing from
G,H in polynomial time slps G′, H ′ with val(G′) = dflr(val(G)) and val(H ′) =
dflr(val(H)). Equivalence of slps can be decided in polynomial time (this re-
sult was independently shown by Plandowski, Hirshfeld, Jerrum, Moller, and
Mehlhorn, Sundar, Uhrig, see [12] for references). For statement (2) one can do
binary search to find the first position where the string val(G′) and val(H ′) differ.

Lemma 3. Let G,H be slt grammars. It can be checked in polynomial time
whether (i) val(G) <llex val(H) and (ii) whether val(G) = val(H).

For a tree t ∈ TΣ we define its canon canon(t) as the smallest tree s w.r.t. <llex

such that uo(s) is isomorphic to uo(t). In order to determine canon(t) for t =
σ(t1, . . . , tk) let ci = canon(ti) for i ∈ [k] and let ci1 ≤llex ci2 ≤llex · · · ≤llex cik be
the length-lexicographically ordered list of canons c1, . . . , ck. Then canon(t) =
σ(ci1 , . . . , cin). The following lemma can be easily shown by an induction on the
tree structure:

Lemma 4. Let s, t ∈ TΣ. Then uo(s) is isomorphic to uo(t) iff canon(s) =
canon(t).

In the following, we denote a tree A1(A2(· · ·An(t) · · ·)), where A1, A2, . . . , An
are unary nonterminals with A1A2 · · ·An(t).

Theorem 5. From a given slt grammar G one can construct in polynomial
time an slt grammar G′ such that val(G′) = canon(val(G)).

Proof. Let G = (N,Σ, S, P). We assume that G contains no distinct nontermi-
nals A1, A2 ∈ N (0) such that valG(A1) = valG(A2). This is justified because we

5

can test valG(A1) = valG(A2) in polynomial time by Lemma 3 (and replace A2

by A1 in G in such a case). We will add polynomially many new nonterminals
to G and change the productions for nonterminals from N (0) such that for the
resulting slt grammar G′: valG′(Z) = canon(valG(Z)) for every Z ∈ N (0).

Consider a nonterminal Z ∈ N (0) and let M be the set of all nonterminals
in G that can be reached from Z. By induction, we can assume that G already
satisfies valG(A) = canon(valG(A)) for every A ∈M (0) \ {Z}.
Case (i) Z is of type (1) from Lemma 1, i.e., has a production Z → σ(A1, . . . , Ak).
Using Lemma 3 we construct an ordering i1, . . . , ik of [k] such that valG(Ai1) ≤llex

valG(Ai2) ≤llex · · · ≤llex valG(Aik). We obtain G′ by replacing the production
Z → σ(A1, . . . , Ak) by Z → σ(Ai1 , . . . , Aik) and get valG′(Z) = canon(valG(Z)).
Case (ii) Z is of type (2), i.e., has a production Z → B(A). Let {S1, . . . , Sm} =
M (0) \ {Z} such that valG(S1) <llex valG(S2) <llex · · · <llex valG(Sm). Note that
A is one of these Si. The sequence S1, S2, . . . , Sm partitions the set of all trees
t in TΣ into intervals I0, I1, . . . , Im with

– Ii = {t ∈ TΣ | valH(Si) ≤llex t <llex valH(Si+1)} for 1 ≤ i ≤ m− 1,
– I0 = {t ∈ TΣ | t <llex valH(S1)}, and Im = {t ∈ TΣ | valH(Sm) ≤llex t}.

Consider the maximal G(4)-derivation B(A) ⇒∗G(4) B1B2 · · ·BN (A) starting
from B(A), where Bi is a type-(3) nonterminal. Clearly, the number N might be
of exponential size, but the set {B1, . . . , BN} can be easily constructed. In order
to construct an slt for canon(valG(Z)), it remains to reorder the arguments
in right-hand sides of the type-(3) nonterminals Bi. The problem is of course
that different occurrences of a type-(3) nonterminal in the sequence B1B2 · · ·BN
have to be reordered in a different way. But we will show that the sequence
B1B2 · · ·BN can be split into m+ 1 blocks such that all occurrences of a type-
(3) nonterminal in one of these blocks have to be reordered in the same way.

Let tk = valG(BkBk+1 · · ·BN (A)) for k ∈ [N] and tN+1 = valG(A). Note
that t1 = valG(Z) >llex valG(Sm) and that tk+1 <llex tk for all k. For i ∈ [m]
let ki be the maximal position k ≤ N + 1 such that tk ≥llex valG(Si). Since
t1 ≥llex valG(Sm) ≥llex valG(Si) this position is well defined. Note that if A = Si,
then ki = ki−1 = · · · = k1 = N+1. For every 0 ≤ i ≤ m, the interval [ki+1+1, ki]
is the set of all k such that valG(tk) ∈ Ii. Here we set km+1 = 0 and k0 = N + 1.
Clearly, the interval [ki+1 + 1, ki] might be empty. The positions k0, . . . , km can
be computed in polynomial time using binary search combined with Lemma 3.
To apply the latter, note that for a given k we can compute in polynomial time
an slt grammar for the tree tk using Lemma 2 for the slp consisting of all
type-(4) productions that are used to derive B1B2 · · ·BN .

We now factorize the string B1B2 · · ·BN as B1B2 · · ·BN = umum−1 · · ·u0,
where um = B1 · · ·Bkm−1 and ui = Bki+1 · · ·Bki−1 for 0 ≤ i ≤ m − 1. By
Lemma 2 we can compute in polynomial time an slp Gi for the string ui. For the
further consideration, we view Gi as a 1-slt grammar consisting only of type-(4)
productions. Note that val(Gi) is a linear tree, where every node is labelled with a
type-(3) nonterminal. We now add reordered versions of type-(3) productions to
Gi. Consider a type-(3) production (C(y) → σ(A1, . . . , Aj , y, Aj+1, . . . , Ak)) ∈

6

P where C ∈ {B1, . . . , BN}. We add to Gi the type-(3) production C(y) →
σ(Aj1 , . . . , Ajν , y, Ajν+1 , . . . , Ajk), where {j1, . . . , jk} = [k] and 0 ≤ ν ≤ k are
chosen such that

(1) valG(Aj1) ≤llex valG(Aj2) ≤llex · · · ≤llex valG(Ajk) and
(2) valG(Ajν) ≤llex valG(Si) <llex valG(Ajν+1).

Note that if ν = k then condition (2) states that valG(Ajk) ≤llex valG(Si), and
if ν = 0 then it states that valG(Si) <llex valG(Aj1). Also note that condition
(2) ensures that for every tree t ∈ Ii: valG(Ajν) ≤llex t <llex valG(Ajν+1). Hence,
valG(σ(Aj1 , . . . , Ajν , t, Ajν+1 , . . . , Ajk)) is a canon. The crucial observation now
is that the above factorization umum−1 · · ·u0 of B1B2 · · ·BN was defined in
such a way that for every occurrence of a type-(3) nonterminal C(y) in ui, the
parameter y will be substituted by a tree from Ii during the derivation from Z to
valG(Z). Hence, we reorder the arguments in the right-hand sides of nonterminal
occurrences in ui in the correct way to obtain a canon.

We now rename the nonterminals in the slt grammars Gi (which are now of
type-(3) and type-(4)) so that the nonterminal sets of G,G0, . . . , Gm are pairwise
disjoint. Let Xi(y) be the start nonterminal of Gi after the renaming. Then we
add to the current slt grammar G the union of all the Gi, and replace the
production Z → B(A) by Z → XmXm−1 · · ·X0(A). The construction implies
that valG′(Z) = canon(valG(Z)) for the resulting grammar G′.

It remains to argue that the above construction can be carried out in poly-
nomial time. All steps only need polynomial time in the size of the current slt
grammar. Hence, it suffices to show that the size of the slt grammar is polyno-
mially bounded. The algorithm is divided into |N (0)| many phases, where in each
phase it enforces valG′(Z) = canon(valG(Z)) for a single nonterminal Z. Consider
a single phase, where valG′(Z) = canon(valG(Z)) is enforced for a nonterminal
Z. In this phase, we (i) change the production for Z and (ii) add new type-(3)
and type-(4) productions to G (the union of the Gi above). But the number
of these new productions is polynomially bounded in the size of the initial slt
grammar (the one before the first phase), because the nonterminals introduced
in earlier phases are not relevant for the current phase. This implies that the
additive size increase in each phase is bounded polynomially in the size of the
initial grammar. ut

From Lemma 3, Lemma 4, and Theorem 5 we get the following result. ptime-
hardness already holds for dags, i.e., slt grammars where all nonterminals have
rank zero [15].

Corollary 6. The problem of deciding whether valuo(G1) and valuo(G2) are iso-
morphic for given slt grammars G1 and G2 is ptime-complete

4 Isomorphism of Unrooted Unordered SLT-Compressed
Trees

In this section we show isomorphism for unrooted unordered trees represented
by slt grammars can be solved in polynomial time. An unrooted unordered tree

7

t over Σ can be seen as a node-labeled (undirected) graph t = (V,E, λ), where
E ⊆ V ×V is symmetric and λ : V → Σ. Let s = (V,E, λ) be a rooted unordered
tree. The tree ur(s) = (V,E ∪E−1, λ) is the unrooted version of s. An unrooted
unordered tree t can be represented by an slt grammar G by forgetting the
order and root information present in G. Let valur,uo(G) = ur(uo(val(G))).

Let t = (V,E, λ) be an unordered unrooted tree. For a node v ∈ V we
define the eccentricity ecct(v) = maxu∈V δt(u, v) and the diameter �(t) =
maxv∈V ecct(v), where δt(u, v) denotes the distance from u to v (i.e., the number
of edges on the path from u to v in t). A node u of t is called center node of
t if for all leaves v of t: δt(u, v) ≤ (�(s) + 1)/2. Let center(t) be the set of all
center nodes of t. One can compute the center nodes by deleting all leaves of the
tree and iterating this step, until the current tree consists of at most two nodes.
These are the center nodes of t. In particular, t has one or two center nodes.
Another characterization of center nodes that is important for our algorithm is
via longest paths. Let p = (v0, v1, . . . , vn) be a longest simple path in t, i.e.,
n = �(t). Then the middle points vbn/2c and vdn/2e, which are identical if n is
even, are the center nodes of t, independently of the concrete longest path p.

Note that there are two center nodes if and only if �(t) is odd. Since our con-
structions are simpler if a unique center node exists, we first make sure that �(t)
is even. Let # be a new symbol not in Σ. For an unrooted unordered tree t we
denote by even(t) the tree where every pair of edge (u, v), (v, u) is replaced by the
edges (u, v′), (v′, v), (v, v′), (v′, u), where v′ is a new node labelled #. Then for an
slt grammar G = (N,Σ,P, S) we let even(G) = (N,Σ ∪ {#}, P ′, S) be the slt
grammar where P ′ is obtained from P by replacing every subtree σ(t1, . . . , tk)
with σ ∈ Σ, k ≥ 1, in a right-hand side by the subtree σ(#(t1), . . . ,#(tk)).
Observe that (i) valur,uo(even(G)) = even(valur,uo(G)), (ii) �(even(t)) = 2 ·�(t)
is even, i.e., even(t) has only one center node, and (iii) trees t and s are iso-
morphic if and only if even(t) and even(s) are isomorphic. Since even(G) can
be constructed in polynomial time, we assume in the following that every slt
grammar produces a tree with a unique center node. For such a tree t we denote
with center(t) its unique center node.

Let u ∈ V . The rooted version root(t, u) of t with root node u is root(t, u) =
(V,E′, λ), where E′ = {(v, v′) ∈ E | δt(u, v) < δt(u, v′)}. Two unrooted un-
ordered trees t1, t2 of even diameter are isomorphic iff root(t1, center(t1)) is iso-
morphic to root(t2, center(t2)). Thus, we can solve in polynomial time the iso-
morphism problem for unrooted unordered trees represented by slt grammars
G1, G2 by (i) computing for i ∈ {1, 2} in polynomial time a compressed represen-
tation ũi of ui = center(valur,uo(Gi)) (Section 4.1), (ii) computing for i ∈ {1, 2} in
polynomial time an slt grammar G′i such that valuo(G′i) = root(valur,uo(Gi), ui)
(Section 4.2) and (iii) testing in polynomial time if valuo(G′1) is isomorphic to
valuo(G′2) (Corollary 6).

4.1 Finding Center Nodes

Let G = (N,Σ, S, P) be an slt grammar. A G-compressed path p is a string
of pairs p = (A1, u1) · · · (An, un) such that for all i ∈ [n], Ai ∈ N , A1 = S,

8

ui ∈ D(ti) is a Dewey address in ti where (Ai → ti) ∈ P , ti[ui] = Ai+1 for
i < n, and ti[un] ∈ Σ. If we omit the condition ti[un] ∈ Σ, then p is a partial
G-compressed path. Note that by definition, n ≤ |N |. A partial G-compressed
path uniquely represents one particular node in the derivation tree of G, and a
G-compressed path represents a leaf of the derivation tree and hence a node of
val(G). We denote this node by valG(p). The concatenation u1, u2, . . . , un of the
Dewey addresses is denoted by u(p).

For a context t(y) ∈ CΣ we define ecc(t) = ecct(y) (recall that in a context
there is a unique occurrence of the parameter y) and rty(t) = δt(ε, y) (the dis-
tance from the root to the parameter y). For a tree s ∈ TΣ we denote with h(s)
its height. We extend these notions to contexts t ∈ CΣ∪N and trees s ∈ TΣ∪N
by ecc(t) = ecc(valG(t)), rty(t) = rty(valG(t)), and h(s) = h(valG(s)). Eccen-
tricity, distance from root to y, and height can be computed in polynomial
time for slt-represented trees bottom-up. To do so, observe that for contexts
t(y), t′(y) ∈ CΣ∪N and a tree s ∈ TΣ∪N : rty(t[t′]) = rty(t) + rty(t′), ecc(t[t′]) =
max{ecc(t′), ecc(t) + rty(t′)}, and h(t[s]) = max{h(s), rty(t) + h(s)}. Similarly,
for t(y) = σ(s1, . . . si, y, si+1, . . . , sk) ∈ CΣ∪N and s = σ(s1, . . . , sk) ∈ TΣ∪N :
rty(t) = 1, ecc(t) = 2 + max{h(si) | i ∈ [k]}, and h(s) = 1 + max{h(si) | i ∈ [k]}.

Our search for the center node of an slt-compressed tree is based on the
following idea. For a context t(y) ∈ CΣ , where u is the Dewey address of the
parameter y, and a tree s ∈ TΣ we say that a node v ∈ D(t[s]) belongs to t
if v ∈ D(t) \ {u}. Otherwise, we say that v belongs to s, which means that u
is a prefix of v. Now, let t(y) ∈ CΣ be a context and s ∈ TΣ a tree such that
�(t[s]) is even. Then one can show that center(t[s]) belongs to s if and only
if ecc(t) ≤ h(s). Based on this, we can locate the path to the center node in
polynomial time:

Lemma 7. For a given slt grammar G such that valur,uo(G) has even diameter,
one can construct a G-compressed path for center(valur,uo(G)).

4.2 Re-Rooting of SLT Grammars

Let G = (N,Σ, S, P) be an slt grammar (as usual, having the normal form from
Lemma 1) and p a G-compressed path. Let s(p) ∈ TΣ∪N be the tree defined
inductively as follows: Let (A → t) ∈ P and u ∈ D(t). Then s((A, u)) = t. If
p = (A, t)p′ with p′ non-empty, then either (i) u = ε and t = B(C) or (ii)
u = i ∈ N and t[i] ∈ N (0). In case (i) we set s(p) = s(p′)[C], in case (ii) we set
s(p) = t′[s(p′)], where t′(y) is obtained from t by replacing the i-th argument
of the root by y. Note that s(p′) ∈ CΣ∪N ({y}) if p′ starts with a nonterminal
of rank 1. Let s = s(p); its size is bounded by the size of G. Note that s[u(p)]
is a terminal symbol (recall that u(p) denotes the concatenation of the Dewey
addresses in p). Assume that s[u(p)] = σ ∈ Σ. Let # be a fresh symbol and let
s′ be obtained from s by changing the label at u(p) from σ to #. Let s′ ⇒∗G s′′

be the shortest derivation such that s′′[ε] = δ ∈ Σ (it consists of at most |N |
derivation steps). We denote the #-labeled node in s′′ by u. Finally, let t be
obtained from s′′ by changing the unique # into σ. We define the p-expansion

9

of G, denoted exG(p), as the tuple (t, u, σ, δ). Note that valG(p) is the unique
#-labelled node in valG(s′′). The p-expansion can be computed in polynomial
time from G and p.

The p-expansion (t, u, σ, δ) has all information needed to construct a grammar
G′ representing the rooted version at p of val(G). If u = ε then also valG(p) = ε.
Since G is already rooted at ε nothing has to be done in this case and we return
G′ = G. If u 6= ε then valG(p) 6= ε and hence t contains two terminal nodes
which uniquely represent the root node and the node valG(p) of the tree val(G).

Let s1 ∈ TΣ be a rooted ordered tree representing the unrooted unordered
tree s̃1 = ur(uo(s1)). Let u 6= ε be a node of s1. Let s1[ε] = δ ∈ Σ and s1[u] = σ ∈
Σ. Since u 6= ε, we can write s1 = δ(ζ1, . . . , ζi−1, t

′[σ(ξ1, . . . , ξm)], ζi+1, . . . , ζk),
where t′ is a context, and u = iu′ with u′ the Dewey address of the pa-
rameter y in t′. A rooted ordered tree s2 representing the rooted unordered
tree s̃2 = root(s̃1, u) is s2 = σ(ξ1, . . . , ξm, rooty(t′)[δ(ζ1, . . . , ζi−1, ζi+1, . . . , ζk)]),
where rooty is a function mapping contexts to contexts defined recursively as
follows (f ∈ Σ, t1, . . . , ti−1, ti+1, . . . , t` ∈ TΣ , and t(y), t′(y) ∈ CΣ):

rooty(y) = y (1)
rooty(f(t1, . . . , ti−1, y, ti+1, . . . , t`)) = f(t1, . . . , ti−1, y, ti+1, . . . , t`) (2)

rooty(t[t′(y)]) = rooty(t′)[rooty(t(y))] (3)

Intuitively, the mapping rooty unroots a context t(y) towards its y-node u, i.e.,
it reverses the path from the root to u. Thus, for instance, rooty(f(a, y, b)) =
f(a, y, b) and rooty(f(a, g(c, y, d), b)) = g(c, f(a, y, b), d).

Lemma 8. From a given slt grammar G and a G-compressed path p one can
construct in polynomial time an slt grammar G′ such that valuo(G′) is isomor-
phic to root(valur,uo(G), valG(p)).

Proof. Let G = (N,Σ, S, P) and exG(p) = (t, u, σ, δ). If u = ε then define G′ =
G. If u 6= ε then we can write t = δ(B1, . . . , Bi−1, t

′[σ(ξ1, . . . , ξm)], Bi+1, . . . , Bk),
where Bj ∈ N (0), ξj ∈ TN , t′ is a context composed of nonterminals A ∈ N (1)

and contexts f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (f ∈ Σ, ζj ∈ TN), and u = iu′, where
u′ is the Dewey address of the parameter y in t′.

We define G′ = (N]N ′, Σ, S, P ′) where N ′ = {A′ | A ∈ N (1)}. To define the
production set P ′, we extend the definition of rooty to contexts from CΣ∪N by (i)
allowing in the trees tj from Equation (2) also nonterminals, and (ii) defining for
every B ∈ N (1), rooty(B(y)) = B′(y). We now define the set of productions P ′

of P as follows: We put all productions from P except for the start production
(S → s) ∈ P into P ′. For the start variable S we add to P ′ the production

S → σ(ξ1, . . . , ξm, rooty(t′)[δ(B1, . . . , Bi−1, Bi+1, . . . , Bk)]). (4)

Moreover, let A ∈ N (1) and (A(y) → ζ) ∈ P . If this is a type-(3) production,
then we add A′(y) → ζ to P ′. If ζ = B(C(y)) then add A′(y) → C ′(B′(y)) to
P ′.

10

A simple induction shows that valG′(A′) = rooty(valG(A)) for every A ∈
N (1). This implies that valG′(rooty(c(y))) = rooty(valG(c(y))) for every context
c(y) that is composed of contexts f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (ζj ∈ TN) and
nonterminals A ∈ N (1). In particular, valG′(rooty(t′)) = rooty(valG(t′(y))) for
the context t′. This, and the form of the start production of G′ (4) easily imply
that valuo(G′) is isomorphic to root(valur,uo(G), valG(p)). ut

Corollary 9. The problem of deciding whether valur,uo(G1) and valur,uo(G2) are
isomorphic for given slt grammars G1 and G2 is ptime-complete.

Proof. The upper bound follows from Lemma 7, Lemma 8, and Corollary 6.
ptime-hardness can be shown as for rooted unordered trees. ut

5 Further Results

Bisimulation on SLT-compressed trees. Fix a set Σ of node labels. Let
G = (V,E, λ) be a directed node-labelled graph, i.e., E ⊆ V ×V and λ : V → Σ.
A binary relation R ⊆ V × V is a bisimulation on G, if for all (u, v) ∈ R the
following three conditions hold: (i) λ(u) = λ(v), (ii) if (u, u′) ∈ E then there
exists v′ ∈ V such that (v, v′) ∈ E and (u′, v′) ∈ R, and (iii) if (v, v′) ∈ E
then there exists u′ ∈ V such that (u, u′) ∈ E and (u′, v′) ∈ R. Let the relation
∼ be the union of all bisimulations on G. It is the largest bisimulation and an
equivalence relation. Two rooted unordered trees s, t with node labels from Σ
and roots rs, rt are bisimulation equivalent if rs ∼ rt holds in the disjoint union
of s and t. For instance, f(a, a, a) and f(a, a) are bisimulation equivalent but
f(g(a), g(b)) and f(g(a, b)) are not. For a rooted unordered tree t we define the
bisimulation canon bcanon(t) inductively: Let t = f(t1, . . . , tn) (n ≥ 0) and let
bi = bcanon(ti). Then bcanon(t) = f(s1, . . . , sm), where (i) for every i ∈ [m], si
is isomorphic to one of the bj , and (ii) for every i ∈ [n] there is a unique j ∈ [m]
such that si and bj are isomorphic as rooted unordered trees. In other words:
Bottom-up, we eliminate repeated subtrees among the children of a node. For
instance, bcanon(f(a, a, a)) = f(a) = bcanon(f(a, a)). Induction on the height
of trees shows:

Lemma 10. Let s and t be rooted unordered trees. Then s and t are bisimulation
equivalent if and only if bcanon(s) and bcanon(t) are isomorphic.

The proof of the following theorem is similar to those of Theorem 5.

Theorem 11. From a given slt grammar G one can compute a new slt gram-
mar G′ such that valuo(G′) is isomorphic to bcanon(valuo(G)).

From Corollary 6, Lemma 10, and Theorem 11 we get:

Corollary 12. For given slt grammars G1 and G2 one can check in polynomial
time, whether valuo(G1) and valuo(G2) are bisimulation equivalent.

11

Non-linear ST grammars. One can easily transform a given st grammar in
exponential time into an equivalent slt grammar. Using this, the upper bounds
in the following statement follow from Corollary 6, 9, and 12. For the lower
bound, one can reduce from qbf using gadgets from [9].

Theorem 13. The following questions are pspace-hard and in exptime for
given st grammars G1 and G2:
– Are valuo(G1) and valuo(G2) isomorphic (resp., bisimulation equivalent)?
– Are valur,uo(G1) and valur,uo(G2) isomorphic?

The precise complexity of these questions remains open. Since an st grammar
can be transformed into a hierarchical graph definition for a dag, we rediscover
the following result from [3]: Bisimulation equivalence for dags given by hierar-
chical graph definitions is pspace-hard and in exptime.

References

1. A. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison–Wesley, Reading, MA, 1974.

2. J. Balcázar, J. Gabarró, and M. Sántha. Deciding bisimilarity is P-complete.
Formal Aspects of Computing, 4:638–648, 1992.

3. R. Brenguier, S. Göller, and O. Sankur. A comparison of succinctly represented
finite-state systems. In Proc. CONCUR 2012, LNCS 7454, pages 147–161. Springer,
2012.

4. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML
document trees. Inf. Syst., 33(4–5):456–474, 2008.

5. S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canoniza-
tion. In Kurt Gödel Colloquium 97, pages 18–33, 1997.

6. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory,
51(7):2554–2576, 2005.

7. B. Das, P. Scharpfenecker, and J. Torán. Succinct encodings of graph isomorphism.
In Proc. LATA 2014, LNCS 8370, pages 285–296. Springer, 2014.

8. H. Galperin and A. Wigderson. Succinct representations of graphs. Inf. Contr.,
56:183-198, 1983.

9. B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph
isomorphism. J. Comput. Syst. Sci., 66(3):549–566, 2003.

10. T. Lengauer and K. W. Wagner. The correlation between the complexities of the
nonhierarchical and hierarchical versions of graph problems. J. Comput. Syst. Sci.,
44:63–93, 1992.

11. S. Lindell. A logspace algorithm for tree canonization (extended abstract). In
Proc. STOC’92, pages 400–404. ACM, 1992.

12. M. Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

13. M. Lohrey, S. Maneth, and F. Peternek. Compressed tree canonization. arXiv.org,
2015. http://arxiv.org/abs/1502.04625

14. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata
evaluation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–1669,
2012.

15. M. Lohrey and C. Mathissen. Isomorphism of regular trees and words. Inf. Com-
put., 224:71–105, 2013.

12

