
The Complexity of Knapsack in Graph Groups
Markus Lohrey1 and Georg Zetzsche∗2

1 Universität Siegen, Germany
lohrey@eti.uni-siegen.de

2 LSV, CNRS & ENS Cachan, Université Paris-Saclay, France
zetzsche@lsv.fr

Abstract
Myasnikov et al. have introduced the knapsack problem for arbitrary finitely generated groups.
In [19] the authors proved that for each graph group, the knapsack problem can be solved in
NP. Here, we determine the exact complexity of the problem for every graph group. While the
problem is TC0-complete for complete graphs, it is LogCFL-complete for each (non-complete)
transitive forest. For every remaining graph, the problem is NP-complete.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases knapsack, subset sum, graph groups, decision problems in group theory

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

In their paper [21], Myasnikov, Nikolaev, and Ushakov started the investigation of discrete
optimization problems, which are classically formulated over the integers, for arbitrary
(possibly non-commutative) groups. The general goal of this line of research is to study
to what extent results from the classical commutative setting can be transferred to the
non-commutative setting. Among other problems, Myasnikov et al. introduced for a finitely
generated group G the knapsack problem and the subset sum problem. The input for the
knapsack problem is a sequence of group elements g1, . . . , gk, g ∈ G (specified by finite words
over the generators of G) and it is asked whether there exists a solution (x1, . . . , xk) ∈ Nk
of the equation gx1

1 · · · g
xk

k = g. For the subset sum problem one restricts the solution to
{0, 1}k. For the particular case G = Z (where the additive notation x1 · g1 + · · ·+ xk · gk = g

is usually preferred) these problems are NP-complete if the numbers g1, . . . , gk, g are encoded
in binary representation. For subset sum, this is a classical result from Karp’s seminal paper
[15] on NP-completeness. Knapsack for integers is usually formulated in a more general form
in the literature; NP-completeness of the above form (for binary encoded integers) was shown
in [11], where the problem was called multisubset sum.1 Interestingly, if we consider subset
sum for the group G = Z, but encode the input numbers g1, . . . , gk, g in unary notation,
then the problem is in DLOGTIME-uniform TC0 (a small subclass of polynomial time and
even of logarithmic space that captures the complexity of multiplication of binary encoded
numbers; see e.g. the book [25] for more details) [7], and the same holds for knapsack (see
Theorem 1). Related results can be found in [13]. Implicitly, the knapsack problem was also

∗ This author is supported by a fellowship within the Postdoc-Program of the German Academic Exchange
Service (DAAD).

1 Note that if we ask for a solution (x1, . . . , xk) in Zk, then knapsack can be solved in polynomial time
(even for binary encoded integers) by checking whether gcd(g1, . . . , gk) divides g.

© Markus Lohrey and Georg Zetzsche;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 The Complexity of Knapsack in Graph Groups

studied by Babai et al. [3], where it is shown that knapsack for commutative matrix groups
over algebraic number fields can be solved in polynomial time.

In [21] the authors encode elements of the finitely generated group G by words over the
group generators and their inverses, which corresponds to the unary encoding of integers.
Another, more succinct encoding of group elements uses straight-line programs (SLP). These
are context-free grammars that produce a single word. Over a unary alphabet, one can
achieve for every word exponential compression with SLPs: The word an can be produced
by an SLP of size O(logn). This shows that knapsack and subset sum for the group Z
with SLP-compressed group elements correspond to the classical knapsack and subset sum
problem with binary encoded numbers. To distinguish between the two variants, we will
speak in this introduction of uncompressed knapsack (resp., subset sum) if the input group
elements are given explicitly by words over the generators. On the other hand, if these words
are represented by SLPs, we will speak of SLP-compressed knapsack (resp., subset sum).
Later in this paper, we will only use the uncompressed versions, and denote these simply
with knapsack and subset sum, respectively.

In our recent paper [19], we started to investigate knapsack and subset sum for graph
groups, which are also known as right-angled Artin groups in group theory. A graph group is
specified by a finite simple graph Γ and denoted with G(Γ). The vertices are the generators
of the group, and two generators a and b are allowed to commute if and only if a and b are
adjacent in Γ. Graph groups interpolate between free groups and free abelian groups and
can be seen as a group counterpart of trace monoids (free partially commutative monoids),
which have been used for the specification of concurrent behavior. In combinatorial group
theory, graph groups are currently an active area of research, mainly because of their rich
subgroup structure, see e.g. [4, 5, 9].

Contribution. In [19] we proved that for every graph group, SLP-compressed knapsack
(resp., subset sum) is NP-complete. This result generalizes the classical result for knapsack
with binary encoded integers. Moreover, we proved that uncompressed knapsack and subset
sum are NP-complete for the group F2 × F2 (F2 is the free group on two generators). The
group F2 × F2 is the graph group G(Γ), where the graph Γ is a cycle on four nodes. This
result leaves open the complexity of uncompressed knapsack and subset sum for graph groups,
whose underlying graph does not contain an induced cycle on four nodes. In this paper, we
completely settle this open problem for knapsack by showing the following results:

(i) Uncompressed knapsack and subset sum for G(Γ) are complete for TC0 if Γ is a complete
graph (and thus G(Γ) is a free abelian group).2

(ii) Uncompressed knapsack and subset sum for G(Γ) are LogCFL-complete if Γ is not a
complete graph and neither contains an induced cycle on four nodes (C4) nor an induced
path on four nodes (P4).

(iii) Uncompressed knapsack for G(Γ) is NP-complete if Γ contains an induced C4 or an
induced P4.

Overview of the proofs. The result (i) is a straightforward extension of the corresponding
result for Z [7]. The statements in (ii) and (iii) are less obvious. Recall that LogCFL is the
closure of the context-free languages under logspace reductions; it is contained in NC2.

2 In the following, TC0 always refers to its DLOGTIME-uniform version.

M. Lohrey and G. Zetzsche 23:3

To show the upper bound in (ii), we use the fact that the graph groups G(Γ), where Γ
neither contains an induced C4 nor an induced P4 (these graphs are the so called transitive
forests), are exactly those groups that can be built up from Z using the operations of free
product and direct product with Z. We then construct inductively over these operations a
logspace-bounded auxiliary pushdown automaton working in polynomial time (these machines
accept exactly the languages in LogCFL) that checks whether an acyclic finite automaton
accepts a word that is trivial in the graph group. In order to apply this result to knapsack,
we finally show that every solvable knapsack instance over a graph group G(Γ) with Γ a
transitive forest has a solution with polynomially bounded exponents. This result might be
of independent interest.

For the lower bound in (ii), it suffices to consider the group F2 (the free group on two
generators). Our proof is based on the fact that the context-free languages are exactly those
languages that can be accepted by valence automata over F2. This is a reinterpretation of the
classical theorem of Chomsky and Schützenberger. To the authors’ knowledge, the result (ii)
is the first completeness result for LogCFL in the area of combinatorial group theory.

Finally, for the result (iii) it suffices to show NP-hardness of knapsack for the graph
group G(P4) (the NP upper bound and the lower bound for C4 is shown in [19]). We apply
a technique that was first used in a paper by Aalbersberg and Hoogeboom [1] to show that
the intersection non-emptiness problem for regular trace languages is undecidable for P4.

Full proofs can be found in the long version [18].

2 Knapsack and Exponent Equations

We assume that the reader has some basic knowledge concerning (finitely generated) groups
(see e.g. [20] for further details). Let G be a finitely generated group, and let A be a finite
generating set for G. Then, elements of G can be represented by finite words over the
alphabet A±1 = A ∪A−1. An exponent equation over G is an equation of the form

h0g
x1
1 h1g

x2
2 h2 · · · gxk

k hk = 1

where g1, g2, . . . , gk, h0, h1, . . . , hk ∈ G are group elements that are given by finite words
over the alphabet A±1 and x1, x2, . . . , xk are not necessarily distinct variables. Such an
exponent equation is solvable if there exists a mapping σ : {x1, . . . , xk} → N such that
h0g

σ(x1)
1 h1g

σ(x2)
1 h2 · · · gσ(xk)

k hk = 1 in the group G. The size of an equation is
∑k
i=0 |hi| +∑k

i=1 |gi|, where |g| denotes the length of the shortest word w ∈ (A±1)∗ representing g.
Solvability of exponent equations over G is the following computational problem:
Input: An exponent equation E over G (with elements of G specified by words over A±1).
Question: Is E solvable?
The knapsack problem for the group G is the restriction of solvability of exponent equations
overG to exponent equations of the form gx1

1 g
x2
2 · · · g

xk

k g
−1 = 1 or, equivalently, gx1

1 g
x2
2 · · · g

xk

k =
g where the exponent variables x1, . . . , xk have to be pairwise different. The subset sum
problem for the group G is defined in the same way as the knapsack problem, but the exponent
variables x1, . . . , xk have to take values in {0, 1}.

It is a simple observation that the decidability and complexity of solvability of exponent
equations over G as well as the knapsack problem and subset sum problem for G does not
depend on the chosen finite generating set for the group G. Therefore, we do not have to
mention the generating set explicitly in these problems.
I Remark. Since we are dealing with a group, one might also allow solution mappings
σ : {x1, . . . , xk} → Z to the integers. This variant of solvability of exponent equations

CVIT 2016

23:4 The Complexity of Knapsack in Graph Groups

a b c d

a b

cd

Figure 1 P4 and C4

(knapsack, respectively) can be reduced to the above version, where σ maps to N, by simply
replacing a power gxi

i by gxi
i (g−1

i)yi , where yi is a fresh variable.

3 Traces and Graph Groups

Let (A, I) be a finite simple graph. In other words, the edge relation I ⊆ A × A is
irreflexive and symmetric. It is also called the independence relation, and (A, I) is called an
independence alphabet. We say that a ∈ A depends on b ∈ A if (a, b) 6∈ I. We consider the
monoid M(A, I) = A∗/≡I , where ≡I is the smallest congruence relation on the free monoid
A∗ that contains all pairs (ab, ba) with a, b ∈ A and (a, b) ∈ I. This monoid is called a trace
monoid or partially commutative free monoid. Elements of M(A, I) are called Mazurkiewicz
traces or simply traces. The trace represented by the word u is denoted by [u]I , or simply [u]
if no confusion can arise. The empty trace [ε]I is the identity element of the monoid M(A, I)
and is denoted by 1. For a language L ⊆ A∗ we denote with [L]I = {[u]I ∈M(A, I) | u ∈ L}
the set of traces represented by L. Figure 1 shows two important indepedence alphabets
that we denote with P4 (path on four nodes) and C4 (cycle on four nodes). Note that
M(C4) = {a, c}∗ × {b, d}∗. For more details on traces see [6].

With an independence alphabet (A, I) we associate the finitely presented group G(A, I) =
〈A | ab = ba ((a, b) ∈ I)〉. More explicitly, this group can be defined as follows: Let
A−1 = {a−1 | a ∈ A} be a disjoint copy of the alphabet A. We extend the independence
relation I to A±1 = A ∪ A−1 by (ax, by) ∈ I for all (a, b) ∈ I and x, y ∈ {−1, 1}. Then
G(A, I) is the quotient monoid (A±1)∗/ ∼I , where ∼I is the smallest congruence relation
that contains (i) all pairs (ab, ba) for a, b ∈ A±1 with (a, b) ∈ I and (ii) all pairs (aa−1, ε)
and (a−1a, ε) for a ∈ A.

A group G(A, I) is called a graph group, or right-angled Artin group3, or free partially
commutative group. Here, we use the term graph group. Graph groups received a lot of
attention in group theory during the last years, mainly due to their rich subgroup structure
[4, 5, 9], and their relationship to low dimensional topology [2, 12, 26].

4 TC0- and LogCFL-completeness

Let us first consider free abelian groups Zm. Note that Zm is isomorphic to the graph
group G(A, I) where (A, I) is the complete graph on m nodes. Our first result is a simple
combination of known results [7, 22].

I Theorem 1. For every fixed m ≥ 1, knapsack and subset sum for the free abelian group
Zm are complete for TC0. Hence, knapsack and subset sum for G(A, I) are complete for TC0

if (A, I) is a non-empty complete graph.

3 This term comes from the fact that right-angled Artin groups are exactly the Artin groups corresponding
to right-angled Coxeter groups.

M. Lohrey and G. Zetzsche 23:5

We now characterize those graph groups where knapsack for G(A, I) is LogCFL-complete.
The class LogCFL consists of all problems that are logspace reducible to a context-free
language. It is included in the parallel complexity class NC2 and has several alternative
characterizations (see e.g. [24, 25]).

The comparability graph of a rooted tree t is the simple graph with the same vertices as
t, but has an edge between two vertices whenever one is a descendent of the other in t. A
graph (A, I) is a transitive forest if it is a disjoint union of comparability graphs of trees.

I Theorem 2. If (A, I) is a transitive forest and not complete, then knapsack and subset
sum for G(A, I) are LogCFL-complete.

If the graph (A, I) is the disjoint union of graphs Γ0 and Γ1, then by definition, we
have G(A, I) ∼= G(Γ0) ∗ G(Γ1). If one vertex v of (A, I) is adjacent to every other vertex
and removing v from (A, I) results in the graph Γ0, then G(A, I) ∼= G(Γ0)× Z. Therefore,
we have the following inductive characterization of the graph groups G(A, I) for transitive
forests (A, I): It is the smallest class of groups containing the trivial group that is closed
under taking (i) free products and (ii) direct products with Z.

Acyclic Automata In both the upper and the lower bound proof for Theorem 2, we employ
the membership problem for acyclic automata, which has already been studied in connection
with the knapsack and subset sum problem [8, 16].

We define a finite automaton as a tuple A = (Q,Σ,∆, q0, qf), where Q is a finite set
of states, Σ is the input alphabet, q0 ∈ Q is the initial state, qf ∈ Q is the final state, and
∆ ⊆ Q× Σ∗ ×Q is a finite set of transitions. The language accepted by A is denoted with
L(A). An acyclic automaton is a finite automaton A = (Q,Σ,∆, q0, qf) such that the relation
{(p, q) | ∃w ∈ Σ∗ : (p, w, q) ∈ ∆} is acyclic. For a graph group G(A, I) the membership
problem for acyclic automata is the following computational problem:
Input: An acyclic automaton A over the input alphabet A ∪A−1.
Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?
In order to show the upper bound in Theorem 2, we reduce knapsack for G(A, I) with
(A, I) a transitive forest to the membership problem for acyclic automata for G(A, I) (note
that for subset sum this reduction is obvious). Then, we apply Proposition 3 below. From
work of Frenkel, Nikolaev, and Ushakov [8], it follows that the membership problem for
acyclic automata is in P. We strengthen this to LogCFL by constructing inductively over the
operations of free product and direct product with Z a logspace-bounded auxiliary pushdown
automaton working in polynomial time (these machines accept exactly the languages in
LogCFL) that checks whether an acyclic automaton accepts a word that is trivial in G(A, I).

I Proposition 3. If (A, I) is a transitive forest, then the membership problem for acyclic
automata over G(A, I) is in LogCFL.

4.1 Bounds on knapsack solutions
As mentioned above, we reduce for graph groups G(A, I) with (A, I) a transitive forest
the knapsack problem to the membership problem for acyclic automata. To this end, we
show that every solvable knapsack instance has a solution where all exponents are bounded
polynomially in the size of the instance. The latter is the most involved proof in our paper.

Frenkel, Nikolaev, and Ushakov [8] call groups with this property polynomially bounded
knapsack groups and show that this class is closed under taking free products. However, it is
not clear if direct products with Z also inherit this property and we leave this question open.

CVIT 2016

23:6 The Complexity of Knapsack in Graph Groups

Hence, we are looking for a property that yields polynomial size solutions and is passed on
to free products and to direct products with Z. It is known that the solution sets are always
semilinear. If (A, I) is a transitive forest, this follows from a more general semilinearity
property of rational sets [17] and for arbitrary graph groups, this was shown in [19]. Note that
it is not true that the solution sets always have polynomial size semilinear representations.
This already fails in the case of Z: The equation x1 + · · ·+ xk = k has

(2k−1
k

)
≥ 2k solutions.

We will show here that the solution sets have semilinear representations where every occuring
number is bounded by a polynomial.

For a vector x = (x1, . . . , xk) ∈ Zk, we define the norm ‖x‖ = max{|xi| | i ∈ [1, k]}. For a
subset T ⊆ Nk, we write T⊕ for the smallest subset of Nk that contains {0}∪T and is closed
under addition. A subset S ⊆ Nk is called linear if there is a vector x ∈ Nk and a finite set
F ⊆ Nk such that S = x + F⊕. Note that a set is linear if and only if it can be written
as x+ ANt for some x ∈ Nk and some matrix A ∈ Nk×t. Here, ANt denotes the set of all
vectors Ay for y ∈ Nt. A semilinear set is a finite union of linear sets. If S =

⋃n
i=1 xi + F⊕i

for x1, . . . , xn ∈ Nk and finite sets F1, . . . , Fn ⊆ Nk, then the tuple (x1, F1, . . . , xn, Fn) is a
semilinear representation of S and the magnitude of this representation is defined as the
maximum of ‖y‖, where y ranges over all elements of

⋃n
i=1{xi} ∪ Fi. The magnitude of a

semilinear set S is the smallest magnitude of a semilinear representation for S.

I Definition 4. A group G is called knapsack tame if there is a polynomial p such that for
every exponent equation h0g

x1
1 h1g

x2
2 h2 · · · gxk

n hk = 1 of size n with pairwise distinct variables
x1, . . . , xk, the set S ⊆ Nk of solutions is semilinear of magnitude at most p(n).

Observe that although the size of an exponent equation may depend on the chosen
generating set of G, changing the generating set increases the size only by a constant factor.
Thus, whether or not a group is knapsack tame is independent of the chosen generating set.

I Theorem 5. If (A, I) is a transitive forest, then G(A, I) is knapsack tame.

Note that Theorem 5 implies in particular that every solvable exponent equation has a
polynomially bounded solution. Theorem 5 and Proposition 3 easily yield the upper bound
in Theorem 2.

We prove Theorem 5 by showing that knapsack tameness transfers from groups G to
G× Z (Proposition 6) and from G and H to G ∗H (Proposition 10). Since the trivial group
is obviously knapsack tame, the inductive characterization of groups G(A, I) for transitive
forests (A, I) immediately yields Theorem 5.

4.2 Tameness of direct products with Z
In this section, we sketch a proof of the following result.

I Proposition 6. If G is knapsack tame, then so is G× Z.

Linear Diophantine equations We employ a result of Pottier [23], which bounds the
norm of minimal non-negative solutions to a linear Diophantine equation. Let A ∈ Zk×m
be an integer matrix where aij is the entry of A at row i and column j. We will use
the norms ‖A‖1,∞ = maxi∈[1,k](

∑
j∈[1,m] |aij |), ‖A‖∞,1 = maxj∈[1,m](

∑
i∈[1,k] |aij |) and

‖A‖∞ = maxi∈[1,k],j∈[1,m] |aij | for matrices and ‖x‖1 =
∑m
i=1 |xi| for vectors x ∈ Zm. Recall

that ‖x‖ = maxi∈[1,m] |xi|. A solution x ∈ Nm \ {0} to the equation Ax = 0 is minimal if
there is no y ∈ Nm \ {0} with Ay = 0 and y ≤ x, y 6= x. The set of all solutions clearly forms
a submonoid of Nm. Let r be the rank of A.

M. Lohrey and G. Zetzsche 23:7

I Theorem 7 (Pottier [23]). Each non-trival minimal solution x ∈ Nm to Ax = 0 satisfies
‖x‖1 ≤ (1 + ‖A‖1,∞)r.

By applying Theorem 7 to the matrix (A | −b), it is easy to deduce that for each x ∈ Nm
with Ax = b, there is a y ∈ Nm with Ay = b, y ≤ x, and ‖y‖1 ≤ (1 + ‖(A | −b)‖1,∞)r+1. We
reformulate Theorem 7 as follows.

I Lemma 8. If B ∈ Z`×k has rank r and b ∈ Z`, then there exist c1, . . . , cs ∈ Nk, C ∈ Nk×t
with ‖ci‖1, ‖C‖∞,1 ≤ (1+‖B‖1,∞+‖b‖)r+1 such that {x ∈ Nk | Bx = b} = {c1, . . . , cs}+CNt.

We want to apply Lemma 8 in a situation where we have no bound on ‖B‖1,∞, but only
one on ‖B‖∞. However, we will know that ` = 1, which allows us to bound magnitudes in
terms of ‖B‖∞ in the following lemma. Then, Proposition 6 is straightforward to show.

I Lemma 9. If B ∈ Z1×k and b ∈ Z with ‖B‖∞, |b| ≤ M , then we have a decomposition
{x ∈ Nk | Bx = b} = {c1, . . . , cs}+ CNt where ‖ci‖1 and ‖C‖∞,1 are at most (M + 1)4.

4.3 Tameness of free products
This section is devoted to the proof of the following Proposition.

I Proposition 10. If G0 and G1 are knapsack tame, then so is G0 ∗G1.

Let G = G0 ∗ G1. Suppose that for i ∈ {0, 1} the group Gi is generated by Ai, where
A−1
i = Ai and let A = A0] A1. Recall that every g ∈ G can be written uniquely as

g = g1 · · · gn where gi ∈ (G0 \ {1}) ∪ (G1 \ {1}) for each i ∈ [1, n] and where gj ∈ Gt iff
gj+1 ∈ G1−t for j ∈ [1, n− 1]. We call g cyclically reduced if either n ∈ {0, 1} or n ≥ 2 and
for some t ∈ {0, 1}, either g1 ∈ Gt and gn ∈ G1−t or g1, gn ∈ Gt and gng1 6= 1.

Every word w ∈ A∗ has a (possibly empty) unique factorization into maximal factors
from A+

0 ∪A
+
1 , which we call syllables. By ‖w‖, we denote the number of syllables of w. The

word w is reduced if none of its syllables represents 1 (in G0 resp. G1). We define the maps
λ, ρ : A+ → A+ (”rotate left/right”), where for each word w ∈ A+ with its factorization
w = w1 · · ·wm into syllables, we set λ(w) = w2 · · ·wmw1 and ρ(w) = wmw1w2 · · ·wm−1.

Consider a word w = w1 · · ·wm ∈ A∗, where for each i ∈ [1,m], we have wi ∈ A+
j for

some j ∈ {0, 1} (we allow wi, wi+1 ∈ A+
j). A cancellation is a subset C ⊆ 2[1,m] that is

a partition:
⋃
I∈C I = [1,m] and I ∩ J = ∅ for any I, J ∈ C with I 6= J .

consistent: for each I ∈ C, there is an i ∈ {0, 1} such that wj ∈ A∗i for all j ∈ I.
cancelling: if {i1, . . . , i`} ∈ C with i1 < · · · < i`, then wi1 · · ·wi` represents 1 in G.
well-nested: there are no I, J ∈ C with i1, i2 ∈ I, j1, j2 ∈ J and i1 < j1 < i2 < j2.
maximal: if wi, wi+1 ∈ A+

j for j ∈ {0, 1} then there is an I ∈ C with i, i+ 1 ∈ I.

Since C can be regarded as a hypergraph on [1,m], the elements of C will be called edges. It
is not hard to show that a word w admits a cancellation if and only if w = 1 in G.

Consider now an exponent equation

h0g
x1
1 h1 · · · gxk

k hk = 1, (1)

of size n, where gi is represented by ui ∈ A∗ for i ∈ [1, k] and hi is represented by vi ∈ A∗ for
i ∈ [0, k]. Then clearly

∑k
i=0 |vi|+

∑k
i=1 |ui| ≤ n. Let S ⊆ Nk be the set of all solutions to (1).

Of course, when showing that S has a polynomial magnitude, we may assume that gi 6= 1 for
any i ∈ [1, k]. Moreover, we lose no generality by assuming that all words ui, i ∈ [1, k] and
vi, i ∈ [0, k] are reduced. Furthermore, we may assume that each gi is cyclically reduced.

CVIT 2016

23:8 The Complexity of Knapsack in Graph Groups

Indeed, if some gi is not cyclically reduced, we can write gi = f−1gf for some cyclically
reduced g and replace hi−1, gi, and hi by hi−1f

−1, g = fgif
−1, and fhi, respectively. This

does not change the solution set because hi−1f
−1(fgif−1)xifhi = hi−1g

xi
i hi. Moreover, if

we do this replacement for each gi that is not cyclically reduced, we increase the size of the
instance by at most 2|g1|+ · · ·+ 2|gk| ≤ 2n (note that |g| = |gi|). Applying this argument
again, we may even assume that ui ∈ A+

0 ∪ A
+
1 ∪ A

+
0 A
∗A+

1 ∪ A
+
1 A
∗A+

0 for every i ∈ [1, k].
Note that λ and ρ are bijections on words of this form.

Consider a solution (x1, . . . , xk) to (1). Then the word

w = v0u
x1
1 v1 · · ·uxk

k vk (2)

represents 1 in G = G0 ∗G1. We factorize each vi, i ∈ [0, k], and each ui, i ∈ [1, k], into its
syllables. These factorizations define a factorization w = w1 · · ·wm and we call this the block
factorization of w. This is the coarsest refinement of the factorization w = v0u

x1
1 v1 · · ·uxk

k vk
and of w’s factorization into syllables. The numbers 1, 2, . . . ,m are the blocks of w. We fix
this factorization w = w1 · · ·wm for the rest of this section.

Certified solutions. In the representation v0u
x1
1 v1 · · ·uxk

k vk = 1 of (1), the words u1, . . . , uk
are called the cycles. If ui ∈ A+

0 ∪A
+
1 , the cycle ui is said to be simple and otherwise mixed

(note that ui = ε cannot happen because gi 6= 1). Let p be a block of w. If wp is contained
in some uxi

i for a cycle ui, then p is a ui-blocks or block from ui. If wp is contained in some
vi, then p is a vi-block or a block from vi. A certified solution is a pair (x,C), where x is
a solution to (1) and C is a cancellation of the word w as in (2). An edge I ∈ C is called
standard if |I| = 2 and the two blocks in I are from mixed cycles. Intuitively, the following
tells us that in a cancellation, most edges are standard.

I Lemma 11. Let C be a cancellation and ui be a mixed cycle. Then there are at most
n+ 3k + 1 non-standard edges I ∈ C containing a ui-block.

Mixed periods From now on, for each i ∈ [1, k], we use ei to denote the i-th unit vector in
Nk, i.e. the vector with 1 in the i-th coordinate and 0 otherwise. A mixed period is a vector
π ∈ Nk of the form ‖uj‖ · ei + ‖ui‖ · ej , where ui and uj are mixed cycles. Let P ⊆ Nk be
the set of mixed periods. Note that |P| ≤ k2.

We will need a condition that guarantees that a given period π ∈ P can be added to a
solution x to obtain another solution. Suppose we have two blocks p and q for which we
know that if we insert a string f1 to the left of wp and a string f2 to the right of wq and
f1f2 cancels to 1 in G, then the whole word cancels to 1. Which string would we insert to
the left of wp and to the right of wq if we build the solution x+ π?

Suppose p is a ui-block and q is a uj-block. Moreover, let r be the first (left-most) ui-block
and let s be the last (right-most) uj-block. If we add ‖uj‖ · ei to x, this inserts λp−r(u

‖uj‖
i)

to the left of wp: Indeed, in the case p = r, we insert u‖uj‖
i ; and when p moves one position

to the right, the inserted string is rotated once to the left. Similarly, if we add ‖ui‖ · ej to x,
we insert ρs−q(u‖ui‖

j) to the right of wq: This is clear for q = s and decrementing q means
rotating the inserted string to the right. This motivates the following definition:

Let (x,C) be a certified solution and let ui and uj be mixed cycles with i < j. Moreover,
let r ∈ [1,m] be the left-most ui-block and let s ∈ [1,m] be the right-most uj-block. Then
the mixed period π = ‖uj‖ · ei + ‖ui‖ · ej is compatible with (x,C) if there are a ui-block p
and a uj-block q such that

{p, q} ∈ C and λp−r(u‖uj‖
i)ρs−q(u‖ui‖

j) represents 1 in G. (3)

M. Lohrey and G. Zetzsche 23:9

With P(x,C), we denote the set of mixed periods that are compatible with (x,C). One
might wonder why we require an edge {p, q} ∈ C. In order to guarantee that λp−r(u‖uj‖

i)
and ρs−q(u‖ui‖

j) can cancel, it would be sufficient to merely forbid edges I ∈ C that intersect
[p, q] and contain a block outside of [p− 1, q+ 1]. However, this weaker condition can become
false when we insert other mixed periods. Our stronger condition is preserved, which implies:

I Lemma 12. Let (x,C) be a certified solution. Then every x′ ∈ x+ P(x,C)⊕ is a solution.

LetM ⊆ [1, k] be the set of i ∈ [1, k] such that ui is a mixed cycle and ‖x‖m = maxi∈M xi.

I Lemma 13. There is a polynomial q such that the following holds. For every certified
solution (x,C) with ‖x‖m > q(n), there exists a mixed period π ∈ P and a certified solution
(x′, C ′) such that x = x′ + π, π ∈ P(x′, C ′), and P(x,C) ⊆ P(x′, C ′).

Proof. We show that the lemma holds if q(n) ≥ (n + 3k + 1) + kn2. (Recall that k ≤ n.)
Let (x,C) be a certified solution with ‖x‖m > q(n). Then there is a mixed cycle ui such
that xi > q(n) and hence uxi

i consists of more than q(n) blocks. Let D ⊆ C be the set of all
edges I ∈ C that contain a block from ui. It is not hard to show that an edge can contain at
most one block per mixed cycle. Hence, we have |D| > q(n) and, by Lemma 11, D contains
more than kn2 standard edges. Therefore, there must exist a mixed cycle uj such that the
set E ⊆ D of standard edges I ∈ D that consist of one block from ui and one block from uj
satisfies |E| > n2. Let Bi (resp., Bj) be the set of blocks from ui (resp., uj) contained in
some edge I ∈ E. One can show that Bi and Bj are intervals of size more than n2.

We only deal with the case i < j, the case i > j can be done similarly. Let us take a
subinterval [p′, p] of Bi such that p− p′ = ‖ui‖ · ‖uj‖ ≤ n2. By well-nestedness and since Bj
is an interval, the neighbors (with respect to the edges from E) of [p′, p] form an interval
[q, q′] ⊆ Bj as well, and we have p − p′ = q′ − q = ‖ui‖ · ‖uj‖. Moreover, we have an
edge {p− `, q + `} ∈ E for each ` ∈ [0, p− p′]. In particular, wp′wp′+1 · · ·wp−1wq+1 · · ·wq′

represents 1 in G.
Let r be the left-most ui-block and let s be the right-most uj-block. Then, as shown

before the definition of compatibility, we have

λp−r(u‖uj‖
i) = wp′wp′+1 · · ·wp−1 and ρs−q(u‖ui‖

j) = wq+1wq+1 · · ·wq′ .

Therefore, λp−r(u‖uj‖
i)ρs−q(u‖ui‖

j) represents 1 in G and {p, q} witnesses compatibility of
π = ‖uj‖ · ei + ‖ui‖ · ej with (x,C). Hence, π ∈ P(x,C).

Let x′ = x− π. We remove the factors wp′ · · ·wp−1 and wq+1 · · ·wq′ from w. Then, the
remaining blocks spell w′ = v0u

x′
1

1 v1 · · ·u
x′

k

k vk. Indeed, recall that removing from a word yt
any factor of length ` · |y| will result in the word yt−`. Moreover, let C ′ be the set of edges
that agree with C on the remaining blocks. By the choice of the removed blocks, it is clear
that C ′ is a cancellation for w′. Hence, (x′, C ′) is a certified solution.

It remains to verify P(x,C) ⊆ P(x′, C ′). First note that for every mixed cycle u`, all
u`-blocks that remain in w′ change their position relative to the left-most and the right-most
u`-block by a difference that is divisible by ‖u`‖ (if i 6= ` 6= j then these relative positions do
not change at all). Note that the expression λp−r(u‖uj‖

i) is not altered when p− r changes
by a difference divisible by ‖ui‖, and an analogous fact holds for ρs−q(u‖ui‖

j). Hence, the
edge in C ′ that corresponds to the C-edge {p, q} is a witness for π ∈ P(x′, C ′). Moreover,
for all other mixed periods π′ ∈ P(x,C) \ {π} that are witnessed by an edge {t, u} ∈ C, the
blocks t and u do not belong to [p′, p− 1] ∪ [q + 1, q′]. Therefore, the corresponding edge in
C ′ exists and serves as a witness for π′ ∈ P(x′, C ′). J

CVIT 2016

23:10 The Complexity of Knapsack in Graph Groups

Repeated application of Lemma 13 now yields:

I Lemma 14. There exists a polynomial q such that the following holds. For every solution
x ∈ Nk, there exists a certified solution (x′, C ′) such that ‖x′‖m ≤ q(n) and x ∈ x′+P(x′, C ′)⊕.

We are now ready to prove Proposition 10 and thus Theorem 5.

Proof of Proposition 10. Suppose that p0 and p1 are the polynomials guaranteed by the
knapsack tameness of G0 and G1, respectively. Recall that S ⊆ Nk is the set of solutions
to (1). We prove that there exists a polynomial p such that for every x ∈ S there is a
semilinear set S′ ⊆ Nk of magnitude at most p(n) such that x ∈ S′ ⊆ S. This clearly implies
that S has magnitude at most p(n). First, we apply Lemma 14. It yields a polynomial
q and a certified solution (x′, C ′) with ‖x′‖m ≤ q(n) such that x ∈ x′ + P(x′, C ′)⊕. Let
w′ = v0u

x′
1

1 v1 · · ·u
x′

k

k vk and consider w′ decomposed into blocks as we did above with w.
Let T ⊆ [1, k] be the set of all i ∈ [1, k] for which the cycle ui is simple. Since C ′

is maximal, for each i ∈ T , all ui-blocks are contained in one edge Ii ∈ C ′. Note that
an edge may contain the blocks of more than one simple cycle. We partition T into sets
T = T1] · · ·]Tt so that i ∈ T and j ∈ T belong to the same part if and only if the ui-blocks
and the uj-blocks belong to the same edge of C, i.e. Ii = Ij .

For a moment, let us fix an ` ∈ [1, t] and let I ∈ C ′ be the edge containing all ui-blocks
for all the i ∈ T`. Moreover, let T` = {i1, . . . , ir}. The words v̄j for j ∈ [0, r] will collect those
blocks that belong to I but are not uis-blocks for any s ∈ [1, r]. Formally, v̄0 consists of all
blocks that belong to I that are to the left of all ui1 -blocks. Similarly, v̄r is the concatenation
of all blocks belonging to I that are to the right of all uir -blocks. Finally, for j ∈ [1, r − 1],
v̄j consists of all blocks that belong to I and are to the right of all uij -blocks and to the left
of all uij+1-blocks. By consistency of C ′, for some s ∈ {0, 1}, all the words v̄j for j ∈ [0, r]
and the words uij for j ∈ [1, r] belong to A∗s and thus represent elements of Gs. Since Gs is
knapsack tame, we know that the set

S` = {z ∈ Nk | v̄0u
zi1
i1
v̄1u

zi2
i2
v̄2 · · ·u

zir
ir
v̄r represents 1 in Gs, zj = 0 for j /∈ T`}

has magnitude at most ps(n). Consider the vector y ∈ Nk with yi = 0 for i ∈ T and yi = x′i
for i ∈ [1, k]\T (i.e. when ui is a mixed cycle). We claim that S′ = y+S1 + · · ·St+P(x′, C ′)⊕
has magnitude at most q(n) + p0(n) + p1(n) + n and satisfies x ∈ S′ ⊆ S.

First, since y and the members of S1, . . . , St are non-zero on pairwise disjoint coordinates,
the magnitude of y + S1 + · · · + St is the maximum of ‖y‖ and the maximal magnitude
of S1, . . . , S`. Hence, it is bounded by q(n) + p0(n) + p1(n). The summand P(x′, C ′)⊕
contributes only periods, and their magnitude is bounded by n (recall that they are mixed
periods). Thus, the magnitude of S′ is at most p(n) = q(n) + p0(n) + p1(n) + n.

The cancelling property of (x′, C ′) tells us that x′ − y is contained in S1 + · · ·+ St. By
the choice of (x′, C ′), we have x ∈ x′ + P(x′, C ′)⊕. Together, this means x ∈ S′. Hence, it
remains to show S′ ⊆ S. To this end, consider a vector x′′ ∈ y + S1 + · · · + St. It differs
from x′ only in the exponents at simple cycles. Therefore, we can apply essentially the same
cancellation to x′′ as to x′: we just need to adjust the edges containing the blocks of simple
cycles. It is therefore clear that the resulting cancellation C ′′ has the same compatible mixed
periods as C ′: P(x′′, C ′′) = P(x′, C ′). Thus, by Lemma 12, we have x′′ + P(x′, C ′)⊕ ⊆ S.
This proves S′ = y + S1 + · · ·+ St + P(x′, C ′)⊕ ⊆ S and hence Proposition 10. J

4.4 LogCFL-hardness
It remains to show the lower bound in Theorem 2. If (A, I) is not complete, then (A, I)
contains two non-adjacent vertices and thus G(A, I) contains an isomorphic copy of F2, the

M. Lohrey and G. Zetzsche 23:11

free group of rank two. Hence, we will show that knapsack and subset sum for F2 are LogCFL-
hard. Let {a, b} be a generating set for F2. Let θ : {a, b, a−1, b−1}∗ → F2 be the morphism
that maps a word w to the group element represented by w. A valence automaton over a
group G is a tuple A = (Q,Σ,∆, q0, qf) where Q, Σ, q0, qf are as in a finite automaton and ∆
is a finite subset of Q×Σ∗×G×Q. The language accepted by A is denoted L(A) and consists
of all words w1 · · ·wn such that there is a computation p0

w1,g1−−−→ p1 → · · · → pn−1
wn,gn−−−−→ pn

such that (pi−1, wi, gi, pi) ∈ ∆ for i ∈ [1, n] and p0 = q0, pn = qf , and g1 · · · gn = 1 in G.
Fix a context-free language L ⊆ Σ∗ with a LogCFL-complete membership problem; such

languages exist [10]. The Chomsky-Schützenberger theorem implies that there exists a
valence automaton A over F2 such that L = L(A). Moreover, analyzing the proof of the
Chomsky-Schützenberger theorem from [14] shows that there exists a constant c such that
for every w ∈ Σ∗ we have: w ∈ L(A) = L if and only if there exists an accepting run of
A for w of length at most c · |w|. Given the word w ∈ Σ, it is easy to convert the valence
automaton A into an acyclic automaton over {a, b, a−1, b−1}∗ that exhausts all computations
of A of length at most c · |w|. This yields the following:

I Proposition 15. For F2, the membership problem for acyclic automata is LogCFL-hard.

I Proposition 16. For F2, knapsack and subset sum are LogCFL-hard.

Proof. Let A = (Q, {a, b, a−1, b−1},∆, q0, qf) be an acyclic automaton. We construct words
w,w1, . . . , wm ∈ {a, b, a−1, b−1} such that 1 ∈ θ(L(A) if and only if θ(w) ∈ θ(w∗1w∗2 · · ·w∗m) if
and only if θ(w) ∈ θ(we1

1 w
e2
2 · · ·wem

m) for some e1, e2, . . . , em ∈ {0, 1}. W.l.o.g. assume that
Q = {1, . . . , n}, where 1 is the initial state and n is the unique final state of A.

Let αi = aiba−i for i ∈ [1, n+ 2]. It is well known that the αi generate a free subgroup of
rank n+2 in F2 [20, Proposition 3.1]. Define the embedding ϕ : F2 → F2 by ϕ(a) = αn+1 and
ϕ(b) = αn+2. For a transition t = (p, w, q) ∈ ∆ let t̃ = αpϕ(w)α−1

q . Let ∆ = {t1, . . . , tm}
such that ti = (p, a, q) and tj = (q, b, r) implies i < j. Since A is acyclic, such an enumeration
must exist. Together with the fact that the αi generate a free group, it follows that 1 ∈ θ(L(A)
if and only if θ(α1α

−1
n) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m) if and only if θ(α1α

−1
n) ∈ θ(t̃e1

1 t̃e2
2 · · · t̃em

m) for some
e1, e2, . . . , em ∈ {0, 1}. J

5 NP-completeness

In [19], the authors proved that knapsack for the graph group G(C4) ∼= F2 × F2 is NP-
complete. Here we extend this result to all graph groups G(A, I) where (A, I) is not a
transitive forest. An acyclic loop automaton is a finite automaton A = (Q,Σ,∆, q0, qf) such
that there exists a linear order � on ∆ having the property that for all (p, u, q), (q, v, r) ∈ ∆
it holds (p, a, q) � (q, b, r). Thus, an acyclic loop automaton is obtained from an acyclic
automaton by attaching to some of the states a unique loop. For a trace monoid M(A, I),
intersection nonemptiness for acyclic loop automata is the following computational problem:
Input: Two acyclic loop automata A1, A2 over the input alphabet A.
Question: Does [L(A1)]I ∩ [L(A2)]I 6= ∅ hold?
Aalbersberg and Hoogeboom [1] proved that for the trace monoid M(P4), intersection
nonemptiness for arbitrary finite automata is undecidable. We use their technique to show:

I Lemma 17. For M(P4), intersection nonemptiness for acyclic loop automata is NP-hard.

Proof. We give a reduction from 3SAT. Let ϕ =
∧m
i=1 Ci where for every i ∈ [1,m],

Ci = (Li,1 ∨ Li,2 ∨ Li,3) is a clause consisting of three literals. Let x1, . . . , xn be the boolean
variables that occur in ϕ. Every literal Li,j belongs to {x1, . . . , xn,¬x1, . . . ,¬xn}.

CVIT 2016

23:12 The Complexity of Knapsack in Graph Groups

Let p1, p2, . . . , pn be a list of the first n prime numbers. So, for each boolean variable xi
we have the corresponding prime number pi. We encode a valuation β : {x1, . . . , xn} → {0, 1}
by any natural number N such that N ≡ 0 mod pi if and only if β(xi) = 1. For a positive
literal xi let S(xi) = {pi · n | n ∈ N} and for a negative literal ¬xi let S(¬xi) = {pi · n+ r |
n ∈ N, r ∈ [1, pi − 1]}. Moreover, for every i ∈ [1,m] let Si = S(Li,1) ∪ S(Li,2) ∪ S(Li,3).
Thus, Si is the set of all numbers that encode a valuation that makes the clause Ci true.
Hence, the set S =

⋂n
i=1 Si encodes the set of all valuations that make ϕ true.

We first construct an acyclic loop automaton A1 with L(A1) =
∏m
i=1{a(bc)Nid | Ni ∈ Si}.

Note that ϕ is satisfiable iff [L(A1)]I contains a trace from [{(a(bc)Nd)m | N ∈ N}]I . We
will ensure this property with a second acyclic loop automaton A2 that satisfies the equality
L(A2) = b∗(ad(bc)∗)m−1adc∗. We claim that [L(A1)]I ∩ [L(A2)]I = [{(a(bc)Nd)m | N ∈ S}]I .

First assume that w ≡I (a(bc)Nd)m for some N ∈ S. We have w ≡I (a(bc)Nd)m ≡I
bN (ad(bc)N)m−1adcN and thus [w]I ∈ [L(A2)]I . Moreover, since N ∈ S we get [w]I ∈
[L(A1)]I . For the other direction, let [w]I ∈ [L(A1)]I ∩ [L(A2)]I . Thus

w ≡I
m∏
i=1

(a(bc)Nid) ≡I bN1

(m−1∏
i=1

adcNibNi+1

)
adcNm ,

where Ni ∈ Si for i ∈ [1,m]. Moreover, [w]I ∈ [L(A2)]I yields k0, k1, . . . , km−1, km ≥ 0 with

bN1

(m−1∏
i=1

adcNibNi+1

)
adcNm ≡I bk0

(m−1∏
i=1

ad(bc)ki

)
adckm ≡I bk0

(m−1∏
i=1

(adbkicki)
)
adckm .

Since every symbol depends on a or on d, this identity implies Ni = Ni+1 for i ∈ [1,m− 1].
Thus, [w]I ∈ [{(a(bc)Nd)m | N ∈ S}]I . J

For a graph group G(A, I) the membership problem for acyclic loop automata is the following
computational problem:
Input: An acyclic loop automaton A over the input alphabet A ∪A−1.
Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?
It is straightforward to reduce the intersection emptiness problem for acyclic loop automata
over M(A, I) to the membership problem for acyclic loop automata over G(A, I).

I Lemma 18. For G(P4), the membership problem for acyclic loop automata is NP-hard.

We can now use a construction from [17] to reduce membership for acyclic loop automata
over G(P4) to knapsack for G(P4).

I Lemma 19. Knapsack for the graph group G(P4) is NP-hard.

I Theorem 20. If (A, I) is an independence alphabet, which is not a transitive forest, then
knapsack for the graph group G(A, I) is NP-complete.

Proof. If (A, I) is not a transitive forest, then P4 or C4 is an induced subgraph of (A, I) [27].
Thus, G(P4) or G(C4) ∼= F2 × F2 is a subgroup of G(A, I). Hence, NP-hardness of knapsack
for G(A, I) follows from [19] or Lemma 19. J

6 An open problem

In [19] the authors proved that (uncompressed) subset sum for G(C4) is NP-complete as
well. It remains open whether subset sum is NP-hard also for G(P4). Our proof for the
NP-hardness of knapsack for G(P4) makes essential use of exponentially large exponents and
hence cannot be used for subset sum.

M. Lohrey and G. Zetzsche 23:13

References

1 I. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some
problems for regular trace languages. Mathematical Systems Theory, 22:1–19, 1989.

2 I. Agol. The virtual Haken conjecture. With an appendix by Agol, Daniel Groves, and
Jason Manning. Documenta Mathematica, 18:1045–1087, 2013.

3 L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M.Luks. Multiplicative equations over
commuting matrices. In Proceedings of SODA 1996, pages 498–507. ACM/SIAM, 1996.

4 M. Bestvina and N. Brady. Morse theory and finiteness properties of groups. Inventiones
Mathematicae, 129(3):445–470, 1997.

5 J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-angled Artin
groups and braid groups. Algebraic & Geometric Topology, 4:439–472, 2004.

6 V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

7 M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes
of constant and logarithmic depth. Electronic Colloquium on Computational Complexity
(ECCC), 18:128, 2011.

8 E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups. Journal
of Symbolic Computation, 74:96–108, 2016.

9 R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in
Applied Mathematics, 38(3):302–323, 2007.

10 S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2(4):304–
310, 1973.

11 C. Haase. On the complexity of model checking counter automata. PhD thesis, University
of Oxford, St Catherine’s College, 2011.

12 F. Haglund and D. T. Wise. Coxeter groups are virtually special. Advances in Mathematics,
224(5):1890–1903, 2010.

13 B. Jenner. Knapsack problems for NL. Information Processing Letters, 54(3):169–174,
1995.

14 M. Kambites. Formal languages and groups as memory. Communications in Algebra,
37:193–208, 2009.

15 R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
1972.

16 D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent,
polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677 of
Contemporary Mathematics, pages 138–153. American Mathematical Society, 2016.

17 M. Lohrey and B. Steinberg. The submonoid and rational subset membership problems for
graph groups. Journal of Algebra, 320(2):728–755, 2008.

18 M. Lohrey and G. Zetzsche. The complexity of knapsack in graph groups. Technical report,
arXiv.org, 2015. https://arxiv.org/abs/1610.00373.

19 M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalgamated
products. In Proceedings of STACS 2016, volume 47 of LIPIcs, pages 50:1–50:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

20 R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, 1977.
21 A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathematics

of Computation, 84:987–1016, 2015.
22 C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association

for Computing Machinery, 28(4):765–768, 1981.

CVIT 2016

https://arxiv.org/abs/1610.00373

23:14 The Complexity of Knapsack in Graph Groups

23 L. Pottier. Minimal solutions of linear diophantine systems : bounds and algorithms. In
Proceedings of RTA 1991, volume 488 of Lecture Notes in Computer Science, pages 162–173.
Springer-Verlag, 1991.

24 I. H. Sudborough. On the tape complexity of deterministic context–free languages. Journal
of the ACM, 25(3):405–414, 1978.

25 H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.
26 D. T. Wise. Research announcement: the structure of groups with a quasiconvex hierarchy.

Electronic Research Announcements in Mathematical Sciences, 16:44–55, 2009.
27 E. S. Wolk. A note on “The comparability graph of a tree”. Proceedings of the American

Mathematical Society, 16:17–20, 1965.

	Introduction
	Knapsack and Exponent Equations
	Traces and Graph Groups
	TC0- and LogCFL-completeness
	Bounds on knapsack solutions
	Tameness of direct products with Z
	Tameness of free products
	LogCFL-hardness

	NP-completeness
	An open problem

