
Parallel Identity Testing for Skew Circuits with Big
Powers and Applications

Daniel König and Markus Lohrey

Universität Siegen, Germany
{koenig,lohrey}@eti.uni-siegen.de

Abstract. Powerful skew arithmetic circuits are introduced. These are skew arith-
metic circuits with variables, where input gates can be labelled with powers xn

for binary encoded numbers n. It is shown that polynomial identity testing for
powerful skew arithmetic circuits belongs to coRNC2, which generalizes a cor-
responding result for (standard) skew circuits. Two applications of this result are
presented: (i) Equivalence of higher-dimensional straight-line programs can be
tested in coRNC2; this result is even new in the one-dimensional case, where
the straight-line programs produce strings. (ii) The compressed word problem (or
circuit evaluation problem) for certain wreath products belongs to coRNC2. Full
proofs can be found in the long version [13].

1 Introduction

Polynomial identity testing (PIT) is the following computational problem: The input
is an arithmetic circuit, built up from addition gates, multiplication gates, and input
gates that are labelled with variables (x1, x2, . . .) or constants (−1, 0, 1), and it is asked
whether the output gate evaluates to the zero polynomial (in this paper, we always work
in the polynomial ring over the coefficient ring Z or Zn for n ≥ 2). Based on the
Schwartz-Zippel-DeMillo-Lipton Lemma, Ibarra and Moran [9] proved that PIT over
Z or Zp belongs to the class coRP (the complements of problems in randomized poly-
nomial time). Whether there is a deterministic polynomial time algorithm for PIT is an
important problem. In [10] it is shown that if there exists a language in DTIME(2O(n))
that has circuit complexity 2Ω(n), then P = BPP (and hence P = RP = coRP). There
is also an implication that goes the other way round: Kabanets and Impagliazzo [11]
have shown that if PIT ∈ P, then (i) there is a language in NEXPTIME that does not
have polynomial size circuits, or (ii) the permanent is not computable by polynomial
size arithmetic circuits. Both conclusions represent major open problems in complexity
theory. This indicates that derandomizing PIT will be very difficult. On the other hand,
for arithmetic formulas (where the circuit is a tree) and skew arithmetic circuits (where
for every multiplication gate, one of the two input gates is a constant or a variable), PIT
belongs to coRNC (but it is still not known to be in P), see [11, Cor. 2.1]. This holds,
since arithmetic formulas and skew arithmetic circuits can be evaluated in NC if the
variables are substituted by concrete (binary coded) numbers. Then, as for general PIT,
the Schwartz-Zippel-DeMillo-Lipton Lemma yields a coRNC-algorithm.

In this paper, we identify a larger class of arithmetic circuits, for which polynomial
identity testing is still in coRNC; we call these circuits powerful skew circuits. In such a

circuit, we require that for every multiplication gate, one of the two input gates is either
a constant or a power xN of a variable x, where the exponent N is given in binary
notation. One can replace this power xN by a subcircuit of size logN using iterated
squaring, but the resulting circuit is no longer skew. The main result of this paper states
that PIT for powerful skew circuits over the rings Z[x] and Zp[x] (p prime) is still in
coRNC (in fact, coRNC2). For this, we use an identity testing algorithm of Agrawal and
Biswas, [1] which computes the output polynomial of the circuit modulo a polynomial
q(x) of polynomially bounded degree, which is randomly chosen from a certain sample
space. Moreover, in our application, all computations can be done in the ring Fp[x] for
a prime number p of polynomial size. This allows us to compute the big powers xN

modulo q(x) in NC2 using an algorithm of Fich and Tompa [5]. It should be noted that
the application of the Agrawal-Biswas algorithm is crucial. If, instead we would use
the Schwartz-Zippel-DeMillo-Lipton Lemma, then we would be forced to compute aN

mod m for randomly chosen numbers a and m with polynomially many bits. Whether
this problem (modular powering) belongs to NC is an open problem [6, Problem B.5.6].

We present two applications of our coRNC identity testing algorithm. The first
one concerns the equivalence problem for straight-line programs. Here, a straight-line
program (SLP) is a context-free grammar G that computes a single word val(G). In
this context, SLPs are extensively used in data compression and algorithmics on com-
pressed data, see [15] for an overview. Equivalence for SLPs, i.e., the question whether
val(G) = val(H) for given SLPs G,H , can be decided in polynomial time. This result
was independently discovered in [8,19,21]. All known algorithms for SLP-equivalence
are sequential and it is not clear how to parallelize them. Here, we exhibit an NC2-
reduction from SLP-equivalence to PIT for skew powerful circuits. Hence, equivalence
for SLPs belongs to coRNC. Moreover, our reduction immediately generalizes to higher
dimensional pictures for which SLPs can be defined in a fashion similar to the one-
dimensional (string) case, using one concatenation operation in each dimension. For
two-dimensional SLPs, Berman et al. [3] proved that equivalence belongs to coRP
using a reduction to PIT. We improve this result to coRNC. Whether equivalence of
two-dimensional (resp., one-dimensional) SLPs belongs to P (resp., NC) is open.

Our second application concerns the compressed word problem for groups. Let G
be a finitely generated (f.g.) group, and let Σ be a finite generating set for G. For the
compressed word problem for G, briefly CWP(G), the input is an SLP (as defined in
the preceding paragraph) over the alphabet Σ ∪ Σ−1, and it is asked whether val(G)
evaluates to the group identity. The compressed word problem is a succinct version
of the classical word problem (Does a given word over Σ ∪Σ−1 evaluate to the group
identity?). One of the main motivations for the compressed word problem is the fact that
the classical word problem for certain groups (automorphism groups, group extensions)
can be reduced to the compressed word problem for simpler groups [16, Section 4.2].
For finite groups (and monoids) the compressed word problem was studied in Beaudry
et al. [2], and for infinite groups the problem was studied for the first time in [14]. Sub-
sequently, several important classes of f.g. groups with polynomial time compressed
word problems were found: f.g. nilpotent groups, graph groups (also known as right-
angled Artin groups), and virtually special groups. The latter include all Coxeter groups,
one-relator groups with torsion, fully residually free groups, and fundamental groups of

2

hyperbolic 3-manifolds; see [16]. For f.g. linear groups, i.e., f.g. groups of matrices over
a field, the compressed word problem reduces to PIT (over Z or Zp, depending on the
characteristic of the field) and hence belongs to coRP [16, Thm. 4.15]. Recently it was
shown in [12] that the compressed word problem for a f.g. nilpotent group belongs to
NC2 (the result can be extended to so called f.g. nilpotent by finite solvable groups).
Here, we prove that the compressed word problem for the wreath product Z oZ is equiv-
alent w.r.t. NC2-reductions to PIT for powerful skew circuits. In particular, CWP(Z oZ)
belongs to coRNC. This result generalizes to wreath productsGoZn, whereG is a direct
product of copies of Z and Zp for primes p. In contrast, it was shown in [16, Thm. 4.21]
that CWP(G o Z) is coNP-hard for every non-abelian group G.

2 Background from complexity theory

Recall that RP is the set of all problems A for which there exists a polynomial time
bounded randomized Turing machine R such that: (i) if x ∈ A then R accepts x with
probability at least 1/2, and (ii) if x 6∈ A then R accepts x with probability 0. The class
coRP is the class of all complements of problems from RP.

We use standard definitions concerning circuit complexity, see e.g. [22] for more
details. In particular we will consider the class NCi of all problems that can be solved
by a polynomial size circuit family of depth O(logi n) that uses NOT-gates and AND-
gates and OR-gates of fan-in two. The class NC is the union of all classes NCi. All
circuit families in this paper will be logspace-uniform, which means that the n-th circuit
in the family can be computed in logspace from the unary encoding of n.

To define a randomized version of NCi, one uses circuit families with additional
inputs. So, let the n-th circuit Cn in the family have n normal input gates plusm random
input gates, where m is polynomially bounded in n. For an input x ∈ {0, 1}n, its
acceptance probability is Prob[Cn accepts x] = 2−m · |{y ∈ {0, 1}m | Cn(x, y) = 1}|.
Here, Cn(x, y) = 1 means that the circuit Cn evaluates to 1 if the i-th normal input gate
gets the i-th bit of the input string x, and the i-th random input gate gets the i-th bit of
the random string y. Then, the class RNCi is the class of all problems A for which there
exists a polynomial size circuit family (Cn)n≥0 of depth O(logi n) with random input
gates that uses NOT-gates and AND-gates and OR-gates of fan-in two, such that for all
inputs x ∈ {0, 1}∗ of length n: (i) if x ∈ A, then Prob[Cn accepts x] ≥ 1/2, and (ii) if
x 6∈ A, then Prob[Cn accepts x] = 0. As usual, coRNCi is the class of all complements
of problems from RNCi. Section B.9 in [6] contains several problems that are known to
be in RNC, but not known to be in NC; the most prominent example is the existence of
a perfect matching in a graph.

3 Polynomials and circuits

We deal with multivariate polynomial rings R[x1, . . . , xk], where R is the ring of in-
tegers Z or the ring Zn of integers modulo n ≥ 2. For computational problems, we
distinguish between two representations of polynomials. Consider the polynomial

p(x1, . . . , xk) =
∑

1≤i≤l

aix
ei,1
1 · · ·xei,k

k

3

The standard representation of p(x) is the sequence of tuples (ai, ei,1, . . . , ei,k), where
the coefficient ai is represented in binary notation (of course this is only important
for the coefficient ring Z) and the exponents ei,j are represented in unary notation.
Let |p| =

∑n
i=1(dlog |ai|e + ei,1 + · · · + ei,k). The succinct representation of p(x)

coincides with the standard version, except that the exponents ei,j are represented in
binary notation. Let ||p|| =

∑n
i=1(dlog |ai|e+ dlog ei,1e+ · · ·+ dlog ei,ke). We use the

following result of Eberly [4] (see also [7]).

Proposition 1. Iterated addition, iterated multiplication, and division with remainder
of polynomials from Z[x] or Fp[x] (p is a prime that can be part of the input in binary
encoding) that are given in standard representation belong to NC1.

Consider a commutative semiring S = (S,⊕,⊗). An arithmetic circuit (or just circuit)
over S is a triple C = (V, rhs, A0), where V is a finite set of gates or variables, A0 ∈ V
is the output gate, and rhs (for right-hand side) maps everyA ∈ V to an expression (the
right-hand side of A) of one of the following three forms: (i) a semiring element s ∈ S
(such a gate is an input gate), (ii) B ⊕ C with B,C ∈ V (such a gate is an addition
gate), (iii) B ⊗ C with B,C ∈ V (such a gate is a multiplication gate). Moreover, the
directed graph (V, {(A,B) ∈ V × V | B occurs in rhs(A)}) (the graph of C) has to be
acyclic. Every gate A ∈ V evaluates to an element valC(A) ∈ S in the natural way and
we set val(C) = valC(A0). A circuit over S is called skew if for every multiplication
gate A one of the two gates in rhs(A) is an input gate.

A branching program over S is a tuple A = (V,E, λ, s, t), where (V,E) is a di-
rected acyclic graph, λ : E → S assigns to each edge a semiring element, and s, t ∈ V .
Let P be the set of all paths from s to t. For a path p = (v0, v1, . . . , vn) ∈ P (v0 = s,
vn = t) we define λ(p) =

∏n
i=1 λ(vi−1, vi) as the product (w.r.t. ⊗) of all edge labels

along the path. Finally, the value defined by A is val(A) =
∑
p∈P λ(p). Skew circuits

and branching programs are basically the same objects (the edge labels of the branching
program correspond to the constant inputs of multiplication gates in the skew circuit).

It is well known that the value defined by a branching program A can be computed
using matrix powers. W.l.o.g. assume that A = ({1, . . . , n}, E, λ, 1, n) and consider
the adjacency matrix M of A, i.e., the (n× n)-matrix M with M [i, j] = λ(i, j). Then
val(A) is the (1, n)-entry of the matrix

∑n
i=0M

i. For many semirings S, this fact
can be used to get an NC2-algorithm for computing val(A). The n + 1 matrix powers
M i (0 ≤ i ≤ n) can be computed in parallel, and every power can be computed by a
balanced tree of height log i ≤ log n, where every tree node computes a matrix product.
Hence, we obtain an NC2-algorithm, if (i) the number of bits needed to represent a
matrix entry in Mn is polynomially bounded in n and the number of bits of the entries
inM , and (ii) the product of two matrices over the semiring S can be computed in NC1.
Point (ii) holds if products of two elements and iterated sums in S can be computed in
NC1. For the following important semirings these facts are well known, see e.g. [22]:
(Z[x],+, ·), (Zn[x],+, ·) for n ≥ 2, (Z ∪ {∞},min,+), and (Z ∪ {−∞},max,+).
Here, we assume that polynomials are given in the standard representation. For the
polynomial ring Z[x] also note that every entry p(x) of the matrix power Mn is a
polynomial of degree n ·m, where m is the maximal degree of a polynomial in M , and
all coefficients are bounded by an (and hence need at most n log a bits), where a is the
maximal absolute value of a coefficient in M . Hence point (i) above holds, and we get:

4

Lemma 1. The output value of a given skew circuit (or branching program) over one
of the following semirings can be computed in NC2:

(a) (Z[x],+, ·) and (Zn[x],+, ·) for n ≥ 2 (polynomials are given in the standard
representation, and n can be part of the input in binary representation)

(b) (Z ∪ {∞},min,+) and (Z ∪ {−∞},max,+) (integers are given in binary repre-
sentation)

Point (a) of Lemma 1 also holds for the polynomial rings (Z[x1, . . . , xk],+, ·) and
(Zn[x1, . . . , xk],+, ·) as long as the number k of variables is not part of the input: The
polynomial

∏k
i=1(xi + 1) can be defined by a branching program with O(k) edges la-

beled by the polynomials xi+1, but the product of these polynomials has 2k monomials.
Also note that it is important that we use the standard representation for polynomials
in (a): The polynomial

∏n
i=1(x

2i

+ 1) has 2n monomials but can be represented by a
branching program with O(n) edges labeled by the polynomials x2i

+ 1.
In this paper, we will deal with circuits over a polynomial ringR[x1, . . . , xk], where

R is (Z,+, ·) or (Zn,+, ·). By definition, in such a circuit every input gate is labelled
with a polynomial from R[x1, . . . , xk]. Usually, one considers circuits where the right-
hand side of an input gate is a polynomial given in standard representation (or, equiva-
lently, a constant a ∈ R or variable xi); we will also use the term “standard circuits” in
this case. For succinctness reasons, we will also consider circuits over R[x1, . . . , xk],
where the right-hand sides of input gates are polynomials given in succinct represen-
tation. For general circuits this makes no real difference (since a big power xni

i can be
defined by a subcircuit of size O(log ni) using iterated squaring), but for skew circuits
we will gain additional succinctness. We will use the term “powerful skew circuits”.
Formally, a powerful skew circuit over the polynomial ring R[x1, . . . , xk] is a skew
circuit over the ring R[x1, . . . , xk] as defined above, where the right-hand side of ev-
ery input gate is a polynomial that is given in succinct representation (equivalently, we
could require that the right-hand side is a constant a ∈ R or a power xni with n given in
binary notation). We define the size of a powerful skew circuit C as follows: First, define
the size sizeC(A) of a gateA ∈ V as follows: IfA is an addition gate or a multiplication
gate, then sizeC(A) = 1, and if A is an input gate with rhs(A) = p(x1, . . . , xk), then
sizeC(A) = ||p(x1, . . . , xk)||. Finally, we define the size of C as

∑
A∈V sizeC(A).

A powerful branching program is a branching program (V,E, λ, s, t) over a poly-
nomial ring R[x1, . . . , xk], where every edge label λ(e) is a polynomial that is given
in succinct representation. The size of a powerful branching program is

∑
e∈E ||λ(e)||.

From a given powerful skew circuit one can compute in logspace an equivalent powerful
branching program and vice versa.

Note that the transformation of a powerful skew circuit over R[x1, . . . , xk] into an
equivalent standard skew circuit (where every input gate is labelled by a polynomial
given in standard representation) requires an exponential blow-up. For instance, the
smallest standard skew circuit for the polynomial xn has size n, whereas xn can be
trivially obtained by a powerful skew circuit of size dlog ne.

A central computational problem in computational algebra is polynomial identity
testing, briefly PIT. Let R be a ring that is effective in the sense that elements of R
can be encoded by natural numbers in such a way that addition and multiplication in

5

R become computable operations. Then, PIT for the ring R is the following problem:
Given a number k ≥ 1 and a circuit C over the ring R[x1, . . . , xk], is val(C) the zero-
polynomial? For the rings Z and Zp (p prime) the following result was shown in [9];
for Zn with n composite, it was shown in [1].

Theorem 1. For each of the rings Z and Zn (n ≥ 2), PIT belongs to the class coRP.

Note that the number k of variables is part of the input in PIT. On the other hand,
there is a well-known reduction from PIT to PIT restricted to univariate polynomials
(polynomials with a single variable) [1]. For a multivariate polynomial p(x1, . . . , xk) ∈
R[x1, . . . , xk] let deg(p, xi) be the degree of p in the variable xi. It is the largest number
d such that xdi appears in a monomial of p. Let p(x1, . . . , xk) be a polynomial and let
d ∈ N such that deg(p, xi) < d for all 1 ≤ i ≤ k. We define the univariate polynomial
U(p, d) = p(y1, yd, . . . , yd

k−1
). It is obtained from p(x1, . . . , xk) by replacing every

monomial a · xn1
1 · · ·x

nk

k by a · yN , where N = n1 + n2d+ · · ·nkdk−1 is the number
with base-d representation (n1, n2, . . . , nk). The polynomial p is the zero-polynomial
if and only if U(p, d) is the zero-polynomial. The following lemma can be shown for
arbitrary circuits, but we will only need it for powerful skew circuits.

Lemma 2. Given a powerful skew circuit C for the polynomial p(x1, . . . , xk), one can
compute in NC2 (i) the binary encoding of a number d with deg(p, xi) < d for all
1 ≤ i ≤ k and (ii) a powerful skew circuit C′ for U(p, d) .

Note that the above reduction from multivariate to univariate circuits does not work for
standard skew circuits: the output circuit will be powerful skew even if the input circuit
is standard skew. For instance, the polynomial

∏k
i=1 xi (which can be produced by a

standard skew circuit of size k) is transformed into the polynomial y2k−1, for which the
smallest standard skew circuit has size Ω(2k).

4 PIT for powerful skew circuits

The main result of this paper is:

Theorem 2. For each of the rings Z and Fp (p is a prime that can be part of the input
in unary encoding), PIT for powerful skew circuits belongs to the class coRNC2.

The proof of Thm. 2 has two main ingredients: The randomized PIT algorithm of
Agrawal and Biswas [1] and the modular polynomial powering algorithm of Fich and
Tompa [5]. Let us start with the Agrawal-Biswas algorithm. We only need the ver-
sion for the polynomial ring Fp[x], where p is a prime number. Consider a polynomial
P (x) ∈ Fp[x] of degree d. The algorithm of Agrawal and Biswas consists of the fol-
lowing steps (later we will apply this algorithm to the polynomial defined by a powerful
skew circuit), where 0 < ε < 1 is an error parameter:

1. Let ` be a number with ` ≥ log d and t = max{`, 1
ε }

2. Find the smallest prime number r such that r 6= p and r does not divide any of
p− 1, p2 − 1, . . . , p`−1 − 1. It is argued in [1] that r ∈ O(`2 log p).

6

3. Randomly choose a tuple b = (b0, . . . , b`−1) ∈ {0, 1}` and compute the poly-
nomial Tr,b,t(x) = Qr(Ab,t(x)), where Qr(x) =

∑r−1
i=0 x

i is the rth cyclotomic
polynomial and Ab,t = xt +

∑`−1
i=0 bi · xi.

4. Accept, if P (x) mod Tr,b,t = 0, otherwise reject.

Clearly, if P (x) = 0, then the above algorithm accepts with probability 1. For a non-
zero polynomial P (x), Agrawal and Biswas proved:

Theorem 3 ([1]). Let P (x) ∈ Fp[x] be a non-zero polynomial of degree d. The above
algorithm rejects P (x) with probability at least 1− ε.

The second result we are using was shown by Fich and Tompa:

Theorem 4 ([5]). The following computation can be done in NC2:
Input: A unary encoded prime number p, polynomials a(x), q(x) ∈ Fp[x] such that
deg(a(x)) < deg(q(x)) = d, and a binary encoded number m.
Output: The polynomial a(x)m mod q(x).

Remark 1. In [5], it is stated that the problem can be solved using circuits of depth
(log n)2 log log n for the more general case that the underlying field is Fp` , where p
and ` are given in unary representation. The main bottleneck is the computation of
an iterated matrix product A1A2 · · ·Ak (for k polynomial in n) of (d × d)-matrices
over the field Fp` . In our situation (where the field is Fp) we easily obtain an NC2-
algorithm for this step: Two (d × d)-matrices over Fp can be multiplied in NC1. Then
we compute the product A1A2 · · ·Ak by a balanced binary tree of depth log k. Also
logspace-uniformity of the circuits is not stated explicitly in [5], but follows easily since
only standard arithmetical operations on binary coded numbers are used.

Proof of Thm. 2. By Lemma 2 we can restrict to univariate polynomials. We first prove
the theorem for the case of a powerful skew circuit C over the field Fp, where the prime
number p is part of the input but specified in unary notation.

Let p be a unary encoded prime number and A = ({1, . . . , n}, 1, n, λ) a powerful
branching program with n nodes that is equivalent to C. Let P (x) = val(A) ∈ Fp[x].
Fix an error probability 0 < ε < 1. Our randomized NC2-algorithm is based on the
Agrawal-Biswas identity test. It accepts with probability 1 if val(A) = 0 and accepts
with probability at most ε if P (x) 6= 0. Let us go through the four steps of the Agrawal-
Biswas algorithm to see that they can be implemented in NC2.
Step 1. An upper bound on the degree of P (x) can be computed in NC2 as in the proof
of Lemma 2. For the number ` we can take the number of bits of this degree bound,
which is polynomial in the input size.
Step 2. For the prime number r we know that r ∈ O(`2 log p), which is a polynomial
bound. Hence, we can test in parallel all possible candidates for r. For a certain can-
didate r, we check in parallel whether it is prime (recall that r is of polynomial size)
and whether it divides any of the numbers p − 1, p2 − 1, . . . , p`−1 − 1. The whole
computation is possible in NC1.
Step 3. Let b = (b0, . . . , b`−1) ∈ {0, 1}` be the chosen tuple. Computing the polynomial
Tr,b,t(x) = Qr(Ab,t(x)), where Qr(x) =

∑r−1
i=0 x

i and Ab,t = xt +
∑`−1
i=0 bi · xi, is

7

an instance of iterated multiplication (for the powers Ab,t(x)i) and iterated addition of
polynomials. Hence, by Prop. 1 also this step can be carried out in NC1. Note that the
degree of Tr,b,t(x) is ` · (r − 1) ∈ O(`3 log p), i.e., polynomial in the input size.

Step 4. For the last step, we have to compute P (x) mod Tr,b,t(x). For this, we consider
in parallel all monomials a · xk that occur in an edge label of our powerful branching
programA. Recall that a ∈ Fp and k is given in binary notation. Using the Fich-Tompa
algorithm we compute xk mod Tr,b,t(x) in NC2. We then replace the edge label a · xk
by a·(xk mod Tr,b,t(x)). Let B the resulting branching program. Every polynomial that
appears as an edge label in B is now given in standard form. Hence, by Lemma 1 we can
compute in NC2 the output polynomial val(B). Clearly, P (x) mod Tr,b,t(x) = val(B)
mod Tr,b,t(x), which can be computed in NC1 by Prop. 1.

Let us now prove Thm. 2 for the ring Z. LetA = ({1, . . . , n}, 1, n, λ) be a powerful
branching program over Z with n nodes and let P (x) = val(A). Let us first look at the
coefficients of P (x). Let m be the maximum absolute value |a|, where a ·xk is an edge
label of A. Since there are at most 2n many paths from s to t in A, every coefficient of
P (x) belongs to the interval [−(2m)n, (2m)n]. Let k = (dlog(m)e+ 1) · (n+ 1) and
p1, . . . , pk be the first k prime numbers. Each prime pi is polynomially bounded in k
(and hence the input size) and the list of primes can be computed in logspace by doing
all necessary divisibility checks on binary encoded numbers having only O(log k) bits.
The Chinese remainder theorem implies that P (x) = 0 if and only if P (x) ≡ 0 mod pi
for all 1 ≤ i ≤ k. We can carry out the latter tests in parallel using the above algorithm
for a unary encoded prime number. The overall algorithm accepts if we accept for every
prime pi. If P (x) = 0, then we will accept for every 1 ≤ i ≤ k with probability 1,
hence the overall algorithm accepts with probability 1. On the other hand, if P (x) 6= 0,
then there exists a prime pi (1 ≤ i ≤ k) such that the algorithm rejects with probability
at least 1− ε. Hence, the overall algorithm will reject with probability at least 1− ε as
well. ut

Our coRNC2 identity testing algorithm for powerful skew circuits only works for
the coefficient rings Z and Zp with p prime. It is not clear how to extend it to Zn
with n composite. The Agrawal-Biswas identity testing algorithm also works for Zn
with n composite. But the problem is that the Fich-Tompa algorithm only works for
polynomial rings over finite fields.

5 Multi-dimensional straight-line programs

Let Γ be a finite alphabet. For l ∈ N let [0, l] = {0, 1, . . . , l}. An n-dimensional picture
over Γ is a mapping p :

∏n
j=1[0, lj − 1] → Γ for some lj ∈ N. Let dom(p) =∏n

j=1[0, lj − 1]. For 1 ≤ j ≤ n we define |p|j = lj as the length of p in the j-th
dimension. Note that one-dimensional pictures are simply finite words. Let Γ ∗n denote
the set of n-dimensional pictures over Γ . On this set we can define partially defined
concatenation operations ◦i (1 ≤ i ≤ n) as follows: For pictures p, q ∈ Γ ∗n , the picture
p ◦i q is defined if and only if |p|j = |q|j for all 1 ≤ j ≤ n with i 6= j. In this case, we
have |p◦i q|j = |p|j (= |q|j) for j 6= i and |p◦i q|i = |p|i+ |q|i. Let lj = |p◦i q|j . For a
tuple (k1, . . . , kn) ∈

∏n
j=1[0, lj−1] we finally set (p◦iq)(k1, . . . , kn) = p(k1, . . . , kn)

8

if ki < |p|i and (p ◦i q)(k1, . . . , kn) = q(k1, . . . , ki−1, ki − |p|i, ki+1, . . . , kn) if ki ≥
|p|i. These operations generalize the concatenation of finite words.

An n-dimensional straight-line program (SLP) over the terminal alphabet Γ is a
triple A = (V, rhs, S), where V is a finite set of variables, S ∈ V is the start variable,
and rhs maps each variable A to its right-hand side rhs(A), which is either a terminal
symbol a ∈ Γ or an expression of the form B ◦i C, where B,C ∈ V and 1 ≤ i ≤ n
such that (i) the relation {(A,B) ∈ V ×V | B occurs in rhs(A)} is acyclic, and (ii) one
can assign to each A ∈ V and 1 ≤ i ≤ n a number |A|i with the following properties:
If rhs(A) ∈ Γ then |A|i = 1 for all i. If rhs(A) = B ◦i C then |A|i = |B|i + |C|i
and |A|j = |B|j = |Cj | for all j 6= i. These conditions ensure that every variable A
evaluates to a unique n-dimensional picture valA(A) such that |valA(A)|i = |A|i for all
1 ≤ i ≤ n. Finally, val(A) = valA(S) is the picture defined by A. We define the size
of the SLP A = (V, Γ, S, P) as |A| = |V |. Note that the length of the picture val(A)
(in each dimension) can be exponential in |A|. A one-dimensional SLP is a context-free
grammar that generates a single word [15]. Two-dimensional SLPs were studied in [3].

Given two n-dimensional SLPs we want to know whether they evaluate to the same
picture. In [3] it was shown that this problem belongs to coRP by translating it to PIT.
For an n-dimensional picture p : dom(p)→ {0, 1} we define the polynomial

fp(x1, ..., xn) =
∑

(k1,...,kn)∈dom(p)

p(k1, ..., kn)
n∏
i=1

xki
i .

We consider fp as a polynomial from Z2[x1, . . . , xn]. For two n-dimensional pictures
p and q such that |p|i = |q|i for all 1 ≤ i ≤ n we clearly have p = q if and only if fp +
fq = 0 (recall that coefficients are from Z2). In [3], it was observed that from an SLP A
for a picture P , one can easily construct an arithmetic circuit C for the polynomial fp,
which leads to a coRP-algorithm for equality testing. For instance, rhsA(A) = B ◦k C
is translated into rhsC(A) = B+ xNk ·C, where N = |B|k can be precomputed in NC2

(using Lemma 1). This shows that the circuit C is actually powerful skew and can be
constructed in NC2 (see the appendix for details). Hence, we get:

Theorem 5. The question whether two n-dimensional SLPs A and B evaluate to the
same n-dimensional picture is in coRNC2 (here, n is part of the input).

It should be noted that even in the one-dimensional case (where SLP-equality can be
tested in polynomial time [8,19,21]), no randomized NC-algorithm was known before.
For equality testing for SLPs of dimension n ≥ 2 it remains open whether a polynomial
time algorithm exists. For the one-dimensional case, a polynomial time algorithm exists
[8,19,21], but no NC-algorithm is known.

6 Circuits over wreath products

As a second application of PIT for powerful skew circuits we consider the circuit eval-
uation problem, also known as the compressed word problem, for wreath products of
finitely generated abelian groups. We assume some basic familiarity with group theory.

9

6.1 Compressed word problems

Let G be a finitely generated (f.g.) group and let Σ be a finite generating set for G, i.e.,
every element of G can be written as a finite product of elements from Σ and inverses
of elements from Σ. Let Γ = Σ ∪ {a−1 | a ∈ Σ}. For a word w ∈ Γ ∗ we write
w = 1 in G if and only if the word w evaluates to the identity of G. The word problem
for G asks, whether w = 1 in G for a given input word. There exist finitely generated
groups and in fact finitely presented groups (groups that are defined by finitely many
defining relations) with an undecidable word problem [20]. Here, we are interested in
the compressed word problem for a f.g. group. For this, the input word w is given in
compressed form by a one-dimensional SLP as defined in Section 5. Recall that a one-
dimensional picture over an alphabet Γ is simply a finite word over Γ . In the following
we always mean one-dimensional SLPs when using the term SLP. The compressed
word problem for G asks, whether val(A) = 1 in G for a given SLP A.

As mentioned in the introduction, there are important classes of groups with a poly-
nomial time compressed word problem. Moreover, for f.g. linear groups the compressed
word problem belongs to coRP. Concerning the parallel complexity, it was recently
shown in [12] (using results from [2]) that CWP(G) ∈ NC2, whenever G has a f.g.
nilpotent normal subgroup H such that the quotient G/H is finite and solvable (a so
called f.g. nilpotent by finite solvable group). To the knowledge of the authors, there are
no other known examples of groups with a compressed word problem in NC.

6.2 Wreath products

Let G and H be groups. The restricted wreath product H o G is defined as follows:
Elements of H o G are pairs (f, g), where g ∈ G and f : G → H is a mapping
such that f(a) 6= 1H for only finitely many a ∈ G (1H is the identity element of H).
Multiplication in H o G is defined as follows: Let (f1, g1), (f2, g2) ∈ H o G. Then
(f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g−1

1 a).
For readers, who have not seen this definition before, the following intuition might

be helpful: An element (f, g) ∈ H oG can be thought as a finite collection of elements of
H that are sitting in certain elements ofG (the mapping f) together with a distinguished
element of G (the element g), which can be thought as a cursor moving around G. If
we want to compute the product (f1, g1)(f2, g2), we do this as follows: First, we shift
the finite collection of H-elements that corresponds to the mapping f2 by g1: If the
element h ∈ H \ {1H} is sitting at a ∈ G (i.e., f2(a) = h), then we remove h
from a and put it to the new location g1a ∈ G. This new collection corresponds to
the mapping f ′2 : a 7→ f2(g−1

1 a). After this shift, we multiply the two collections of
H-elements pointwise: If the elements h1 and h2 are sitting at a ∈ G (i.e., f1(a) = h1

and f ′2(a) = h2), then we put the product h1h2 into the G-location a. Finally, the new
distinguished G-element (the new cursor position) becomes g1g2.

Proofs of the following lemmas can be found in the long version [13].

Lemma 3. The group (A×B) oG embeds into (A oG)× (B oG).

Lemma 4. For every k ≥ 1 and every finitely generated group G, CWP(G o Zk) is
NC2-reducible to CWP(G o Z).

10

6.3 CWP(Z o Z) and identity testing for powerful skew circuits

In this section, we show that CWP(Z o Z) (resp., Zn o Z) and PIT for powerful skew
circuits over Z[x] (resp., Zn[x]) are equivalent w.r.t. NC2-reductions.

We consider the generators a and t of Z o Z, where a = (0, 1) and t = (f, 0) with
f(0) = 1 and f(x) = 0 for x 6= 0. So, multiplying with a (resp., a−1) on the right
corresponds to moving the cursor to the left (resp., right) and multiplying with t (resp.,
t−1) on the right corresponds to adding (resp., subtacting) one from the value at the
current cursor position. Let Γ = {a, t, a−1, t−1}. The main result of this section is:

Theorem 6. The compressed word problem for Z o Z (resp., Zn o Z) is equivalent w.r.t.
NC2-reductions to PIT for powerful skew circuits over the ring Z[x] (resp., Zn[x]).

Going from PIT for powerful skew circuits over the ring Z[x] to CWP(ZoZ) is relatively
easy (and the same reduction works for Zn instead of Z): We encode a polynomial
p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 by the group element g(p(x)) = (f, 0) ∈

Z o Z, where f(k) = ak for all 0 ≤ k ≤ n and f(z) = 0 for all other integers z. The
idea now is to construct from a given powerful skew circuit C over the ring Z[x] an
SLP A over the alphabet Γ such that val(A) evaluates (in Z o Z) to the group element
g(val(C)). Note that g(p1(x) + p2(x)) = g(p1(x))g(p2(x)) in the group Z o Z. This
allows to deal with addition gates in C. Multiplication gates in general circuits cannot be
handeled in this way. But fortunately, C is powerful skew, and we can make use of the
following identity, where m,n ∈ N: g(m · xn · p(x)) = ang(p(x))ma−n (conjugation
by an corresponds to multiplication with the monomial xn).

Going from CWP(Z o Z) back to PIT for powerful skew circuits over the ring Z[x]
is based on the same correspondence between polynomials and elements of Z o Z, but
is slightly more technical. The problem is that for a group element (f, z) ∈ Z o Z there
might be a negative a ∈ Z with f(a) 6= 0. Hence, encoding f by a polynomial would
in fact lead to a Laurent polynomial. But we can avoid this problem by conjugating
all elements of Z o Z with a large enough power an such that the domain of the above
function f is contained in the non-negative integers; see [13] for details.

By Lemma 3 and Lemma 4, CWP((G×H) oZn) is NC2-reducible to CWP(G oZ)
and CWP(H o Z). Together with Thm. 2 and Thm. 6 we obtain the following result:

Corollary 1. Let G be a finite direct product of copies of Z and Zp for primes p. Then,
for every n ≥ 1, CWP(G o Zn) belongs to coRNC2.

It is not clear, whether in Cor. 1 we can replace G by an arbitrary finitely generated
abelian group. On the other hand, if we apply Thm. 1 instead of Thm. 2 we obtain:

Corollary 2. Let G be f.g. abelian and let H be f.g. virtually abelian (i.e., H has a f.g.
abelian subgroup of finite index). Then CWP(G oH) belongs to coRP.

Proof. Let K ≤ H be a f.g. abelian subgroup of finite index m in H . Since K has the
formA×Zk for some k ≥ 0 withA finite abelian, we can (by increasing the finite index
m) assume that K = Zk for some k ≥ 0. It is shown in [17] that Gm oZk ∼= Gm oK is
isomorphic to a subgroup of index m in G oH . If the group A is a finite index subgroup
of the groupB, then CWP(B) is polynomial-time many-one reducible to CWP(A) [16,

11

Thm. 4.4]. Since Gm o Zk is a finite index subgroup of G o H , it suffices to show that
CWP(Gm o Zk) ∈ coRP. Since Gm is finitely generated abelian, it suffices to consider
CWP(Zn oZk) (n ≥ 2) and CWP(ZoZk). The case k = 1 is clear, so assume that k ≥ 1.
By Cor. 1, CWP(Z o Zk) ∈ coRNC and by Thm. 1 and 6, CWP(Zn o Zk) ∈ coRP. ut
In the full version [13] of this paper, Cor. 1 is further applied to the compressed word
problem for quotients of free groups with respect to commutator subgroups.

References
1. M. Agrawal and S. Biswas. Primality and identity testing via Chinese remaindering. J. As-

soc. Comput. Mach., 50(4):429–443, 2003.
2. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit

evaluation. SIAM J. Comput., 26(1):138–152, 1997.
3. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity

of pattern matching for highly compressed two-dimensional texts. J. Comput. System Sci.,
65(2):332–350, 2002.

4. W. Eberly. Very fast parallel polynomial arithmetic. SIAM J. Comput., 18(5):955–976, 1989.
5. F. E. Fich and M. Tompa. The parallel complexity of exponentiating polynomials over finite

fields. J. Assoc. Comput. Mach., 35(3): 651-667, 1988.
6. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -

Completeness Theory. Oxford University Press, 1995.
7. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits

for division and iterated multiplication. J. Comput. System Sci., 65:695–716, 2002.
8. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity of

normed context-free processes. Theor. Comput. Sci., 158(1&2):143–159, 1996.
9. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line

programs. Journal of the Association for Computing Machinery, 30(1):217–228, 1983.
10. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomiz-

ing the XOR lemma. In Proc. STOC’97, pages 220–229. ACM Press, 1997.
11. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving

circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004.
12. D. König M. Lohrey. Evaluating matrix circuits. to appear in Proc. COCOON 2015.
13. D. König M. Lohrey. Parallel identity testing for algebraic branching programs with big

powers and applications. arXiv.org, 2015. http://arxiv.org/abs/1502.04545
14. M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Com-

put., 35(5):1210 – 1240, 2006.
15. M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryp-

tology, 4(2):241–299, 2012.
16. M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.

Springer, 2014.
17. M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath prod-

ucts. Information and Computation, 2014. doi:10.1016/j.ic.2014.12.014.
18. W. Magnus. On a theorem of Marshall Hall. Ann. of Math. (2), 40:764–768, 1939.
19. K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under equality tests

in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.
20. P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory.

Amer. Math. Soc. Transl. Ser. 2, 9:1–122, 1958.
21. W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc. ESA

1994, volume 855 of Lecture Notes in Computer Science, pages 460–470. Springer, 1994.
22. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

12

