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1. Introduction

In their paper [24], Myasnikov, Nikolaev, and Ushakov started the investiga-
tion of classical discrete integer optimization problems in general non-commutative
groups. Among other problems, they introduced for a finitely generated (f.g.) group
G the knapsack problem and the subset sum problem. The input for the knapsack
problem is a sequence of group elements g1, . . . , gk, g ∈ G and it is asked whether
there exists a solution (x1, . . . , xk) ∈ Nk of the equation gx1

1 · · · g
xk

k = g. For the
subset sum problem one restricts the solution to {0, 1}k. For the particular case
G = Z (where the additive notation x1 · g1 + · · ·+ xk · gk = g is usually preferred)
these problems are NP-complete if the numbers g1, . . . , gk, g are encoded in binary
representation. For subset sum this is shown in Karp’s classical paper [14]. The
statement for knapsack (in the above version) can be found in [11].

In [24] the authors encode elements of the finitely generated group G by words
over the group generators and their inverses. For G = Z this representation cor-
responds to the unary encoding of integers. It is known that for unary encoded
integers, knapsack and subset sum over Z can both be solved in polynomial time,
and the precise complexity is DLOGTIME-uniform TC0 [7], which is a very small
complexity class that roughly speaking captures the complexity of multiplying bi-
nary coded integers. In [24], Myasnikov et al. proved the following new results:

• Subset sum and knapsack can be solved in polynomial time for every
hyperbolic group.

• Subset sum for a virtually nilpotent group (i.e. a finite extension of a
nilpotent group) can be solved in polynomial time.

• For the following groups, subset sum is NP-complete (whereas the word
problem can be solved in polynomial time): free metabelian non-abelian
groups of finite rank, the wreath product Z oZ, Thompson’s group F , and
the Baumslag-Solitar group BS(1, 2).

In a recent paper [21], the last two authors of this paper further studied subset
sum and knapsack and proved the following results:

• For every virtually special group (finite extension of a subgroup of a right-
angled Artin group), knapsack belongs to NP.
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• Knapsack and subset sum are NP-complete for a direct product of two
free groups of rank 2.

• Membership of knapsack in NP is preserved under HNN-extensions over
finite associated subgroups and amalgamated products with finite identi-
fied subgroups.

In this paper, we continue the investigation of knapsack and subset sum for arbi-
trary groups. We prove the following results, where as in [24] group elements are
represented by finite words over the group generators and their inverses:

• For every virtually nilpotent group, subset sum belongs to NL (nondeter-
ministic logspace).

• There is a polycyclic group with an NP-complete subset sum problem.
• There is a nilpotent group of class two for which knapsack is undecidable.

This nilpotent group is a direct product of sufficiently many copies of
the discrete Heisenberg group H3(Z). In [19], the second author proved
that there exists a nilpotent group (of large class) for which knapsack is
undecidable. Here we improve this result to class two and at the same time
simplify the construction from [19]. As a byproduct of our construction,
we show that there exists a fixed nilpotent group of class two together
with four finitely generated abelian subgroups G1, G2, G3, G4 such that
membership in the product G1G2G3G4 is undecidable. This contrasts the
known fact that membership in a product of two subgroups of a polycyclic
group is decidable [17].

• The knapsack problem for the discrete Heisenberg group H3(Z) is de-
cidable. In particular, together with the previous point it follows that
decidability of knapsack is not preserved under direct products.

• The class of groups with a decidable knapsack problem is closed under
finite extensions.

• The knapsack problem is decidable for every co-context-free group. Recall
that a group is co-context-free if the complement of the word problem is
a context-free language [12].

It is interesting to compare the above mentioned undecidability results for a di-
rect product of copies of H3(Z) with a result of [3]: There, the authors prove
that the following knapsack problem is NP-complete: Given a list A1, . . . , Ak, B of
commuting square matrices over an algebraic number field F , is there a solution
(x1, . . . , xk) ∈ Nk of the equation Ax1

1 · · ·A
xk

k = B (here, the algebraic number field
F is given by an irreducible polynomial over Q and the dimension of the matrices is
not fixed)? In fact, for a fixed k, the problem can be solved in polynomial time [3].
Our direct product of copies of H3(Z), for which knapsack is undecidable, is iso-
morphic to a group of unitriangular matrices (see the next section). This matrix
group is not commutative (and it cannot be so, otherwise it would contradict the
result from [3]), but it is not far from commutative: Since it is a 2-step nilpotent
group, every commutator is central.

2. Nilpotent and polycyclic groups

Let A be a square matrix of dimension d over some commutative ring R. With
A[i, j] we denote the entry of A in row i and column j. The matrix A is called
triangular if A[i, j] = 0 whenever i > j, i.e., all entries below the main diagonal
are 0. A unitriangular matrix is a triangular matrix A such that A[i, i] = 1 for
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all 1 ≤ i ≤ d, i.e., all entries on the main diagonal are 1. We denote the set of
unitriangular matrices of dimension d over the ring R by UTd(R). It is well known
that for every commutative ring R, the set UTd(R) is a group (with respect to
matrix multiplication).

An n-step solvable group G is a group G that possesses a subnormal series
G = GnBGn−1BGn−2B · · ·BG1BG0 = 1 (i.e., Gi is a normal subgroup of Gi+1

for all 0 ≤ i ≤ n− 1) such that every quotient Gi+1/Gi is abelian (0 ≤ i ≤ n− 1).
If every quotient Gi+1/Gi is cyclic, then G is called polycyclic. The number of
0 ≤ i ≤ n − 1 such that Gi+1/Gi ∼= Z is called the Hirsch length of G; it does
not depend on the chosen subnormal series. If Gi+1/Gi ∼= Z for all 0 ≤ i ≤ n − 1
then G is called strongly polycyclic. The following characterizations of the class of
polycyclic groups are known:

• A group is polycyclic if and only if it is solvable and every subgroup is
finitely generated.

• A group is polycyclic if and only if it is a solvable group of integer matrices;
this is a famous result by Auslander and Swan [2, 26]. In particular, every
polycyclic group is linear, i.e., can be embedded into a matrix group over
some field.

For a group G its lower central series is the series G = G0 BG1 BG2 B · · · of sub-
groups, where Gi+1 = [Gi, G], which is the subgroup generated by all commutators
[g, h] with g ∈ Gi and h ∈ G. Indeed, Gi+1 is a normal subgroup of Gi. The group
G is nilpotent of class c, if Gc = 1. Every f.g. nilpotent group is polycyclic, and
every group UTd(Z) (d ≥ 1) is f.g. nilpotent of class d− 1.

The group UT3(Z) is also denoted by H3(Z) and called the discrete Heisenberg
group. Thus, H3(Z) is the group of all (3× 3)-matrices of the form 1 a c

0 1 b
0 0 1


for a, b, c,∈ Z. The center Z(H3(R)) of this group consists of all matrices of the
form  1 0 c

0 1 0
0 0 1


for c ∈ Z. The group H3(Z) is nilpotent of class two (it is in fact the free nilpotent
group of class two and rank two). In other words, every commutator ABA−1B−1

(A,B ∈ H3(Z)) belongs to the center Z(H3(Z)). The identity (3×3)-matrix will be
denoted by Id3. Clearly, a direct product of copies of H3(Z) and Z is also nilpotent
of class two.

We need the following results about nilpotent groups:

Theorem 2.1 ([13, Theorem 17.2.2]). Every f.g. nilpotent group G has a
torsion-free normal subgroup H of finite index (which is also f.g. nilpotent).

Theorem 2.2 ([13, Theorem 17.2.5]). For every torsion-free f.g. nilpotent
group G there exists d ≥ 1 such that G can be embedded into UTd(Z).

A group is virtually nilpotent if it has a nilpotent subgroup of finite index.
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3. Subset sum and knapsack problems in groups

Let G be a f.g. group, and fix an arbitrary finite generating set Σ for G. In this
paper, we consider the following computational problems for G, where elements of
G are represented by finite words over Σ ∪ Σ−1:

• Subset sum problem for G (briefly SSP(G)): Given g1, . . . , gk, g ∈ G,
decide whether there exist ε1, . . . , εk ∈ {0, 1} such that g = gε11 · · · g

εk
k .

• Knapsack problem for G (briefly KP(G)): Given g1, . . . , gk, g ∈ G, decide
whether there exist natural numbers e1, . . . , ek ≥ 0 such that we have
g = ge11 · · · g

ek
k .

These problems were studied for general f.g. groups in [8, 21, 24], where among
others the following results were shown:

• The subset sum problem for every f.g. virtually nilpotent group can be
solved in polynomial time [24].

• The subset sum problem and the knapsack problem for every hyperbolic
group can be solved in polynomial time [24].

• The knapsack problem can be solved in polynomial time in any free prod-
uct of hyperbolic groups and finitely generated abelian groups [8].

• The subset sum problem for the following groups is NP-complete: Z o Z,
free metabelian (but non-abelian) groups of finite rank, and Thompson’s
group F [24], and F2 × F2 [21]. For the latter group, knapsack is NP-
complete as well [21].

There is a variant of knapsack, where we ask whether for given g1, . . . , gk, g ∈ G,
there exist integers e1, . . . , ek ∈ Z such that g = ge11 · · · g

ek
k , i.e., whether g belongs

belongs to the product of cyclic groups 〈g1〉 · · · 〈gk〉. This second version is reducible
to the above version with exponents from N: Simply replace geii (where ei ranges
over Z) with gcii (g−1

i )di (where ci and di range over N). We will prove undecidability
results for the ostensibly easier version with integer exponents, whereas decidability
results will be shown for the harder version with non-negative exponents.

4. Subset sum problems in nilpotent groups

In this section, we show that the subset sum problem for a finitely generated
virtually nilpotent group belongs to nondeterministic logspace (NL). This is the
class of all problems that can be solved on a nondeterministic Turing-machine with
a working tape of length O(log n), where n is the length of the input, see e.g. [1] for
details. Actually, we consider a problem more general than the subset sum problem:
the membership problem for acyclic finite automaton, which was also studied in [8].

Recall that a finite (nondeterministic) automaton over a finite alphabet Σ is a
tuple A = (Q,∆, q0, F ), where

• Q is a finite set of states,
• ∆ ⊆ Q× Σ∗ ×Q is a finite set of transitions,
• q0 ∈ Q is the initial state, and
• F ⊆ Q is the set of final states.

If the directed graph (Q, {(p, q) | ∃w ∈ Σ∗ : (p, w, q) ∈ ∆}) has no directed cycle,
then the finite automaton A is acyclic. Given a word w ∈ Σ∗, an accepting run for
w is a sequence of transitions (q0, w1, q1), (q1, w2, q2), . . . , (qn−1, wn, qn) ∈ ∆ such
that w = w1w2 · · ·wn and qn ∈ F . The language L(A) ⊆ Σ∗ is the set of all words
over Σ that have an accepting run. By splitting transitions, one can compute in
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logspace from a finite automaton A an automaton B such that L(A) = L(B) and
all transitions of B are from Q×(Σ∪{ε})×Q. Moreover, B is acyclic if A is acyclic.

Let G be a finitely generated group, and let Σ be a finite group generating
set for G. Hence, Σ ∪ Σ−1 generates G as a monoid and there is a canonical
homomorphism h : (Σ ∪ Σ−1)∗ → G. For a finite automaton A over Σ ∪ Σ−1 and
a word x ∈ (Σ ∪ Σ−1)∗ we also write x ∈G L(A) for h(x) ∈ h(L(A)). The acyclic
rational subset membership problem for G (briefly ARatMP(G)) is the following
computational problem:

Input: An acyclic finite automaton A over Σ ∪ Σ−1 and a word x ∈ (Σ ∪ Σ−1)∗.
Question: Does x ∈G L(A) hold?

Clearly, SSP(G) is logspace reducible to ARatMP(G).

Theorem 4.1. For every d ≥ 1 and every f.g. subgroup G of UTd(Z), the
problem ARatMP(G) belongs to NL.

Proof. It suffices to prove the theorem for G = UTd(Z). Let A be a finite
automaton with n states, whose transitions are labelled with generator matrices of
UTd(Z) or the identity matrix. We nondeterministically guess a path of length at
most n from the initial state of A to a final state of A and thereby multiply the
matrices along the path. We only store the current state of A, the product of the
matrices seen so far, and the length of the path travelled so far (so that after n
steps we can stop). The state of the automaton as well as the length of the path
need O(log n) bits. Hence, we only have to show that the product matrix can be
stored in logarithmic space. For this, it suffices to show that the matrix entries
are bounded polynomially in n. Then, the binary coding of the matrix needs only
O(log n) many bits (note that the matrix dimension d is a constant). For this,
we can use the following simple result (see [18, Proposition 4.18] for a proof),
which only holds for unitriangular matrices: For a (d×d)-matrixM = (ai,j)1≤i,j≤d

over Z let |M | =
∑d
i=1

∑d
j=1 |ai,j |. Let M1, . . . ,Mn ∈ UTd(Z), n ≥ 2d, and let

m = max{|Mi| | 1 ≤ i ≤ n}. For the product of these matrices we have

|M1M2 · · ·Mn| ≤ d+ (d− 1)

(
n

d− 1

)
d2(d−2)md−1.

In our situation, the matrices Mi are from a fixed set (generators and the identity
matrix). Hence, m and also d are constants. Hence, the above bound is polynomial
in n, which means that every entry of the productM1M2 · · ·Mn can be stored with
O(log n) bits. �

Theorem 4.2. Let H be a finite index subgroup of the f.g. group G (hence, H
is f.g. too). Then ARatMP(G) is logspace-reducible to ARatMP(H).

Proof. Let G and H be as in the statement of the theorem. Let Γ (resp., Σ)
be a finite generating set for G (resp., H). Let Hg0, Hg1, . . . ,Hgn be a list of all
right cosets of H, where g0 = 1.

Let A = (Q,∆, q0, F ) be an acyclic finite automaton over the alphabet Γ∪Γ−1

and let x ∈ (Γ∪Γ−1)∗. We can assume that ∆ ⊆ Q× (Γ∪Γ−1 ∪{ε})×Q. Assume
that x = ygs in G, where y ∈ (Σ ∪ Σ−1)∗. We can compute the word y and the
coset representative gs in logspace as follows: Let x = a1a2 · · · am. We store an
index i ∈ {0, . . . , n}, which is initially set to 0. Then, for 1 ≤ j ≤ m we do the
following: If giaj = wgk for w ∈ (Σ ∪ Σ−1)∗, then we append the word w at the
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output tape and we set i := k. At the end, the word y is written on the output
tape and the final index i is s such that x = ygs.

We now construct a new acyclic automaton B over the alphabet Σ ∪ Σ−1 as
follows:

• The state set is Q× {g0, g1 . . . , gn}.
• Assume that (p, a, q) ∈ ∆ is a transition of A (a ∈ Γ ∪ Γ−1 ∪ {ε}) and let
i ∈ {0, 1, . . . , n}. Assume that gia = wgj in G, where w ∈ (Σ ∪ Σ−1)∗.
Then, we add the transition (〈p, gi〉, w, 〈q, gj〉) to B.

• The initial state of B is 〈q0, g0〉.
• The set of final states of B is F × {gs}.

From the construction, we get x ∈G L(A) if and only if y ∈H L(B). �

Theorem 4.3. Let G be finitely generated virtually nilpotent. Then, the prob-
lem ARatMP(G) is NL-complete.

Proof. Hardness for NL follows immediately from the NL-hardness of the
graph reachability problem for acyclic directed graphs. For the membership in
NL let G be finitely generated virtually nilpotent. By Theorem 2.1 and 2.2, G has
a f.g. finite index subgroup H such that H is isomorphic to a subgroup of UTd(Z).
W.l.o.g we assume that H is a subgroup of UTd(Z). Membership in NL follows
from Theorem 4.1 and Theorem 4.2. �

By Theorem 4.3, the subset sum problem for a finitely generated virtually
nilpotent belongs to NL. It is open whether this upper bound can be improved
further. In particular, it is open whether the subset sum problem for the Heisenberg
group H3(Z) can be solved in deterministic logspace. Recall from the introduction
that subset sum for Z (and unary encoded numbers) belongs to DLOGTIME-uniform
TC0 which is a subclass of deterministic logspace. This result generalizes easily to
any f.g. abelian group.

5. Subset sum in polycyclic groups

We show in this section that there exists a polycyclic group with an NP-
complete subset sum problem, which is in sharp contrast to nilpotent groups (as-
suming NL 6= NP). Let us start with a specific example of a polycyclic group.
Consider the two matrices

ga =

(
a 0
0 1

)
and h =

(
1 1
0 1

)
,

where a ∈ R, a ≥ 2. Let Ga = 〈ga, h〉 ≤ GL2(R). Let us remark that, for instance,
the group G2 is not polycyclic, see e.g. [27, p. 56]. On the other hand, we have:

Proposition 5.1 (c.f. [15]). The group G1+
√

2 is polycyclic.

Theorem 5.2. SSP(G1+
√

2) is NP-complete.

Proof. Let α = 1+
√

2. We follow the standard proof for the NP-completeness
of subset sum for binary encoded integers. However, we will work with real numbers
of the form

x =

n∑
i=0

xi · α3i,



KNAPSACK AND SUBSET SUM PROBLEMS 7

where the xi are natural numbers with 0 ≤ xi ≤ 5. The numbers xi are uniquely
determined by x in the following sense:

Claim 1: If

(5.1)
n∑
i=0

xi · α3i =

m∑
i=0

yi · α3i

with x0, . . . xn, y0, . . . , ym ∈ {0, 1, . . . , 5} and xn 6= 0 6= ym, then n = m and xi = yi
for all 0 ≤ i ≤ n.
Proof of Claim 1. Assume that the conclusion of the claim fails. Then, by canceling
α-powers with highest exponent, we obtain from (5.1) an identity of the form

n∑
i=0

xi · α3i =

m∑
i=0

yi · α3i

where n > m, x0, . . . xn, y0, . . . , ym ∈ {0, 1, . . . , 5} and xn 6= 0. In order to lead this
to a contradiction, it suffices to show

α3n >

n−1∑
i=0

5 · α3i.

Indeed, we have
n−1∑
i=0

5 · α3i <

n−1∑
i=0

(α3i + α3i+1 + α3i+2) =

3n−1∑
i=0

αi =
α3n − 1

α− 1
< α3n.

Let us now take a 3CNF-formula C =
∧m
i=1 Ci, where Ci = (zi,1∨zi,2∨zi,3). Every

zi,j is a literal, i.e., a Boolean variable or a negated Boolean variable. Let x1, . . . , xn
be the Boolean variables appearing in C.

We now define numbers u1, . . . , u2n+2m, and t as follows, where 1 ≤ i ≤ n and
1 ≤ j ≤ m:

u2i−1 = α3i−3 +
∑
xi∈Ck

α3n+3k−3

u2i = α3i−3 +
∑
xi∈Ck

α3n+3k−3

u2n+2j−1 = u2n+2j = α3n+3j−3

t =

n∑
i=1

α3i−3 +

m∑
k=1

3 · α3n+3k−3

Claim 2: C is satisfiable if and only if there exists a subset I ⊆ {1, . . . , 2n + 2m}
such that

∑
k∈I uk = t.

Proof of Claim 2. Suppose C is satisfiable and let ϕ : {x1, . . . , xn} → {0, 1} be
a satisfying assignment for C. We define ϕ(xi) = 1 − ϕ(xi). For every clause
Cj = (zj,1 ∨ zj,2 ∨ zj,3) let γj = |{k ∈ {1, 2, 3} | ϕ(zj,k) = 1}| be the number of
literals in Cj that are true under ϕ. Thus, we have 1 ≤ γj ≤ 3.

We define the set I as follows, where 1 ≤ i ≤ n and 1 ≤ j ≤ m:
• 2i− 1 ∈ I iff ϕ(xi) = 1
• 2i ∈ I iff ϕ(xi) = 0
• If γj = 3, then 2n+ 2j − 1 6∈ I and 2n+ 2j 6∈ I.
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• If γj = 2, then 2n+ 2j − 1 ∈ I and 2n+ 2j 6∈ I.
• If γj = 1, then 2n+ 2j − 1 ∈ I and 2n+ 2j ∈ I.

With this set I we have indeed
∑
k∈I uk = t.

For the other direction, let I ⊆ {1, . . . , 2n+ 2m} such that
∑
k∈I uk = t. Note

that in the sum
∑
k∈I uk no power α3k can appear more than 5 times (a power

α3n+3j−3 with 1 ≤ j ≤ m can appear at most 5 times, since it appears in at most
3 of the numbers u1, . . . , u2n and in 2 of the numbers u2n+1, . . . , u2n+2m). This
allows to use Claim 1. A comparison of t and

∑
k∈I uk shows that either 2i− 1 ∈ I

or 2i ∈ I. We define the assignment ϕ : {x1, . . . , xn} → {0, 1} as follows:
• ϕ(xi) = 1 iff 2i− 1 ∈ I
• ϕ(xi) = 0 iff 2i ∈ I

As above, let γj be the number of literals in Cj that are true under ϕ. Moreover,
let δj = |I ∩ {2n+ 2j − 1, 2n+ 2j}| for 1 ≤ j ≤ m. We get

∑
k∈I

uk =

n∑
i=1

α3i−3 +

m∑
j=1

(γj + δj) · α3n+3j−3 = t =

n∑
i=1

α3i−3 +

m∑
j=1

3 · α3n+3j−3.

Since δj ∈ {0, 1, 2} we must have γj ≥ 1 for all 1 ≤ j ≤ m. This shows that ϕ
satisfies C.

We now map each of the numbers u1, . . . , u2n+2m, t to a word over the gener-
ators gα, h (and their inverses) of the polycyclic group Gα. First, for i ≥ 0 let us
define

wi = giαhg
−i
α

In the group Gα we have

wi =

(
1 αi

0 1

)
Finally, take a number Y =

∑n
i=0 yi · αi. We define the word

wY =

n∏
i=0

wyii .

In the group Gα we have

wY =

(
1 Y
0 1

)
.

The words wu1 , . . . , wu2n+2m , wt can be computed in polynomial time (even in
logspace) from the 3CNF-formula C. Moreover, the construction implies that C
is satisfiable iff there exists a subset I ⊆ {1, . . . , 2n + 2m} such that

∑
k∈I uk = t

iff there are ε1, . . . , ε2n+2m ∈ {0, 1} such that wε1u1
· · ·wε2n+2m

u2n+2m = wt in the group
Gα. �

6. Knapsack problems in nilpotent groups

The goal of this section is to prove that the knapsack problem is undecidable
for a direct product of sufficiently many copies of H3(Z), which is nilpotent of class
two.



KNAPSACK AND SUBSET SUM PROBLEMS 9

6.1. Exponential expressions. Let X be a countably infinite set of vari-
ables. An exponential expression E over a group G is a formal product of the
form

E = gx1
1 gx2

2 · · · g
xl

l

with x1, . . . , xl ∈ X and g1, . . . , gl ∈ G. We do not assume that xi 6= xj for i 6= j.
The group elements g1, . . . , gl will also be called the base elements of E. The length
of E is l. Let Var(E) = {x1, . . . , xl} be the set of variables that appear in E. For
a finite set X with Var(E) ⊆ X ⊆ X and h ∈ G, the set of X-solutions of the
equation E = h is the set of mappings

SX(E = h) = {ν : X → Z | gν(x1)
1 g

ν(x2)
2 · · · gν(xl)

l = h in G}.
Note that not every variable from X has to appear as an exponent in E. We
moreover set S(E = h) = SVar(E)(E = h).

For every 1 ≤ i ≤ n consider an exponential expression Ei over a group Gi.
Then we can define the exponential expression E =

∏n
i=1Ei over the product group

G =
∏n
i=1Gi. It is defined by replacing in Ei every occurrence of a base element

g ∈ Gi with the corresponding element

( 1, . . . , 1︸ ︷︷ ︸
i− 1 many

, g, 1, . . . , 1︸ ︷︷ ︸
n− i many

) ∈ G

and taking the concatenation of the resulting exponential expressions. With this
definition, the following lemma is obvious.

Lemma 6.1. For 1 ≤ i ≤ n let Ei be an exponential expression over a group Gi.
Let hi ∈ Gi for 1 ≤ i ≤ n. Let X =

⋃n
i=1 Var(Ei). Then for the exponential

expression E =
∏n
i=1Ei and the element h = (h1, . . . , hn) ∈

∏n
i=1Gi we have:

SX(E = h) =

n⋂
i=1

SX(Ei = hi).

Proposition 6.2. There are fixed constants d, e ∈ N and a fixed exponential ex-
pression E over G = H3(Z)d × Ze such that the following problem is undecidable:

Input: A element h ∈ G.
Question: Does S(E = h) 6= ∅ hold?

Proof. Let P (x1, . . . , xn) ∈ Z[x1, . . . , xn] be a fixed polynomial such that the
following question is undecidable:

Input: A number a ∈ N.
Question: Is there a tuple (z1, . . . , zn) ∈ Zn such that P (z1, . . . , zn) = a.

By Matiyasevich’s proof for the unsolvability of Hilbert’s 10th problem, we know
that such a polynomial exists, see [22] for details. By introducing additional vari-
ables, we can construct from the polynomial P (x1, . . . , xn) a system S of equa-
tions of the form x · y = z, x + y = z, x = c (for c ∈ Z) such that the equa-
tion P (x1, . . . , xn) = a has a solution in Z if and only if the system of equations
Sa := S ∪ {x0 = a} has a solution in Z. Here x0 is a distinguished variable of S.
Let X be the set of variables that occur in Sa.

Take an integer a ∈ Z (the input for our reduction). Assume that Sa contains d
many equations of the form x ·y = z and e many equations of the form x+y = z or
x = c. Enumerate all equations as E1, . . . , Ed+e, where E1, . . . , Ed are all equations
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of the form x · y = z. Let Gi = H3(Z) for 1 ≤ i ≤ d, Gi = Z for d+ 1 ≤ i ≤ d+ e,
and G =

∏d+e
i=1 Gi. We define for every 1 ≤ i ≤ d + e an element hi ∈ Gi and an

exponential expression Ei over Gi as follows:

Case 1. Ei = (x · y = z) and thus Gi = H3(Z). Then, we set hi = Id3 (the identity
matrix) and

Ei =

 1 0 0
0 1 1
0 0 1

x 1 1 0
0 1 0
0 0 1

y 1 0 0
0 1 −1
0 0 1

x 1 −1 0
0 1 0
0 0 1

y 1 0 1
0 1 0
0 0 1

z .
Note that this product evaluates to the matrix 1 0 z − xy

0 1 0
0 0 1

 .

Hence, a mapping ν : X → Z is a solution of Ei = hi if and only if ν(x)·ν(y) = ν(z).

Case 2. Ei = (x+ y = z) and thus Gi = Z. Then, we set hi = 0 and Ei = x+ y− z
(written in additive form, or, written multiplicatively, Ei = gxgyg−z, where g is a
generator of Z). Then, a mapping ν : X → Z is a solution of Ei = hi if and only if
ν(x) + ν(y) = ν(z).

Case 3. Ei = (x = c) (this includes the distinguished equation x0 = a) and thus
Gi = Z. Then, hi = c and Ei = x (or, written multiplicatively, Ei = gx). Then, a
mapping ν : X → Z is a solution of Ei = hi if and only if ν(x) = c.

Let E =
∏d
i=1Ei and h = (h1, . . . , hd) ∈ G. By Lemma 6.1, a mapping ν : X → Z

is a solution of E = h if and only if ν is a solution of the system Sa. Also note
that h ∈ G depends on the input integer a, but the exponential expression E only
depends on the fixed polynomial P (x1, . . . , xn). �

Remark 6.3. The fixed exponential expression E from Proposition 6.2 has the
following property that will be exploited in the next section: We can write E as
E′1E

′
2 · · ·E′m such that every exponential expression E′i has length at most four

and every base element g from E′i commutes with every base element h from E′j
whenever i 6= j. For this, note that the last matrix in the exponential expression
from Case 1 is central in H3(Z) and hence central in the direct product G. The
first four matrices in the exponential expression from Case 1 yield an expression E′i
of length four.

6.2. Undecidability of knapsack for nilpotent groups of class two.
Let E = gx1

1 gx2
2 · · · g

xl

l be an exponential expression over the f.g. group G and let
X = Var(E). Consider the group G× Zl. For 1 ≤ i ≤ l let ei ∈ Zl be the i-th unit
vector from Zl. For every x ∈ X define

ex =
∑

1≤i≤l,xi=x

ei ∈ Zl and kx = (1, ex) ∈ G× Zl.

Note that kx is central in G× Zl. Moreover, for 1 ≤ i ≤ l let

ki = (gi,−ei) ∈ G× Zl.
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Then, for a given group element h ∈ G, we have S(E = h) 6= ∅ if and only if

(h, 0) ∈
∏
x∈X
〈kx〉

l∏
i=1

〈ki〉.

By applying the above construction to the fixed exponential expression E over
the fixed group G = H3(Z)d × Ze from Proposition 6.2, we obtain (note that
Z ≤ H3(Z)):

Theorem 6.4. There exist a fixed constant c and a fixed list g1, . . . , gλ ∈ H3(Z)c

of group elements such that membership in the product
∏λ
i=1〈gi〉 is undecidable.

In particular, we have:

Theorem 6.5. There exists a fixed constant c such that KP(H3(Z)c) is unde-
cidable.

Finally, from the construction in the previous section, we also obtain the fol-
lowing undecidability result.

Theorem 6.6. There exist a fixed constant c and a fixed list of four abelian
subgroups G1, G2, G3, G4 ≤ H3(Z)c such that membership in the product G1G2G3G4

is undecidable.

Proof. Recall from Remark 6.3 that the exponential expression from Propo-
sition 6.2 can be written as E′1E′2 · · ·E′m such that every E′i has length at most
four, and every base element g from E′i commutes with every base element h from
E′j whenever i 6= j. The above construction implies that the sequence of group
elements g1, g2, . . . , gλ from Theorem 6.4 can be split into blocks B1, B2, . . . , Bµ of
length at most four such that every group element from block Bi commutes with
every group element from Bj whenever i 6= j. This allows to rearrange the product
of cyclic groups

∏λ
i=1〈gi〉 as a product of four abelian subgroups G1, G2, G3, G4,

where Gi is generated by all group elements that are at the i-th position in their
block. �

Remark 6.7. In contrast to Theorem 6.6, it was shown in [17] that a product
of two subgroups of a polycyclic group is closed in the profinite topology. Since
polycyclic groups are finitely presented, it follows that membership in a product
of two subgroups of a polycyclic group is decidable. This leaves open whether
membership in a product of three subgroups of a polycyclic (or nilpotent) group is
decidable.

Let us finally prove that the knapsack problem for the discrete Heisenberg
group H3(Z) is decidable.

Theorem 6.8. For every e ≥ 0, KP(H3(Z)× Ze) is decidable.

Proof. Let us first show the result for H3(Z). Take matrices A,A1, . . . , Al
from H3(Z) and let

A =

 1 a c
0 1 b
0 0 1

 and Ai =

 1 ai ci
0 1 bi
0 0 1
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A straightforward induction over n shows that

Ani =

 1 ai · n ci · n+ aibi
(n−1)n

2
0 1 bi · n
0 0 1


Hence, there is a solution (x1, . . . , xl) ∈ Nl of A = Ax1

1 · · ·A
xl

l if and only if the
following system of three Diophantine equations has a solution over N:

a =

l∑
i=1

ai · xi

b =

l∑
i=1

bi · xi

c =

l∑
i=1

ci · xi +

l∑
i=1

aibi
(xi − 1)xi

2
+

∑
1≤i<j≤l

aibjxixj

This is a Diophantine system with a single quadratic equation and two linear equa-
tions. By [5], a system consisting of a single quadratic Diophantine equation to-
gether with an arbitrary number of linear equations can be reduced to a single
quadratic Diophantine equation, which has the same solutions over Z. By [10], one
can decide whether this quadratic Diophantine equation has a solution over N.

Finally, the above proof also works for the group H3(Z)×Ze, since we only get
additional linear equations. �

Corollary 6.9. The class of f.g. groups with a decidable knapsack problem is not
closed under direct products.

Proof. This follows directly from Theorem 6.5 and 6.8. �

7. Knapsack problems for finite extensions

We show that in contrast to direct products, decidability of the knapsack prob-
lem is preserved under finite extensions. For this, it will be convenient to consider
a slightly extended version of the knapsack problem, which we will prove equiva-
lent (with respect to polynomial time reducibility) to the knapsack problem. The
generalized knapsack problem (briefly GKP(G)) is the following decision problem:
Given f0, . . . , fk ∈ G and g1, . . . , gk ∈ G, decide whether

(7.1) f0g
n1
1 f1g

n2
2 f2 · · · gnk

k fk = 1

for some n1, . . . , nk ∈ N. An instance of the generalized knapsack problem is
therefore a tuple (f0, g1, f1, . . . , gk, fk) with f0, . . . , fk ∈ G and g1, . . . , gk ∈ G. If
(7.1) holds, we call the tuple (n1, . . . , nk) a solution. If two instances have the same
set of solutions, we call them equivalent.

Proposition 7.1. KP(G) and GKP(G) are inter-reducible in polynomial time.

Proof. Since gn1
1 · · · g

nk

k = g if and only if g−1gn1
1 · · · g

nk

k = 1, KP(G) clearly
reduces to GKP(G) in polynomial time.

Let us reduce GKP(G) to KP(G). Let (f0, g1, f1, . . . , gk, fk) be an instance
of GKP(G). Observe that since gni

i fi = fi(f
−1
i gifi)

ni , if we replace fi−1, gi, and
fi with fi−1fi, f−1

i gifi and 1, respectively, we obtain an equivalent instance in
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which fi = 1. By repeating this step k times, starting with fk, we arrive at an
instance with f1 = · · · = fk = 1. Then, clearly, f0g

n1
1 · · · g

nk

k = 1 is equivalent to
gn1

1 · · · g
nk

k = f−1
0 . �

From now on, let G be finitely generated and H be a finite index subgroup of
G, which is therefore finitely generated too. Furthermore, let R ⊆ G be a finite set
of representatives of right cosets of H in G. Then for each g ∈ G, there is a unique
ρ(g) ∈ R such that g ∈ Hρ(g). Also recall from the proof of Theorem 4.2 that from
a given element g ∈ G we can compute effectively a decomposition g = hr with
h ∈ H and r ∈ R. This fact will be implicitly used throughout this section.

Lemma 7.2. Let g1, g2 ∈ G and ρ(g1g2) = ρ(g1). We can compute h1, h2 ∈ H and
r ∈ R such that g1g

t
2 = h1h

t
2r for every t ≥ 0.

Proof. Since ρ(g1g2) = ρ(g1), we can write g1 = h1r and g1g2 = h12r for
h1, h12 ∈ H and r ∈ R. Moreover, we can find h2 ∈ H and r2 ∈ R with rg2 = h2r2.
Then

h12r = g1g2 = h1rg2 = h1h2r2

and hence r2 = r. This means rg2 = h2r and thus rgt2 = ht2r and

g1g
t
2 = h1rg

t
2 = h1h

t
2r.

�

Theorem 7.3. Let H be a finite-index subgroup of a finitely generated group
G. Then KP(G) is decidable if and only if KP(H) is decidable.

Proof. Since the “only if” direction is trivial, it remains to prove the “if”
direction. According to Proposition 7.1, it suffices to show that if GKP(H) is
decidable, then GKP(G) is decidable.

We say that an instance I = (f0, g1, f1, . . . , gk, fk) of GKP(G) is j-pure if
f0, g1, . . . , fj−1, gj ∈ H. In particular, every instance is 0-pure. We call an instance
pure if it is k-pure. If an instance is j-pure, but not (j + 1)-pure, then k − j is its
impurity.

First, we prove the following claim by induction on the impurity of I: For every
instance I = (f0, g1, f1, . . . , gk, fk) ofGKP(G), we can construct finitely many pure
instances of GKP(G) such that the solution set of I is the union of affine images
of their solution sets.

Suppose I is j-pure but not (j + 1)-pure. Write fj = hr for h ∈ H and r ∈ R.
Since R is finite, there are m, ` ∈ N with ` ≥ 1 and ρ(rgmj+1) = ρ(rgm+`

j+1 ). We use
Lemma 7.2 to find h1, h2 ∈ H and r′ ∈ R such that rgm+t`

j+1 = h1h
t
2r
′ for all t ≥ 0.

In particular
fjg

m+t`
j+1 = hrgm+t`

j+1 = hh1h
t
2r
′.

We can also find for each 0 ≤ s < m elements ĥs ∈ H and r̂s ∈ R with rgsj+1 = ĥsr̂s.
Finally, we can find for each 0 ≤ s < ` a decomposition r′gsj+1 = h̄sr̄s with h̄s ∈ H,
r̄s ∈ R. With these notations, we get

fjg
n
j+1 =

{
hĥnr̂n for n < m and
hh1h

t
2h̄sr̄s for n = m+ t`+ s with t ≥ 0 and 0 ≤ s < `.
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We therefore construct two types of instances. The first type consists of the in-
stances

(7.2) (f0, g1, f1, . . . , gj−1, fj−1, gj , hĥsr̂sfj+1, gj+2, fj+2, . . . , gk, fk),

for 0 ≤ s < m. The second type consists of instances

(7.3) (f0, g1, f1, . . . , gj−1, fj−1, gj , hh1, h2, h̄sr̄sfj+1, gj+2, fj+2, . . . , gk, fk)

for each 0 ≤ s < `. Observe that I has a solution if and only if one of these new
instances has one. Furthermore, each of these new instances has lower impurity
than I: In (7.2), we reduced the number of elements after gj and in (7.3), both
elements hh1 and h2 belong to H. Hence, the induction hypothesis yields the
desired finite set of instances. This proves our claim.

Let us now prove the theorem. Given an instance I of GKP(G), we construct
pure instances I1, . . . , Im of GKP(G) such that I has a solution if and only if
one of I1, . . . , Im has one. Since Ii is pure, if Ii = (f0, g1, f1, . . . , gk, fk), then
f0, g1, . . . , fk−1, gk ∈ H, but fk may not be in H. However, the equation

f0g
n1
1 f1 · · · gnk

k fk = 1

can only have a solution if fk ∈ H. Moreover, if fk ∈ H, then I is in fact an instance
of GKP(H). Since we can decide whether fk ∈ H, we can pick from I1, . . . , Im
those that are instances of GKP(H). This means, from I we have constructed
finitely many instances of GKP(H) such that I has a solution if and only if one of
the new instances has one. This proves the theorem. �

8. Knapsack problems for co-context-free groups

In this section, we exhibit another class of groups with a decidable knapsack
problem, namely co-context-free groups, which we introduce first.

A language is a subset of a free monoid X∗, where X is an alphabet, i.e. a finite
set of abstract symbols. A context-free grammar is a tuple Γ = (N,T, P, S), where

• N and T are disjoint alphabets, their members are called nonterminals
and terminals, respectively,

• P ⊆ N × (N ∪ T )∗ is a finite set of productions,
• S ∈ N is the start symbol.

A production (A,w) ∈ P is also denoted A → w. In a context-free grammar, the
productions allow us to rewrite words. Specifically, for u, v ∈ (N ∪ T )∗, we write
u ⇒Γ v if there are x, y ∈ (N ∪ T )∗ such that u = xAy and v = xwy for some
production A→ w in P . Furthermore, ⇒∗Γ denotes the reflexive transitive closure
of ⇒Γ. The language generated by Γ is then defined as

L(Γ) = {w ∈ T ∗ | S ⇒∗Γ w}.
A language is called context-free if it is generated by some context-free grammar.

Let Σ be a finite generating set of the group G and let h : (Σ ∪ Σ−1)∗ → G be
the canonical monoid homomorphism. The word problem and the co-word problem
(with respect to Σ ∪ Σ−1) of G are the languages

{w ∈ (Σ ∪ Σ−1)∗ | h(w) = 1} and
{w ∈ (Σ ∪ Σ−1)∗ | h(w) 6= 1},

respectively. Since it does not depend on the chosen generating set whether the
word problem or the co-word problem are context-free [12], we may define a group
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G to be (co-)context-free if its (co-)word problem is a context-free language. Co-
context-free groups were introduced by Holt, Rees, Röver, and Thomas [12] and
shown to significantly extend the class of context-free groups (which are, by a well-
known result of Muller and Schupp and Dunwoody, precisely the virtually free
groups [23, 6]): The class of co-context-free groups is closed under taking direct
products, taking restricted standard wreath products with a context-free top-group,
passing to finitely generated subgroups and finite index overgroups. Furthermore,
Lehnert and Schweitzer [16] have shown that the Higman-Thompson groups are
co-context-free as well. Here, we show the following.

Theorem 8.1. Every co-context-free group has a decidable knapsack problem.

Note that this means in particular that the wreath product Z o Z has a de-
cidable knapsack problem, which is in contrast to the fact that this group has an
undecidable submonoid membership problem [20].

Proof of Theorem 8.1. Let W be the co-word problem of G with respect
to Σ ∪ Σ−1 and let W be context-free.

We will need some terminology. A language L ⊆ X∗ is called regular if it can
be obtained from the empty set and the singletons {x}, x ∈ X, by the operations

• union, which turns K ⊆ X∗ and M ⊆ X∗ into K ∪M ,
• concatenation, which turns K,M ⊆ X∗ into {uv | u ∈ K, v ∈M}, and
• iteration, which maps M ⊆ X∗ to the submonoid of X∗ generated by M .

For every context-free language L ⊆ X∗, homomorphisms α : X∗ → Y ∗ and
β : Z∗ → X∗ and regular language K ⊆ X∗, the languages α(L), β−1(L), and
L ∩K are context-free as well and we can effectively compute a grammar for the
resulting languages [4].

Suppose we are given g1, . . . , gk, g as an instance of the knapsack problem and
let these elements be written as words w1, . . . , wk, w, respectively, over Σ ∪ Σ−1.
Consider the alphabets X = {a1, . . . , ak}, Y = X ∪ {a}, and the homomorphisms
α : Y ∗ → (Σ ∪ Σ−1)∗, with α(ai) = wi for 1 ≤ i ≤ k and α(a) = w−1. Here, w−1

is the word obtained from w by inverting the generators and then reversing the
word. Furthermore, observe that the language K = {a1}∗ · · · {ak}∗{a} is regular.
Moreover, let β : Y ∗ → X∗ be the homomorphism with β(ai) = ai for 1 ≤ i ≤ k
and β(a) = ε. Then, the language

M = β(α−1(W ) ∩K) = {ae11 · · · a
ek
k | g

e1
1 · · · g

ek
k 6= g}

is effectively context-free. Clearly, there exist e1, . . . , ek ∈ N with ge11 · · · g
ek
k = g

if and only if M 6= {a1}∗ · · · {ak}∗. In order to decide the latter, we will employ
Parikh’s Theorem.

For each w ∈ X∗, let Ψ(w) = (e1, . . . , ek), where ei is the number of occurrences
of ai in w for 1 ≤ i ≤ k. The resulting map Ψ: X∗ → Nk is called the Parikh map.
Parikh’s Theorem [25] states that for each context-free L ⊆ X∗, its Parikh image
Ψ(L) = {Ψ(w) | w ∈ L} is semilinear, meaning that it is a finite union of sets of
the form

{v0 + x1 · v1 + · · · + xn · vn | x1, . . . , xn ∈ N},
where v0 ∈ Nk and v1, . . . , vn ∈ Nk are called the base vectors and the period vectors,
respectively. Again, Parikh’s theorem is effective, meaning that given a context-free
grammar, we can compute base vectors and period vectors for its semilinear Parikh
image.
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Furthermore, given a semilinear set S ⊆ Nk, its complement Nk \S is effectively
semilinear as well [9]. Since M = {a1}∗ · · · {ak}∗ if and only if Ψ(M) = Nk, we can
compute Nk \ Ψ(M) and check if it is non-empty. This concludes the proof of the
theorem. �
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