
Noname manuscript No.
(will be inserted by the editor)

Evaluation of Circuits over Nilpotent and Polycyclic Groups

Daniel König · Markus Lohrey

the date of receipt and acceptance should be inserted later

Abstract We study the circuit evaluation problem (also known as the compressed
word problem) for finitely generated linear groups. The best upper bound for this
problem is coRP (the complements of problems in randomized polynomial time),
which is shown by a reduction to polynomial identity testing for arithmetic circuits.
Conversely, the compressed word problem for the linear group SL3(Z) is equivalent
to polynomial identity testing. In the paper, we show that the compressed word prob-
lem for every finitely generated nilpotent group is in DET ⊆ NC2. Within the larger
class of polycyclic groups we find examples where the compressed word problem
is at least as hard as polynomial identity testing for skew arithmetic circuits. It is a
major open problem, whether polynomial identity testing for skew arithmetic circuits
can be solved in polynomial time

1 Introduction

1.1 Circuit evaluation problems

The study of circuit evaluation problems has a long tradition in theoretical computer
science and is tightly connected to many aspects in computational complexity theory.
One of the most important circuit evaluation problems is polynomial identity test-
ing (PIT). Here, the input is an arithmetic circuit, whose internal gates are labelled
with either addition or multiplication and its input gates are labelled with variables
(x1, x2, . . .) or constants (−1, 0, 1), and it is asked whether the output gate evaluates
to the zero polynomial (in this paper, we always work in the polynomial ring over
the coefficient ring Z or Zp for a prime p). Based on the Schwartz-Zippel-DeMillo-
Lipton Lemma, Ibarra and Moran [19] proved that polynomial identity testing over
Z or Zp belongs to the class coRP (the complements of problems in randomized
polynomial time). Whether there is a deterministic polynomial time algorithm for

Universität Siegen, Germany
E-mail: {koenig,lohrey}@eti.uni-siegen.de

polynomial identity testing is an important problem. In [20] it is shown that if there
exists a language in DTIME(2O(n)) that has circuit complexity 2Ω(n), then P = BPP
(and hence P = RP = coRP). There is also an implication that goes the other way
round: Kabanets and Impagliazzo [21] have shown that if polynomial identity testing
belongs to P, then (i) there is a language in NEXPTIME that does not have polyno-
mial size circuits, or (ii) the permanent is not computable by polynomial size arith-
metic circuits. Both conclusions represent major open problem in complexity theory.
Hence, although it is quite plausible that polynomial identity testing belongs to P (by
[20]), it will be probably very hard to prove (by [21]).

Circuit evaluation problems can be also studied for other structures than polyno-
mial rings, in particular non-commutative structures. For finite monoids, the circuit
evaluation problem has been studied in [11], where it was shown using Barrington’s
technique [9] that for every non-solvable finite monoid the circuit evaluation problem
is P-complete, whereas for every solvable monoid, the circuit evaluation problem be-
longs to the parallel complexity class DET ⊆ NC2. Related to this work is the paper
[33], which studies the prediction problem for cellular automata where the dynamics
is defined by multiplication in a finite monoid. This prediction problem can be seen
as the circuit evaluation problem for particular trellis-like circuits. Starting with [27]
the circuit evaluation problem has been also studied for infinite finitely generated
(f.g) monoids, in particular infinite f.g. groups. In this context, the input gates of the
circuit are labelled with generators of the monoid and the internal gates compute the
product of the two input gates.

1.2 Compressed word problems

In [27] and subsequent work, the circuit evaluation problem for a monoid is also
called the compressed word problem. Recall that the word problem for a f.g. monoid
M asks whether two given words over the alphabet of monoid generators evaluate
to the same element of M . In case M is a group, this problem is equivalent to the
question whether a given word over the generators evaluates to the identity element
of the group. Now, if we consider a multiplicative circuit over a f.g. monoid M , then
one can evaluate the circuit also in the free monoid Γ ∗ where Γ is the set of monoid
generators that appear at the input gates of the circuit. The result will be a word over
Γ , whose length can be exponential in the number of circuit gates. Hence, the circuit
can be seen as a compressed representation of the word it produces. Circuits over
a free monoid are also known as straight-line programs (SLPs) and are intensively
studied in the area of algorithms for compressed words, see [28] for an overview.
Formally, the compressed word problem for the f.g. monoid M asks whether the
words (over the generators of M) produced by two given SLPs evaluate the same
monoid element of M (or, in the case of a group, whether the word produced by a
single SLP evaluates to the group identity). This problem is equivalent to the question,
whether two circuits over M evaluate to the same monoid element (or, in case of a
group, whether a single circuit evaluates to the group identity).

We will restrict our attention to the compressed word problem for finitely gen-
erated groups in this paper. For this problem, polynomial time algorithms have been

2

developed for many important classes of groups, e.g., finite groups, f.g. nilpotent
groups, f.g. free groups, graph groups (also known as right-angled Artin groups or
partially commutative groups), and virtually special groups. The latter contain all
Coxeter groups, one-relator groups with torsion, fully residually free groups, and
fundamental groups of hyperbolic 3-manifolds; see [29] for details. For the impor-
tant class of f.g. linear groups, i.e., f.g. groups of matrices over a field, it was shown
in [29] that the compressed word problem can be reduced to polynomial identity test-
ing (over Z or Zp, depending on the characteristic of the field) and hence belongs to
coRP. Vice versa, in [29] it was shown that polynomial identity testing over Z can
be reduced to the compressed word problem for the linear group SL3(Z). The proof
is based on a construction of Ben-Or and Cleve [12]. This result indicates that deran-
domizing the compressed word problem for a f.g. linear group will be in general very
difficult.

1.3 Content of the paper

In this paper, we further investigate the tight correspondence between commutative
circuits over rings and non-commutative circuits over linear groups. In Section 5.1
we study the complexity of the compressed word problem for f.g. nilpotent groups.
For these groups, the compressed word problem can be solved in polynomial time
[29]. Here, we show that for every f.g. nilpotent group the compressed word problem
belongs to the parallel complexity class DET ⊆ NC2 (Theorem 26), which is the
class of all problems that are AC0-reducible to the computation of the determinant
of an integer matrix, see [14]. To the knowledge of the authors, f.g. nilpotent groups
are the only examples of infinite groups for which the compressed word problem can
be shown to belong to NC. In [25] we proved that the compressed word problem for
wreath products G oZn, where G is a direct product of copies of Z and Zp for primes
p, belongs to coRNC2 (the complement of the randomized version of NC2), but no
deterministic NC-algorithm is known for these groups. On the other hand, even for
free groups, the compressed word problem is P-complete [27].

The main step of our proof for f.g. nilpotent groups is to show that for a torsion-
free f.g. nilpotent group G the compressed word problem belongs to the logspace
counting class C=L (and is in fact C=L-complete if G is nontrivial). To show this, we
use the well-known fact that a f.g. torsion-free nilpotent group can be embedded into
the group UTd(Z) of d-dimensional unitriangular matrices over Z for some fixed d.
Then, the compressed word problem for UTd(Z) is reduced to the question whether
two additive circuits over the natural numbers evaluate to the same number, which is
C=L-complete. Let us mention that there are several C=L-complete problems related
to linear algebra [2].

In Section 5.2, we study the compressed word problem for the matrix group
UTd(Z) for the case that the dimension d is not fixed, i.e., part of the input. In this
case, the compressed word problem turns out to be complete for the counting class
C=LogCFL, which is the LogCFL-analogue of C=L; see Theorem 27.

Finally, in Section 5.3 we move from nilpotent groups to polycyclic groups.
These are solvable groups where every subgroup is finitely generated. By results of

3

Additional properties Complexity Reference

variable-free, constant multiplicative depth C=L-complete Corollary 18

variable-free coRP [3]

skew coRNC [21]

no restriction coRP [19]

Table 1: Results about polynomial identity testing over (Z,+, ·)

Class of finitely generated groups Complexity Reference

finite solvable DET [11]

(Z,+) C=L-complete [43]

nilpotent, torsion-free, non-trivial C=L-complete Theorem 19

nilpotent DET Theorem 26

linear coRP [29]

a fixed concrete polycyclic group hard for PIT(Z) for skew circuits Theorem 29

Table 2: Results about the compressed word problem

Mal’cev [31], Auslander [8], and Swan [40] these are exactly the solvable subgroups
of GLd(Z) for some d. We prove that polynomial identity testing for skew arithmetic
circuits reduces to the compressed word problem for a specific 2-generator polycyclic
group of Hirsch length three; see Corollary 32. A skew arithmetic circuit is an arith-
metic circuit (as defined below) such that for every multiplication gate, one of its
input gates is an input gate of the circuit, i.e., a variable or a constant. These cir-
cuits exactly correspond to algebraic branching programs. Even for skew arithmetic
circuits, no polynomial time identity test is currently known (although the problem
belongs to coRNC2), see for instance [7, p. 6].

We also prove a new result for the standard (non-compressed word problem): We
show that for every f.g. solvable linear group (this includes in particular all poly-
cyclic groups), the word problem can be solved in DLOGTIME-uniform TC0 (see
Theorem 7 in Section 3), which is a subclass of logarithmic space. For f.g. linear (not
necessarily solvable) groups Lipton and Zalcstein [26] and Simon [39] have shown
that the word problem can be solved in logarithmic space.

1.4 Overview of the results

Let us give an overview on the results of this paper and the related known results.
Table 1 summarize the results about polynomial identity testing (PIT) over (Z,+, ·)
for various restricted circuit classes. Table 2 summarizes results about the compressed
word problem for various classes of groups.

4

2 Preliminaries and definitions

We assume that the reader has some basic knowledge in computational complexity
theory, see e.g. [6] for a detailed introduction. Logspace always refers to deterministic
logarithmic space. We use several times the well known fact that the composition of
two (and hence and constant number of) logspace computable functions is logspace
computable as well.

The complexity class RP is the set of all problems A for which there exists a
polynomial time bounded randomized Turing machine R such that: (i) if x ∈ A then
R accepts x with probability at least 1/2, and (ii) if x 6∈ A then R accepts x with
probability 0. The class coRP is the class of all complements of problems from RP.

We will also need some notions from circuit complexity, which will be explained
in Section 2.2. But before, let us first introduce some background on arithmetic cir-
cuits.

2.1 Arithmetic circuits

Let us fix a set X = {x1, x2, . . .} of variables. Moreover, let (R,+, ·) be one of
the rings (Z,+, ·) or (Zn,+, ·) for n ≥ 2. Arithmetic circuits are usually defined
as certain directed acyclic graphs. For our purpose, it is more convenient to use the
equivalent formalism below, which is also known under the term “arithmetic straight-
line program”. An arithmetic circuit over the ring (R,+, ·) is a triple C = (V, S, rhs)
with the following properties:

– V is a finite set of gates.
– S ∈ V is the output gate.
– For every gate A, rhs(A) (the right-hand side of A) is either a variable from X ,

one of the constants −1, 0, 1, or an expression of the form B+C or B ·C where
B and C are gates.

– There is a linear order < on V such that B < A whenever B occurs in rhs(A).

A gate A where rhs(A) has the form B + C (resp., B · C) is called an addition gate
(resp., multiplication gate). A gate that is labelled with a variable or a constant is an
input gate. Notice that we can restrict the input values to {−1, 0, 1}, since this set
generates the ring (R,+, ·). In fact, for the finite rings (Zn,+, ·) we can restrict to
the input values 0 and 1. Also note that for the ring (Z,+, ·) one can produce the
integer a ∈ Z by a circuit of size O(log |a|).

Assume that C = (V, S, rhs) is an arithmetic circuit over (R,+, ·) in which the
variables x1, . . . , xn occur. Then we can evaluate every gate A ∈ V to a polynomial
valC(A) ∈ R[x1, . . . , xn] in the obvious way (here,“val” stands for “value”). More-
over let val(C) = valC(S) be the polynomial to which C evaluates. Two arithmetic
circuits C1 and C2 are equivalent if they evaluate to the same polynomial.

Fix an arithmetic circuit C = (V, S, rhs). We can view C as a directed acyclic
graph (dag) where every node is labelled with a variable or a constant or an operator
+, ·. If rhs(A) = B ◦ C (for ◦ one of the operators), then there is an edge from
B to A and C to A. The depth depth(A) (resp., multiplication depth mdepth(A))

5

of the gate A is the maximal number of gates (resp., multiplication gates) along a
path from an input gate to A. So, input gates have depth one and multiplication depth
zero. The depth (resp., multiplication depth) of C is depth(C) = depth(S) (resp.,
mdepth(C) = mdepth(S)). The formal degree deg(A) of a gate A is 1 if A is an
input gate, max{deg(B), deg(C)} if rhs(A) = B + C, and deg(B) + deg(C) if
rhs(A) = B · C. The formal degree of C is deg(C) = deg(S). We deal with the
following subclasses of arithmetic circuits (and the intersections of these classes):

– positive circuits: these are circuits over (Z,+, ·) without input gates labelled by
the constant −1.

– addition circuits: these are circuits without multiplication gates.
– variable-free circuits: these are circuits without variables.
– skew circuits: these are arithmetic circuits such that for every multiplication gate
A with rhs(A) = B · C, B is an input gate.

Variable-free circuits evaluate to elements of the underlying ring. Variable-free posi-
tive addition circuits (i.e., circuits that only contain input gates labelled with 0 and 1
and addition gates), are also known as addition chains [24].

In the rest of the paper we will allow for convenience more complicated expres-
sions in right-hand sides for gates. For instance, we may have a gate with rhs(A) =
(B + C) · (D + E) or simply rhs(A) = B, where B is again a gate (so-called copy
gates). We also say that circuits where all right-hand sides fulfill the form of the
definition are in normal form. We will make use of the following fact:

Lemma 1 A given circuit over a ring (R,+, ·) can be transformed in logarithmic
space into an equivalent normal form circuit.

Proof We proceed in two stages. In a first step, we eliminate copy gates, i.e., gates
A with rhs(A) = B for another gate B. Consider the directed graph G that contains
for every copy gate A the gate A as well as the gate rhs(A). Moreover, there is a
directed edge from A to B = rhs(A). This is a directed forest where the edges are
oriented towards the roots since every node has at most one outgoing edge (and the
graph is acyclic). Clearly,G can be computed in logarithmic space. UsingG, one can
compute in logarithmic space for every copy gate A the unique gate B such that B is
reachable from A in the graph G and B has outdegree zero in G (and hence is not a
copy gate). For this, we follow the unique path in G that starts in the gate A and only
store the current gate. We then set the right-hand side of A to rhs(B).

After the first step, the circuit does not contain copy gates. It remains to split up
all remaining right-hand sides that violate the normal form by introducing fresh gates.
For instance, if rhs(A) = (B + C) · (D + E), one has to introduce fresh gates A′

and A′′ and set rhs(A) = A′ ·A′′ and rhs(A′) = B+C and rhs(A′′) = D+E. This
can be done by a logspace machine that traverses the right-hand sides and thereby
outputs the new gates and their right-hand sides. ut

Polynomial identity testing for a ring R is the following computational problem:
Given an arithmetic circuit C (with variables x1, . . . , xn), does val(C) = 0 hold,
i.e., does C evaluate to the zero-polynomial in R[x1, . . . , xn]? It is an outstanding
open problem in algebraic complexity theory, whether polynomial identity testing

6

for (Z,+, ·) can be solved in polynomial time. Ibarra and Moran [19] proved that
polynomial identity testing for (Z,+, ·) or (Zp,+, ·) (p a prime) belongs to the class
coRP. For the rings (Zn,+, ·) with p not a prime, membership in coRP was shown
in [1].

2.2 Circuit complexity and logspace counting classes

The counting class #L consists of all functions f : Σ∗ → N for which there is a
nondeterministic logarithmic space bounded Turing machine M such that for every
w ∈ Σ∗, f(w) is the number of accepting computation paths of M on input w. The
class C=L contains all languages A for which there are two functions f1, f2 ∈ #L
such that for every w ∈ Σ∗, w ∈ A if and only if f1(w) = f2(w). The class C=L is
closed under logspace many-one reductions. The canonical C=L-complete problem
is the following: The input consists of two dagsG1 andG2 and vertices s1, t1 (inG1)
and s2, t2 (in G2), and it is asked whether the number of different paths from s1 to
t1 in G1 is equal to the number of different paths from s2 to t2 in G2. This problem
is easily seen to be equivalent to the following problem: Given two variable-free
positive addition circuits C1 and C2, does val(C1) = val(C2) hold? Another important
C=L-complete problem is the question whether the determinant of a given integer
matrix is zero [42,44].

We use standard definitions concerning circuit complexity, see e.g. [45]. We only
consider polynomially bounded families (Cn)n≥0 of Boolean circuits where the num-
ber of gates of Cn is bounded by a polynomial p(n). For such a family, gates of Cn
can be encoded with bit strings of length O(log n). We will consider the class TC0 of
all problems that can be recognized by a polynomial size circuit family of constant
depth built up from NOT-gates (which have fan-in one) and AND-gates, OR-gates
and MAJORITY-gates (i.e., gates that return 1 if and only if more than the half of
its inputs are 1) of unbounded fan-in. If MAJORITY-gates are not allowed, we ob-
tain the class AC0. The class NCk (k ≥ 1) is defined by polynomial size circuit
families of depth O(logk n) that use NOT-gates, and AND- and OR-gates of fan-in
two. One defines NC =

⋃
k≥1 NC

k. A family of AC0- resp. TC0-circuits (Cn)n≥0 is
DLOGTIME-uniform, if for given binary coded gates u, v of Cn, one can (i) compute
the type of gate u in timeO(log n) and (ii) check in timeO(log n) whether u is an in-
put gate for v. Note that the time boundO(log n) is linear in the input length |u|+ |v|.
To define DLOGTIME-uniformity for NC1-circuits one needs the so-called extended
connection language. We do not have to define this in detail (which can be found in
[38,45]), since we will not work with uniformity explicitly. For k ≥ 2, DLOGTIME-
uniformity for NCk is equivalent to logspace-uniformity. The latter means that the n-
th circuit in the family can be computed in logarithmic space from the unary encoding
of n. A languageA is AC0-reducible to languagesB1, . . . , Bk ifA can be solved with
a DLOGTIME-uniform polynomial size circuit family of constant depth that uses
NOT-gates and unbounded fan-in AND-gates, OR-gates, and Bi-gates (1 ≤ i ≤ k).
Here, a Bi-gate (it is also called an oracle gate) receives an ordered tuple of inputs
x1, x2, . . . , xn and outputs 1 if and only if x1x2 · · ·xn ∈ Bi. Sometimes, also the
term “uniform constant depth reducibility” is used for this type of reductions. In the

7

same way, the weaker NC1-reducibility can be defined. Here, one counts the depth of
a Bi-gate with inputs x1, x2, . . . , xn as log n. The class DET contains all problems
that are AC0-reducible to the computation of the determinant of an integer matrix,
see [14]. Actually, Cook originally defined DET as the class of all problems that
are NC1-reducible to the computation of the determinant of an integer matrix, but
later [15] remarked that the above definition via AC0-circuits seems to be more nat-
ural. For instance, it implies that DET is equal to the #L-hierarchy. It is known that
C=L ⊆ DET ⊆ NC2, see e.g. [5, Section 4].

An NAuxPDA is a nondeterministic Turing machine with an additional pushdown
store. The class LogCFL ⊆ NC2 is the class of all languages that can be accepted by
a polynomial time bounded NAuxPDA whose work tape is logarithmically bounded
(but the pushdown store is unbounded). If we assign to the input the number of accept-
ing computation paths of such an NAuxPDA, we obtain the counting class #LogCFL.
In [44] it is shown that #LogCFL is the class of all functions f : {0, 1}∗ → N (a
non-binary input alphabet Σ has to be encoded into {0, 1}∗) for which there exists
a logspace-uniform family (Cn)n≥1 of positive arithmetic circuits such that Cn com-
putes the mapping f restricted to {0, 1}n and there is a polynomial p(n) such that the
formal degree of Cn is bounded by p(n). The class C=LogCFL contains all languages
A for which there are two functions f1, f2 ∈ #LogCFL such that for every w ∈ Σ∗,
w ∈ A if and only if f1(w) = f2(w).

2.3 Matrices and groups

Let A be a square matrix of dimension d over some commutative ring R. With A[i, j]
we denote the entry of A in row i and column j. The matrix A is called triangular if
A[i, j] = 0 whenever i > j, i.e., all entries below the main diagonal are 0. A unitri-
angular matrix is a triangular matrix A such that A[i, i] = 1 for all 1 ≤ i ≤ d, i.e.,
all entries on the main diagonal are 1. We denote the set of unitriangular matrices of
dimension d over the ring R by UTd(R). It is well known that for every commutative
ring R, the set UTd(R) is a group (with respect to matrix multiplication).

Let 1 ≤ i < j ≤ d. With Ti,j we denote the matrix from UTd(R) (so all diagonal
elements are 1) such that Ti,j [i, j] = 1 and Ti,j [k, l] = 0 for all k, l with 1 ≤ k <
l ≤ d and (k, l) 6= (i, j). The notation Ti,j does not specify the dimension d of the
matrix, but the dimension will be always clear from the context. The group UTd(Z)
is generated by the finite set Γd = {Ti,i+1 | 1 ≤ i < d}, see e.g. [13].

As usual we denote with [x, y] = x−1y−1xy the commutator of x and y. We will
make use of the following lemma, which shows how to encode multiplication with
unitriangular matrices, see [30] for a proof (note that T ai,j denotes the a-th power of
the matrix Ti,j and that this is also defined for a < 0 since Ti,j is invertible):

Lemma 2 ([30, Lemma 3.1]) For all a, b ∈ Z and 1 ≤ i < j < k ≤ d we have
[T ai,j , T

b
j,k] = T abi,k.

In this paper we are concerned with certain subclasses of linear groups. A group is
linear if it is isomorphic to a subgroup of GLd(F) (the group of all invertible (d×d)-
matrices over the field F) for some field F .

8

A (n-step) solvable group G is a group G, which has a a subnormal series G =
GnBGn−1BGn−2B· · ·BG1BG0 = 1 (i.e.,Gi is a normal subgroup ofGi+1 for all
0 ≤ i ≤ n−1) such that every quotient Gi+1/Gi is abelian (0 ≤ i ≤ n−1). If every
quotientGi+1/Gi is cyclic, thenG is called polycyclic. The number of 0 ≤ i ≤ n−1
such that Gi+1/Gi ∼= Z is called the Hirsch length of G; it does not depend on
the chosen subnormal series. If Gi+1/Gi ∼= Z for all 0 ≤ i ≤ n − 1 then G is
called strongly polycyclic. A group is polycyclic if and only if it is solvable and
every subgroup is finitely generated. Polycyclic groups are linear. More precisely,
Auslander and Swan [8,40] proved that the polycyclic groups are exactly the solvable
groups of integer matrices.

For a group G its lower central series is the series G = G1 BG2 BG3 B · · · of
subgroups where Gi+1 = [Gi, G], which is the subgroup generated by all commuta-
tors [g, h] with g ∈ Gi and h ∈ G. Indeed, Gi+1 is a normal subgroup of Gi. The
group G is nilpotent, if its lower central series terminates after finitely many steps in
the trivial group 1. Every f.g. nilpotent group is polycyclic. We need the following
results about nilpotent and solvable groups:

Theorem 3 ([37, Chapter 5]) Subgroups and quotients of solvable (resp., nilpotent)
groups are solvable (resp., nilpotent) as well.

Theorem 4 ([22, Theorem 17.2.2]) Every f.g. nilpotent group G has a torsion-free
normal subgroup H of finite index (i.e., there is no a ∈ H such that an is the group
identity for some n ∈ N).

Theorem 5 ([22, Theorem 17.2.5]) For every torsion-free f.g nilpotent group G
there exists d ≥ 1 such that G can be embedded into UTd(Z).

A group G is called metabelian if the commutator subgroup [G,G] is abelian. In
other words, the metabelian groups are the 2-step solvable groups. Even if G is f.g.
metabelian, this does not imply that G is polycyclic, since [G,G] is not necessarily
finitely generated.

Let G be a f.g. group and let G be finitely generated as a group by Σ. Then, as
a monoid G is finitely generated by Σ ∪ Σ−1 (where Σ−1 = {a−1 | a ∈ Σ} is a
disjoint copy of Σ and a−1 stands for the inverse of the generator a ∈ Σ). Recall
that the word problem for G is the following computational problem: Given a word
w ∈ (Σ∪Σ−1)∗, does w evaluate to the identity ofG? Note that the groupG is fixed
here. Thus, all parameters that only depend on the groupG (but not on the input word
w) can be treated as fixed constants in an algorithm for the word problem for G.

Kharlampovich proved in [23] that there exist finitely presented 3-step solvable
groups with an undecidable word problem. On the other hand, for every f.g. linear
groups Lipton and Zalcstein [26] and Simon [39] proved the following important
result:

Theorem 6 ([26,39]) For every f.g. linear group the word problem can be solved in
deterministic logarithmic space.

Lipton and Zalcstein [26] proved this result for a linear group over a field of char-
acteristic zero, whereas Simon [39] considered fields of prime characterisitic. The-
orem 6 implies that the word problem for every polycyclic group can be solved in

9

logspace. Robinson proved in his thesis that the word problem for a polycyclic group
belongs to TC0 [36], but his circuits are not uniform. For f.g. nilpotent groups, Robin-
sion [36] proved that the word problem belongs to DLOGTIME-uniform TC0. Waack
considered in [46] arbitrary f.g. solvable linear groups (which include the polycyclic
groups) and proved that their word problems belong to logspace-uniform NC1. In the
next section, we combine Waack’s technique with the famous division breakthrough
results by Hesse, Allender, and Barrington [18] to show that for every f.g. solvable
linear group the word problem belongs to DLOGTIME-uniform TC0. This answers a
question from [36] positively. For the Baumslag-Solitar group BS1,2, which is solv-
able and linear, Diekert, Myasnikov and Weiß proved that also the conjugacy problem
can be solved in DLOGTIME-uniform TC0 [16], see also [48] for related results.

3 The complexity of the classical word problem for finitely generated linear
groups

Before we study the compressed word problem for f.g. linear groups, we first prove
the aforementioned result on the ordinary (uncompressed) word problem for f.g. solv-
able linear groups:

Theorem 7 Let G be a f.g. linear group.

– IfG is infinite solvable, then the word problem forG is complete for DLOGTIME-
uniform TC0.

– If G is virtually solvable (i.e. G has a solvable subgroup of finite index), then the
word problem for G belongs to DLOGTIME-uniform NC1.

For the proof, we first have to consider the complexity of iterated multiplication and
division with remainder of polynomials in several variables. Recall that Z[x1, . . . , xk]
denotes the ring of polynomials in the variables x1, . . . , xk with coefficients from
Z. For a polynomial p ∈ Z[x1, . . . , xk] and a variable xi we denote with degxi

(p)
the maximal value d such that xdi appears in a monomial of p. We specify poly-
nomials from Z[x1, . . . , xk] by writing down for every non-zero term axn1

1 · · ·x
nk

k

the tuple of integers (a, n1, . . . , nk), where a is represented in binary notation and
the exponents are represented in unary notation. Iterated multiplication of polynomi-
als in the ring Z[x1, . . . , xk] is the task of computing from a given list of polyno-
mials p1, p2, . . . , pn ∈ Z[x1, . . . , xk] the product polynomial p1p2 · · · pn. Division
with remainder in the ring Z[x] (later, we will generalize this to several variables)
is the task of computing for given polynomials s, t ∈ Z[x] such that t 6= 0 and the
leading coefficient of t is 1 the unique polynomials s mod t and s div t such that
s = (s div t) · t + s mod t and deg(s mod t) < deg(t) where deg(p) denotes the
degree of the polynomial t.

The following result was shown in [17,18]:1

1 Explicitly, the result is stated in [18, Corollary 6.5], where the authors note that Eberly’s reduction
[17] from iterated polynomial multiplication to iterated integer multiplication is actually an AC0-reduction,
which yields a DLOGTIME-uniform TC0 bound with the main result from [18].

10

Theorem 8 ([17,18]) Iterated multiplication and division with remainder of polyno-
mials in the ring Z[x] (respectively, Fp[x]) belong to DLOGTIME-uniform TC0.

We need generalizations of Theorem 8 to multivariate polynomials. In the following
proofs we always use the fact that iterated addition, iterated multiplication and divi-
sion with remainder of binary coded integers can be done in DLOGTIME-uniform
TC0 [18].

Lemma 9 Let k be a fixed constant. Iterated multiplication of polynomials in the ring
Z[x1, . . . , xk] (respectively, Fp[x1, . . . , xk]) belongs to DLOGTIME-uniform TC0.

Proof We only prove the result for Z[x1, . . . , xk]; exactly the same proof also works
for Fp[x1, . . . , xk].

For d ≥ 1 let Z[x1, . . . , xk]d ⊆ Z[x1, . . . , xk] be the set of all polynomials
p ∈ Z[x1, . . . , xk] such that degxi

(p) ≤ d for all 1 ≤ i ≤ k. For d ≥ 2 we define the
mapping Ud : Z[x1, . . . , xk]→ Z[z] by

Ud(p(x1, x2, . . . , xk)) = p(zd
0

, zd
1

, . . . , zd
k

).

The mapping Ud is also used in [1] to reduce polynomial identity testing to univariate
polynomial identity testing. The mapping Ud+1 restricted to Z[x1, . . . , xk]d is injec-
tive, since for a polynomial p ∈ Z[x1, . . . , xk]d we obtain the polynomial Ud+1(p)
by replacing for every monomial a · xn1

1 · · ·x
nk

k by the monomial a · zm where m is
the number with base-(d + 1) expansion (n1 · · ·nk) (with the most significant digit
on the right). Moreover, for all polynomials p, q ∈ Z[x1, . . . , xk] and all d ≥ 2 we
have

Ud(p+ q) = Ud(p) + Ud(q) and Ud(pq) = Ud(p)Ud(q). (1)

We can calculate Ud(p) for a given polynomial p ∈ Z[x1, . . . , xk] and a unary en-
coded number d ≥ 2 in DLOGTIME-uniform TC0: For a monomial axn1

1 · · ·x
nk

k

(which is represented by the tuple (a, n1, . . . , nk)) we have to compute the pair
(a,
∑k−1
i=0 ni+1d

i), which is possible in DLOGTIME-uniform TC0. Similarly, we
can compute U−1d+1(p) for a polynomial p ∈ Ud+1(Z[x1, . . . , xk]d) in DLOGTIME-
uniform TC0: From a given monomial azm (represented by the pair (a,m)) we have
to compute the tuple (a, n1, . . . , nk) where ni = (m div (d + 1)i−1) mod (d + 1),
which can be done in DLOGTIME-uniform TC0.

We now multiply given polynomials p1, . . . , pn ∈ Z[x1, . . . , xk] in the following
way, where all steps can be carried out in DLOGTIME-uniform TC0 by the above
remarks.

– Compute the number d = max{
∑n
i=1 degxj

(pi) | 1 ≤ j ≤ k}. This number
bounds the degree of the product polynomial p1p2 · · · pn in any of the variables
x1, . . . , xn, i.e., p1p2 · · · pn ∈ Z[x1, . . . , xk]d.

– Compute in parallel si(z) = Ud+1(pi) for 1 ≤ i ≤ n.
– Using Theorem 8, compute the product S(z) = s1(z)s2(z) · · · sn(z), which is
Ud+1(p1p2 · · · pn) by (1).

– Finally, compute U−1d+1(S), which is p1p2 · · · pn. ut

11

For polynomial division in several variables, we need a distinguished variable. There-
fore, we consider the polynomial ring Z[x1, . . . , xk, y]. We view polynomials from
this ring as polynomials in the variable y where coefficients are polynomials from
Z[x1, . . . , xk]. We will only divide by a polynomial t for which the leading monomial
p(x1, . . . , xn)y

m of t satisfies p(x1, . . . , xn) = 1. This ensures that the coefficients
of the quotient and remainder polynomial are again in Z[x1, . . . , xk] (and not in the
quotient field Q(x1, . . . , xn)).

Lemma 10 Let k be a fixed constant. Division with remainder of polynomials in
the ring Z[x1, . . . , xk, y] (respectively, Fp[x1, . . . , xk, y]) belongs to DLOGTIME-
uniform TC0.

Proof Again, we only prove the result for Z[x1, . . . , xk, y]; exactly the same proof
works for Fp[x1, . . . , xk, y] as well. As in the proof of Lemma 9 consider the set
Z[x1, . . . , xk, y]d ⊆ Z[x1, . . . , xk, y] of all polynomials in Z[x1, . . . , xk, y] such that
for every monomial a · xn1

1 · · ·x
nk

k yn we have n1, . . . , nk, n < d, and the mapping
Ud : Z[x1, . . . , xk, y]→ Z[z] with

Ud(p(x1, x2, . . . , xk, y)) = p(zd
0

, zd
1

, . . . , zd
k−1

, zd
k

).

Note that for polynomials p, q ∈ Z[x1, . . . , xk, y]d with degy(p) < degy(q) we
have deg(Ud+1(p)) < deg(Ud+1(q)), since the exponent of y becomes the most
significant digit in the base-(d + 1) representation. Then, for all polynomials s, t ∈
Z[x1, . . . , xk, y]d (where the leading coefficient of t is 1) we have

Ud2+1(s mod t) = Ud2+1(s) mod Ud2+1(t).

To see this, assume that s = qt + r with degy(r) < degy(t), so that r = s mod t.
We have q, r ∈ Z[x1, . . . , xk, y]d2 , which can be checked by tracing the polynomial
division algorithm. By (1) we have

Ud2+1(s) = Ud2+1(q)Ud2+1(t) + Ud2+1(r).

Moreover, deg(Ud2+1(r)) < deg(Ud2+1(t)). Hence

Ud2+1(r) = Ud2+1(s) mod Ud2+1(t).

Now we can compute the remainder s mod t for polynomials s, t ∈ Z[x1, . . . , xk, y]
(where the leading coefficient of t is 1) in DLOGTIME-uniform TC0 as follows:

– Compute the number d = max{degz(p) | p ∈ {s, t}, z ∈ {x1, . . . , xk, y}}, so
that s, t ∈ Z[x1, . . . , xk, y]d.

– Compute in parallel u(z) = Ud2+1(s) and v(z) = Ud2+1(t).
– Compute, using Theorem 8, R(z) = u(z) mod v(z), which is Ud2+1(s mod t).
– Finally, compute U−1d2+1(R) which is s mod t. ut

In the same way we can also compute the quotient, but we only will need the remain-
der s mod t in the following.

Finally, we will need the following result from [36]:

12

Theorem 11 ([36, Theorem 5.2]) Let G be a f.g. group with a normal subgroup H
of finite index. Then, the word problem for G is AC0-reducible to the word problems
for H and G/H .

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Let us first assume that G is f.g. solvable and linear over a
field F . By a theorem of Mal’cev (see e.g. [47, Theorem 3.6]), G contains a normal
subgroup H of finite index, which is triangularizable over a finite extension of F .
Using Theorem 11 we know that the word problem for G is AC0-reducible to the
word problems for H and G/H . The latter is a finite solvable group, see Theorem 3.
Hence, its word problem belongs to DLOGTIME-uniform TC0 (actually ACC0) by
[10].

By the previous discussion, it suffices to show that the word problem for a f.g.
triangular matrix group H over some field F belongs to DLOGTIME-uniform TC0.
Let d be the dimension of the matrices in H (which is a fixed constant that only
depends on the group G) and let P be the prime field of F . We can replace F by
the finitely generated extension of P that is generated by all finitely many matrix
entries in the generators of H . It is known that the field extension [F : P] has a
separating transcendence base {x1, . . . , xk}, which means that [F : P (x1, . . . , xk)]
is a finite separable extension; see e.g. [49, Theorem 31].2 Hence, the theorem of the
primitive element applies, which says that F is generated over P (x1, . . . , xk) by a
single element α ∈ F , which is algebraic over P (x1, . . . , xk). The number k is a
fixed constant, that only depends on the group G.

Assume that P = Q (in case P = Fp for a prime p we have to replace in all argu-
ments below Z by Fp). Consider the minimal polynomial p(y) ∈ Q(x1, . . . , xk)[y]
of α. We can write it as

p(y) = ym +
p1
q
ym−1 +

p2
q
ym−2 · · ·+ pm

q
(2)

for polynomials p1, . . . , pm, q ∈ Z[x1, . . . , xk] with q 6= 0. Since q ∈ Z[x1, . . . , xk]\
{0} ⊆ Q(x1, . . . , xk) \ {0} is a non-zero element of the base field Q(x1, . . . , xk),
the element β = q · α ∈ F also generates F over Q(x1, . . . , xk), and its minimal
polynomial is

r(y) = ym + p1 · ym−1 + p2q · ym−2 + · · ·+ pmq
m−1 ∈ Z[x1, . . . , xk, y]

(multiply (2) by qm). We have

F = Q(x1, . . . , xk)[y]/〈r(y)〉

where 〈r(y)〉 = {a(x) · r | a(x) ∈ Q(x1, . . . , xk)[y]} is the ideal generated by r.
Each of the finitely many generators of the group H is a (d × d)-matrix, whose

entries are polynomials in the variable y with coefficients from the fraction field
Q(x1, . . . , xk). Every such coefficient is a fraction a(x1, . . . , xk)/b(x1, . . . , xk) with

2 Every finitely generated extension field of a perfect field has a separating transcendence base and
every prime field is perfect.

13

a(x1, . . . , xk), b(x1, . . . , xk) ∈ Z[x1, . . . , xk]. Let g(x1, . . . , xk) be the least com-
mon multiple of all denominators b(x1, . . . , xk), which is a fixed polynomial that
only depends on the group G. Instead of asking whether A1 · · ·An ≡ Id mod q(y)
(for group generators A1, . . . , An of H) we can ask whether

gA1 · · · gAn ≡ gnId mod q(y).

Here, for two (d×d)-matricesA andB,A ≡ B mod q(x) means thatA[i, j] ≡ B[i, j]
mod q(x) for all 1 ≤ i, j ≤ d. So far, the proof has been following more or less
closely Waack’s arguments from [46].

LetMi = gAi, which is a triangular matrix of dimension d (a fixed constant) with
entries from Z[x1, . . . , xk, y]. Let us write Mi = Di + Ui where Di is a diagonal
matrix and Ui is upper triangular with all diagonal entries equal to zero. We get

M1 · · ·Mn =

n∏
i=1

(Di + Ui) =
∑

R1∈{D1,U1}

· · ·
∑

Rn∈{Dn,Un}

n∏
j=1

Rj . (3)

If there are more than d− 1 factors Ui in a product
∏n
j=1Rj , then the product is the

zero matrix. So there are at most
∑d−1
i=0

(
n
i

)
≤ d
(
n
d

)
≤ dnd summands (for n > 2d) in

the sum (3) that are not equal to zero. When we look at one of the products
∏n
j=1Rj

with at most d− 1 many factors Ui, we can write it as(
m1−1∏
i=1

Di

)
Um1

(
m2−1∏
i=m1+1

Di

)
· · ·Uml

(
n∏

i=ml+1

Di

)
= D1,m1−1Um1

Dm1+1,m2−1 · · ·Uml
Dml+1,n

for some 0 ≤ l ≤ d − 1 and 1 ≤ m1 < · · · < ml ≤ n where Ds,t =
∏t
i=sDi

(1 ≤ s ≤ t + 1, 0 ≤ t ≤ n) is a product of at most n diagonal matrices. Each
of these products can be calculated by calculating d products of at most n poly-
nomials from Z[x1, . . . , xk, y], which can be done in DLOGTIME-uniform TC0 by
Lemma 9 (recall that k is a constant). Moreover, all products Ds,t for 1 ≤ s < t ≤ n
can be computed in parallel. Once these products are computed, we can, in paral-
lel, compute for all 0 ≤ l ≤ d − 1 and 1 ≤ m1 < · · · < ml ≤ n the matrix
product D1,m1−1Um1

Dm1+1,m2−1 · · ·Uml
Dml+1,n. Note that this is a product of

2l + 1 ≤ 2d − 1 (and hence constantly many) matrices that have been computed
before. Hence, the computation of D1,m1−1Um1Dm1+1,m2−1 · · ·Uml

Dml+1,n in-
volves a constant number of polynomial multiplications and additions. So, all the
above matrix products can be computed in DLOGTIME-uniform TC0 as well. Next,
we have to compute the sum of all polynomially many matrices computed in the pre-
vious step. For this we have to compute d2 many sums of polynomially many poly-
nomials, which is again possible in DLOGTIME-uniform TC0. The resulting matrix
is M1 · · ·Mn = gnA1 · · ·An. Finally we have to reduce all entries of the matrices
M1 · · ·Mn and gnId modulo the minimal polynomial q(y) which can also be done
in DLOGTIME-uniform TC0 by Lemma 10. Note that we divide by the polynomial
q(y), whose leading coefficient is indeed 1.

14

We have shown that the word problem for a f.g. solvable linear group G belongs
to DLOGTIME-uniform TC0. If G is in addition infinite, then G cannot be a torsion-
group, since every f.g. linear torsion group is finite by a result of Schur, see [47,
Corollary 4.9]. Therefore Z is a subgroup of G. Since the word problem for Z is
already complete for DLOGTIME-uniform TC0 (it corresponds to the problem of
counting the number of ones in a word) we obtain the lower bound in the theorem.

Finally, letG be a f.g. virtually solvable linear groupG. ThenG contains a normal
solvable subgroup H , for which we know that the word problem can be solved in
DLOGTIME-uniform TC0. Moreover, the quotient G/H is a finite group, for which
the word problem belongs to DLOGTIME-uniform NC1. Hence, Theorem 11 implies
that the word problem for G belongs to DLOGTIME-uniform NC1. ut
By Tits alternative [41], every linear group is either virtually solvable (i.e., has a
solvable subgroup of finite index, which can be assumed to be normal) or contains
a free group of rank two. Since by [36, Theorem 6.3], the word problem for a free
group of rank two is hard for DLOGTIME-uniform NC1, one gets:

Theorem 12 For every f.g. linear group that is not virtually solvable, the word prob-
lem is hard for DLOGTIME-uniform NC1.

Theorem 7 and 12 leave open the case of a f.g. linear group G that is not solvable but
a finite extension of a solvable group H . If the quotient G/H is solvable too, then G
is solvable and we can apply Theorem 7. So, we can assume that the finite quotient
G/H is not solvable. It seems plausible that in this case, the word problem for G
is hard for DLOGTIME-uniform NC1, since the word problem for every finite non-
solvable group is hard for DLOGTIME-uniform NC1 [9]. But it is not clear, whether
the word problem for the finite quotient G/H reduces to the word problem for G (it
reduces to the membership problem for H in G).

4 Straight-line programs and the compressed word problem

Let us now consider the compressed word problem. We start with the definition of
a straight-line program (which should not be confused with arithmetic straight-line
programs). A straight-line program (briefly, SLP) is basically a multiplicative circuit
over a free monoid. We define an SLP over the finite alphabet Σ as a triple G =
(V, S, rhs) where V is a finite set of variables (or gates), S ∈ V is the start variable
(or output gate), and rhs maps every variable to a right-hand side rhs(A), which is
either a symbol a ∈ Σ, or of the formBC whereB,C ∈ V . As for arithmetic circuits
we require that there is a linear order < on V such that B < A, whenever B occurs
in rhs(A). The terminology “(start) variable” instead of “(output) gate” comes from
the fact that an SLP is quite often defined as a context-free grammar that produces a
single word over Σ. This word is defined in the obvious way by iteratively replacing
variables by the corresponding right-hand sides, starting with the start variable. We
denote this word with val(G). The unique word over Σ, derived from the variable
A ∈ V , is denoted with valG(A). We will also allow more general right-hand sides
from (V ∪Σ)∗, but by introducing new variables we can always obtain an equivalent
SLP in the above form.

15

If we have a monoidM , which is finitely generated by the setΣ, then there exists
a canonical monoid homomorphism η : Σ∗ →M . Then, an SLP G over the alphabet
Σ can be evaluated over the monoid M , which yields the monoid element η(val(G)).
In this paper, we are only interested in the case that the monoid M is a f.g. group
G. Let G be finitely generated as a group by Σ. An SLP over the alphabet Σ ∪Σ−1
is also called an SLP over the group G. In this case, we will quite often identify the
word val(G) ∈ (Σ ∪Σ−1)∗ with the group element g ∈ G to which it evaluates. We
will briefly write “val(G) = g in G” in this situation.

The main computational problem we are interested in is the compressed word
problem for a f.g. group G (with a finite generating set Σ), briefly CWP(G). The in-
put for this problem is an SLP G over the alphabet Σ ∪Σ−1, and it is asked whether
val(G) = 1 in G (where of course 1 denotes the group identity). The term “com-
pressed word problem” comes from the fact that this problem can be seen as a suc-
cinct version of the classical word problem for G, where the input is an explicitly
given word w ∈ (Σ ∪Σ−1)∗ instead of an SLP-compressed word.

The compressed word problem is related to the classical word problem. For in-
stance, the classical word problem for a f.g. subgroup of the automorphism group of
a group G can be reduced to the compressed word problem for G, and similar re-
sults are known for certain group extensions, see [29] for more details. Groups, for
which the compressed word problem can be solved in polynomial time are [29]: fi-
nite groups, f.g. nilpotent groups, f.g. free groups, graph groups (also known as right-
angled Artin groups or partially commutative groups), and virtually special groups,
which are groups that have a finite index subgroup that embeds into a graph group.
The latter groups form a rather large class that include for instance Coxeter groups,
one-relator groups with torsion, fully residually free groups, and fundamental groups
of hyperbolic 3-manifolds. In [11] the parallel complexity of the compressed word
problem (there, called the circuit evaluation problem) for finite groups was studied,
and the following result was shown:

Theorem 13 ([11]) Let G be a finite group. If G is solvable, then CWP(G) belongs
to the class DET ⊆ NC2. If G is not solvable, then CWP(G) is P-complete.

The following two results are proven in [29].

Theorem 14 ([29, Theorem 4.15]) For every f.g. linear group the compressed word
problem belongs to the class coRP.

This result is shown by reducing the compressed word problem for a f.g. linear group
to polynomial identity testing for the ring Z. Also a kind of converse of Theorem 14
is shown in [29]:

Theorem 15 ([29, Theorem 4.16]) The problems CWP(SL3(Z)) and polynomial
identity testing for the ring Z are polynomial time reducible to each other.

This result is shown by using the construction of Ben-Or and Cleve [12] for simulat-
ing arithmetic circuits by matrix products.

16

5 Evaluating arithmetic circuits

In the rest of the paper we will deal with the complexity of compressed word prob-
lems. For our results in Section 5.1 and 5.2 we will need some results about the
complexity of evaluating variable-free arithmetic circuits that we prove in this sec-
tion.

The following lemma is folklore. We give a proof for completeness.

Lemma 16 Given an arithmetic circuit C over some ring (R,+, ·) one can compute
in logarithmic space two positive circuits C1 and C2 over (R,+, ·) such that val(C) =
val(C1)− val(C2). Moreover, for i ∈ {1, 2} we have deg(Ci) ≤ deg(C), depth(Ci) ≤
2 · depth(C), and mdepth(Ci) ≤ mdepth(C). Finally, if C is skew then C1 and C2 are
both skew.

Proof Let C = (V, S, rhs) be an arithmetic circuit over the ring (R,+, ·). We define
the positive circuits C1 = (V ′, S1, rhs

′) and C2 = (V ′, S2, rhs
′) as follows:

– V ′ = {Ai | A ∈ V, i ∈ {1, 2}},
– rhs′(Ai) = Bi + Ci if rhs(A) = B + C for i ∈ {1, 2},
– rhs′(A1) = B1C1 +B2C2 if rhs(A) = B · C,
– rhs′(A2) = B1C2 +B2C1 if rhs(A) = B · C,
– rhs′(A1) = rhs(A) if rhs(A) ∈ {0, 1} ∪X ,
– rhs′(A2) = 0 if rhs(A) ∈ {0, 1} ∪X ,
– rhs′(A1) = 0 if rhs(A) = −1,
– rhs′(A2) = 1 if rhs(A) = −1.

In fact, the final circuits C1 and C2 are obtained by transforming the above circuits
into normal form; for this we have to split up the right-hand sides B1C1 +B2C2 and
B1C2 +B2C1. The resulting circuits are skew if C is skew.

We show by induction that for every gate A ∈ V we have val(A) = val(A1) −
val(A2). The case thatA is an input gate is trivial. Now letA be an addition gate with
rhs(A) = B + C such that the statement is true for B and C. Then

val(A) = val(B) + val(C)

= val(B1)− val(B2) + val(C1)− val(C2)

= (val(B1) + val(C1))− (val(B2) + val(C2))

= val(A1)− val(A2)

Finally, let A be a multiplication gate with rhs(A) = B · C. We get

val(A) = val(B)val(C)

= (val(B1)− val(B2))(val(C1)− val(C2))

= val(B1)val(C1) + val(B2)val(C2)− val(B1)val(C2)− val(B2)val(C1)

= val(A1)− val(A2).

So the claim holds. The construction of C1 and C2 can be done in logarithmic space,
since the right-hand sides of C1 and C2 are defined in a purely local way. By induction,
it can be shown that for every gate A of C and every i ∈ {1, 2}, one has deg(Ai) =
deg(A), depth(Ai) ≤ 2 · depth(A), and mdepth(Ai) = mdepth(A). ut

17

We need the following simple lemma, whose proof is based on folklore ideas (see
also the proof of [44, Lemma 5.3]):

Lemma 17 There is an NAuxPDA P that gets as input a positive variable-free arith-
metic circuit C = (V, S, rhs) over (Z,+, ·) and such that the following properties
hold:

– The number of accepting computations of P on input C is val(C).
– The running time is bounded polynomially in depth(C) · deg(C).
– The work tape stores only O(log |V |) many bits.
– The number of bits stored on the pushdown is bounded byO(mdepth(C)·log |V |).

Proof The NAuxPDA P stores a sequence of gates on its pushdown and a single gate
on its work tape. Every gate can be encoded using log(|V |) many bits. Initially, the
pushdown is empty and the output gate S is stored on the work tape. The NAuxPDA
P proceeds as follows, where A is the gate that is currently stored on the work tape.

– If rhs(A) = B + C, then P replaces A on the work tape by B or C, where the
choice is made nondeterministically. The pushdown is not changed.

– If rhs(A) = B · C, then P replaces A on the work tape by B and pushes C on
the pushdown.

– If rhs(A) = 0, then P rejects.
– If rhs(A) = 1 and the pushdown is empty, then P accepts.
– If rhs(A) = 1 and the pushdown is non-empty, then let C be the top gate stored

on the pushdown. Then P replaces A on the work tape by C and pops C from the
pushdown.

By induction on the depth of a gate A one shows the following: If P is started with
empty pushdown and the gate on the work tape is A, then:

– the number of accepting computations of P is val(A), and
– the running time is bounded byO(depth(A)·deg(A)) where we assume that each

of the subprocedures in the above cases takes time O(1).

This implies the first two statements of the lemma. The third statement is obvious. For
the last statement, notice that if C1C2 · · ·Ck is a stack content (with Ck the topmost
gate on the stack), then Ci is the right input gate for a multiplication gate Ai and
A1A2 · · ·Ak lie along a path in the circuit. Hence, k is bounded by mdepth(C). ut

Corollary 18 Fix an arbitrary constant c ≥ 0. The problem, whether a variable-free
arithmetic circuit over (Z,+, ·) with multiplication depth at most c evaluates to zero
is C=L-complete.

Proof Let us first show the lower bound for c = 0 (which implies the lower bound
for any c ≥ 0). As remarked in Section 2.2, the question whether val(C1) = val(C2)
for two positive variable-free addition circuits C1 and C2 is complete for C=L. It
suffices to construct from the disjoint union of C1 and C2 a variable-free arithmetic
circuit (without multiplication gates) such that val(C) = val(C1) − val(C2), which is
straightforward.

18

The crucial observation for the upper bound is the fact that for variable-free arith-
metic circuits of multiplication depth at most c, the NAuxPDA from Lemma 17 is
a nondeterministic logspace machine. Consider a variable-free arithmetic circuit C
over (Z,+, ·) with multiplication depth at most c. By Lemma 16 we obtain from C in
logspace two positive variable-free circuits C1 and C2 with val(C) = val(C1)−val(C2).
The multiplication depth of C1 and C2 is still bounded by c. Hence, we can obtain two
nondeterministic logspace machinesM1 andM1 as follows: On input C as above,
the machineMi runs the NAuxPDA from Lemma 17 on the circuit Ci obtained from
Lemma 16. This is a deterministic logspace computation followed by a nondeter-
ministic logspace computation, which can be performed by a single nondeterminis-
tic logspace machine by standard techniques. From the construction it follows that
val(C) = 0 if and only if the number of accepting computations ofM1 on input C is
equal to the number of accepting computations ofM2 on input C. ut

5.1 The compressed word problem for finitely generated nilpotent groups

The main result of this section is:

Theorem 19 Let G 6= 1 be a f.g. torsion-free nilpotent group. Then CWP(G) is
complete for the class C=L.

Every nontrivial torsion-free group contains a copy of (Z,+) as a subgroup. Since the
compressed word problem for a f.g. subgroup H of a group G is logpace reducible
to the compressed word problem for G [29, Proposition 4.3], the lower bound in
Theorem 19 follows from the following lemma:

Lemma 20 CWP(Z,+) is hard for C=L.

Proof Clearly, an SLP G over the generator 1 of Z and its inverse −1 is nothing
else than a variable-free arithmetic circuit C without multiplication gates. Hence, the
result is just a reformulation of the lower bound in Corollary 18 for c = 0 ut

For the upper bound in Theorem 19, we use the fact that every torsion-free f.g. nilpo-
tent group can be embedded into the group UTd(Z) for some d ≥ 1 (Theorem 5).
Hence, it suffices to show the following result:

Lemma 21 For every d ≥ 1, CWP(UTd(Z)) belongs to C=L.

For the rest of this section let us fix a number d ≥ 1 and consider the unitriangluar
matrix group UTd(Z). Consider an SLP G = (V, S, rhs) over the alphabet Γd ∪ Γ−1d

where Γd is the finite generating set of UTd(Z) from Section 2.3. Note that for every
variable A ∈ V , valG(A) is a word over the alphabet Γd ∪ Γ−1d . We identify in the
following this word with the matrix to which it evaluates. Thus, valG(A) ∈ UTd(Z).

In order to show Lemma 21, it suffices by Corollary 18 to construct in logspace
from an SLP G as above a variable-free arithmetic circuit C of multiplication depth at
most d such that G evaluates to the identity matrix if and only if C evaluates to 0. This
is the content of the following lemma. The degree bound in the following lemma will
be only needed in Section 5.2.

19

Lemma 22 From an SLP G = (V, S, rhs) over UTd(Z) one can compute in logspace
a variable-free arithmetic circuit C over (Z,+, ·) with mdepth(C) ≤ d − 1 and
deg(C) ≤ 2(d− 1), such that val(G) = Idd if and only if val(C) = 0.

Proof The set of gates of the circuit C is

W = {Ai,j | A ∈ V, 1 ≤ i < j ≤ d} ∪ {T}

where T is the output gate. The idea is simple: Gate Ai,j will evaluate to the matrix
entry valG(A)[i, j]. To achieve this, we define the right-hand side mapping of the
circuit G (which we denote again with rhs) as follows:

rhs(Ai,j) =

{
M [i, j] if rhs(A) =M ∈ Γd ∪ Γ−1d

Bi,j + Ci,j +
∑
i<k<j Bi,k · Ck,j if rhs(A) = BC

In the first line one has to notice that M [i, j] is one of the numbers −1, 0, 1. The
second line is simply the rule for matrix multiplication (Ai,j =

∑d
k=1Bi,kCk,j)

taking into account that all matrices are unitriangular.
Now, val(G) is the identity matrix if and only if all matrix entries valG(S)[i, j]

(1 ≤ i < j ≤ d) are zero. But this is the case if and only if the sum of squares∑
1≤i<j≤d valG(S)[i, j]

2 is zero. Hence, we finally define

rhs(T) =
∑

1≤i<j≤d

S2
i,j .

Concerning the multiplication depth, note that the multiplication depth of the gate
Ai,j is bounded by j − i − 1: The only multiplications in rhs(Ai,j) are of the form
Bi,kCk,j for i < k < j. Hence, by induction, the multiplication depth of Ai,j is
bounded by 1 + max{k − i− 1, j − k − 1 | i < k < j} = j − i− 1. It follows that
every gate Si,j has multiplication depth at most d− 2, which implies that the output
gate T has multiplication depth at most d− 1.

Similarly, it can be shown by induction that deg(Ai,j) ≤ j−i. Thus, deg(Ai,j) ≤
d − 1 for all 1 ≤ i < j ≤ d, which implies that the formal degree of the circuit is
bounded by 2(d− 1). This proves the lemma and hence Lemma 21. ut

Example 23 Figure 1 illustrates the transformation from an SLP G over UT3(Z) into
a variable-free arithmetic circuit over (Z,+, ·) of multiplication depth 2. The three
multiplication gatesB,C andD are used to square (and subsequently add) the values
of E,F and G that represent the matrix entries of val(G). The rest of the circuit can
be split in three parts. The left part beneath E that evaluates to val(G)[1, 2], the right
part beneath G that evaluates to val(G)[2, 3] and the middle part that evaluates to
val(G)[1, 3]. Notice that multiplication gates only appear in the middle part and their
inputs are always from the left or the right part or input gates. This property illustrates
why the multiplication depth of the arithmetic circuit is 2 and (more general) why the
transformation of SLPs over UTd(Z) leads to arithmetic circuits with multiplication
depth at most d− 1.

20

·

· ·

 1 1 0
0 1 0
0 0 1

 1 0 0
0 1 −1
0 0 1

(a) SLP G over UT3(Z)

+

· B · C · D

+ E
+ F

+ G

+ · +

+

+ · ·
+

+

1
0 −1

(b) Circuit C of multiplication depth 2

Fig. 1: Transformation of an SLP over UT3(Z) into a variable-free arithmetic circuit
over (Z,+, ·).

So far, we have restricted to torsion-free f.g. nilpotent groups. For general f.g.
nilpotent groups, we use the fact that every f.g. nilpotent group contains a torsion-free
normal f.g. nilpotent subgroup of finite index (Theorem 4) in order to show that the
compressed word problem for every f.g. nilpotent group belongs to the complexity
class DET: To do this we need the following result:

Theorem 24 Let G be a finitely generated group. For every normal subgroup H of
G with a finite index, CWP(G) is AC0-reducible to CWP(H) and CWP(G/H).

Proof To show the lemma, we adopt the proof of [29, Theorem 4.4], where the state-
ment is shown for polynomial time many-one reducibility instead of AC0-reducibility.

21

Let G be a finitely generated group with the finite generating set Σ and let H be a
normal subgroup of G of finite index (which must be f.g. as well) with the finite gen-
erating set Γ . As the generating set for the quotient G/H we can take the set Σ as
well. Let {Hg1, . . . ,Hgn} be the set of cosets of H in G where g1 = 1. Moreover,
let φ : G→ G/H be the canonical homomorphism and let η : (Σ ∪Σ−1)∗ → G be
the morphism that maps every word from (Σ ∪ Σ−1)∗ to the group element in G to
which it evaluates. Now let G = (V, S, rhsG) be an SLP over the alphabet Σ ∪Σ−1.
We have to construct an AC0-circuit with oracle gates for CWP(H) and CWP(G/H)
that checks whether val(G) = 1 in G.

Consider the set of triples

W =
{
[gi, A, g

−1
j] | A ∈ V, 1 ≤ i, j ≤ n, giη(valG(A))g−1j ∈ H

}
.

In a first step, we construct the set of all these triples in parallel using n2|V | oracle
gates for CWP(G/H). More precisely, we construct for all A ∈ V, 1 ≤ i, j ≤ n
an SLP GA,i,j that evaluates to the group element φ(giη(valG(A))g−1j) ∈ G/H . For
this, we take the SLP G and add a new start variable SA,i,j with the right-hand side
wiAw

−1
j where wi ∈ (Σ ∪ Σ−1)∗ is a word that represents the group element gi.

We do not need to compute these words wi; they can be “hard-wired” into the circuit.
The SLP GA,i,j can be clearly constructed in AC0, and we have val(GA,i,j) = 1 in
G/H if and only if giη(valG(A))g−1j ∈ H .

Note that val(GS,1,1) = 1 in G/H if and only if val(G) represents an element
of the subgroup H . Thus, if it turns out that val(GS,1,1) 6= 1 in G/H (which can
be checked with an oracle gate for CWP(G/H)), then the whole circuit will output
zero. Otherwise (i.e., in case η(val(G)) ∈ H), we construct in AC0 an SLP H over
the alphabet Γ ∪Γ−1 (the monoid generating set for H) that will represent the group
element η(val(G)). This SLP is then fed into an oracle gate for CWP(H), and the
output bit of this oracle gate is the output of the whole circuit.

The variable set of H is W , the start variable is [g1, S, g
−1
1] and the right-hand

sides are defined as follows: If rhsG(A) = a ∈ Σ∪Σ−1, we set rhsH([gi, A, g−1j]) =

wa,i,j where wa,i,j ∈ (Γ ∪ Γ−1)∗ is a word that represents the group element
giag

−1
j = giη(valG(A))g

−1
j ∈ H . Note again, that we do not have to compute

these words wa,i,j (they are fixed). If rhsG(A) = BC and [gi, A, g
−1
j] ∈ W , then

we determine the unique k, so that giη(valG(B))g−1k ∈ H . To do this we have
to go through the set W and look for the unique k such that [gi, B, g−1k] ∈ H .
Now we define rhsH([gi, A, g

−1
j]) = [gi, B, g

−1
k][gk, C, g

−1
j]. Clearly, this construc-

tion can be carried out by an AC0-circuit. Finally, it is straightforward to show that
valH([gi, A, g

−1
j]) represents the group element giη(valG(A))g−1j ∈ H . Hence, we

have val(G) = 1 in G, if and only if val(H) = 1 in H . This finishes our reduc-
tion. Note that the overall circuit consists of n2|V | parallel CWP(G/H)-oracle gates
followed by a single CWP(H)-oracle gate. ut

Example 25 Figure 2 illustrates the proof of Theorem 24 with the groupG = (Z,+),
the normal subgroup H = (3Z,+) and the finite quotient G/H ∼= (Z3,+). As
usual the representing elements of the cosets are chosen as g1 = 0, g2 = 1 and

22

+ A

+ B

+ C

1 −1

(a) SLP G over Z

+

+

+ A

+ B

+ C

1 2

0

0

(b) SLP GA,1,1 over Z3

+ (0, A, 0)

+ (0, B,−1)

+ (0, C,−2) + (2, C,−1)

0 + 1 + (−1) 1 + 1 + (−2) 2 + 1 + 0 0 + 1 + (−1)

1 + (−1) + 0

(c) SLPH over 3Z

Fig. 2: Illustration of the proof of Lemma 24.

g3 = 2. In picture (a) there is an SLP G over Z that evaluates to 3, so in particular,
val(G) ∈ H which is tested by the SLP GA,1,1 in picture (b) over Z3. Finally in picture
(c) there is the SLP H over H (notice that all inputs evaluate to elements of H) that
evaluates to the same element as G does. For the construction of H we calculate the
set W = {(a,A, b−1) | A ∈ V, a, b,∈ {0, 1, 2}, a + val(A) − b mod 3 = 0} by the
SLPs GA,i,j and take the needed gates from this set as described in the proof.

We can now show:

Theorem 26 For every f.g. nilpotent group, the compressed word problem is in DET.

Proof Let G be a f.g. nilpotent group. If G is finite, then the result follows from
Theorem 13 (every nilpotent group is solvable). IfG is infinite, then by Theorem 4,G
has a torsion-free normal subgroupH of finite index. By Theorem 3,H andG/H are
nilpotent too; moreover H is finitely generated. By Theorem 19, CWP(H) belongs
to C=L ⊆ DET. Moreover, by Theorem 13, CWP(G/H) belongs to DET as well.
Finally, Theorem 24 implies that CWP(G) belongs to DET. ut

23

Actually, Theorem 26 can be slightly extended to groups that are (f.g. nilpotent)-by-
(finite solvable) (i.e., groups that have a normal subgroup, which is f.g. nilpotent,
and where the quotient is finite solvable. This follows from Theorem 24 and the
fact that the compressed word problem for a finite solvable group belongs to DET
(Theorem 13).

Recently, Myasnikov and Weiß [34] prove that for every f.g. nilpotent group
G, the following special case of the compressed word problem can be solved in
DLOGTIME-uniform TC0: Given group elements g1, . . . , gn ∈ G and binary en-
coded integers e1, . . . , en, does ge11 · · · genn = 1 hold in G? It is straightforward to
construct a small SLP for ge11 · · · genn .

5.2 The uniform compressed word problem for unitriangular groups

For Lemma 21 it is crucial that the dimension d is a constant. In this section, we
consider a uniform variant of the compressed word problem for UTd(Z). We denote
this problem with CWP(UT∗(Z)). The input consists of a unary encoded number
d and an SLP, whose terminal symbols are generators of UTd(Z) or their inverses.
Alternatively, we can assume that the terminal symbols are arbitrary matrices from
UTd(Z) with binary encoded entries (given such a matrix M , it is easy to construct
an SLP over the generator matrices that produces M). The question is whether the
SLP evaluates to the identity matrix. We show that this problem is complete for the
complexity class C=LogCFL. Recall the definition of that class and the definition of
NAuxPDA from the end of Section 2.2.

Theorem 27 The problem CWP(UT∗(Z)) is complete for C=LogCFL.

Proof We start with the upper bound. Consider an SLP G, whose terminal symbols
are generators of UTd(Z) or their inverses. The dimension d is clearly bounded by
the input size. Consider the variable-free arithmetic circuit C constructed from G in
Lemma 22 and let C1 and C2 be the two variable-free positive arithmetic circuits
obtained from C using Lemma 16. Then G evaluates to the identity matrix if and
only if val(C1) = val(C2). Moreover, the formal degrees deg(C1) and deg(C2) are
bounded by 2(d − 1), i.e., polynomially bounded in the input length. We now com-
pose a logspace machine that computes from the input SLP G the circuit Ci with the
NAuxPDA from Lemma 17 to get an NAuxPDA Pi such that the number of accept-
ing computation paths of Pi on input G is exactly val(Ci). Moreover, the running time
of Pi on input G is bounded polynomially in (2d− 1) · depth(Ci) ∈ O(d · |G|).

Let us now show that CWP(UT∗(Z)) is hard for the class C=LogCFL. Let f1, f2 :
{0, 1}∗ → N be two functions in #LogCFL. As explained in Section 2.2, there
exist two logspace-uniform families of positive arithmetic circuits (C1,n)n≥0 and
(C2,n)n≥0, having polynomially bounded size and formal degree [44] such that, for
i ∈ {1, 2}, (Ci,n)n≥0 computes fi. Let w = a1a2 · · · an ∈ {0, 1}n be an input for
the n-th circuits C1,n and C2,n. Let Ci = (Vi, Si, rhsi) be the variable-free positive
arithmetic circuit obtained from Ci,n by replacing every xj-labelled input gate by the
input bit aj ∈ {0, 1}. We can assume that V1∩V2 = ∅. Moreover, by [4, Lemma 3.2]
we can assume that every gate of Ci is labelled by its formal degree. By adding if

24

necessary additional multiplication gates where one input is set to 1 (which adds 1
to the formal degree), we can assume that C1 and C2 have the same formal degree
d ≤ p(n) for a polynomial p. Analogously, we can assume that if A is an addition
gate in C1 or C2 with right-hand side B + C, then deg(B) = deg(C) = deg(A). All
these preprocessing steps can be carried out in logarithmic space. Below, we write
vali(A) for valCi(A), where A ∈ Vi.

We will construct in logarithmic space an SLP G = (V, S, rhs) over the alpha-
bet Γd+1 ∪ Γ−1d+1, where Γd+1 is our canonical generating set for the matrix group
UTd+1(Z) (see Section 2.3), such that val(G) evaluates to the identity matrix if and
only if C1 and C2 evaluate to the same number. The latter means that f1(w) = f2(w).
As before, we will identify words over the alphabet Γd+1 ∪ Γ−1d+1 with the matrices
to which they evaluate.

We set V = {Abj | A ∈ V1 ∪ V2, 1 ≤ j ≤ d + 1 − deg(A), b ∈ {−1, 1}}. We
define rhs in such a way that valG(Abj) = T b·vj,j+e where v = vali(A) for A ∈ Vi with
e = deg(A) (recall the definition of Ti,j from Section 2.3). Let A ∈ Vi, e = deg(A),
1 ≤ j ≤ d+ 1− e and b ∈ {−1, 1}.
Case 1. rhsi(A) = 0. We set rhs(Abj) = Id, which is T 0

j,j+1. Note that e = 1.
Correctness is obvious in this case.

Case 2. rhsi(A) = 1. We set rhs(Abj) = T bj,j+1. Correctness is again obvious.

Case 3. rhsi(A) = B + C. Note that deg(A) = deg(B) = deg(C) = e. We
set rhs(Abj) = Bbj C

b
j . Correctness follows immediately by induction: Assume that

val(Bbj) = T
b·vali(B)
j,j+e and val(Cbj) = T

b·vali(C)
j,j+e . We get

val(Abj) = val(Bbj)val(C
b
j) = T

b·vali(B)
j,j+e T

b·vali(C)
j,j+e

= T
b·(vali(B)+vali(C))
j,j+e = T

b·vali(A)
j,j+e .

Note that the gates Bbj and Cbj exist for all 1 ≤ j ≤ d + 1 − e, since deg(B) =
deg(C) = e.

Case 4. rhsi(A) = B · C. We set rhs(A1
j) = B−1j C−1k B1

jC
1
k and rhs(A−1j) =

C−1k B−1j C1
kB

1
j where k = j+ deg(B). Since 1 ≤ j ≤ d+1− e and e = deg(A) =

deg(B) + deg(C), we have 1 ≤ j ≤ d+ 1− deg(B) and 1 ≤ k ≤ d+ 1− deg(C),
which means that the gates B−1j , B1

j , C−1k and C1
k indeed exist. Correctness follows

from Lemma 2 and induction (note that k + deg(C) = j + e):

val(A1
j) = val(B−1j)val(C−1k)val(B1

j)val(C
1
k)

= T
−vali(B)
j,k T

−vali(C)
k,j+e T

vali(B)
j,k T

vali(C)
k,j+e

= T
vali(B)·vali(C)
j,j+e = T

vali(A)
j,j+e .

A similar calculation can be done for A−1j . Finally, for the start variable S of G, we
set rhs(S) = (S1)

1
1(S2)

−1
1 . Hence, we get

val(S) = T
val(C1)
1,d+1 T

−val(C2)
1,d+1 = T

val(C1)−val(C2)
1,d+1 .

Hence, val(G) is the identity matrix if and only if val(C1) = val(C2), which concludes
the proof. ut

25

5.3 The compressed word problem for polycyclic groups

In this section we consider the compressed word problem for polycyclic groups.
Since every polycyclic group is f.g. linear, the compressed word problem for a poly-
cyclic group can be reduced to polynomial identity testing. In this section, we show a
lower bound: There exists a strongly polycyclic group G (which is also metabelian)
such that polynomial identity testing for skew arithmetic circuits can be reduced to
CWP(G).

Let us start with a specific example of a polycyclic group. Consider the two ma-
trices

ga =

(
a 0
0 1

)
and h =

(
1 1
0 1

)
(4)

where a ∈ R, a ≥ 2. Let Ga = 〈ga, h〉 ≤ GL2(R). Let us remark that, for instance,
the group G2 is not polycyclic, see e.g. [47, p. 56]. On the other hand, we have:

Proposition 28 The group G = G1+
√
2 is polycyclic and metabelian.3

Proof We show that the commutator subgroup of G is isomorphic to Z × Z, which
implies the theorem. First we calculate the commutator subgroup of G. It is known
that the commutator subgroup of a group generated by two elements g1, g2 is gener-
ated by all commutators gs1g

t
2g
−s
1 g−t2 for s, t ∈ Z [32]. Hence,

[G,G] = 〈Ms,t | s, t ∈ Z〉

where for s, t ∈ Z we set

Ms,t =

(
1 +
√
2 0

0 1

)s(
1 1
0 1

)t(
1 +
√
2 0

0 1

)−s(
1 1
0 1

)−t
=

(
(1 +

√
2)s 0

0 1

)(
1 t
0 1

)(
(1 +

√
2)−s 0

0 1

)(
1 −t
0 1

)
=

(
(1 +

√
2)s t(1 +

√
2)s

0 1

)(
(1 +

√
2)−s −t(1 +

√
2)−s

0 1

)
=

(
1 −t+ t(1 +

√
2)s

0 1

)
=

(
1 t((1 +

√
2)s − 1)

0 1

)
.

With the setting

u =

(
1
√
2

0 1

)
and v =

(
1 2
0 1

)
we show that 〈Ms,t | s, t ∈ Z〉 = 〈u, v〉. Moreover, it is easy to see that u and v
generate a copy of Z× Z.

3 It is probably known to experts that G is polycyclic. Since we could not find an explicit proof, we
present the arguments for completeness.

26

We have M1,1 = u and

M2,1M
−2
1,1 =

(
1 2 + 2

√
2

0 1

)(
1 −2

√
2

0 1

)
=

(
1 2
0 1

)
= v.

This shows that 〈u, v〉 ⊆ 〈Ms,t | s, t ∈ Z〉. For the other inclusion assume first that
s ≥ 0. Then

t
((

1 +
√
2
)s
− 1
)
= t

((
s∑
i=0

(
s

i

)√
2
i

)
− 1

)

= t

(
s∑
i=1

(
s

i

)√
2
i

)

= t

b s2 c∑
i=1

(
s

2i

)√
2
2i
+

d s2 e∑
i=1

(
s

2i− 1

)√
2
2i−1

= 2

b s2 c∑
i=1

t

(
s

2i

)
2i−1

+
√
2

d s2 e∑
i=1

t

(
s

2i− 1

)
2i−1

 .

So with

c1 =

b s2 c∑
i=1

t

(
s

2i

)
2i−1 ∈ Z and c2 =

d s2 e∑
i=1

t

(
s

2i− 1

)
2i−1 ∈ Z

we get

Ms,t =

(
1 t((1 +

√
2)s − 1)

0 1

)
=

(
1 2c1 +

√
2c2

0 1

)
= vc1uc2 .

For s < 0 we get with a = −s mod 2:

t
((

1 +
√
2
)s
− 1
)
= t

((√
2− 1

)−s
− 1

)
= t

((−s∑
i=0

(
−s
i

)
(
√
2)i(−1)−s−i

)
− 1

)

= t

(
−2a+

−s∑
i=1

(
−s
i

)
(
√
2)i(−1)−s−i

)

= t

−2a+ b−s
2 c∑
i=1

(
−s
2i

)
(
√
2)2i(−1)−s−2i

+

t

d−s
2 e∑
i=1

(
−s

2i− 1

)
(
√
2)2i−1(−1)−s−(2i−1)

27

= 2

−at+ b−s
2 c∑
i=1

t

(
−s
2i

)
2i−1(−1)−s−2i

+

√
2

d−s
2 e∑
i=1

t

(
−s

2i− 1

)
2i−1(−1)−s−(2i−1)

 .

So with

c1 = −at+
b−s

2 c∑
i=1

t

(
−s
2i

)
2i−1(−1)−s−2i ∈ Z

and

c2 =

d−s
2 e∑
i=1

t

(
−s

2i− 1

)
2i−1(−1)−s−(2i−1) ∈ Z

we get

Ms,t =

(
1 t((1 +

√
2)s − 1)

0 1

)
= vc1uc2 .

This shows that 〈Ms,t | s, t ∈ Z〉 ⊆ 〈u, v〉. ut

The main result of this section is:

Theorem 29 Let a ≥ 2. Polynomial identity testing for skew arithmetic circuits over
(Z,+, ·) is logspace-reducible to the compressed word problem for the group Ga.

In particular, there exist polycyclic groups for which the compressed word problem
is at least as hard as polynomial identity testing for skew circuits. Recall that it is
not known, whether there exists a polynomial time algorithm for polynomial identity
testing restricted to skew arithmetic circuits. It also follows from Theorem 29 that the
compressed word problem for the Baumslag-Solitar group 〈a, t | t−1at = a2〉 ∼= G2

is at least as hard as polynomial identity testing for skew circuits.
For the proof of Theorem 29, we will make use of the following lemma. It is a

result from [3] (see the proof of Proposition 2.2 in [3], where the result is shown for
a = 2, but the proof immediately generalizes to any a ≥ 2):

Lemma 30 Let a ≥ 2 be a real number and let C be an arithmetic circuit over
(Z,+, ·) of size n. Let val(C) = p(x1, . . . , xm). Then p(x1, . . . , xm) is the zero-

polynomial if and only if p(α1, . . . , αm) = 0 where αi = a2
i·n2

for 1 ≤ i ≤ m.

Proof of Thereom 29. Let us fix a skew arithmetic circuit C of size n with m vari-
ables x1, . . . , xm. Consider the two positive arithmetic circuits C1 and C2 obtained
from Lemma 16, Notice that C1 and C2 are skew. Let val(C) = p(x1, . . . , xm)
and val(Cj) = pj(x1, . . . , xm) for j ∈ {1, 2}. By Lemma 16 p1(x1, . . . , xm) =
p2(x1, . . . , xm) if and only if p(x1, . . . , xm) = 0. Letα1, . . . , αm be as in Lemma 30.
For j ∈ {1, 2} we will define an SLP Gj over the alphabet {ga, g−1a , h, h−1} such
that val(Gj) = hpj(α1,...,αm).

28

First of all, using iterated squaring, we can construct an SLP H with variables
B1, B

−1
1 , . . . , Bm, B

−1
m (and some other auxiliary variables) such that

valH(Bi) = g2
i·n2

a =

(
a2

i·n2

0
0 1

)
=

(
αi 0
0 1

)
and

valH(B
−1
i) = g−2

i·n2

a =

(
a−2

i·n2

0
0 1

)
=

(
α−1i 0
0 1

)
.

We now construct the SLP Gj as follows: The set of variables of Gj consists of the
gates of Cj and the variables of H. We copy the right-hand sides from H and define
the right-hand side for a gate A of Cj as follows:

rhsGj (A) =

Id if rhsCj (A) = 0 or rhsCj (A) = 0 ·B
h if rhsCj (A) = 1

BC if rhsCj (A) = B + C

B if rhsCj (A) = 1 ·B
BiBB

−1
i if rhsCj (A) = xi ·B.

We claim that for every gate A of Cj we have the following, where we denote for
better readability the polynomial valCj (A) to which gate A evaluates with pA:

valGj (A) =

(
1 pA(α1, . . . , αm)
0 1

)
.

The cases that rhsCj (A) is a constant, 0 · B, resp., 1 · B are obvious. If rhsCj (A) =
B + C then we obtain by induction

valGj (A) = valGj (B)valGj (C)

=

(
1 pB(α1, . . . , αm)
0 1

)(
1 pC(α1, . . . , αm)
0 1

)
=

(
1 pB(α1, . . . , αm) + pC(α1, . . . , αm)
0 1

)
=

(
1 pA(α1, . . . , αm)
0 1

)
.

Finally, if rhsCj (A) = xi ·B then we obtain by induction

valGj (A) =

(
αi 0
0 1

)
valGj (B)

(
α−1i 0
0 1

)
=

(
αi 0
0 1

)(
1 pB(α1, . . . , αm)
0 1

)(
α−1i 0
0 1

)
=

(
αi αi · pB(α1, . . . , αm)
0 1

)(
α−1i 0
0 1

)
=

(
1 αi · pB(α1, . . . , αm)
0 1

)
=

(
1 pA(α1, . . . , αm)
0 1

)
.

29

Now we define the SLP G′2 by replacing in G2 every right-hand sideA·B byB ·A and
replacing every input value by its inverse. This directly yields val(G′2) = val(G2)−1 =
h−p2(α1,...,αm). Finally we define the SLP G as the concatenation of G1 and G′2. We
get

val(G) = val(G1) · val(G′2)
= hp1(α1,...,αm) · h−p2(α1,...,αm)

= hp1(α1,...,αm)−p2(α1,...,αm),

which is the group identity if and only if p1(α1, . . . , αm) − p2(α1, . . . , αm) =
p(α1, . . . , αm) = 0. By Lemma 30 this is equivalent to val(C) = p(x1, . . . , xm) = 0.
ut

Example 31 In Figure 3 we start with a positive skew arithmetic circuit C with |C| =
8 and transform it into an SLP G over Ga (a ≥ 2), as explained in the proof of
Thereom 29. Here α = a2

64

, so we need 64 multiplication gates plus one input gate
in the subSLP beneath gate B1 (resp. B−11) in order to get val(B1) = g2

64

a (resp.
val(B−11) = a−2

64

). We split the figure in two parts: on the left there is the SLP G,
where B1 and B−11 are left as inputs and on the right there are the two subSLPs for
B1 and B−11 .

Actually, we can carry out the above reduction for a class of arithmetic circuits
that is slightly larger than the class of skew arithmetic circuits. Let us define a power-
ful skew circuit as an arithmetic circuit where for every multiplication gate A, rhs(A)
is of the form α ·

∏m
i=1 x

ei
i · B for a gate B, binary coded integers α, e1, . . . , em

(ei ≥ 0), and variables x1, . . . , xm. Such a circuit can be converted into an ordinary
arithmetic circuit (the big powers xeii can be produced by iterated squaring), which,
however is no longer skew. To extend the reduction from the proof of Thereom 29
to powerful skew circuits, first note that in a right-hand side α ·

∏m
i=1 x

ei
i · B we

can assume that α = 1, since we can obtain α ·
∏m
i=1 x

ei
i · B from

∏m
i=1 x

ei
i · B

using additional addition gates. For a gate A with rhsC(A) =
∏m
i=1 x

ei
i · B we set

rhsG(A) =
∏m
i=1B

ei
i B

∏m
i=1B

−ei
i . The powers Beii and B−eii can be defined using

additional multiplication gates. In [25], we introduced powerful skew circuits, and
proved that for this class, polynomial identity testing can be solved in coRNC2. Us-
ing this result, we showed that the compressed word problem for a wreath product
G oZn whereG is a direct product of copies of Z and groups Zp for primes p, belongs
to coRNC2.

Let us look again at the group G = G1+
√
2 from Proposition 28. Its commutator

subgroup is isomorphic to Z× Z. Moreover, the quotient G/[G,G] is isomorphic to
Z × Z2: The G-generator h from (4) satisfies h2 ∈ [G,G], whereas the generator
g1+
√
2 has infinite order in the quotient. Hence, G has a subnormal series of the form

GBHBZ×ZBZB1 whereH has index two inG andH/(Z×Z) ∼= Z. The group
H is strongly polycyclic and has Hirsch length three. By Theorem 24 we obtain:

Corollary 32 There is a strongly polycyclic group H of Hirsch length 3 such that
polynomial identity testing for powerful skew circuits over (Z,+, ·) is polynomial
time reducible to CWP(H).

30

· A

+ B

· C

+ D

x

x

x 1

(a) Positive skew arithmetic Circuit C

· A

·

· B

· C

·

· D

·

·

B1

B−1
1

B−1
1

B1

(
1 1
0 1

)
B1

(
1 1
0 1

)
B−1

1

(b) SLP over Ga

· B1

·

·

(
a 0
0 1

)

}

· B−1
1

·

·

(
1/a 0
0 1

)

61 gates{

(c) SLPs to generate B1 and B−1
1

Fig. 3: Transformation of a positive skew arithmetic circuit into an SLP over Ga.

One might try to extend Corollary 32 to certain infinite classes of polycyclic
groups. Recently, Nikolaev and Ushakov [35] proved that the so called subset sum
problem is NP-complete for every polycyclic group that is not virtually nilpotent.
One might try to use their techniques to extend Corollary 32 to every polycyclic
group that is not virtually nilpotent.

31

References

1. M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering. Journal of the
Association for Computing Machinery, 50(4):429–443, 2003.

2. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems of linear
equations. Computational Complexity, 8(2):99–126, 1999.

3. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of numerical
analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.

4. E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth reduction
and size lower bounds. Theoretical Computer Science, 209(1-2):47–86, 1998.

5. C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoretical Computer Science,
107(1):3–30, 1993.

6. S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge University
Press, 2009.

7. V. Arvind and P. S. Joglekar. Arithmetic circuit size, identity testing, and finite automata. Electronic
Colloquium on Computational Complexity (ECCC), 16:26, 2009.

8. L. Auslander. On a problem of Philip Hall. Annals of Mathematics, 86(2):112–116, 1967.
9. D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly those

languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.
10. D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the

Association for Computing Machinery, 35(4):941–952, 1988.
11. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit evalua-

tion. SIAM Journal on Computing, 26(1):138–152, 1997.
12. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers. SIAM

Journal on Computing, 21(1):54–58, 1992.
13. D. K. Biss and S. Dasgupta. A presentation for the unipotent group over rings with identity. Journal

of Algebra, 237(2):691–707, 2001.
14. S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64:2–22,

1985.
15. S. A. Cook and L. Fontes. Formal theories for linear algebra. Logical Methods in Computer Science,

8(1), 2012.
16. V. Diekert, A. G. Myasnikov, and A. Weiß. Conjugacy in Baumslag’s group, generic case complexity,

and division in power circuits. In Proceedings of the 11th Symposium on Latin American Theoretical
Informatics, LATIN 2014, volume 8392 of Lecture Notes in Computer Science, pages 1–12. Springer,
2014.

17. W. Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Computing, 18(5):955–976,
1989.

18. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits for divi-
sion and iterated multiplication. Journal of Computer and System Sciences, 65:695–716, 2002.

19. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line programs.
Journal of the Association for Computing Machinery, 30(1):217–228, 1983.

20. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the
XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing,
STOC 1997, pages 220–229. ACM Press, 1997.

21. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit
lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

22. M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the Theory of Groups, volume 62 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1979.

23. O. G. Kharlampovič. A finitely presented solvable group with unsolvable word problem (Russian).
Izv. Akad. Nauk SSSR Ser. Mat. 45 no. 4, 852–873, 928, 1981.

24. D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithmus (third edi-
tion). Addison-Wesley, 1998.

25. D. König M. Lohrey. Parallel identity testing for algebraic branching programs with big powers and
applications. In Proceedings of Mathematical Foundations of Computer Science, MFCS 2015, Lecture
Notes in Computer Science 9235, pages 445–458 . Springer, 2015.

26. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the Association for
Computing Machinery, 24(3):522–526, 1977.

32

27. M. Lohrey. Word problems and membership problems on compressed words. SIAM Journal on
Computing, 35(5):1210 – 1240, 2006.

28. M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology,
4(2):241–299, 2012.

29. M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics. Springer,
2014.

30. M. Lohrey. Rational subsets of unitriangluar groups. International Journal of Algebra and Computa-
tion, 25(1-2):113-121, 2015.

31. A. I. Mal’cev. On certain classes of infinite soluble groups. American Mathematical Society Transla-
tions, Series 2, 2:1–21, 1956.

32. G. Miller. The commutator subgroup of a group generated by two operators. Proceedings of the
National Academy of Sciences of the United States of America, 18:665–668, 1932.

33. C. Moore. Predicting nonlinear cellular automata quickly by decomposing them into linear ones.
Physica D: Nonlinear Phenomena, 111:27–41, 1998.

34. A. G. Myasnikov and A. Weiß. TCˆ0 circuits for algorithmic problems in nilpotent groups. CoRR,
abs/1702.06616, 2017.

35. A. Nikolaev and A. Ushakov. Subset sum problem in polycyclic groups. CoRR, abs/1703.07406,
2017.

36. D. Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of California,
San Diego, 1993.

37. J. J. Rotman. An Introduction to the Theory of Groups (fourth edition). Springer, 1995.
38. W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences, 22:365–383,

1981.
39. H. U. Simon. Word problems for groups and contextfree recognition. In Proceedings of Fundamentals

of Computation Theory, FCT 1979, pages 417–422. Akademie-Verlag, 1979.
40. R. Swan. Representations of polycyclic groups. Proceedings of the American Mathematical Society,

18:573–574, 1967.
41. J. Tits. Free subgroups in linear groups. Journal of Algebra, 20:250–270, 1972.
42. S. Toda. Counting problems computationally equivalent to computing the determinant. Technical

Report CSIM 91-07, University of Electro-Communications, Tokyo, 1991.
43. S. D. Travers. The complexity of membership problems for circuits over sets of integers. Theor.

Comput. Sci., 369(1-3):211–229, 2006.
44. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Pro-

ceedings of the Sixth Annual Structure in Complexity Theory Conference, pages 270–284. IEEE Com-
puter Society, 1991.

45. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
46. S. Waack. On the parallel complexity of linear groups. R.A.I.R.O. — Informatique Théorique et

Applications, 25(4):265–281, 1991.
47. B. A. F.Wehrfritz. Infinite Linear Groups. Springer, 1977.
48. A. Weiß. On the Complexity of Conjugacy in Amalgamated Products and HNN Extensions. PhD

thesis, Universität Stuttgart, 2015.
49. O. Zariski and P. Samuel. Commutative Algebra, Volume I, volume 28 of Graduate Texts in Mathe-

matics. Springer, 1958.

33

