
Noname manuscript No.
(will be inserted by the editor)

Tree Compression Using String Grammars

Moses Ganardi · Danny Hucke · Markus
Lohrey · Eric Noeth

the date of receipt and acceptance should be inserted later

Abstract We study the compressed representation of a ranked tree by a
(string) straight-line program (SLP) for its preorder traversal, and compare it
with the well-studied representation by straight-line context free tree gram-
mars (which are also known as tree straight-line programs or TSLPs). Al-
though SLPs may be exponentially more succinct than TSLPs, we show that
many simple tree queries can still be performed efficiently on SLPs, such as
computing the height of a tree, tree navigation, or evaluation of Boolean ex-
pressions. Other problems on tree traversals turn out to be intractable, e.g.
pattern matching and evaluation of tree automata. These problems can be still
solved in polynomial time for TSLPs.

1 Introduction

Grammar-based compression has become an active field in string compression
during the past 20 years. The idea is to represent a given string s by a small
context-free grammar that generates only s; such a grammar is also called a
straight-line program (SLP). For instance, the word (ab)1024 can be represented
by the SLP with the productions A0 → ab and Ai → Ai−1Ai−1 for 1 ≤ i ≤
10 (A10 is the start symbol). The size of this SLP (the size of an SLP is
usually defined as the total length of all right-hand sides of the productions)
is much smaller than the length of the string (ab)1024. In general, an SLP of
size n can produce a string of length 2Ω(n). Hence, an SLP can be seen indeed
as a succinct representation of the generated string. The goal of grammar-
based string compression is to construct from a given input string s a small
SLP that produces s. Several algorithms for this have been proposed and

The third and fourth author are supported by the DFG-project LO 748/10-1 (QUANT-
KOMP).

Universität Siegen, Germany
E-mail: {ganardi,hucke,lohrey,eric.noeth}@eti.uni-siegen.de

2 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

analyzed. Prominent grammar-based string compressors are for instance LZ78,
RePair, and BISECTION, see [13] for more details. The theoretically best known
polynomial time grammar-based compressors produce for an input string s of
length N a grammar of size at most O(g · log(N/g)), where g is the size of a
smallest SLP for s [13,26,28,41,42].

Motivated by applications where large tree structured data occur, like XML
processing, grammar-based compression has been extended to trees [9,10,29,
36], see [34] for a survey. Unless otherwise specified, a tree in this paper is
always a rooted ordered tree over a ranked alphabet, i.e., every node is labelled
with a symbol and the rank of this symbol is equal to the number of children
of the node. This class of trees occurs in many different contexts such as
term rewriting, expression evaluation and tree automata. A tree over a ranked
alphabet is uniquely represented by its preorder traversal string (which is also
known as the Polish notation). For instance, the preorder traversal of the tree
f(g(a), f(a, b)) is the string fgafab. It is now a natural idea to apply a string
compressor to this preorder traversal. In this paper we study the compression
of ranked trees by SLPs for their preorder traversals. This approach is very
similar to [8], where unranked unlabelled trees are compressed by SLPs for
their balanced parenthesis representations. In [40] this idea is used together
with the grammar-based compressor RePair to get a new compressed suffix
tree implementation.

In Section 4 we compare the size of SLPs for preorder traversals with
two other grammar-based compressed tree representations: the above men-
tioned SLPs for balanced parenthesis representations from [8] and (ii) tree
straight-line programs (TSLPs) [10,23,29,36]. The latter directly generalize
string SLPs to trees using context-free tree grammars that produce a single
tree. TSLPs generalize DAGs (directed acyclic graphs), which are widely used
as a compact tree representation. Whereas DAGs only allow to share repeated
subtrees, TSLPs can also share repeated internal tree patterns. In [18] it is
shown that every tree of size N over a fixed ranked alphabet can be produced
by a TSLP of size O(N

logN) and there exist trees of size N for which any TSLP

has size Ω(N
logN). A grammar-based tree compressor based on TSLPs with an

approximation ratio of O(logN) was presented in [29]. In [10], it was shown
that from a given TSLP of size m for a tree t one can efficiently construct an
SLP of size O(m · r) for the preorder traversal of t, where r is the maximal
rank occurring in t (i.e., the maximal number of children of a node). Hence, a
smallest SLP for the traversal of t cannot be much larger than a smallest TSLP
for t. Our first main result (Theorem 4) shows that SLPs can be exponentially
more succinct than TSLPs: We construct a family of binary trees tn (n ≥ 0)
such that the size of a smallest SLP for the traversal of tn is polynomial in n
but the size of a smallest TSLP for tn is Ω(2n/2). We also match this lower
bound by an upper bound: Given an SLP of size m for the traversal of a tree
t of height h and maximal rank r, one can efficiently construct a TSLP for t
of size O(m · h · r) (Theorem 5). Finally, we construct a family of binary trees
tn (n ≥ 0) such that the size of a smallest SLP for the preorder traversal of tn

Tree Compression Using String Grammars 3

is polynomial in n but the size of a smallest SLP for the balanced parenthesis
representation is Ω(2n/2) (Theorem 6). Hence, SLPs for preorder traversals
can be exponentially more succinct than SLPs for balanced parenthesis rep-
resentations. It remains open, whether the opposite behavior is possible as
well.

We also study algorithmic problems for trees that are encoded by SLPs.
We extend some of the results from [8] on querying SLP-compressed balanced
parenthesis representations to our context. Specifically, we show that after
a linear time preprocessing we can navigate (i.e., move to the parent node
and the kth child), compute lowest common ancestors and subtree sizes in
time O(logN), where N is the size of the tree represented by the SLP (Theo-
rem 7). For a couple of other problems (computation of the height and depth of
a node, computation of the Horton-Strahler number, and evaluation of Boolean
expressions) we provide polynomial time algorithms for the case that the input
tree is given by an SLP for the preorder traversal. On the other hand, there
exist problems that are polynomial time solvable for TSLP-compressed trees
but intractable for SLP-compressed trees: examples for such problems are pat-
tern matching, evaluation of max-plus expressions, and membership for tree
automata. Looking at tree automata is also interesting when compared with
the situation for explicitly given (i.e., uncompressed) preorder traversals. For
these, evaluating Boolean expressions (which is the membership problem for
a particular tree automaton) is NC1-complete by a famous result of Buss [11],
and the NC1 upper bound was generalized to every fixed tree automaton [31].
If we compress the preorder traversal by an SLP, the problem is still solvable in
polynomial time for Boolean expressions (Theorem 13), but there is a fixed tree
automaton where the evaluation problem becomes PSPACE-complete (Theo-
rems 18 and 19). Concerning the PSPACE lower bound we prove a stronger
statement: There exists a finite semiring for which the evaluation problem for
SLP-compressed trees is PSPACE-complete (Theorem 19).

A short version of this paper appeared in [19].

Related work on tree compression. There are tree compressors based on
other grammar formalisms. In [1] so called elementary ordered tree grammars
are used, and a polynomial time compressor with an approximation ratio of
O(N5/6) is presented. Also the top DAGs from [7] can be seen as a variation
of TSLPs for unranked trees. Recently, in [22] it was shown that for every

tree of size N with σ many node labels, the top DAG has size O(N ·log logσ N
logσ N

),

which improved the bound from [7]. An extension of TSLPs to higher order
tree grammars was proposed in [30].

Another class of tree compressors use succinct data structures for trees.
Here, the goal is to represent a tree in a number of bits that asymptotically
matches the information theoretic lower bound, and at the same time allows
efficient querying (ideally in time O(1)) of the data structure. For unlabelled
unranked trees of size N there exist representations with 2N + o(N) bits that
support navigation and some other tree queries in time O(1) [6,24,25,39]. This

4 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

result has been extended to labelled trees, where (log σ) ·N + 2N + o(N) bits
suffice when σ is the number of node labels [16].

2 Preliminaries

Let Σ be a finite alphabet. For a string w = a1 · · · an ∈ Σ∗ we define |w| = n,
w[i] = ai and w[i : j] = ai · · · aj where w[i : j] = ε, if i > j. Let w[: i] = w[1 : i]
and w[i :] = w[i : |w|]. With rev(w) = an · · · a1 we denote w reversed. Given
two strings u, v ∈ Σ∗, the convolution u⊗ v ∈ (Σ×Σ)∗ is the string of length
min{|u|, |v|} defined by (u⊗ v)[i] = (u[i], v[i]) for 1 ≤ i ≤ min{|u|, |v|}.

2.1 Complexity classes

We assume familiarity with the basic classes from complexity theory, in par-
ticular P, NP and PSPACE. The following definitions are only needed in Sec-
tion 5.3.3. The counting class #P contains all functions f : Σ∗ → N for which
there exists a nondeterministic polynomial time machine M such that for ev-
ery x ∈ Σ∗, f(x) is the number of accepting computation paths of M on input
x. The class PP (probabilistic polynomial time) contains all problems A for
which there exists a nondeterministic polynomial time machine M such that
for every input x: x ∈ A if and only if more than half of all computation paths
of M on input x are accepting. By a famous result of Toda [44], the class
PPP = P#P (i.e., the class of all languages that can be decided in deterministic
polynomial time with the help of an oracle from PP) contains the whole poly-
nomial time hierarchy. Hence, if a problem is PP-hard, then this can be seen as
a strong indication that the problem does not belong to the polynomial time
hierarchy (otherwise the polynomial time hierarchy would collapse).

The levels of the counting hierarchy Cpi (i ≥ 0) are inductively defined as

follows: Cp0 = P and Cpi+1 = PPCpi (the set of languages accepted by a PP-
machine as above with an oracle from Cpi) for all i ≥ 0. Let CH =

⋃
i≥0 Cpi

be the counting hierarchy. It is not difficult to show that CH ⊆ PSPACE, and
most complexity theorists conjecture that CH (PSPACE. Hence, if a problem
belongs to the counting hierarchy, then this can be seen as an indication that
the problem is probably not PSPACE-complete. The counting hierarchy can
also be seen as an exponentially blown-up version of the circuit complexity
class DLOGTIME-uniform TC0. This is the class of all languages that can be
decided with a constant-depth polynomial-size circuit family of unbounded
fan-in that in addition to normal Boolean gates may also use threshold gates.
DLOGTIME-uniformity means that one can compute in time O(log n) (i) the
type of a given gate of the nth circuit, and (ii) whether two given gates of the
nth circuit are connected by a wire. Here, gates of the nth circuit are encoded
by bit string of length O(log n). More details on the counting hierarchy (resp.,
circuit complexity) can be found in [4] (resp., [45]).

Tree Compression Using String Grammars 5

2.2 Trees

A ranked alphabet F is a finite set of symbols where every symbol f ∈ F has
a rank rank(f) ∈ N. We assume that F contains at least one symbol of rank
zero. By Fn we denote the symbols of F of rank n. Later we will also allow
ranked alphabets, where F0 is infinite. For the purpose of this paper, it is
convenient to define trees as particular strings over the alphabet F (namely
as preorder traversals). The set T (F) of all trees over F is the subset of F∗
defined inductively as follows: If f ∈ Fn with n ≥ 0 and t1, . . . , tn ∈ T (F),
then also ft1 · · · tn ∈ T (F).

A string s ∈ F∗ is called a fragment if there exists a non-empty string
x ∈ F+ such that sx ∈ T (F). Note that the empty string ε is a fragment.
Intuitively, a fragment is a tree with gaps. The number of gaps of a fragment
s ∈ F+ is formally defined as the number n of trees t1, . . . , tn ∈ T (F) such
that st1 · · · tn ∈ T (F), and is denoted by gaps(s). The number of gaps of the
empty string is defined as 0. The following lemma states that gaps(s) is indeed
well-defined.

Lemma 1 The following statements hold:

– The set T (F) is prefix-free, i.e. t ∈ T (F) and tv ∈ T (F) imply v = ε.
– If t ∈ T (F), then every suffix of t factors uniquely into a concatenation of

strings from T (F).
– For every fragment s ∈ F+ there is a unique n ≥ 1 such that {x ∈ F∗ |
sx ∈ T (F)} = (T (F))n.

Since T (F) is prefix-free we immediately get:

Lemma 2 For every w ∈ F∗ there exist unique n ≥ 0, t1, . . . , tn ∈ T (F) and
a unique fragment s such that w = t1 · · · tns.

Definition 1 Let w ∈ F∗ and let w = t1 · · · tns as in Lemma 2. We define
ftg(w) = (n, gaps(s)) (“ftg” stands for “full trees and gaps”). Thus, n counts
the number of full trees in w and gaps(s) is the number of trees missing to
make the fragment s a tree.

For better readability, we occasionally write a tree ft1 · · · tn with f ∈ Fn
and t1, . . . , tn ∈ T (F) as f(t1, . . . , tn), which corresponds to the standard
term representation of trees. We also consider trees in their graph-theoretic
interpretation: Let t ∈ T (F) be a tree. The nodes of t are the positions 1, . . . , |t|
in the string t. The root node is 1. Moreover, if t (viewed as a string) factorizes
as uft1 · · · tnv for u, v ∈ F∗, f ∈ Fn, and t1, . . . , tn ∈ T (F), then the n children

of node |u|+ 1 are |u|+ 2 +
∑k
i=1 |ti| for 0 ≤ k ≤ n− 1. We define the depth

of a node in t (number of edges from the root to the node) and the height of
t (maximal depth of a node) as usual. Note that the tree t seen as a string is
simply the preorder traversal of the tree t seen in its standard graph-theoretic
interpretation.

6 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

f

f

a a

f

f

f

a a

a

a

f

f

a a

f

f

f

Fig. 1 The tree t from Example 1 and the tree fragment corresponding to the fragment
ffaafff .

Example 1 Let t = ffaafffaaaa = f(f(a, a), f(f(f(a, a), a), a)) be the tree
depicted in Figure 1 with f ∈ F2 and a ∈ F0. Its height is 4. All prefixes
(including the empty word, excluding the full word) of t are fragments. The
fragment s = ffaafff is also depicted in Figure 1 in a graphical way. The
dashed edges visualize the gaps. We have gaps(s) = 4. For the factor u =
aafffa of t we have ftg(u) = (2, 3). The children of node 5 (the third f -
labelled node) are 6 and 11.

2.3 Straight-line programs

A straight-line program, briefly SLP, is a context-free grammar that produces
a single string. Formally, it is a tuple A = (N , Σ, P, S), where N is a finite set
of nonterminals, Σ is a finite set of terminal symbols (Σ ∩ N = ∅), S ∈ N
is the start nonterminal, and P is a finite set of productions (or rules) of the
form A→ w for A ∈ N , w ∈ (N ∪Σ)∗ such that:

– For every A ∈ N , there exists exactly one production of the form A→ w,
and

– the binary relation {(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is
acyclic.

Every nonterminal A ∈ N produces a unique string valA(A) ∈ Σ∗. The string
defined by A is val(A) = valA(S). We usually omit the subscript A when it is
clear from the context. The size of the SLP A is |A| =

∑
(A→w)∈P |w|. One

can transform an SLP A = (N , Σ, P, S) which produces a nonempty word in
linear time into Chomsky normal form, i.e. for each production (A→ w) ∈ P ,
either w ∈ Σ or w = BC where B,C ∈ N [33, Proposition 3.8].

For an SLP A of size n we have |val(A)| ∈ 2O(n), and there exists a family
of SLPs An (n ≥ 1) such that |An| ∈ O(n) and |val(A)| = 2n. Hence, SLPs
allow exponential compression.

The following lemma summarizes known results about SLPs which we will
use throughout the paper, see e.g. [33].

Tree Compression Using String Grammars 7

Lemma 3 Let A be an SLP. There are linear time algorithms for the following
problems:

1. Compute the set of symbols occurring in val(A).
2. Let Σ be the terminal set of A and let Γ ⊆ Σ. Compute the number of

occurrences of symbols from Γ in val(A).
3. Let Σ be the terminal set of A and let Γ ⊆ Σ. Given a number i, compute

the position of the ith occurrence of a symbol from Γ in val(A) (if it exists).
4. Given 1 ≤ i, j ≤ |val(A)|, compute an SLP of size O(|A|) for val(A)[i : j].

2.4 Tree straight-line programs

We now define tree straight-line programs. Let F and V be two disjoint ranked
alphabets, where we call elements from F terminals and elements from V
nonterminals (or variables). Let further X = {x1, x2, . . . } be a countably
infinite set of parameters (disjoint from F and V), which we treat as symbols
of rank zero. In the following we consider trees over F ∪ V ∪ X . The size |t|
of such a tree t is defined as the number of nodes labelled by a symbol from
F ∪ V, i.e. we do not count parameter nodes. A tree straight-line program A,
or short TSLP, is a tuple A = (V,F , P, S), where V is the set of nonterminals,
F is the set of terminals, S ∈ V0 is the start nonterminal and P is a finite set
of productions (or rules) of the form A(x1, . . . , xn) → t (which is also briefly
written as A→ t), where n ≥ 0, A ∈ Vn and t ∈ T (F ∪ V ∪ {x1, . . . , xn}) is a
tree in which every parameter xi (1 ≤ i ≤ n) occurs at most once, such that:

– For every A ∈ Vn there is exactly one rule of the form A(x1, . . . , xn) → t,
and

– the binary relation {(A,B) ∈ V × V | (A → t) ∈ P, B is a label in t} is
acyclic.

These conditions ensure that exactly one tree valA(A) ∈ T (F∪{x1, . . . , xn}) is
derived from every nonterminal A ∈ Vn by using the rules as rewriting rules in
the usual sense. Thereby, the parameters in the rules are used as variables that
can be substituted by arbitrary trees. As for SLPs, we omit the subscript A
when the context is clear. The tree defined by A is val(A) = valA(S). Instead
of giving a formal definition, we show a derivation of val(A) from S in an
example:

Example 2 Let A = ({S,A,B}, {f, a, b}, F, P, S), S,A ∈ V0, B ∈ V1, a, b ∈ F0,
f ∈ F2 and

P = {S → f(A,B(A)), A→ B(B(b)), B(x1)→ f(x1, a)}.

A possible derivation of val(A) from S is depicted in Figure 2.

The size |A| of a TSLP A = (V,F , P, S) is |A| =
∑

(A→t)∈P |t|. We call a
TSLP monadic if every nonterminal has rank at most one. One can transform
in polynomial time every TSLP A into a monadic one of size O(|A| · r), where

8 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

S =⇒

f

A B

A

=⇒

f

B

B

b

B

A

=⇒

f

f

B

b

a

B

A

∗
=⇒

f

f

f

b a

a

f

f

f

b a

a

a

Fig. 2 A derivation of the TSLP from Example 2.

r is the maximal rank of a terminal in A [37]. TSLPs, where every nonterminal
has rank 0, correspond to DAGs (the nodes of the DAG are the nonterminals
of the TSLP).

For a TSLP A of size n we have |val(A)| ∈ 2O(n), and there exists a family
of TSLPs An (n ≥ 1) such that |An| ∈ O(n) and |val(A)| = 2n. Hence, anal-
ogously to SLPs, TSLPs allow exponential compression. One can also define
nonlinear TSLPs where parameters can occur multiple times on right-hand
sides; these can achieve doubly exponential compression but have the disad-
vantage that many algorithmic problems become more difficult, see e.g. [35].

For every word w (resp., tree t) there exists a smallest SLP (resp., TSLP)
A. It is known that, unless P = NP, there is no polynomial time algorithm that
finds a smallest SLP (resp., TSLP) for a given word [13] (resp. tree).

3 Checking whether an SLP produces a tree

In this section we show that, given an SLP A and a ranked alphabet F , we
can verify in time linear in |A|, whether val(A) ∈ T (F). In other words, we
present a linear time algorithm for the compressed membership problem for
the language T (F) ⊆ F∗. We remark that T (F) is a context-free language,
which can be seen by considering the grammar with productions S → fSn

for all symbols f ∈ Fn. In general the compressed membership problem for
context-free languages can be solved in PSPACE and there exists a determin-
istic context-free language with a PSPACE-complete compressed membership
problem [12,32].

Theorem 1 Given an SLP A, one can check in time O(|A|), whether val(A) ∈
T (F).

Proof Let A = (N ,F , P, S) be in Chomsky normal form and let A ∈ N . Due
to Lemma 2, we know that val(A) is the concatenation of trees and a (possibly
empty) fragment. Define ftg(A) := ftg(val(A)). Then val(A) ∈ T (F) if and
only if ftg(S) = (1, 0). Hence, it suffices to compute ftg(A) for all nonterminals

Tree Compression Using String Grammars 9

A ∈ N . We do this bottom-up. If (A→ f) ∈ P with f ∈ Fn, then we have

ftg(A) =

{
(1, 0) if n = 0

(0, n) otherwise.

Now consider a nonterminal A with the rule (A→ BC) ∈ P , and let ftg(B) =
(b1, b2), ftg(C) = (c1, c2). We claim that

ftg(A) =

{
(b1 + c1 −max{1, b2}+ 1, c2) if b2 ≤ c1
(b1, c2 + b2 − c1 −min{1, c2}) otherwise.

Let val(B) = t1 · · · tb1s and val(C) = t′1 · · · t′c1s
′, where t1, . . . , tb1 , t

′
1, . . . , t

′
c1 ∈

T (F) and s (resp., s′) is a fragment with gaps(s) = b2 (resp., gaps(s′) = c2).
We distinguish two cases:

Case b2 ≤ c1: If b2 ≥ 1, then the string st′1 · · · t′b2 is a tree, and thus val(A)
contains b1 + 1 + (c1 − b2) full trees and the fragment s′ with c2 many gaps.
On the other hand, if b2 = 0, then val(A) contains b1 + c1 many full trees.

Case b2 > c1: The trees t′1, . . . , t
′
c1 fill c1 many gaps of s, and if s′ 6= ε, then the

fragment s′ fills one more gap, while creating another c2 gaps. In total there
are b2 − (c1 + 1) + c2 gaps if c2 > 0 and b2 − c1 gaps if c2 = 0. ut

Example 3 Let F = {a, f} with rank(a) = 0, rank(f) = 2. Consider the SLP
A with start nonterminal S, terminal rules F → f, A→ a and the remaining
rules

S → GH, H → EA, G→ CD, E → BD, D → CB, C → FF, B → AA.

We want to know whether val(A) ∈ T (F). From the computations described
in Theorem 1, it follows that ftg(A) = (1, 0), ftg(F) = (0, 2), ftg(B) = (2, 0),
ftg(C) = (0, 3), ftg(D) = (0, 1), ftg(E) = (2, 1), ftg(G) = (0, 3), ftg(H) = (3, 0)
and ftg(S) = (1, 0). Hence, the SLP A produces a tree t ∈ T (F) (which is
ffffaaaaffaaa).

4 SLPs for traversals versus other grammar-based tree
representations

In this section, we compare the worst-case size of SLPs for traversals with the
following two grammar-based tree representations:

– TSLPs, and
– SLPs for balanced parenthesis sequences [8].

10 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

4.1 SLPs for traversals versus TSLPs

By combining results from [10] and [37] one can show:

Theorem 2 ([10]) From a given TSLP A one can compute in polynomial
time an SLP B of size O(|A| · r) with val(A) = val(B), where r is the maximal
rank of a label occurring in val(A).

Proof Let A be a TSLP. By [37] we can transform A in polynomial time into
an equivalent monadic TSLP A′ of size O(|A| · r). Then, one can use the
construction from [10, proof of Theorem 3] in order to transform A′ into an
SLP for the preorder traversal of val(A′). Since A′ is monadic, it is easy to see
that the construction from [10] only involves a constant blow-up. ut

Thus, for a binary tree t (where r = 2) a smallest SLP for t is only by a
constant factor larger than a smallest TSLP for t.

In this section we will discuss the other direction, i.e. transforming an SLP
into a TSLP. Let a be a symbol of rank 0 and let fn be a symbol of rank n
for each n ∈ N. Now let tn be the tree fna

n and consider the family of trees
(tn)n∈N with unbounded rank. The size of the smallest TSLP for tn is n + 1,
whereas the size of the smallest SLP for tn is in O(log n). It is less obvious
that such an exponential gap can also be realized with trees of bounded rank.
In the following we construct a family of binary trees (tn)n∈N where a smallest
TSLP for tn is exponentially larger than the size of a smallest SLP for tn.
Afterwards we show that it is always possible to transform an SLP A for t
into a TSLP of size O(|A| · h · r) for t, where h is the height of t and r is the
maximal rank of a label occurring in t.

4.1.1 Worst-case comparison of SLPs and TSLPs

We use the following result from [5] for the previously mentioned worst-case
construction of a family of binary trees:

Theorem 3 (Thm. 2 from [5]) For every n > 0, there exist words un, vn ∈
{0, 1}∗ with |un| = |vn| such that un and vn have SLPs of size nO(1), but the
smallest SLP for the convolution un ⊗ vn has size Ω(2n/2).1

For two given words u = i1 · · · in ∈ {0, 1}∗ and v = j1 · · · jn ∈ {0, 1}∗ we define
the comb tree

t(u, v) = fi1(fi2(. . . fin($, jn) . . . j2), j1)

over the ranked alphabet {f0, f1, 0, 1, $} where f0, f1 have rank 2 and 0, 1, $
have rank 0. See Figure 3 for an illustration.

1 Actually, in [5] the result is not stated for the convolution un ⊗ vn, but for the literal
shuffle of un and vn which is un[1]vn[1]un[2]vn[2] · · ·un[m]vn[m]. But this makes no differ-
ence, since the sizes of the smallest SLPs for the convolution and literal shuffle, respectively,
of two words differ only by multiplicative constants.

Tree Compression Using String Grammars 11

fi1

fi2

fin

$ jn

j2

j1

Fig. 3 The comb tree t(u, v) for u = i1 · · · in and v = j1 · · · jn

Theorem 4 For every n > 0 there exists a tree tn such that the size of a
smallest SLP for tn is polynomial in n, but the size of a smallest TSLP for tn
is in Ω(2n/2).

Proof Let us fix an n and let un and vn be the aforementioned strings from
Theorem 3. Let |un| = |vn| = m. Consider the comb tree tn := t(un, vn). Note
that tn = fi1 · · · fim$ rev(vn), where un = i1 · · · im. By Theorem 3 there exist
SLPs of size nO(1) for un and vn, and these SLPs easily yield an SLP of size
nO(1) for tn.

Next, we show that a TSLP A for tn yields an SLP of size O(|A|) for the
convolution un ⊗ vn. Since a smallest SLP for un ⊗ vn has size Ω(2n/2) by
Theorem 3, the same bound must hold for the size of a smallest TSLP for tn.

Let A be a TSLP for tn. By [37] we can transform A into a monadic TSLP
A′ for tn of size O(|A|). We transform the TSLP A′ into an SLP of the same
size for un ⊗ vn. We can assume that every nonterminal except for the start
nonterminal S occurs in a right-hand side and every nonterminal occurs in
the derivation starting from S. At first we delete all rules of the form A → j
(j ∈ {0, 1}) and replace the occurrences of A by j in all right-hand sides;
this does not increase the size of the TSLP. Now every nonterminal A 6= S
of rank 0 derives to a subtree of tn that contains the unique $-leaf of tn.
Hence, tn contains a unique occurrence of the subtree val(A). This implies
that A occurs exactly once in a right hand side. We can therefore without size
increase replace this occurrence of A by the right-hand side of A. After this
step, S is the only rank-0 nonterminal in the TSLP. With the same argument,
we can also eliminate rank-1 nonterminals that derive to a tree containing the
unique leaf $. After this step, every rank-1 nonterminal A(x) derives a tree of
the form g1(g2(. . . (gk(x, jk) . . .), j2), j1) (gi ∈ {f0, f1} and ji ∈ {0, 1}).

Now, if a right-hand side contains a subtree fi(s1, s2), then s2 must be
either 0 or 1. Similarly, for every occurrence of i ∈ {0, 1} in a right-hand
side, the parent node of that occurrence must be either labelled with f0 or
f1 (note that the parent node exists and cannot be a nonterminal, since such
a nonterminal would have rank two). Therefore we can obtain an SLP for
un ⊗ vn by replacing every production A(x) → t(x) by A → λ(t(x)), where
λ(t(x)) is the string obtained inductively by λ(x) = ε, λ(B(s(x)) = Bλ(s(x))
for nonterminals B, and λ(fi(s(x), j)) = (i, j)λ(s(x)). The production for S
must be of the form S → t($) for a term t(x) and we replace it by S → λ(t(x))$.
ut

12 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

4.1.2 Conversion of SLPs to TSLPs

Note that the height of the tree tn in Theorem 4 is linear in the size of tn.
By the following result, large height and rank are always responsible for the
exponential succinctness gap between SLPs and TSLPs.

Theorem 5 Let t ∈ T (F) be a tree of height h and maximal rank r, and let
A be an SLP for t. Then there exists a TSLP B with val(B) = t such that
|B| ∈ O(|A| · h · r), which can be constructed in time O(|A| · h · r).

Proof Without loss of generality we assume that A is in Chomsky normal
form. For every nonterminal A of A with ftg(A) = (a1, a2) we introduce a1
nonterminals A1, . . . , Aa1 of rank 0 (these produce one tree each) and, if a2 > 0,
one nonterminal A′ of rank a2 for the fragment encoded by A. For every rule
of the form A→ f with f ∈ Fn we add to B the TSLP-rule A1 → f if n = 0
or A′(x1, . . . , xn) → f(x1, . . . , xn) if n ≥ 1. Now consider a rule of the form
A→ BC with ftg(B) = (b1, b2) and ftg(C) = (c1, c2).

Case 1: If b2 = 0 we add the following rules to B:

Ai → Bi for 1 ≤ i ≤ b1
Ab1+i → Ci for 1 ≤ i ≤ c1

A′(x1, . . . , xc2)→ C ′(x1, . . . , xc2) if c2 > 0.

Case 2: If 0 < b2 ≤ c1 we add the following rules to B:

Ai → Bi for 1 ≤ i ≤ b1
Ab1+1 → B′(C1, . . . , Cb2)

Ab1+1+i → Cb2+i for 1 ≤ i ≤ c1 − b2
A′(x1, . . . , xc2)→ C ′(x1, . . . , xc2) if c2 > 0.

Case 3: If b2 > c1 we add the following rules to B, where d = b2 − c1:

Ai → Bi for 1 ≤ i ≤ b1
A′(x1, . . . , xd)→ B′(C1, . . . , Cc1 , x1, . . . , xd) if c2 = 0

A′(x1, . . . , xc2+d−1)→
B′(C1, . . . , Cc1 , C

′(x1, . . . , xc2), xc2+1, . . . , xc2+d−1) if c2 > 0.

Chain productions, where the right-hand side consists of a single nonterminal,
can be eliminated without size increase. Then, only one of the above produc-
tions remains and its size is bounded by c1 + 2 (recall that we do not count
parameters). Recall that c1 is the number of complete trees produced by C.
It therefore suffices to show that the number of complete trees of a factor s of
t is bounded by h · r, where h is the height of t and r is the maximal rank of
a label in t. Assume that s = t[i : j] = t1 · · · tns′, where ti ∈ T (F) and s′ is
a fragment. Let k be the lowest common ancestor of i and j. If k = i (i.e., i

Tree Compression Using String Grammars 13

is an ancestor of j) then either s = t1 or s = s′. Otherwise, the root of every
tree tl (1 ≤ l ≤ n) is a child of a node on the path from i to k. The length of
the path from i to k is bounded by h, hence n ≤ h · r. ut

Example 4 Let F = {a, f} with rank(a) = 0, rank(f) = 2. Consider the tree
t = ffffaaaaffaaa, which is produced by the SLP A with start nonterminal
S, terminal rules F → f, A→ a and the remaining rules

S → GH, H → EA, G→ CD, E → BD, D → CB, C → FF, B → AA.

This SLP was considered in Example 3, where the ftg-values of the nonter-
minals were computed. From the construction in the proof of Theorem 5 we
obtain an TSLP for t with the following rules (without eliminating chain pro-
ductions):

A1 → a, F ′(x1, x2)→ f(x1, x2), B1 → A1, B2 → A1,

C ′(x1, x2, x3)→ F ′(F ′(x1, x2), x3), D′(x1)→ C ′(B1, B2, x1),

E1 → B1, E2 → B2, E
′(x1)→ D′(x1), G′(x1, x2, x3)→ C ′(D′(x1), x2, x3),

H1 → E1, H2 → E2, H3 → E′(A1), S → G′(H1, H2, H3).

4.2 SLPs for traversals versus balanced parenthesis sequences

Balanced parenthesis sequences are widely used as a succinct representation
of ordered unranked unlabeled trees [39]. One defines the balanced parenthe-
sis sequence bp(t) of such a tree t inductively as follows. If t consists of a
single node, then bp(t) = (). If the root of t has n children in which the sub-
trees t1, . . . , tn are rooted (from left to right), then bp(t) = (bp(t1) · · · bp(tn)).
Hence, a tree with n nodes is represented by 2n bits, which is optimal in the
information theoretic sense. On the other hand, an unlabelled full binary tree
t (i.e., a tree where every non-leaf node has exactly two children) of size n
can be represented with n bits by viewing t as a ranked tree over F = {a, f},
where f has rank two and a has rank zero.

Theorem 6 For every n > 0 there exists a full binary tree tn such that the
size of a smallest SLP for tn is polynomial in n, but the size of a smallest SLP
for bp(tn) is in Ω(2n/2).

Proof Let us fix an n and let un, vn ∈ {0, 1}∗ be the strings from Theorem 3.
Let |un| = |vn| = m. We define tn by

tn = ϕ1(rev(un)) aϕ2(vn)

where ϕ1, ϕ2 : {0, 1}∗ → {a, f}∗ are the homomorphisms defined as follows:

ϕ1(0) = f ϕ2(0) = a

ϕ1(1) = faf ϕ2(1) = faa

14 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

f

f

f

a f

f

f

a f

a f

a a

a

a

f

a a

a

Fig. 4 Example tree for the proof of Theorem 6

It is easy to see that tn is indeed a tree (note that the string ϕ2(vn) is a
sequence of m many trees). From the SLPs for un and vn we obtain an SLP
for tn of size polynomial in n. It remains to show that the smallest SLP for
bp(tn) has size Ω(2n/2). To do so, we show that from an SLP for bp(tn) we
can obtain with a linear size increase an SLP for the convolution of un and
vn. In fact, we show the following claim:

Claim. The convolution un ⊗ vn can be obtained from a suffix of bp(tn) by
a fixed rational transformation (i.e., a deterministic finite automaton that
outputs along every transition a finite word over some output alphabet).

This claim proves the theorem using the following two facts:

– An SLP for a suffix of a string val(A) (for an SLP A) can be produced by
an SLP of size O(|A|) by point 4 of Lemma 3.

– For every fixed rational transformation ρ, an SLP for ρ(val(A)) can be
produced by an SLP of size O(|A|) [5, Theorem 1] (the O-constant depends
on the rational transformation).

To see why the above claim holds, it is the best to look at an example. Assume
that un = 10100 and vn = 10010. Hence, we have

tn = ϕ1(rev(un)) aϕ2(vn) = f f faf f faf a faa a a faa a.

This tree is shown in Figure 4. We have

bp(tn) = (
0
(
0
(()(︸ ︷︷ ︸

1

(
0
(()(︸ ︷︷ ︸

1

() (()())))︸ ︷︷ ︸
(1,1)

())︸︷︷︸
(0,0)

()))︸ ︷︷ ︸
(1,0)

(()()))︸ ︷︷ ︸
(0,1)

())︸︷︷︸
(0,0)

.

Indeed, bp(tn) starts with an encoding of the string rev(un) (here 00101)
via the correspondence 0 =̂ (and 1 =̂ (()(, followed by () (which encodes

Tree Compression Using String Grammars 15

the single a between ϕ1(rev(un)) and ϕ2(vn) in tn), followed by the desired
encoding of the convolution un ⊗ vn. The latter is encoded by the following
correspondence:

(0, 0) =̂ ())

(1, 0) =̂ ()))

(0, 1) =̂ (()()))

(1, 1) =̂ (()()))).

So, a 0 in the second component is encoded by (), which corresponds to
the tree a. A 1 in the second component is encoded by (()()), which cor-
responds to the tree faa. A 0 (resp., 1) in the first component is encoded
by one (resp., two) closing parenthesis. Let ϕ : {(0, 0), (0, 1), (1, 0), (1, 1)}∗ →
{()), ())), (()())), (()())))}∗ be the mapping defined by the above corre-
spondence. Note that the strings ()), ())), (()())), (()()))) form a code,
i.e., ϕ is injective and hence bijective. Therefore, the inverse ϕ−1 exists. More-
over, ϕ−1 can be computed by a deterministic rational transducer. The trans-
ducer has to buffer at most eight brackets in order to output the next symbol
from {(0, 0), (1, 0), (0, 1)}. This shows the above claim. ut

5 Algorithmic problems on SLP-compressed trees

In this section we study the complexity of several basic algorithmic problems
on trees that are represented by SLPs.

5.1 Efficient tree operations

In [8] it is shown that for a given SLP A of size n that produces the balanced
parenthesis representation of an unranked tree t of size N , one can produce in
time O(n) a data structure of size O(n) that supports navigation as well as
other important tree queries (e.g. lowest common ancestors queries) in time
O(logN). Here, the word RAM model is used, where memory cells can store
numbers with logN bits and arithmetic operations on logN -bit numbers can
be carried out in constant time. An analogous result was shown in [7,22] for
top DAGs. Here, we show the same result for SLPs that produce (preorder
traversals of) ranked trees. Recall that we identify the nodes of a tree t with
the positions 1, . . . , |t| in the string t.

Theorem 7 Given an SLP A of size n for a tree t ∈ T (F) of size N , one
can produce in time O(n) a data structure of size O(n) that allows to do
the following computations in time O(logN) ≤ O(n) on a word RAM, where
i, j, k ∈ N with 1 ≤ i, j ≤ N are given in binary notation:

(a) Compute the parent node of node i > 1 in t.
(b) Compute the kth child of node i in t, if it exists.

16 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

(c) Compute the number k such that i > 1 is the kth child of its parent node.
(d) Compute the size of the subtree rooted at node i.
(e) Compute the lowest common ancestor of nodes i and j in t.

Proof In [8], it is shown that for an SLP A of size n that produces a well-
parenthesized string w ∈ {(,)}∗ of length N , one can produce in time O(n)
a data structure of size O(n) that allows to do the following computations
in time O(logN) on a word RAM, where 1 ≤ k, j ≤ N are given in binary
notation and b ∈ {(,)}:

– Compute the number of positions 1 ≤ i ≤ k such that w[i] = b (rankb(k)).
– Compute the position of the kth occurrence of b in w if it exists (selectb(k)).
– Compute the position of the matching closing (resp., opening) parenthesis

for an opening (resp., closing) parenthesis at position k (findclose(k) and
findopen(k)).

– Compute the left-most position i ∈ [k, j] having the smallest excess value in
the interval [k, j], where the excess value at a position i is rank((i)−rank)(i)
(rmqi(k, j)).

Let us now take an SLP A of size n for a tree t ∈ T (F) of size N and let s be
the corresponding unlabelled tree. In [6], the DFUDS-representation (DFUDS
for depth-first-unary-degree-sequence) of s is defined as follows: Walk over the
tree in preorder and write down for every node with d children the string
(d) (d opening parenthesis followed by a closing parenthesis). Finally put an
additional opening parenthesis at the beginning of the resulting string, which
yields a well-parenthesized string. For instance, for the tree g(f(a, a), a, h(a))
we obtain the DFUDS-representation (((() (()))) ()). Clearly, from the
SLP A we can produce an SLP B for the DFUDS-representation of the tree s:
Simply replace in right-hand sides every occurrence of a symbol f of rank d
by (d), and add an opening parenthesis in front of the right-hand side of the
start nonterminal.

The starting position of the encoding of a node i ∈ {1, . . . , N} in the
DFUDS-representation can be found as select)(i − 1) + 1 for i > 1, and for
i = 1 it is 2. Vice versa if k is the starting position of the encoding of a
node in the DFUDS-representation, then the preorder number of that node is
rank)(k − 1) + 1.

In [6,25], it is shown that the tree navigation operations from the theorem
can be implemented on the DFUDS-representation using a constant number
of rank, select, findclose(k), findopen(k) and rmqi-operations. Together with the
above mentioned results from [8] this shows the theorem. ut

The data structure of [8] allows to compute the depth and height of a given
tree node in time O(logN) as well. It is not clear to us, whether this result can
be extended to our setting as well. In [25] it is shown that the depth of a given
node can be computed in constant time on the DFUDS-representation. But
this uses an extra data structure, and it is not clear whether this extra data
structure can be adapted so that it works for an SLP-compressed DFUDS-
representation. On the other hand, in Section 5.3, we show that the height

Tree Compression Using String Grammars 17

and depth of a given node of an SLP-compressed tree can be computed in
polynomial time.

For a full binary (unlabelled) tree t let dfuds(t) be the DFUDS-represen-
tation of t. Then, an SLP A of size n for the tree t can be transformed into
an SLP B of size 3n+ 1 for the string dfuds(t): as in the above proof one has
to replace every occurrence of f (resp., a) in a right-hand side of A by (()

(resp.,)) and add a (in front of the right-hand side of the start nonterminal.
Together with Theorem 6 this shows the following corollary:

Theorem 8 For every n > 0 there exists a full binary tree tn such that the size
of a smallest SLP for dfuds(tn) is polynomial in n, but the size of a smallest
SLP for bp(tn) is in Ω(2n/2).

It remains open, whether there is also a tree family where the opposite situa-
tion arises, i.e., where the size of a smallest SLP for the balanced parenthesis
representation grows polynomially with n but the size of a smallest SLP for
the DFUDS-representation grows exponentially with n.

5.2 Pattern matching

In contrast to navigation problems, simple pattern matching problems become
intractable for SLP-compressed trees. The pattern matching problem for SLP-
compressed trees can be formalized as follows: Given a tree s ∈ T (F ∪ X),
called the pattern, where every parameter x ∈ X occurs at most once, and
an SLP A producing a tree t ∈ T (F), is there a substitution σ : X → T (F)
such that σ(s) is a subtree of t? Here, σ(s) ∈ T (F) denotes the tree obtained
from s by substituting each variable x ∈ X by the tree σ(x). Note that the
pattern is given in uncompressed form. If the tree t is given by a TSLP, the
corresponding problem can be solved in polynomial time. This can be deduced
from [43] (where the more general problem with a TSLP-compressed pattern
tree s is solved in polynomial time) or [37] (where it is shown that a given tree
automaton can be evaluated on a TSLP-compressed tree in polynomial time).

Theorem 9 The pattern matching problem for SLP-compressed trees is NP-
complete. Moreover, NP-hardness holds for a fixed pattern of the form f(x, a)

Proof The problem is contained in NP because one can guess a node i ∈
{1, . . . , |t|} and verify whether the subtree of t rooted in i matches the pattern
s. The verification is possible in polynomial time by comparing all relevant
symbols using Theorem 7.

By [33, Theorem 3.13] it is NP-complete to decide for given SLPs A,B
over {0, 1} with |val(A)| = |val(B)| whether there exists a position i such that
val(A)[i] = val(B)[i] = 1. This question can be reduced to the pattern matching
problem with a fixed pattern. One can compute in polynomial time from A
and B an SLP T for the comb tree t(val(A), val(B)). There exists a position i
such that val(A)[i] = val(B)[i] = 1 if and only if the pattern f1(x, 1) occurs in
t(val(A), val(B)). ut

18 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

Let us remark that pattern matching for SLP-compressed strings (i.e., the
question whether for given SLPs T (the text SLP) and P (the pattern SLP)
there exist words u and v such that val(T) = u val(P) v) can be solved in
polynomial time. The currently best known algorithm by Jeż [27] has a running
time of O((|T| + |P|) log |val(P)|) under the assumption that |val(P)| can be
stored in a single machine word; otherwise an additional factor log(|T| + |P|)
goes in.

5.3 Tree evaluation problems

In this section we study the complexity of various tree evaluation problems
for SLP-compressed input trees. In some cases, these evaluation problems will
be more difficult for SLP-compressed trees than TSLP-compressed trees. An
example for this situation is the evaluation problem for tree automata: For
TSLP-compressed input trees, this problem can be solved in polynomial [37]
time, while it becomes PSPACE-complete for SLP-compressed input trees; see
Section 5.3.4. On the other hand, in Section 5.3.2 we will present several
evaluation problems that can be solved in polynomial time for SLP-compressed
input trees (and hence by Theorem 2 also for TSLP-compressed input trees).
Examples are the computation of the height of a tree and the evaluation of
Boolean expression trees. In these cases, our polynomial time algorithms for
SLPs are more involved than the corresponding algorithms for TSLPs. Let us
consider for instance the computation of the height of a tree. For TSLPs it
is easy to see that the height of the produced tree can be computed in linear
time: Compute bottom-up for each nonterminal the height of the produced
tree and the depths of the parameter nodes. However, this direct approach
fails for SLPs since each nonterminal encodes a possibly exponential number
of trees. The crucial observation to solve this problem is that one can store
and compute the required information for each nonterminal in a compressed
form.

In the following we present a general framework to define and solve evalu-
ation problems on SLP-compressed trees. We assign to each alphabet symbol
of rank n an n-ary operator which defines the value of a tree by evaluating
it bottom-up. This framework includes natural tree problems like computing
the height of a tree, evaluating a Boolean expression or determining whether
a fixed tree automaton accepts a given tree. We only consider operators on
Z but other domains with an appropriate encoding of the elements are also
possible. To be able to consider arbitrary arithmetic expressions properly, it is
necessary to allow the set of constants of a ranked alphabet F to be infinite,
i.e. F0 ⊆ Z.

Definition 2 Let D ⊆ Z be a (possibly infinite) domain of integers and let F
be a ranked alphabet with F0 = D. An interpretation I of F over D assigns
to each function symbol f ∈ Fn an n-ary function fI : Dn → D with the
restriction that aI = a for all a ∈ D. We lift the definition of I to T (F)

Tree Compression Using String Grammars 19

inductively by

(f t1 · · · tn)I = fI(tI1 , . . . , t
I
n),

where f ∈ Fn and t1, . . . , tn ∈ T (F).

Definition 3 The I-evaluation problem for SLP-compressed trees is the fol-
lowing problem: Given an SLP A over F with val(A) ∈ T (F), compute val(A)I .

5.3.1 Reduction to caterpillar trees

In this section, we reduce the I-evaluation problem for SLP-compressed trees
to the corresponding problem for SLP-compressed caterpillar trees. A tree
t ∈ T (F) is called a caterpillar tree if every node has at most one child which
is not a leaf. Let s ∈ F∗ be an arbitrary string. Then sI ∈ F∗ denotes the
unique string obtained from s by replacing every maximal substring t ∈ T (F)
of s by its value tI . By Lemma 2 we can factorize s uniquely as s = t1 · · · tnu
where t1, . . . , tn ∈ T (F) and u is a fragment. Hence sI = tI1 · · · tInuI with
tI1 , . . . , t

I
n ∈ D. Since u is a fragment, the string uI is the fragment of a

caterpillar tree (briefly, caterpillar fragment in the following).

Example 5 Let F = {0, 1, 2,+,×} with the standard interpretation on integers
(+ and × are considered as binary operators). Consider

s = 0, 2,+, 2,+,+,×, 2,+, 2, 1,+,×

(commas are added for better readability). Since +, 2, 1 evaluates to 3, and
×, 2, 3 evaluates to 6, we have sI = 0, 2,+, 2,+,+, 6,+,×.

Our reduction to caterpillar trees only works for interpretations that satisfy
a certain growth condition. We say that an interpretation I is polynomially
bounded, if there exist constants α, β ≥ 0 such that for every tree t ∈ T (F)
(we denote the absolute value of an integer by z by abs(z) instead of |z| in
order to not get confused with the size |t| of a tree),

abs(tI) ≤

(
β · |t|+

∑
i∈L

abs(t[i])

)α

where L ⊆ {1, . . . , |t|} is the set of leaves of t. The purpose of this definition
is to ensure that for every SLP A with val(A) ∈ T (F), both the length of
the binary encoding of val(A)I and the integer constants that appear in A are
polynomially bounded in |A|.

Theorem 10 Let I be a polynomially bounded interpretation. Then the I-
evaluation problem for SLP-compressed trees is polynomial time Turing-re-
ducible to the I-evaluation problem for SLP-compressed caterpillar trees.

20 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

Proof In the proof we use an extension of SLPs by the cut-operator, called
composition systems. A composition system A = (N , Σ, P, S) is an SLP where
P may also contain rules of the form A→ B[i : j] where A,B ∈ N and i, j ≥ 0.
Here we let val(A) = val(B)[i : j]. It is known [20] (see also [33]) that a given
composition system can be transformed in polynomial time into an SLP with
the same value. One can also allow mixed rules A→ X1 · · ·Xn where each Xi

is either a terminal, a nonterminal or an expression of the form B[i : j], which
clearly can be eliminated in polynomial time.

Let A = (N ,F , P, S) be the input SLP in Chomsky normal form. We
use the notation ftg(A) = ftg(val(A)) as in the proof of Theorem 1. We will
compute a composition system where for each nonterminal A ∈ N there are
nonterminals A1 and A2 in the composition system such that the following
holds: Assume that val(A) = t1 · · · tn s, where t1, . . . , tn ∈ T (F) and s is a
fragment (hence ftg(A) = (n, gaps(s))). Then we will have

– val(A1) = tI1 · · · tIn ∈ D∗, and
– val(A2) = sI .

In particular, val(A1)val(A2) = val(A)I and val(A)I is given by a single number
in val(S1).

The computation is straightforward for rules of the form A → f with
A ∈ N and f ∈ F : If rank(f) = 0, then val(A1) = f and val(A2) = ε. If
rank(f) > 0, then val(A1) = ε and val(A2) = f .

For a nonterminal A ∈ N with the rule A→ BC we make a case distinction
depending on ftg(B) = (b1, b2) and ftg(C) = (c1, c2).

Case b2 ≤ c1: Then concatenating val(B) and val(C) yields a new tree tnew (or ε
if b2 = 0) in val(A). Note that tInew is the value of the tree val(B2) val(C1)[1 : b2].
Hence we can compute tInew in polynomial time by computing an SLP that
produces val(B2) val(C1)[1 : b2] and querying the oracle for caterpillar trees.
We add the following rules to the composition system:

A1 → B1 t
I
new C1[b2 + 1 : c1]

A2 → C2

Case b2 > c1: Then all trees and the fragment produced by C are inserted
into the gaps of the fragment encoded by B. If c1 = 0 (i.e., val(C1) = ε), then
we add the productions A1 → B1 and A2 → B2C2. Now assume that c1 > 0.
Consider the fragment

s = val(B2) val(C1) val(C2).

Intuitively, this fragment s is obtained by taking the caterpillar fragment
val(B2), where the first c1 many gaps are replaced by the constants from
the sequence val(C1) and the (c1 + 1)st gap is replaced by the caterpillar frag-
ment val(C2), see Figure 5. If s is not already a caterpillar fragment, then we
have to replace the (unique) largest factor of s which belongs to T (F) by its
value under I to get sI . To do so we proceed as follows: Consider the tree
t′ = val(B2) val(C1) �b2−c1 , where � is an arbitrary symbol of rank 0, and let

Tree Compression Using String Grammars 21

f

g

f

g

f

f

f

g

f

f

b

a

b

a

b

f

g

f

g

f

f

f

g

f

f

b

a

b

a

b

a

b

a

a

f
a

f

tcat

Fig. 5 An example for the case b2 > c1 in the proof of Theorem 10. In the left fragment
we insert the trees a, b, a, a and the fragment faf . The latter yield, together with a part of
the fragment, a new tree tcat.

r = |val(B2)| + c1 + 1 (the position of the first � in t′). Let q be the parent
node of r, which can be computed in polynomial time by Theorem 7. Using
Lemma 3 we compute the position p of the first occurrence of a symbol in
t′[q + 1 :] with rank > 0. If no such symbol exists, then s is already a cater-
pillar fragment and we add the rules A1 → B1 and A2 → B2C1C2 to the
composition system. Otherwise p is the first symbol of the largest factor from
T (F) described above. Using Theorem 7(d), we can compute in polynomial
time the last position p′ of the subtree of t′ that is rooted in p. Note that the
position p must belong to val(B2) and that p′ must belong to val(C1) (since
c1 > 0). The string tcat = (val(B2) val(C1))[p : p′] is a caterpillar tree for which
we can compute an SLP in polynomial time by the above remark on composi-
tion systems. Hence, using the oracle we can compute the value tIcat. We then
add the rules

A1 → B1,

A′ → B2C1, and

A2 → A′[: p− 1] tIcatA
′[p′ + 1 :]C2

to the composition system. This completes the proof. ut

5.3.2 Polynomial time solvable evaluation problems

Next, we present several applications of Theorem 10. We start with the height
of a tree.

Theorem 11 The height of a tree t ∈ T (F) given by an SLP A is computable
in polynomial time.

Proof We can assume that t is not a single constant. We replace every symbol
in F0 by the integer 0. Then, the height of t is given by its value under the

22 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

interpretation I with fI(a1, . . . , an) = 1+max{a1, . . . , an} for symbols f ∈ Fn
with n > 0. Clearly, I is polynomially bounded. By Theorem 10 it is enough
to show how to evaluate a caterpillar tree t given by an SLP A in polynomial
time under the interpretation I. But note that in this caterpillar tree, arbitrary
natural numbers may occur at leaf positions.

Let Dt = {d ∈ N | d labels a leaf of t}. The size of this set is bounded by
|A|. For d ∈ Dt let vd be the largest (i.e., deepest) node such that d is the label
of a child of node vd (in particular, vd is not a leaf). Since t is a caterpillar
tree, the node vd is well-defined. Let us first argue that vd can be computed
in polynomial time.

Let k be the maximal position in t where a symbol of rank larger than zero
occurs. The number k is computable in polynomial time by Lemma 3 (point 2
and 3). Again using Lemma 3 we compute the position of d’s last (resp., first)
occurrence in t[: k] (resp., t[k + 1 :]). Then using Theorem 7 we compute the
parent nodes of those two nodes in t and take the maximum (i.e., the deeper
one) of both. This node is vd.

Assume that Dt = {d1, . . . , dm}, where w.l.o.g. vd1 < vd2 < · · · < vdm (if
vdi = vdj for di < dj , then we simply ignore di in the following consideration).
Note that vdm is the maximal position in t where a symbol of rank larger
than zero occurs (called k above). Let ti be the subtree rooted at vdi . Then
tIm = dm + 1. We now claim that from the value tIi+1 we can compute in
polynomial time the value tIi . The crucial point is that we can ignore all
constants that appear in the interval [vdi + 1, vdi+1 − 1] except for di. More
precisely, assume that a = tIi+1 and let b be the number of occurrences of
symbols of rank at least one in the interval [vdi +1, vdi+1

−1]. Also this number
can be computed in polynomial time by Lemma 3. Then the value of tIi is
max{a+ b+ 1, di + 1}. Finally, using the same argument, we can compute tI

from tI1 . ut

Corollary 1 Given an SLP A for a tree t and a node 1 ≤ i ≤ |t| one can
compute the depth of i in t in polynomial time.

Proof We can write t as t = uvw, where |u| = i − 1 and v is the subtree of t
rooted at node i. We can compute |v| in polynomial time by Theorem 7. This
allows to compute in polynomial time an SLP for the tree uh|t|aw. Here, h has
rank one and a has rank zero. Then the depth of i in t is height(uh|t|aw)−|t|.
ut

An interesting parameter of a tree t is its Horton-Strahler number or Strahler
number, see [15] for a recent survey. It can be defined as the value tI under
the interpretation I over N which interprets constant symbols a ∈ F0 by
aI = 0 and each symbol f ∈ Fn with n > 0 as follows: Let a1, . . . , an ∈ N and
a = max{a1, . . . , an}. We set fI(a1, . . . , an) = a if exactly one of a1, . . . , an
is equal to a, and otherwise fI(a1, . . . , an) = a + 1. The Strahler number
was first defined in hydrology, but also has many applications in computer
science [15], e.g. to calculate the minimum number of registers required to
evaluate an arithmetic expression [17].

Tree Compression Using String Grammars 23

∨

∨

∨

∧

∨

∧

∨

0

1

0

0

⇒
0
∨

∧

∨
0

⇒
0
∨

∧

Fig. 6 An example for step 1 in the proof of Theorem 13. In the first image we find the
expression ∧0, hence we remove the remaining suffix. The expression ∨0 can also be removed
without changing the final truth value.

Theorem 12 Given an SLP A for a tree t, one can compute the Strahler
number of t in polynomial time.

Proof Note that the interpretation I above is very similar to the one from
the proof of Theorem 11. The only difference is that the uniqueness of the
maximum among the children of a node also affects the evaluation. Therefore
the proof of Theorem 11 must be slightly modified by considering for each
d ∈ N occurring in t the two deepest leaves in t labelled with d (or the unique
leaf labelled by d if d occurs exactly once). Let i and j be the parents of those
two leaves (i ≥ j) and let ti (resp., tj) be the subtree of t rooted at i (resp.,
j). The nodes i and j can be computed in polynomial time as in the proof
of Theorem 11. We have tIi ≥ d, and therefore tIj = d + 1. This implies that
any further occurrence of d that is higher up in the tree has no influence on
the evaluation process. The rest of the argument is similar to the proof of
Theorem 11. ut

If the interpretation I is clear from the context, we also speak of the problem
of evaluating SLP-compressed F-trees. In the following theorem the interpre-
tation is given by the Boolean operations ∧ and ∨ over {0, 1}.

Theorem 13 Evaluating SLP-compressed {∧,∨, 0, 1}-trees can be done in
polynomial time.

Proof Let A be an SLP over {∧,∨, 0, 1} such that val(A) is a caterpillar tree.
Define a left caterpillar tree to be a tree of the form uv, where u ∈ {∧,∨}∗,
v ∈ {0, 1}∗ and |v| = |u|+1. That means that the main branch of the caterpillar
tree grows to the left. The evaluation of val(A) is done in two steps. In a first
step, we compute in polynomial time from A a new SLP B such that B is a
left caterpillar tree and val(A)I = val(B)I . In a second step, we show how to
evaluate a left caterpillar tree. We can assume that val(A) is neither 0 or 1.

Step 1. (See Figure 6 for an illustration of step 1.) Since val(A) is a caterpillar
tree, we have val(A) = uv with u ∈ {∧,∨,∧0,∧1,∨0,∨1}∗ · {∧,∨}, v ∈ {0, 1}∗
and |v| is 1 plus the number of occurrences of the symbols ∧,∨ in u that are

24 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

not followed by 0 or 1 in u. We can compute bottom-up the length of the
maximal suffix of val(A) from {0, 1}∗ in polynomial time. Hence, by Lemma 3
we can compute in polynomial time SLPs A1 and A2 such that val(A1) = u
and val(A2) = v.

We will show how to eliminate all occurrences of the patterns ∧0, ∧1,
∨0, ∨1 from val(A1). For this, it is technically easier to replace every oc-
currence of ◦a by a new symbol ◦a, where ◦ ∈ {∧,∨} and a ∈ {0, 1}. Let
ϕ : {∧,∨,∧0,∧1,∨0,∨1}∗ → {∧,∨,∧0,∧1,∨0,∨1}∗ be the mapping that re-
places every occurrence of ◦a by the new symbol ◦a (◦ ∈ {∧,∨}, a ∈ {0, 1}).
This mapping is a rational transformation. Hence, using [5, Theorem 1], we
can compute in polynomial time an SLP B1 for ϕ(val(A1)). We now compute,
using Lemma 3, the position i in val(B1) of the first occurrence of a symbol
from {∧0,∨1}. Next, we compute an SLP C1 for the prefix val(B1)[: i − 1],
i.e., we cut off the suffix starting in position i. Moreover, we compute the
number j of occurrences of symbols from {∧,∨} in the suffix val(B1)[i :] and
compute an SLP B2 for the string 0 val(A2)[j+ 2 :] in case val(B1)[i] = ∧0 and
1 val(A2)[j + 2 :] in case val(B1)[i] = ∨1. Then val(A) evaluates to the same
truth value as ϕ−1(val(C1)) val(B2). The reason for this is that ϕ−1(val(B1)[i :
]) val(A2)[: j + 1] is a tree which evaluates to 0 (resp., 1) if val(B1)[i] = ∧0
(resp., val(B1)[i] = ∨1), because 0 ∧ x = 0 (resp., 1 ∨ x = 1).

Note that ϕ−1(val(C1)) val(B2) is a caterpillar tree, where val(B2) ∈ {0, 1}∗
and val(C1) ∈ {∧,∨,∧1,∨0}∗. Since 1∧x = x (resp., 0∨x = x), we can delete
in the string val(C1) all occurrences of the symbols ∧1 and ∨0 without changing
the final truth value. Let D1 be an SLP for the resulting string, which is easy
to compute from C1. Then val(D1) val(B2) is indeed a left caterpillar tree.

Step 2. To evaluate a left caterpillar tree let A1 and A2 be two SLPs where
val(A1) ∈ {∧,∨}∗, val(A2) ∈ {0, 1}∗, and |val(A2)| = |val(A1)| + 1. Let ϕ :
{∧,∨}∗ → {0, 1}∗ be the homomorphism with ϕ(∧) = 1 and ϕ(∨) = 0. Using
binary search, we compute the largest position i such that the reversed length-
i suffix of val(A2) is equal to the length-i prefix of ϕ(val(A1)). If i = |val(A1)|,
then the value of val(A1) val(A2) is the first symbol of val(A2). Otherwise, the
value of val(A1) val(A2) is 0 (resp., 1) if val(A1)[i+1] = ∧ (resp., val(A1)[i+1] =
∨). ut

Corollary 2 If the interpretation I is such that (D,∧I ,∨I) is a finite dis-
tributive lattice, then the I-evaluation problem for SLP-compressed trees can
be solved in polynomial time.

Proof By Birkhoff’s representation theorem, every finite distributive lattice is
isomorphic to a lattice of finite sets, where the join (resp., meet) operation
is set union (resp., intersection). This lattice embeds into a finite power of
({0, 1},∧,∨). ut

5.3.3 Difficult arithmetical evaluation problems

Assume that I is the interpretation that assigns to the symbols + and ×
their standard meaning over the integers. Note that this interpretation is not

Tree Compression Using String Grammars 25

polynomially bounded. For instance, for the tree tn = ×n(2)n+1 we have tIn =
2n+1. Hence, if a tree t is given by an SLP A, then the number of bits of tI can
be exponential in the size of A. Therefore, we cannot write down the number
tI in polynomial time. The same problem arises already for numbers that are
given by arithmetic circuits (circuits over + and ×).

In [3] it was shown that the problem of computing the kth bit (k is given in
binary notation) of the number to which a given arithmetic circuit evaluates
to belongs to the counting hierarchy. An arithmetic circuit can be seen as a
DAG that unfolds to an expression tree. Dags correspond to TSLPs where all
nonterminals have rank 0. Vice versa, it was shown in [18] that a TSLP A
over + and × can be transformed in logspace into an arithmetic circuit that
evaluates to val(A)I . This transformation holds for any semiring. Thus, over
semirings, the evaluation problems for TSLPs and circuits (i.e., DAGs) have
the same complexity. In particular, the problem of computing the kth bit of
the output value of a TSLP-represented arithmetic expression belongs to the
counting hierarchy. Here, we show that this result even holds for arithmetic
expressions that are given by SLPs:

Theorem 14 The problem of computing for a given binary encoded number
k and an SLP A over {+,×}∪Z the kth bit of val(A)I belongs to the counting
hierarchy.

Proof We follow the strategy from [3, proof of Thm. 4.1]. Let A be the input
SLP for the tree t and let M = I(t). Then M ≤ 22

n

where n = |A| (this
follows since the expression t has size at most 2n and the value computed by
an expression of size m is at most 2m). Let Pn be the set of all prime numbers
in the range [2, 22n] (note that 22n ≥ log2M). Then

∏
p∈Pn p > M . Also note

that each prime p ∈ Pn has at most 2n bits in its binary representation. We
first show that the language

L = {(A, p, j) | A is an SLP for a tree, n = |A|, p ∈ Pn, 1 ≤ j ≤ 2n,

the jth bit of val(A)I mod p is 1}

belongs to the counting hierarchy. The rest of proof then follows the argu-
ment in [3]: Using the DLOGTIME-uniform TC0-circuit family from [21] for
transforming a number from its Chinese remainder representation into its bi-
nary representation one defines a TC0-circuit of size 2O(n) that has input
gates x(p, j) (where n = |A|, p ∈ Pn, 1 ≤ j ≤ 2n). If we set x(p, j) to true
iff (A, p, j) ∈ L (this means that the input gates x(p, j) receive the Chinese
remainder representation of val(A)I), then the circuit outputs correctly the
(exponentially many) bits of the binary representation of val(A)I . Then, as
in [3, proof of Thm. 4.1], one shows by induction on the depth of a gate that
the problem whether a given gate of that circuit (the gate is specified by a bit
string of length O(n)) evaluates to true is in the counting hierarchy, where the
level in the counting hierarchy depends on the level of the gate in the circuit.2

2 Let us explain the differences to [3, proof of Thm. 4.1]: In [3], the arithmetic expression
is given by a circuit instead of an SLP. This simplifies the proof, because if we replace in the

26 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

Hence we have to show that L belongs to the counting hierarchy. Let A
be an SLP for a tree t, n = |A|, p ∈ Pn, and 1 ≤ j ≤ 2n. By Theorem 10 it
suffices to consider the case that t is a caterpillar tree t; the polynomial time
Turing reduction in Theorem 10 increases the level in the counting hierarchy
by one. Also note that we use a uniform version of Theorem 10, where the
interpretation (addition and multiplication in Zp) is part of the input. This
is not a problem, since the prime number p has at most 2n bits, so all values
that can appear only need 2n bits.

Let m be the number of operators in t, i.e., the total number of occurrences
of the symbols + and × in val(A). Note that m can be exponentially large in
|A|, but its binary representation can be computed in polynomial time by
Lemma 3 (point 2). We now define a matrix of numbers xti,j ∈ Zp (i, j ∈
[1,m+ 1]) such that

tI =

m+1∑
i=1

m+1∏
j=1

xti,j .

Moreover, we will show that given A and binary encoded numbers i, j ∈ [1,m+
1], the binary encoding of xti,j (which consists of at most 2n bits) can be
computed in polynomial time.

We define the numbers xti,j inductively over the structure of the caterpillar
tree t. For the caterpillar tree t = a (with a ∈ Zp) we set xt1,1 = a. Now assume
that t = f(a, s) or t = f(s, a) for an operator f ∈ {+,×}, a caterpillar tree
s with m − 1 operators, and a ∈ Zp. In the case t = f(s, a) we assume that
m − 1 ≥ 1; this avoids ambiguities in case t = f(a, b) for a, b ∈ Zp. Assume
that the numbers xsi,j are already defined for i, j ∈ [1,m]. If f = +, then we
set:

xt1,1 = a

xt1,i = 1 for i ∈ [2,m+ 1]

xti,1 = 1 for i ∈ [2,m+ 1]

xti,j = xsi−1,j−1 for i, j ∈ [2,m+ 1]

We get

m+1∑
i=1

m+1∏
j=1

xti,j = a+

m+1∑
i=2

m+1∏
j=2

xsi−1,j−1 = a+

m∑
i=1

m∏
j=1

xsi,j = a+ sI = tI .

If f = ×, then we set:

xt1,i = 0 for i ∈ [1,m+ 1]

xti,1 = a for i ∈ [2,m+ 1]

xti,j = xsi−1,j−1 for i, j ∈ [2,m+ 1]

above language L the SLP A by a circuit, then we can decide the language L in polynomial
time (we only have to evaluate a circuit modulo a prime number with polynomially many
bits). In our situation, we can only show that L belongs to a certain level of the counting
hierarchy. But this suffices to prove the theorem, only the level in the counting hierarchy
increases by the number of levels in which the set L sits.

Tree Compression Using String Grammars 27

We get

m+1∑
i=1

m+1∏
j=1

xti,j =

m+1∑
i=2

a ·
m+1∏
j=2

xsi−1,j−1 = a ·
m∑
i=1

m∏
j=1

xsi,j = a · sI = tI .

We now show that the binary encodings of the numbers xti,j can be computed in
polynomial time (given A, i, j). For this let us introduce some notations: For
our caterpillar tree t = val(A) (which contains m occurrences of operators)
and i ∈ [1,m], j ∈ [1,m + 1] we define inductively op(t, i) ∈ {+,×} and
operand(t, j) ∈ Zp as follows:

– If t = a ∈ Zp, then let operand(t, 1) = a (note that in this case we have
m = 0, hence the op(t, i) do not exist).

– If t = f(a, s) or (t = f(s, a) and m ≥ 2) with a ∈ Zp, then we set
op(t, 1) = f , op(t, i) = op(s, i − 1) for i ∈ [2,m], operand(t, 1) = a, and
operand(t, j) = operand(s, j − 1) for j ∈ [2,m+ 1].

In other words: op(t, i) is the ith operator in t, and operand(t, j) is the unique
argument from Zp of the jth operator in t (recall that t is a caterpillar tree).
The mth (and hence last) operator in t has two arguments from Zp; its left
argument is operand(t,m) and its right argument is operand(t,m + 1). Us-
ing these notations, we can compute the numbers xti,j by the following case
distinction (correctness follows by a straightforward induction):

– i < j: If op(t, i) = + then xti,j = 1, else xti,j = 0.
– i = j: If op(t, i) = + then xti,j = operand(t, j), else xti,j = 0.
– i > j: If op(t, j) = + then xti,j = 1, else xti,j = operand(t, j).

So, in order to compute the xti,j it suffices to compute op(t, i) and operand(t, j),

given A, i, j. This is possible in polynomial time: The position k of the ith

operator in t and op(t, i) can be computed in polynomial time using point 3 of
Lemma 3 (take Γ = {+,×}). Once the position k is computed, operand(t, i)
can be computed in polynomial time using point (b) of Theorem 7.

Recall that our goal is to compute a specific bit of val(A)I mod p, where A
is an SLP that produces a caterpillar tree, and p ∈ [2, 22n] is a prime, where
n = |A|. We have to show that this problem belongs to the counting hierarchy.
We have shown that

val(A)I =

m+1∑
i=1

m+1∏
j=1

xti,j .

where the binary encoding of the number xti,j ∈ Zp can be computed in poly-
nomial time, given A, i, j. We now follow again the arguments from [3]. It is
known that the binary representation of a sum (resp., product) of n many
n-bit numbers can be computed in DLOGTIME-uniform TC0 [21]. The same
holds for the problem of computing a sum (resp., product) of n many numbers
from [0, p − 1] modulo a given prime number p with O(log n) bits (it is ac-
tually much easier to argue that the latter problem is in DLOGTIME-uniform

28 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

TC0, see again [21]). Hence, there is a DLOGTIME-uniform TC0 circuit fam-
ily (Cm)m≥1, where the input of Cm consists of bits x(i, j, k) (i, j ∈ [1,m],
k ∈ O(logm)) and a prime number p with O(logm) bits, such that the follow-
ing holds: If x(i, j, k) receives the kth bit of a number xi,j ∈ Zp, then the circuit
outputs

∑m
i=1

∏m
j=1 xi,j mod p. We take the circuit Cm+1, where m ∈ 2O(n)

(recall that n = |A| and m is the number of operators in t = val(A)). The
input gate x(i, j, k) receives the kth bit of the number xti,j ∈ Zp defined above.
We have shown above that the bits of xti,j can be computed in polynomial
time. This allows (again in the same way as in [3, proof of Thm. 4.1]) to show
that for a given gate number of Cm+1 one can compute the truth value of the
corresponding gate within the counting hierarchy. ut

Computing a certain bit of the output number of an arithmetic circuit belongs

to PHPPPPPP

[2] (but no matching lower bound is known). In our situation, the
level gets even higher, so we made no effort to compute it.

We can use the technique from the proof of Theorem 14 to show the fol-
lowing related result. Note that a circuit (or DAG) over max and + can be
evaluated in polynomial time (simply by computing bottom-up the value of
each gate), and by the reduction from [18] the same holds for TSLP-compressed
expressions.

Theorem 15 The problem of evaluating SLP-compressed ({max,+}∪Z)-trees
over the integers belongs to the counting hierarchy.

Proof The proof follows the arguments from the proof of Theorem 14. But
since the interpretation given by max and + is polynomially bounded, every
subtree of an SLP-compressed tree evaluates to an integer that needs only
polynomially many bits with respect to the size of the SLP. Hence we do not
need the Chinese remainder theorem as in the proof of Theorem 14 and can use
Theorem 10 directly. It remains to show that the problem of evaluating SLP-
compressed ({max,+}∪Z)-caterpillar trees belongs to the counting hierarchy.
For this we follow the same strategy as in the proof of Theorem 14 and define
numbers xti,j (where t = val(A) is the input caterpillar tree) such that

val(A)I = max
1≤i≤m+1

m+1∑
j=1

xti,j .

Since the sum of n many n-bit numbers as well as the maximum of n many
n-bit numbers can be computed in DLOGTIME-uniform TC0 (the maximum
of n many n-bit numbers can be even computed in DLOGTIME-uniform AC0),
one can argue as in the proof of Theorem 14. ut

Let us now turn to lower bounds for the problems of evaluating SLP-com-
pressed arithmetic expressions (max-plus or plus-times). For a number c ∈ N
consider the unary operation +c on N with +c(z) = z + c. The evaluation
of SLP-compressed ({max,+c} ∪N)-trees is possible in polynomial time anal-
ogously to the proof of Theorem 11. The following theorem shows that the
general case of SLP-compressed ({max,+} ∪ N)-trees is more complicated.

Tree Compression Using String Grammars 29

Theorem 16 Evaluating SLP-compressed ({max,+} ∪ N)-trees is #P-hard.

Proof Let A,B be two SLPs over {0, 1} with |val(A)| = |val(B)|. We will
reduce from the problem of counting the number of occurrences of (1, 1)
in the convolution val(A) ⊗ val(B) ∈ ({0, 1}2)∗, which is known to be #P-
complete by [32]. Let ρ : {0, 1}∗ → {max,+}∗ be the homomorphism defined
by ρ(0) = max, ρ(1) = +. One can compute in polynomial time from A
and B an SLP for the tree ρ(val(A)) 1 rev(val(B)). The corresponding tree over
{max,+, 0, 1} evaluates to one plus the number of occurrences of (1, 1) in the
convolution val(A)⊗ val(B). ut

In [3] it was shown that the computation of a certain bit of the output value
of an arithmetic circuit (over + and ×) is #P-hard. Since a circuit can be seen
as a TSLP (where all nonterminals have rank 0), which can be transformed
in polynomial time into an SLP for the same tree [10], also the problem of
computing a certain bit of val(A)I for a given SLP A is #P-hard. For the
related problem PosSLP of deciding, whether a given arithmetic circuit com-
putes a positive number, no non-trivial lower bound is known. For SLPs, the
corresponding problem becomes PP-hard:

Theorem 17 The problem of deciding whether val(A)I ≥ 0 for a given SLP
A over {+,×} ∪ Z is PP-hard.

Proof By [32], the following problem is PP-complete: Given SLPs A,B over
{0, 1} where |val(A)| = |val(B)|, and a binary encoded number z, is the number
of occurrences of (1, 1) in the convoluted string val(A) ⊗ val(B) at least z?
We modify the proof of Theorem 16. Let A,B be SLPs over {0, 1}, where
N = |val(A)| = |val(B)|. Pick n ≥ 0 such that 2n > 2N . Let ρA : {0, 1}∗ →
{+,×}∗ be the homomorphism defined by ρA(0) = +, ρA(1) = × and ρB :
{0, 1}∗ → {1, 2}∗ be the homomorphism defined by ρB(0) = 1, ρB(1) = 2.
One can compute in polynomial time from A and B an SLP for the tree
ρA(val(A)) (2n) ρB(rev(val(B))) (here 2n stands for an SLP that evaluates to
2n). Let R be the value of the corresponding tree. Note that R is calculated by
starting with the value 2n and applying N additions or multiplications by 1
or 2. The number K of occurrences of (1, 1) in the convolution val(A)⊗ val(B)
corresponds to the number of multiplications by 2 in the calculation, which
can be computed from R: We have

2n · 2K ≤ R ≤ (2n + 2(N −K)) · 2K ≤ (2n + 2N) · 2K

since R is maximal if (N−K) additions of 2 are followed by K multiplications
by 2. Since 2N < 2n we obtain 2n+K ≤ R ≤ 2n+K + r for some r < 2n+K .
Hence, K ≥ z, if and only if R − 2n+z ≥ 0. It is straightforward to compute
an SLP which evaluates to R− 2n+z. ut

30 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

5.3.4 Tree automata and finite semirings

Deterministic (bottom-up) tree automata (see [14] for details) can be seen as
finite algebras: The domain of the algebra is the set of states, and the opera-
tions of the algebra correspond to the transitions of the automaton. Nondeter-
ministic tree automata generalize deterministic tree automata and are defined
as follows: A nondeterministic (bottom-up) tree automaton A = (Q,F , ∆, F)
consists of a finite set of states Q, a ranked alphabet F , a set ∆ of transition
rules of the form f(q1, . . . , qn)→ q where f ∈ Fn and q1, . . . , qn, q ∈ Q, and a

set of final states F ⊆ Q. A tree t ∈ T (F) is accepted by A if t
∗→∆ q for some

q ∈ F where →∆ is the rewriting relation defined by ∆ as usual. Using the
powerset construction, a nondeterministic tree automaton can be transformed
into an equivalent deterministic tree automaton.

The uniform membership problem for tree automata asks whether a given
tree automaton A accepts a given tree t ∈ T (F). In [31] it was shown that this
problem is complete for the class LogCFL, which is the closure of the context-
free languages under logspace reductions. The inclusions LogCFL ⊆ P and
LogCFL ⊆ DSPACE(log2(n)) are well-known. For every fixed tree automaton,
the membership problem belongs to NC1 [31]. If the input tree is given by a
TSLP, the uniform membership problem becomes P-complete [37]. For non-
linear TSLPs (where a parameter may occur several times in a right-hand side)
the uniform membership problem becomes PSPACE-complete, and PSPACE-
hardness holds already for a fixed tree automaton [35]. The same complexity
bound holds for SLP-compressed trees (which in contrast to non-linear TSLPs
only allow exponential compression).

Theorem 18 Given a tree automaton A and an SLP A for a tree t ∈ T (F),
one can decide in polynomial space whether A accepts t.

Proof We use the following lemma from [38]: If a function f : Σ∗ → Γ ∗

is PSPACE-computable and L ⊆ Γ ∗ belongs to NSPACE(logk(n)) for some
constant k, then f−1(L) belongs to PSPACE. Given an SLP A for the tree
t = val(A), one can compute the tree t by a PSPACE-transducer by computing
the symbol t[i] for every position i ∈ {1, . . . , |t|}. The current position can be
stored in polynomial space and every query can be performed in polynomial
time by Lemma 3. As remarked above the uniform membership problem for
explicitly given trees can be solved in DSPACE(log2(n)). ut

In the short version [19] of this paper we proved that there exists a fixed
tree automaton A such that it is PSPACE-complete to check whether a given
SLP-compressed tree is accepted by A. Here we strengthen this result slightly.
Note that a fixed finite algebraic structure (A, f1, . . . , fk) (where A is a finite
set and every fi is an operation of a certain arity on A) can be simulated
by a (deterministic) tree automaton: A is the set of states and there is a
transition f(a1, . . . , an) → a if f(a1, . . . , an) = a. Hence, the next theorem
indeed strengthens the above mentioned result from [19]. Recall that a (non-
commutative) semiring is a structure (S,+,×), where (S,+) is a commutative

Tree Compression Using String Grammars 31

monoid with identity element 0, (S,×) is a monoid, 0 × s = s × 0 = 0 for all
s ∈ S, and × left and right distributes over +.

Theorem 19 There is a finite (non-commutative) semiring S = (S,+,×)
together with a finite subset F ⊆ S such that the following problem is PSPACE-
complete: Given an SLP-compressed ({+,×} ∪ S)-tree t, does t evaluate in S
to an element of F?

Proof Let us fix the morphism ρ : ({0, 1} × {0, 1})∗ → {0, 1}∗ with ρ(0, 0) =
ρ(0, 1) = ε and ρ(1, x) = x for x ∈ {0, 1}. In [32] the existence of a regular
language K ⊆ {0, 1}∗ such that the following problem is PSPACE-complete
was shown: Given two SLPs A and B over {0, 1} with |val(A)| = |val(B)|, is
ρ(val(A)⊗ val(B)) ∈ K?

Let L = aK, where a 6∈ {0, 1} is a new symbol. Let M be the syntactic
monoid of the regular language L (which is a finite monoid) and h : {0, 1, a}∗ →
M be the syntactic morphism. This means that there is a subset T ⊆M such
that for all w ∈ {0, 1, a}∗: w ∈ L if and only if h(w) ∈ T . Our semiring S will
be the power semiring of M , which is denoted by P(M). Its elements are the
subsets of M , semiring addition is defined by the union of sets, and semiring
multiplication (which we denote with ×) is defined by the pointwise product
of sets, i.e., U × V = {uv | u ∈ U, v ∈ V } for all U, V ⊆ M . We define the
homomorphism g : {0, 1}∗ → {∪,×}∗ by g(0) = ∪ and g(1) = ×.

Let us now take two SLPs A and B over {0, 1} with |val(A)| = |val(B)|. Let
s = val(A) and t = a1a2 · · · an = val(B). From A and B we can construct an
SLP C over the alphabet {∪,×} ∪M for the string

g(rev(s))h(a)h(a1)h(a2) · · ·h(an).

By identifying an element m ∈M with the element {m} of the power semiring
P(M), we can view val(C) as an SLP-compressed caterpillar tree over the
power semiring. Let U ⊆ M be the subset to which val(C) evaluates. This
subset can be computed as follows: Let P ⊆ {1, . . . , |s|} be the set of all
positions p in the string s such that s[p] = 0 (i.e., g(s)[p] = ∪). Then we have

U = {h(aρ(s⊗ t))} ∪ {h(t[p]ρ(s[p+ 1 :]⊗ t[p+ 1 :])) | p ∈ P} (1)

Instead of giving a formal proof of this, let us present an example. Let s =
1101001 and t = a1a2a3a4a5a6a7 with ai ∈ {0, 1}. Figure 7 shows the cater-
pillar tree g(rev(s))h(a)h(a1)h(a2) · · ·h(an). We get

U = {h(aa1a2a4a7), h(a3a4a7), h(a5a7), h(a6a7)},

which is also the set we get from (1).
We claim that ρ(val(A)⊗val(B)) ∈ K if and only if U∩T 6= ∅, which proves

the theorem. From (1) it follows that U ∩ T 6= ∅ if and only if

{aρ(s⊗ t)} ∪ {t[p]ρ(s[p+ 1 :]⊗ t[p+ 1 :]) | p ∈ P} ∩ L 6= ∅.

Since L = aK with K ⊆ {0, 1}∗, this is equivalent to ρ(s ⊗ t) ∈ L, which
concludes the proof. ut

32 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

×

∪

∪

×

∪

×

×

h(a) h(a1)

h(a2)

h(a3)

h(a4)

h(a5)

h(a6)

h(a7)

Fig. 7 The caterpillar tree from the proof of Theorem 19. The bit string s = 1101001 is
translated into g(rev(s)) = × ∪ ∪ × ∪ ××.

Theorems 18 and 19 imply that there exists a fixed tree automaton for
which the membership problem for SLP-compressed trees is PSPACE-complete.
This result is somewhat surprising if we compare the situation with DAGs
or TSLP-compressed trees. For these, membership for tree automata is still
doable in polynomial time [37], whereas the evaluation problem of arith-
metic expressions (in the sense of computing a certain bit of the output
number) belongs to the counting hierarchy and is #P-hard. In contrast, for
SLP-compressed trees, the evaluation problem for finite algebras (i.e., tree
automata) is harder than the evaluation problem for arithmetic expressions
(PSPACE versus the counting hierarchy).

6 Further research

We conjecture that in practice, grammar-based tree compression based on
SLPs leads to faster compression and better compression ratios compared
to grammar-based tree compression based on TSLPs, and we plan to sub-
stantiate this conjecture with experiments on real tree data. The theoretical
results from Section 4 indicate that SLPs may achieve better compression
ratios than TSLPs. Moreover, grammar-based string compression can be im-
plemented without pointer structures, whereas all grammar-based tree com-
pressors (that construct TSLPs) we are aware of work with pointer structures
for trees, and a string-encoded tree (e.g. an XML document) must be first
transformed into a pointer structure. Moreover, we believe that SLPs can be
encoded more succinctly than TSLPs (for instance, we do not have to store
the ranks of nonterminals).

Tree Compression Using String Grammars 33

References

1. T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees.
Information Processing Letters, 110(18-19):815–820, 2010.

2. E. Allender, N. Balaji, and S. Datta. Low-depth uniform threshold circuits and the bit-
complexity of straight line programs. In Proceedings of MFCS 2014, Part II, volume
8635 of Lecture Notes in Computer Science, pages 13–24. Springer, 2014.

3. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Bro Miltersen. On the com-
plexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.

4. E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant
depth circuits. Bulletin of the EATCS, 40:182–194, 1990.

5. A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In
Proceedings of IFIP TCS 2008, volume 273 of IFIP, pages 87–100. Springer, 2008.

6. D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Repre-
senting trees of higher degree. Algorithmica, 43(4):275–292, 2005.

7. P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top trees.
Information and Computation, 243: 166–177, 2015.

8. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Ran-
dom access to grammar-compressed strings and trees. SIAM Journal on Computing,
44(3)513–539:, 2015.

9. M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth. XML compression via DAGs.
Theory of Computing Systems, 2014.

10. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML doc-
ument trees. Information Systems, 33(4–5):456–474, 2008.

11. S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of
STOC 1987, pages 123–131. ACM Press, 1987.

12. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 com-
putation. Journal of Computer and System Sciences, 57(2):200–212, 1998.

13. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai,
and A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

14. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
http://tata.gforge.inria.fr/.

15. J. Esparza, M. Luttenberger, and M. Schlund. A brief history of strahler numbers. In
Proceedings of LATA 2014, volume 8370 of Lecture Notes in Computer Science, pages
1–13. Springer, 2014.

16. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and indexing
labeled trees, with applications. Journal of the ACM, 57(1), 2009.

17. P. Flajolet, J.-C. Raoult, and J. Vuillemin. The number of registers required for evalu-
ating arithmetic expressions. Theoretical Computer Science, 9:99–125, 1979.

18. M. Ganardi, D. Hucke, A. Jėz, M. Lohrey, and E. Noeth. Constructing small tree
grammars and small circuits for formulas. Technical report, arXiv.org, 2014. http:

//arxiv.org/abs/1407.4286.
19. M. Ganardi, D. Hucke, M. Lohrey, E. Noeth. Tree compression using string grammars.

In Proceedings of LATIN 2016, volume 9644 of Lecture Notes in Computer Science,
pages 590–604. Springer, 2016.

20. C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD
thesis, University of Stuttgart, Institut für Informatik, 2000.

21. W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth thresh-
old circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65:695–716, 2002.

22. L. Hübschle-Schneider and R. Raman. Tree compression with top trees revisited. In
Proceedings of SEA 2015, volume 9125 of Lecture Notes in Computer Science, pages
15–27. Springer, 2015.

23. D. Hucke, M. Lohrey, and E. Noeth. Constructing small tree grammars and small
circuits for formulas. In Proceedings of FSTTCS 2014, volume 29 of LIPIcs, pages
457–468. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

http://arxiv.org/abs/1407.4286
http://arxiv.org/abs/1407.4286

34 Moses Ganardi, Danny Hucke, Markus Lohrey, Eric Noeth

24. G. Jacobson. Space-efficient static trees and graphs. In Proceedings of FOCS 1989,
pages 549–554. IEEE Computer Society, 1989.

25. J. Jansson, K. Sadakane, and W-K. Sung. Ultra-succinct representation of ordered trees
with applications. Journal of Computer and System Sciences, 78(2):619–631, 2012.

26. A. Jeż. Approximation of grammar-based compression via recompression. Theoretical
Computer Science, 592:115–134, 2015.

27. A. Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions
on Algorithms, 11(3):20:1–20:43, 2015.

28. A. Jeż. A really simple approximation of smallest grammar. Theoretical Computer
Science, 616:141–150, 2016.

29. A. Jeż and M. Lohrey. Approximation of smallest linear tree grammars. In Procedings of
STACS 2014, volume 25 of LIPIcs, pages 445–457. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014.

30. N. Kobayashi, K. Matsuda, and A. Shinohara. Functional programs as compressed data.
In Proceedings of PEPM 2012, pages 121–130. ACM Press, 2012.

31. M. Lohrey. On the parallel complexity of tree automata. In Proceedings of RTA 2001,
volume 2051 of Lecture Notes in Computer Science, pages 201–215. Springer, 2001.

32. M. Lohrey. Leaf languages and string compression. Information and Computation,
209(6):951–965, 2011.

33. M. Lohrey. The Compressed Word Problem for Groups. Springer, 2014.
34. M. Lohrey. Grammar-based tree compression. In Proceedings of DLT 2015, volume

9168 of Lecture Notes in Computer Science, pages 46–57. Springer, 2015.
35. M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-

compressed trees. Theoretical Computer Science, 363(2):196–210, 2006.
36. M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.

Information Systems, 38(8):1150–1167, 2013.
37. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata

evaluation for grammar-compressed trees. Journal of Computer and System Sciences,
78(5):1651–1669, 2012.

38. M. Lohrey and C. Mathissen. Isomorphism of regular trees and words. Information and
Computation, 224:71–105, 2013.

39. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

40. G. Navarro, A. Ordóñez Pereira. Faster compressed suffix trees for repetitive text
collections. In Proceedings of SEA 2014, volume 8504 of Lecture Notes in Computer
Science, pages 424–435. Springer, 2014.

41. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1–3):211–222, 2003.

42. H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compres-
sion. Journal of Discrete Algorithms, 3(2-4):416–430, 2005.

43. M. Schmidt-Schauß. Linear compressed pattern matching for polynomial rewriting (ex-
tended abstract). In Proceedings of TERMGRAPH 2013, volume 110 of EPTCS, pages
29–40, 2013.

44. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

45. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

	Introduction
	Preliminaries
	Checking whether an SLP produces a tree
	SLPs for traversals versus other grammar-based tree representations
	Algorithmic problems on SLP-compressed trees
	Further research

