
Tree Compression Using String Grammars?

Moses Ganardi, Danny Hucke, Markus Lohrey, and Eric Noeth

University of Siegen, Germany
{ganardi,hucke,lohrey,eric.noeth}@eti.uni-siegen.de

Abstract. We study the compressed representation of a ranked tree by a
straight-line program (SLP) for its preorder traversal string, and compare
it with the previously studied representation by straight-line context-free
tree grammars (also known as tree straight-line programs or TSLPs).
Although SLPs may be exponentially more succinct than TSLPs, we
show that many simple tree queries can still be performed efficiently
on SLPs, such as computing the height of a tree, tree navigation, or
evaluation of Boolean expressions. Other problems like pattern matching
and evaluation of tree automata become intractable.

1 Introduction

The idea of grammar-based compression is to represent a given string s by a
small context-free grammar that generates only s; such a grammar is also called
a straight-line program (SLP) for s. By repeated doubling, it is easy to produce a
string of length 2n by an SLP of size n (measured as the total length of all right-
hand sides of the productions), i.e., exponential compression can be achieved in
the best case. The goal of grammar-based compression is to construct from a
given string s a small SLP for s. Whereas computing a smallest SLP for a given
string is not possible in polynomial time unless P = NP [9,28], there exist several
linear time algorithms that produce grammars that are at worst O(log(N/g))
larger than the size of a smallest SLP, where N is the length of the input string
s and g is the size of a smallest SLP for s [9,18,26].

Motivated by applications like XML processing, where large tree-structured
data occur, grammar-based compression has been extended to trees, see [24] for a
survey. Unless otherwise specified, a tree in this paper is always a rooted ordered
tree over a ranked alphabet, i.e., every node is labelled with a symbol and the
rank of this symbol is equal to the number of children of the node. This class of
trees occurs in many different contexts like term rewriting, expression evaluation
and tree automata. A tree over a ranked alphabet is uniquely represented by its
preorder traversal. For instance, the preorder traversal of the tree f(g(a), f(a, b))
is the string fgafab. It is now a natural idea to apply a string compressor to
this preorder traversal. In this paper we study the compression of ranked trees
by SLPs for their preorder traversals. This idea is very similar to [6], where
unranked unlabelled trees are compressed by SLPs for their balanced parenthesis
representations.

? The third and fourth author are supported by the DFG-project LO 748/10-1.

In Section 3 we compare the size of SLPs for preorder traversals with other
grammar-based compressed tree representations. SLPs for strings can also be
generalized directly to trees, using context-free tree grammars that produce a
single tree (so called tree straight-line programs, briefly TSLPs). TSLPs gener-
alize dags (directed acyclic graphs), which are widely used as a compact tree
representation. Whereas dags only allow to share repeated subtrees, TSLPs can
also share repeated internal tree patterns. The algorithm from [13] produces for
every tree over a fixed ranked alphabet a TSLP of size O(N/ logN), which is
worst-case optimal. A grammar-based tree compressor using TSLPs with an ap-
proximation ratio of O(logN) can be found in [19]. It was shown in [7] that from
a given TSLP A of size m for a tree t one can efficiently construct an SLP of size
O(m · r) for the preorder traversal of t, where r is the maximal rank occurring
in t (i.e. the maximal number of children of a node). Hence a smallest SLP for
the traversal of t cannot be much larger than a smallest TSLP for t. Our first
main result shows that SLPs can be exponentially more succinct than TSLPs:
We construct a family of binary trees tn (n ≥ 0) such that the size of a smallest
SLP for the traversal of tn is polynomial in n but the size of a smallest TSLP
for tn is Ω(2n/2). Moreover, we also construct a family of binary trees tn (n ≥ 0)
such that the size of a smallest SLP for the preorder traversal of tn is polynomial
in n but the size of a smallest SLP for the balanced parenthesis representation
is Ω(2n/2). It remains open whether a family of trees with the opposite behavior
exists.

We also study algorithmic problems for SLP-compressed trees. We extend
some of the results from [6] on querying SLP-compressed balanced parenthesis
representations to our context. Specifically, we show that after a linear time
preprocessing we can navigate (i.e., move to the parent node and to the kth

child), compute lowest common ancestors and subtree sizes in time O(logN),
where N is the size of the tree represented by the SLP. For a couple of other
problems (computation of the tree’s height, the depth of a node and evaluation
of Boolean expressions) we provide polynomial time algorithms for the case that
the input tree is given by an SLP for the preorder traversal. On the other hand,
there exist problems that are polynomial time solvable for TSLP-compressed
trees but intractable for SLP-compressed trees: examples for such problems are
pattern matching, evaluation of max-plus expressions, and membership for tree
automata. Looking at tree automata is also interesting when compared with
the situation for explicitly given (i.e., uncompressed) preorder traversals. For
these, evaluating Boolean expressions (which is the membership problem for a
particular tree automaton) is NC1-complete by a famous result of Buss [8], and
the NC1 upper bound was generalized to every fixed tree automaton [21]. If
we compress the preorder traversal by an SLP, the problem is still solvable in
polynomial time for Boolean expressions (Thm. 13), but there is a fixed tree
automaton with a PSPACE-complete evaluation problem (Thm. 16).

Missing proofs can be found in the long version [14].

Related work on tree compression. There are also tree compressors based on
other grammar formalisms. In [1] so called elementary ordered tree grammars

2

are used, and a polynomial time compressor with an approximation ratio of
O(N5/6) is presented. Also the top dags from [5] can be seen as a variation of
TSLPs for unranked trees. Recently, in [15] it was shown that for every tree of
size N with σ many node labels, the top dag has size O(N · log logσ N/ logσ N),
which improved the bound from [5]. An extension of TSLPs to higher order tree
grammars was proposed in [20].

Another class of tree compressors use succinct data structures for trees. Here,
the goal is to represent a tree in a number of bits that asymptotically matches
the information theoretic lower bound, and at the same have efficient querying.
For unlabelled (resp., node-labelled) unranked trees of size N there exist repre-
sentations with 2N + o(N) bits (resp., (2 + log σ) ·N + o(N) bits, where σ is the
number of node labels) that support navigation and some other tree queries in
time O(1) [3,12,16,17,25].

2 Preliminaries

Let Σ be a finite alphabet. For a string w = a1 · · · aN ∈ Σ∗ we define |w| = N ,
w[i] = ai and w[i : j] = ai · · · aj where w[i : j] = ε, if i > j. Let w[: i] = w[1 : i]
and w[i :] = w[i : |w|]. With rev(w) = aN · · · a1 we denote w reversed. For
u, v ∈ Σ∗, the convolution u⊗ v ∈ (Σ ×Σ)∗ is the string of length min{|u|, |v|}
defined by (u⊗ v)[i] = (u[i], v[i]) for 1 ≤ i ≤ min{|u|, |v|}.

We assume familiarity with basic complexity classes like P, NP and PSPACE.
The counting class #P contains all functions f : Σ∗ → N for which there is a
nondeterministic polynomial time machine M such that for all x ∈ Σ∗, f(x)
is the number of accepting computation paths of M on input x. The class PP
contains all problems A for which there is a nondeterministic polynomial time
machine M such that for all inputs x: x ∈ A iff more than half of all computation
paths of M on input x are accepting. When referring to linear time algorithms,
we assume the standard RAM model of computation, where registers can hold
hold numbers with O(log n) bits for n the input size, and arithmetic operations
on register values can be done in constant time.

A ranked alphabet F is a finite set of symbols, where every f ∈ F has a
rank rank(f) ∈ N. By Fn we denote the symbols of F of rank n. We assume
that F0 6= ∅. Later we will also allow ranked alphabets where F0 is infinite. For
the purpose of this paper, it is convenient to define trees as particular strings
over the alphabet F (namely as preorder traversals). The set T (F) of all trees
over F is the subset of F∗ defined inductively as follows: If f ∈ Fn with n ≥ 0
and t1, . . . , tn ∈ T (F), then also ft1 · · · tn ∈ T (F) (we denote this tree also with
f(t1, . . . , tn), which corresponds to the standard term notation). A string s ∈ F∗
is a fragment if there exist a tree t ∈ T (F) and a non-empty string x ∈ F+ such
that sx = t. Note that the empty string ε is a fragment. Intuitively, a fragment is
a tree with gaps. For every non-empty fragment s ∈ F+ there is a unique n ≥ 1
such that {x ∈ F∗ | sx ∈ T (F)} = (T (F))n; this n is denoted with gaps(s). We
set gaps(ε) = 0. Since T (F) is prefix-free we have:

3

f

f
a a

f

f

f
a a

a

a

f

f
a a

f

f

f

Fig. 1. The tree t from Example 2 and the tree fragment corresponding to ffaafff .

Lemma 1. For every w ∈ F∗ there exist unique n ≥ 0, t1, . . . , tn ∈ T (F) and
a unique fragment s ∈ F∗ such that w = t1 · · · tns.

Let w ∈ F∗ and let w = t1 · · · tns as in Lemma 1. We define c(w) = (n, gaps(s)).
The number n counts the number of full trees in w and gaps(s) is the number
of trees that are missing in order to make the fragment s a tree.

We also consider trees in their graph-theoretic interpretation where the set of
nodes of a tree t is the set of positions {1, . . . , |t|} of the string t. The root node
is 1. If t factorizes as uft1 · · · tnv for u, v ∈ F∗, f ∈ Fn, and t1, . . . , tn ∈ T (F),

then the n children of node |u| + 1 are |u| + 2 +
∑k
i=1 |ti| for 0 ≤ k ≤ n − 1.

We define the depth of a node in t (number of edges from the root to the node)
and the height of t (maximal depth of a node) as usual. Note that the tree t as
a string is simply the preorder traversal of the tree t seen in its standard graph-
theoretic interpretation. Since for a ranked tree the number of children of a node
is uniquely determined by the node label, a tree (in the above graph-theoretic
interpretation) is uniquely determined by its preorder traversal and vice versa.

Example 2. Let t = ffaafffaaaa = f(f(a, a), f(f(f(a, a), a), a)) be the tree
depicted in Fig. 1 with f ∈ F2 and a ∈ F0. Its height is 4. All prefixes (including
the empty word, excluding the full word) of t are fragments. The fragment s =
ffaafff is also depicted in Fig. 1 in a graphical way. The dashed edges visualize
the gaps. We have gaps(s) = 4. For the factor u = aafffa of t we have c(u) =
(2, 3). The children of node 5 (the third f -labelled node) are 6 and 11.

A straight-line program, briefly SLP, is a context-free grammar that produces a
single string. Formally, it is a tuple A = (N,Σ,P, S), where N is a finite set
of nonterminals, Σ is a finite set of terminals such that Σ ∩ N = ∅, S ∈ N
is the start nonterminal, and P is a finite set of productions (or rules) of the
form A → w for A ∈ N , w ∈ (N ∪ Σ)∗ such that: (i) For every A ∈ N ,
there exists exactly one production of the form A → w, and (ii) the binary
relation {(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is acyclic. Every
nonterminal A ∈ N produces a unique string valA(A) ∈ Σ∗. The string defined
by A is val(A) = valA(S). We omit the subscript A when it is clear from the
context. The size of the SLP A is |A| =

∑
(A→w)∈P |w|. An SLP for a nonempty

word can be transformed in linear time into Chomsky normal form, i.e., for each
production A → w, either w ∈ Σ or w = BC where B,C ∈ N . The following
lemma summarizes known results about SLPs which we will use throughout the
paper, see e.g. [23].

4

Lemma 3. Let A be an SLP. There are algorithms running in time O(|A|) for
the following problems (the numbers i and j are given in binary encoding):

1. Compute the set of symbols occurring in val(A).
2. Let Σ be the terminal set of A and let Γ ⊆ Σ. Compute the number of

occurrences of symbols from Γ in val(A).
3. Let Σ be the terminal set of A and let Γ ⊆ Σ. Given a number i, compute

the position of the ith occurrence of a symbol from Γ in val(A) (if it exists).
4. Given 1 ≤ i, j ≤ |val(A)|, compute an SLP of size O(|A|) for val(A)[i : j].

We want to compress trees (viewed as particular strings) by SLPs. This leads to
the question whether a given SLP produces a tree, which is also known as the
compressed membership problem for the language T (F) ⊆ F∗. By computing
bottom-up for each nonterminal A the pair c(val(A)), we can show:

Theorem 4. Given an SLP A, one can check in time O(|A|) whether val(A) ∈
T (F).

Note that T (F) is context-free. In general the compressed membership prob-
lem for context-free languages belongs to PSPACE and there is a deterministic
context-free language with a PSPACE-complete compressed membership prob-
lem [22].

Tree straight-line programs (briefly TSLPs) generalize SLPs to trees [13,19].
In addition to terminals and nonterminals, the productions of a TSLP also con-
tain so called parameters x1, x2, x3, . . ., which are treated as symbols of rank
zero (i.e., they only label leaves). Formally, a TSLP is a tuple A = (V,F , P, S),
where V (resp., F) is a ranked alphabet of nonterminals (resp., terminals),
S ∈ V0 is the start nonterminal and P is a finite set of productions of the
form A(x1, . . . , xn) → t (which is also briefly written as A → t), where n ≥ 0,
A ∈ Vn and t ∈ T (F ∪ V ∪ {x1, . . . , xn}) is a tree in which every parameter xi
(1 ≤ i ≤ n) occurs at most once, such that: (i) For every A ∈ Vn there exists ex-
actly one production of the form A(x1, . . . , xn)→ t, and (ii) the binary relation
{(A,B) ∈ V × V | (A → t) ∈ P,B is a label in t} is acyclic. These conditions
ensure that exactly one tree valA(A) ∈ T (F ∪{x1, . . . , xn}) is derived from every
nonterminal A ∈ Vn by using the rules as rewriting rules in the usual sense. As
for SLPs, we omit the subscript A when the context is clear. The tree defined
by A is val(A) = valA(S). The size |A| of a TSLP is the total number of non-
parameter nodes in all right-hand sides of productions; see [13] for a justification
of this. TSLPs in which every nonterminal has rank 0 correspond to dags (the
nodes of the dag are the nonterminals of the TSLP).

3 Relative succinctness of SLP-compressed trees

In [7] it is shown that a TSLP A for a tree t can be transformed into an SLP of
size O(|A| · r) for (the traversal of) t, where r is the maximal rank of a label in
t. In this section we discuss the other direction, i.e., transforming an SLP into a

5

TSLP. For tree families of unbounded maximal rank, SLPs can trivially achieve
exponentially better compression: The size of the smallest TSLP for tn = fna

n

(with fn ∈ Fn) is n+1, whereas the size of the smallest SLP for tn is in O(log n).
Note that this does not contradict the O(n

logn) bound from [13] since the trees
tn have unbounded rank. It is less obvious that such an exponential gap can also
occur with trees of bounded rank. To show this, we use the following result:

Theorem 5 ([4, Thm. 2]). For every n > 0, there exist words un, vn ∈ {0, 1}∗
with |un| = |vn| such that un and vn have SLPs of size nO(1), but the smallest
SLP for the convolution un ⊗ vn has size Ω(2n/2).

For two words u = i1 · · · in ∈ {0, 1}∗ and v = j1 · · · jn ∈ {0, 1}∗ we define
the comb tree t(u, v) = fi1(fi2(. . . fin($, jn) . . . j2), j1) over the ranked alphabet
{f0, f1, 0, 1, $} where f0, f1 have rank 2 and 0, 1, $ have rank 0.

Theorem 6. For every n > 0 there exists a tree tn such that the size of a
smallest SLP for tn is polynomial in n, but the size of a smallest TSLP for tn
is in Ω(2n/2).

Proof sketch. Let tn = t(un, vn) be the comb tree, where un, vn are from Thm. 5.
These words have SLPs of size nO(1), which yield an SLP of size nO(1) for tn.
On the other hand, one can transform a TSLP for tn of size m into an SLP of
size O(m) for un ⊗ vn, which implies the result. ut

Note that the height of the tree tn in Thm. 6 is linear in the size of tn. By the
following result, large height and rank are always responsible for the exponential
succinctness gap between SLPs and TSLPs.

Theorem 7. Let t ∈ T (F) be a tree of height h and maximal rank r, and let
A be an SLP for t. Then there exists a TSLP B with val(B) = t such that
|B| ∈ O(|A| · h · r), which can be constructed in time O(|A| · h · r).

Proof sketch. Without loss of generality we assume that A is in Chomsky normal
form. Consider a nonterminal A of A with c(A) = (a1, a2). This means that
val(A) = t1 · · · ta1s, where the ti is a full tree and s is a fragment with a2 many
gaps. For the TSLP B, we introduce (i) a1 nonterminals A1, . . . , Aa1 of rank 0,
which produce the trees t1, . . . , ta1 , and (ii), if a2 > 0, one nonterminal A′ of
rank a2 for the fragment s. For every rule of the form A → f with f ∈ Fn we
add to B the TSLP-rule A1 → f if n = 0 or A′(x1, . . . , xn) → f(x1, . . . , xn) if
n ≥ 1. For a rule of the form A→ BC with c(B) = (b1, b2) and c(C) = (c1, c2),
one has to distinguish the cases b2 = 0, 0 < b2 ≤ c1, and b2 > c1. In each of
these cases it is straightforward to define the rules in such a way that Ai derives
ti and, in case a2 > 0), A′ produces the fragment s. Finally, it is easy to achieve
the size bound O(|A| · h · r) in the construction for B. ut

Balanced parenthesis sequences are widely used as a succinct representation of
ordered unranked unlabelled trees [25]. One defines the balanced parenthesis
sequence bp(t) of such a tree t inductively as follows. If t consists of a single

6

node, then bp(t) = (). If the root of t has n children in which the subtrees
t1, . . . , tn are rooted (from left to right), then bp(t) = (bp(t1) · · · bp(tn)). Using
a construction similar to the proof of Thm. 6 we can show:

Theorem 8. For every n > 0 there exists a binary tree tn ∈ T ({a, f}) (where
f has rank 2 and a has rank 0) such that the size of a smallest SLP for tn is
polynomial in n, but the size of a smallest SLP for bp(tn) is in Ω(2n/2).

It remains open whether there is also a family of trees where the opposite situ-
ation arises, i.e., where a smallest SLP for the balanced parenthesis sequence is
exponentially smaller than a smallest SLP for the preorder traversal.

4 Algorithmic problems on SLP-compressed trees

For trees given by TSLPs or other compressed representations, various algorith-
mic questions have been studied in the literature [5,15,24,27]. Here, we study the
complexity of several basic algorithmic problems on trees that are represented
by SLPs. In this context the main difficulty for SLPs in contrast to TSLPs is
that the tree structure is only given implicitly by the ranked alphabet.

4.1 Tree navigation and pattern matching

In [6] it is shown that from an SLP of size n that produces the balanced paren-
thesis representation of an unranked tree t of size N , one can compute in time
O(n) a data structure of size O(n) that supports navigation as well as other im-
portant computations (e.g. lowest common ancestors) in time O(logN). Here,
the word RAM model is used, where memory cells can store numbers with logN
bits and arithmetic operations on logN -bit numbers can be carried out in con-
stant time. An analogous result was shown in [5] for top dags. Here, we show
the same result for SLPs that produce (preorder traversals of) ranked trees.
Recall that we identify the nodes of a tree t with the positions 1, . . . , |t| in the
string t. The proof of the following result combines results from [3,6,17] and uses
a correspondence between preorder traversals of ranked trees and the DFUDS
(depth-first unary-degree sequence) representation of unranked trees from [3].

Theorem 9. Given an SLP of size n for a tree t of size N , one can produce in
time O(n) a data structure of size O(n) that allows to do the following compu-
tations in time O(logN) ≤ O(n), where i, j, k ∈ N with 1 ≤ i, j ≤ N are given
in binary notation:

(a) Compute the parent node of node i > 1 in t.
(b) Compute the kth child of node i in t, if it exists.
(c) Compute the number k such that i > 1 is the kth child of its parent node.
(d) Compute the size of the subtree rooted at node i.
(e) Compute the lowest common ancestor of node i and j in t.

7

The data structure of [6] allows to compute the height and the depth of a given
tree node in time O(logN) as well. It is not clear to us whether this result also
can be extended to our setting. On the other hand, in Section 4.2, we show that
the height and the depth of a given node of an SLP-compressed tree can be
computed in polynomial time.

In contrast to navigation, simple pattern matching problems are intractable
for SLP-compressed trees. The pattern matching problem for SLP-compressed
trees is defined as follows: Given a tree s ∈ T (F ∪X) (the pattern), where every
variable x ∈ X (a symbol of rank zero) occurs at most once, and an SLP A
producing a tree t ∈ T (F), is there a substitution σ : X → T (F) such that
σ(s) is a subtree of t? Here, σ(s) ∈ T (F) denotes the tree obtained from s
by substituting each variable x ∈ X by σ(x). Note that the pattern is given
uncompressed. If the tree t is given by a TSLP, the corresponding problem can
be solved in polynomial time [27].1 For SLP-compressed trees we have:

Theorem 10. The pattern matching problem for SLP-compressed trees is NP-
complete. Moreover, NP-hardness holds for a fixed pattern of the form f(x, a).

NP-hardness is shown by a reduction from the question whether (1, 1) appears
in the convolution of two SLP-compressed strings over {0, 1} [23, Thm. 3.13].

4.2 Tree evaluation problems

The algorithmic difficulty of SLP-compressed trees already becomes clear when
computing the height. For TSLPs it is easy to see that the height of the produced
tree can be computed in linear time: Compute bottom-up for each nonterminal
the height of the produced tree and the depths of the parameter nodes. However,
this direct approach fails for SLPs since each nonterminal encodes a possibly
exponential number of trees. The crucial observation to solve this problem is
that one can store and compute the required information for each nonterminal
in a compressed form.

In the following we present a general framework to define and solve evaluation
problems on SLP-compressed trees. We assign to each alphabet symbol of rank
n an n-ary operator which defines the value of a tree by evaluating it bottom-up.
This approach includes natural tree problems like computing the height of a tree,
evaluating a Boolean expression or determining whether a fixed tree automaton
accepts a given tree. We only consider operators on Z but other domains with
an appropriate encoding of the elements are also possible. To be able to consider
arbitrary arithmetic expressions properly, it is necessary to allow the set F0 ⊆ F
of constants to be an infinite subset of Z. If such a constant a ∈ F0 appears in
an SLP for a tree, then its contribution to the SLP size is the number of bits of
the binary representation of a.

1 In fact, there is a polynomial time algorithm that checks whether a TSLP-compressed
pattern tree s occurs in a TSLP-compressed tree t [27]. But for this, it is important
that every variable x occurs at most once in the pattern s. For the case that variables
are allowed to occur repeatedly in the pattern, the precise complexity is open.

8

Let D ⊆ Z be a possibly infinite set of integers and let F be a ranked alphabet
with F0 = D. An interpretation I of F over D assigns to each symbol f ∈ Fn an
n-ary function fI : Dn → D with the restriction that aI = a for all a ∈ D. We lift
the definition of I to T (F) inductively by (f t1 · · · tn)I = fI(tI1 , . . . , t

I
n), where

f ∈ Fn and t1, . . . , tn ∈ T (F). The problem I-evaluation for SLP-compressed
trees is: Given an SLP A over F with val(A) ∈ T (F), compute val(A)I .

In a first step, we reduce I-evaluation for SLP-compressed trees to the cor-
responding problem for SLP-compressed caterpillar trees. A tree t ∈ T (F) is
called a caterpillar tree if every node has at most one child which is not a leaf.
Let s ∈ F∗ be an arbitrary string. Then sI ∈ F∗ denotes the unique string ob-
tained from s by replacing every maximal substring t ∈ T (F) of s by its value tI .
By Lemma 1 we can factorize s uniquely as s = t1 · · · tnu where t1, . . . , tn ∈ T (F)
and u is a fragment. Hence sI = m1 · · ·mnu

I with m1, . . . ,mn ∈ D. Since u is
a fragment, the string uI is the fragment of a caterpillar tree (briefly, caterpillar
fragment). For instance, with the standard interpretation of + and × on integers,
we have (0, 2,+, 2,+,+,×, 2,+, 2, 1,+,×)I = 0, 2,+, 2,+,+, 6,+,× (commas
are added for better readability).

Our reduction to caterpillar trees only works for interpretations I that are
polynomially bounded in the following sense: There exist constants α, β ≥ 0 such
that for every tree t ∈ T (F), abs(tI) ≤

(
β · |t|+

∑
i∈L abs(t[i])

)α
, where abs(z)

is the absolute value of z ∈ Z (we write abs(z) instead of |z| in order to not get
confused with the size |t| of a tree) and L ⊆ {1, . . . , |t|} is the set of leaves of
t. The purpose of this definition is to ensure that for every SLP A for a tree t,
the length of the binary encoding of tI is polynomially bounded in |A| and the
binary lengths of the integer constants that appear in A.

Theorem 11. Let I be a polynomially bounded interpretation. Then the I-
evaluation for SLP-compressed trees is polynomial time Turing-reducible to the
I-evaluation for SLP-compressed caterpillar trees.

Proof. In the proof we use an extension of SLPs by the cut-operator, called
composition systems. A composition system A = (N,Σ,P, S) is an SLP where P
may also contain rules of the form A→ B[i : j] whereA,B ∈ N and i, j ≥ 0. Here
we let val(A) = val(B)[i : j]. It is known (see e.g. [23]) that a given composition
system can be transformed in polynomial time into an SLP with the same value.
We may also use more complex rules like for instance A→ B[i : j]C[k : l]. Such
rules can be easily reduced to the above format.

Let A = (N,F , P, S) be the input SLP in Chomsky normal form. We compute
a composition system, which contains for each nonterminal A ∈ N two nonter-
minals A1 and A2 such that the following holds: Assume that val(A) = t1 · · · tn s,
where t1, . . . , tn ∈ T (F) and s is a fragment (hence c(val(A)) = (n, gaps(s))).
Then we will have val(A1) = tI1 · · · tIn ∈ D∗ and val(A2) = sI . In particular,
val(A1)val(A2) = val(A)I and val(A)I is given by a single number in val(S1).
The fact that I is polynomially bounded ensures that all numbers tIi as well as
all numbers that appear in the caterpillar tree sI have polynomially many bits
in the input length |A|.

9

+

+

8 +

+p

5 +

val(B2)

4 2

val(C1)

+

3

val(C2)

+

+

8 +

+

5 +

4 2

+

3

tIcat

+

+

8 +

11 +

3

val(A2)

Fig. 2. An example for the case b2 > c1 in the proof of Thm. 11 (+ is interpreted
as addition). Inserting the values from val(C1) = 4 2 into the caterpillar fragment
val(B2) = + + 8 + + 5 + produces a caterpillar subtree tcat, which evaluates to 11.
Then, the fragment val(C2) = + 3 is appended, which yields val(A2) = + + 8 + 11 + 3.

The computation is straightforward for rules A→ f with A ∈ N and f ∈ F :
If rank(f) = 0, then val(A1) = f and val(A2) = ε. If rank(f) > 0, then val(A1) =
ε and val(A2) = f . For a nonterminal A ∈ N with the rule A→ BC we make a
case distinction depending on c(val(B)) = (b1, b2) and c(val(C)) = (c1, c2).

Case b2 ≤ c1: Then concatenating val(B) and val(C) yields a new tree tnew (or ε
if b2 = 0) in val(A). Notice that tInew is the value of the tree val(B2) val(C1)[: b2].
Hence we can compute tInew in polynomial time by computing an SLP that
produces val(B2) val(C1)[: b2] and querying the oracle for caterpillar trees. We
add the rules A1 → B1 t

I
new C1[b2 + 1 : c1], A2 → C2 to the composition system.

Case b2 > c1: Then all trees and the fragment produced by C are inserted into the
gaps of the fragment encoded by B. If c1 = 0 (i.e., val(C1) = ε), then we add the
productions A1 → B1 and A2 → B2C2. Now assume that c1 > 0. Consider the
fragment s = val(B2) val(C1) val(C2). Intuitively, this fragment s is obtained by
taking the caterpillar fragment val(B2), where the first c1 many gaps are replaced
by the constants from the sequence val(C1) and the (c1 + 1)st gap is replaced by
the caterpillar fragment val(C2), see Figure 2 for an example. If s is not already
a caterpillar fragment, then we have to replace the (unique) largest factor of
s which belongs to T (F) by its value under I to get sI . To do so we proceed
as follows: Consider the tree t′ = val(B2) val(C1) �b2−c1 , where � is an arbitrary
symbol of rank 0, and let r = |val(B2)|+c1+1 (the position of the first � in t′). Let
q be the parent node of r, which can be computed in polynomial time by Thm. 9.
Using Lemma 3 we compute the position p (which is marked in the left tree in
Figure 2) of the first occurrence of a symbol in t′[q + 1 :] with rank > 0. If no
such symbol exists, then s is already a caterpillar fragment and we add the rules
A1 → B1 and A2 → B2C1C2 to the composition system. Otherwise p is the first
symbol of the largest factor from T (F) described above. Using Thm. 9(d), we can
compute in polynomial time the last position p′ of the subtree of t′ that is rooted
in p. Note that the position p must belong to val(B2) and that p′ must belong to
val(C1) (since c1 > 0). The string tcat = (val(B2) val(C1))[p : p′] is a caterpillar
tree for which we can compute an SLP in polynomial time by the above remark on

10

composition systems. Hence, using the oracle we can compute the value tIcat. We
then add the rules A1 → B1, A′ → B2C1, and A2 → A′[: p−1] tIcatA

′[p′+ 1 :]C2

to the composition system. This completes the proof. ut

Polynomial time solvable evaluation problems. Next, we present several
applications of Thm. 11. We start with the height of a tree.

Theorem 12. The height of a tree t ∈ T (F) given by an SLP and the depth of
a given node in t can be computed in polynomial time.

Proof. We can assume that t is not a single constant. We replace every symbol
in F0 by the integer 0. Then the height of t is given by its value under the
interpretation I with fI(a1, . . . , an) = 1 + max{a1, . . . , an} for symbols f ∈ Fn
with n > 0. Clearly I is polynomially bounded. By Thm. 11 it is enough to show
how to evaluate a caterpillar tree t given by an SLP A in polynomial time under
the interpretation I. But note that arbitrary natural numbers may occur at leaf
positions in this caterpillar tree.

Let Dt = {d ∈ N | d labels a leaf of t}. The size of this set is bounded by |A|.
For d ∈ Dt let vd be the deepest node such that d is the label of a child of node
vd (in particular, vd is not a leaf). Let us first argue that vd can be computed
in polynomial time: Let k be the maximal position in t where a symbol of rank
larger than zero occurs. The number k is computable in polynomial time by
Lemma 3 (point 2 and 3). Again using Lemma 3 we compute the position of d’s
last (resp., first) occurrence in t[: k] (resp., t[k + 1 :]). Then using Thm. 9 we
compute the parent nodes of those two nodes. The larger (i.e., deeper one) is vd.

Assume that Dt = {d1, . . . , dm}, where w.l.o.g. vd1 < vd2 < · · · < vdm (if
vdi = vdj for di < dj , then we simply ignore di in the following consideration).
Note that vdm is the maximal position in t where a symbol of rank at least one
occurs (called k above) and that all children of vdm are labelled with dm. Let
ti be the subtree rooted at vdi . Then tIm = dm + 1. We claim that from the
value tIi+1 we can compute in polynomial time the value tIi . The crucial point
is that all constants that appear in the interval [vdi + 1, vdi+1

− 1] except for
di have a deeper occurrence in the tree and therefore can be ignored for the
evaluation under I. More precisely, if a is the number of occurrences of symbols
of rank at least one in the interval [vdi + 1, vdi+1

− 1] (which can be computed in
polynomial time by Lemma 3), then tIi = 1 + max{tIi+1 + a, di}. Finally, using
the same argument, we can compute tI from tI1 .

For the second part of the theorem, the computation of the depth of a given
node can be easily reduced to a height computation. ut

In the full version [14], we show with similar arguments that also the Horton-
Strahler number [11] of an SLP-compressed tree can be computed in polyno-
mial time. It can be defined as the value tI under the interpretation I over N
which interprets constant symbols a ∈ F0 by aI = 0 and each symbol f ∈ Fn
with n > 0 as follows: Let a1, . . . , an ∈ N and a = max{a1, . . . , an}. We set
fI(a1, . . . , an) = a if exactly one of a1, . . . , an is equal to a, and otherwise
fI(a1, . . . , an) = a+ 1.

11

If the interpretation I is clear from the context, we also speak of the problem
of evaluating SLP-compressed F-trees. In the following theorem the interpreta-
tion is given by the Boolean operations ∧ and ∨ over {0, 1}.

Theorem 13. SLP-compressed {∧,∨, 0, 1}-trees can be evaluated in polynomial
time.

Difficult arithmetical evaluation problems. Assume that I is the interpre-
tation that assigns to the binary symbols max, +, and × their standard meanings
over Z. We consider the problem of evaluating SLP-compressed expressions over
{max,+} or {+,×}. For circuits, these problems are well-studied. Circuits over
max and + can be evaluated bottom-up in polynomial time, since all values that
arise in the circuit only need polynomially many bits. Circuits are dags, and the
latter correspond to TSLPs where all nonterminals have rank 0. Moreover, it
was shown in [13] that a TSLP that evaluates to an expression over a semiring
can be transformed in polynomial time into an equivalent circuit over the same
semiring. Hence, TSLPs over max and + can be evaluated in polynomial time.
In contrast, for SLP-compressed expressions we can show the following result.
The counting hierarchy CH is a hierarchy of complexity classes within PSPACE,
and it is conjectured that CH (PSPACE, see [2] for more details.

Theorem 14. The evaluation of SLP-compressed ({max,+} ∪ Z)-trees belongs
to CH and is #P-hard (even for SLP-compressed ({max,+} ∪ N)-trees).

For expressions over + and × the situation is more difficult. Clearly a circuit
of size O(n) can produce the number 22

n

which has 2n bits. Hence, we cannot
evaluate a circuit over + and × in polynomial time. In [2] it was shown that the
problem BitSLP of computing the kth bit (k is given in binary) of the number
to which a given arithmetic circuit evaluates to belongs to CH and is #P-hard.
By [13] these results also hold for TSLPs. For the related problem PosSLP of
deciding, whether a given arithmetic circuit computes a positive number, no
non-trivial lower bound is known, see also [2]. For SLP-compressed expressions
over + and × we can show the following:

Theorem 15. The problem of computing for a given binary encoded number k
and an SLP A over {+,×} ∪ Z the kth bit of val(A)I belongs to CH. Moreover,
the problem of checking val(A)I ≥ 0 is PP-hard.

Tree automata. A (deterministic) tree automaton A = (Q,F , ∆, F) consists
of a finite set of states Q, a ranked alphabet F , a set of final states F ⊆ Q and
a set ∆ of transition rules, which contains for all f ∈ Fn, q1, . . . , qn ∈ Q exactly
one rule f(q1, . . . , qn)→ q. A tree t ∈ T (F) is accepted by A if t

∗→∆ q for some
q ∈ F where→∆ is the rewriting relation defined by ∆ as usual. See [10] for more
details on tree automata. One can also define nondeterministic tree automata,
but the above deterministic model fits better into our framework: A tree au-
tomaton as defined above can be seen as a finite algebra (i.e., an interpretation
I, where the domain D is finite): The domain of the algebra is the set of states,

12

and the operations of the algebra correspond to the transitions of the automa-
ton. Then, the membership problem for the tree automaton corresponds to the
evaluation problem in the finite algebra. The uniform membership problem for
tree automata asks whether a given tree automaton accepts a given tree. In [21]
it was shown that this problem belongs to LogDCFL ⊆ P (for nondeterministic
tree automata it becomes LogCFL-complete). For every fixed tree automaton,
the membership problem belongs to NC1 [21] if the tree is represented by its
traversal string. If the input tree is given by a TSLP, the uniform membership
problem becomes P-complete [24]. For SLP-compressed trees we have:

Theorem 16. Uniform membership for tree automata is PSPACE-complete if
the input tree is given by an SLP. Moreover, PSPACE-hardness holds for a fixed
tree automaton.

Proof sketch. For the upper bound one uses the fact that the uniform membership
problem for explicitly given trees can be solved in LogDCFL ⊆ DSPACE(log2(n)).
Given an SLP A for the tree t = val(A), one can run the DSPACE(log2(n))-
algorithm on the tree t without producing the whole tree t (which does not fit
into polynomial space) before. This leads to a polynomial space algorithm.

For the lower bound we use a fixed regular language L ⊆ ({0, 1}2)∗ from [22]
such that the following problem is PSPACE-complete: Given SLPs A and B over
{0, 1} with |val(A)| = |val(B)|, is val(A) ⊗ val(B) ∈ L? It is straightforward to
transform a finite automaton for the fixed language L into a tree automaton
A such that A accepts the comb tree t(rev(u), rev(v)) with u = val(A) and
v = val(B) iff u⊗ u ∈ L. ut

Thm. 16 implies that there exists a fixed finite algebra for which the evalua-
tion problem for SLP-compressed trees is PSPACE-complete. This is somewhat
surprising if we compare the situation with dags or TSLP-compressed trees.
For these, membership for tree automata is still doable in polynomial time [24],
whereas the evaluation problem of arithmetic expressions (in the sense of com-
puting a certain bit of the output number) belongs to the counting hierarchy
and is #P-hard. In contrast, for SLP-compressed trees, the evaluation problem
for finite algebras (i.e., tree automata) is harder than the evaluation problem for
arithmetic expressions (PSPACE versus the counting hierarchy).

References

1. T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees.
Inf. Process. Lett., 110(18-19):815–820, 2010.

2. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the
complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

3. D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao.
Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

4. A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In
Proc. IFIP TCS 2008, volume 273 of IFIP, pages 87–100. Springer, 2008.

5. P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top
trees. Inform. Comput., 243: 166–177, 2015.

13

6. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput., 44(3)513–
539:, 2015.

7. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML
document trees. Inform. Syst., 33(4–5):456–474, 2008.

8. Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In
Proc. STOC 87, pages 123–131. ACM Press, 1987.

9. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory,
51(7):2554–2576, 2005.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
tata.gforge.inria.fr/.

11. J. Esparza, M. Luttenberger, and M. Schlund. A brief history of strahler numbers.
In Proc. LATA 2014, volume 8370 of LNCS, pages 1–13. Springer, 2014.

12. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and
indexing labeled trees, with applications. J. ACM, 57(1), 2009.

13. M. Ganardi, D. Hucke, A. Jėz, M. Lohrey, and E. Noeth. Constructing small tree
grammars and small circuits for formulas. arXiv.org, 2014. arxiv.org/abs/1407.
4286.

14. M. Ganardi, D. Hucke, M. Lohrey, and E. Noeth. Tree compression using string
grammars. arXiv.org, 2014. arxiv.org/abs/1504.05535.

15. L. Hübschle-Schneider and R. Raman. Tree compression with top trees revisited.
In Proc. SEA 2015, volume 9125 of LNCS, pages 15–27. Springer, 2015.

16. G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS 1989, pages
549–554. IEEE Computer Society, 1989.

17. J. Jansson, K. Sadakane, and W-K. Sung. Ultra-succinct representation of ordered
trees with applications. J. Comput. Syst. Sci., 78(2):619–631, 2012.

18. A. Jėz. Approximation of grammar-based compression via recompression. In
Proc.CPM 2013, volume 7922 of LNCS, pages 165–176. Springer, 2013.

19. A. Jėz and M. Lohrey. Approximation of smallest linear tree grammars. In
Proc. STACS 2014, volume 25 of LIPIcs, pages 445–457. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2014.

20. N. Kobayashi, K. Matsuda, and A. Shinohara. Functional programs as compressed
data. In Proc. PEPM 2012, pages 121–130. ACM Press, 2012.

21. M. Lohrey. On the parallel complexity of tree automata. In Proc. RTA 2001,
volume 2051 of LNCS, pages 201–215. Springer, 2001.

22. M. Lohrey. Leaf languages and string compression. Inform. Comput., 209(6):951–
965, 2011.

23. M. Lohrey. The Compressed Word Problem for Groups. Springer, 2014.
24. M. Lohrey. Grammar-based tree compression. In Proc. DLT 2015, volume 9168 of

LNCS, pages 46–57. Springer, 2015.
25. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and

static trees. SIAM J. Comput., 31(3):762–776, 2001.
26. W. Rytter. Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theor. Comput. Sci., 302(1–3):211–222, 2003.
27. M. Schmidt-Schauß. Linear compressed pattern matching for polynomial rewriting.

In Proc. TERMGRAPH 2013, volume 110 of EPTCS, pages 29–40, 2013.
28. J. A. Storer and T. G. Szymanski. The macro model for data compression. In

Proc. STOC 1978, pages 30–39. ACM, 1978.

14

arxiv.org/abs/1407.4286
arxiv.org/abs/1407.4286
arxiv.org/abs/1504.05535

	Tree Compression Using String Grammars

