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A universal tree balancing theorem

MOSES GANARDI and MARKUS LOHREY, University of Siegen, Germany

We present a general framework for balancing expressions (terms) in form of so called tree straight-line

programs. The latter can be seen as circuits over the free term algebra extended by contexts (terms with a

hole) and the operations which insert terms/contexts into contexts. In [16] it was shown that one can compute

for a given term of size n in logspace a tree straight-line program of depth O (logn) and size O (n/ logn). In
the present paper, it is shown that the conversion can be done in DLOGTIME-uniform TC

0
. This allows

reducing the term evaluation problem over an arbitrary algebra A to the term evaluation problem over a

derived two-sorted algebra F (A). Three applications are presented: (i) an alternative proof for a recent

result by Krebs, Limaye and Ludwig [25] on the expression evaluation problem is given, (ii) it is shown that

expressions for an arbitrary (possibly non-commutative) semiring can be transformed in DLOGTIME-uniform

TC
0
into equivalent circuits of logarithmic depth and size O (n/ logn), and (iii) a corresponding result for

regular expressions is shown.
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1 INTRODUCTION
1.1 Depth reduction for algebraic expressions
Reducing the depth of algebraic expression by some form of tree balancing is an important algorith-

mic technique in the area of parallel algorithms and circuit complexity. The goal is to compute from

a given tree that represents an algebraic expression an equivalent expression of logarithmic depth,

which then can be evaluated in time O (logn) on a parallel computation model such as a PRAM.

Equivalence of expressions usually means that the expressions evaluate to the same element in an

underlying algebraic structure. For the more general case of expressions with variables, equivalence

means that for all possible values of the variables, the expressions evaluate to the same element.

A widely studied example in this context is the Boolean expression balancing problem, where the

underlying algebraic structure is the Boolean algebra ({0, 1},∨,∧,¬). Spira [33] proved that for

every Boolean expression e with variables there exists an equivalent Boolean expression of depth

O (logn), where n is the length of e . This also ensures that the size of the resulting expression is

polynomially bounded in n. Brent [6] extended Spira’s theorem to arithmetic expressions. Further

improvements on the size of the balanced output expression where obtained in [5, 7].

Instead of computing an equivalent balanced expression, it is often more natural to compute

an equivalent circuit (or directed acyclic graph, dag for short). A circuit can be seen as a succinct
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1:2 Moses Ganardi and Markus Lohrey

representation of a tree, where identical subtrees are represented only once. The size of a circuit is

the number of nodes (or gates) and the depth of a circuit is the length of a longest path from an

input gate to the output gate. Brent [6] in fact proved that a given arithmetic expression of size n
can be transformed into an equivalent arithmetic circuit of depth O (logn) and size O (n).1 Note
that a fan-in two circuit of depth O (logn) can be unfolded into an expression of the same depth

and polynomial size.

In our recent paper [16] we developed a new approach for the construction of logarithmic depth

circuits from expressions that works in two steps. The first step is purely syntactic and is motivated

by the problem of tree compression.

1.2 Step 1: tree compression.
Here, the goal is to construct a compact representation of a given tree. In recent years, the data

compression community became more and more interested in so called computation-friendly

compression methods, where the compressed objects can be further processed without prior

decompression. Dags are one such compression method, but they fail to compress trees with long

chains. To overcome this restriction, so called tree straight-line programs were introduced, see

[27] for a survey. Tree straight-line programs are usually defined as context-free tree grammars

that generate a unique tree. They generalize context-free string grammars that generate a unique

string, which are known as straight-line programs in the string compression community,
2
and

this led to the term “tree straight-line program”. In order to homogenize the definitions in this

paper, we prefer an equivalent definition of tree straight-line programs in terms of circuits over an

extension of the free term algebra. Let us give some definitions: Consider a fixed set Σ of ranked

symbols, meaning that every symbol f ∈ Σ has an associated rank (a natural number) which

determines the number of children of an f -labelled node in a tree. Symbols in Σ are also called

function symbols. The free term algebra over Σ consists of the set T (Σ) of all rooted trees (or

terms) over Σ. In such a tree, every node v is labelled with a symbol f ∈ Σ, and if the rank of

f is r , then v has exactly r children that are ordered from left to right. Elements of T (Σ) can be

conveniently described as expression. For instance the tree from Figure 1 is represented by the

expression д( f (a, f (a, f (a, f (a,a)))), f (a, f (a, f (a, f (a,b))))). In the free term algebra over Σ one

takes the set T (Σ) as the universe and interprets every symbol f ∈ Σ of rank r by the mapping

(t1, t2, . . . , tr ) 7→ f (t1, t2, . . . , tr ). A dag for a tree t ∈ T (Σ) is nothing else than a circuit over the

free term algebra. To go from dags to tree straight-line programs, one has to consider a two-sorted

extension A (Σ) of the free term algebra, where the two sorts are (i) the set T (Σ) of all trees over
Σ and (ii) the set C (Σ) of all contexts over Σ. A context is a tree with a distinguished leaf that is

labelled with a special parameter symbol x < Σ. This allows to do composition of a context s with
another context or tree t by replacing the x-labelled leaf in s with t ; the result is denoted by s (t ). In
case t is a tree, one also speaks of substitution. The algebra A (Σ) is the extension of the free term

algebra by the following additional operations:

• for all f ∈ Σ of rank r ≥ 1 and 1 ≤ i ≤ r the (r − 1)-ary operation
ˆfi : T (Σ)

r−1 → C (Σ) with
ˆfi (t1, . . . , tr−1) = f (t1, . . . , ti−1,x , ti , . . . , tr−1),

• the substitution operation sub that maps a pair (s, t ) ∈ C (Σ) ×T (Σ) to the tree s (t ) ∈ T (Σ),
• the composition operation ◦ that maps a pair (s, t ) ∈ C (Σ) ×C (Σ) to the context s (t ) ∈ C (Σ).

A tree straight-line program is then a circuit over the structure A (Σ) that evaluates to an element

of T (Σ). Figure 1 (right) shows a tree straight-line program for the tree on the left. Note that

1
Brent does not explicitly state this result in [6], but Bshouty, Cleve and Eberly notice in [7] that Brent proves this fact.

2
One should be aware of the fact that the term “straight-line program” has a different meaning in algebraic complexity

theory.
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Fig. 1. A tree, its minimal dag and a tree straight-line program for the tree.

minimal dag for this tree (which is shown in the middle of the figure) is not much smaller than the

original tree (only leaves can be shared). Take for instance the topmost ◦-labelled node in the tree

straight-line program on the right. It evaluates to the context

◦(◦( ˆf2 (a), ˆf2 (a)), ◦( ˆf2 (a), ˆf2 (a))) = ◦(◦( f (a,x ), f (a,x )), ◦( f (a,x ), f (a,x )))

= ◦( f (a, f (a,x )), f (a, f (a,x )))

= f (a, f (a, f (a, f (a,x )))).

This pattern appears twice in the tree on the left.

In [16], we proved that from a given tree t ∈ T (Σ) of size n one can construct in logarithmic

space (or, alternatively, in linear time) a tree straight-line program that evaluates to t , has depth
O (logn) and sizeO (n/ logn). We call this a universal tree balancing result since it is purely syntactic
and does not refer to an interpretation of the symbols from Σ. In other words, it works for every

interpretation of the symbols in Σ.
The size bound O (n/ logn) in the above universal tree balancing theorem is important in the

context of tree compression since it achieves the information theoretic lower bound. It is not hard

to see that a tree straight-line program of sizem can be encoded by a bit string of lengthO (m logm).
SinceT (Σ) contains 2Θ(n) many trees of size n, the optimality of theO (n/ logn) bound follows from
a simple counting argument. The O (logn) bound on the height of the tree straight-line program is

important if tree balancing is the main goal. This leads us to the second step of our tree balancing

approach from [16] that we describe next.

1.3 Step 2: from tree straight-line programs to dags.
A dag can be trivially viewed as tree straight-line program (since the free term algebra is contained

in the extended algebra A (Σ). Going from a tree straight-line program to a dag leads in general to

an exponential blow-up: a unary tree of the form f n (a) can be represented by a tree straight-line

program of size O (logn) but is incompressible with dags. The main observation for the second

step in [16] is that if the algebraic structure A that yields the interpretation of the symbols from Σ
belongs to a “nice” class, then a tree straight-line program can be transformed into a dag of the

same size and depth. Moreover, this dag evaluates inA to the same element as the tree straight-line

program. The basic idea for this is that contexts, i.e. elements of C (Σ) cannot be evaluated to

elements ofA, but they naturally evaluate to unary linear term functions onA. For many classes of

algebraic structures it is possible to represent these unary functions by tuples overA. For example,

if A is a (not necessarily commutative) semiring, then a unary linear term function is an affine

mapping x 7→ axb + c , which can be encoded by the tuple (a,b, c ). For structuresA that allow such

a representation of unary linear term functions one can transform the tree straight-line program
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1:4 Moses Ganardi and Markus Lohrey

obtained from the first step into a circuit over the structure A that is equivalent to the initial

tree t . This transformation does not increase the size and depth (up to constant factors) and is

of very low complexity; more precisely it can be accomplished in TC
0
(we always refer to the

DLOGTIME-uniform variant of TC
0
).

Let us mention that the idea of evaluating expressions via unary linear term functions can be also

found in [29, 30], where the main goal is to develop optimal parallel circuit and term evaluation

algorithms for the EREW PRAM model.

1.4 Main result
Themain complexity bottleneck in the approach sketched above is the first step, i.e., the construction

of the tree straight-line program from the input tree. In [16] we presented two algorithms, one

working in linear time (which is the gold standard for data compression) and the other one working

in logarithmic space. Logarithmic space is for many applications in circuit complexity too high. A

good example is Buss’ seminal result stating that the Boolean expression evaluation problem belongs

to NC
1
[9]. For this result it is crucial that the Boolean expression is given as a string (for instance

its preorder notation) and not as a tree in pointer representation (for the latter representation,

the evaluation problem is logspace-complete). For Boolean expressions of logarithmic depth, the

evaluation problem can be easily solved in logarithmic time on an alternating Turing machine with

a random access tape, which shows membership in ALOGTIME = NC
1
. Hence, one can obtain an

alternative proof of Buss’ result by showing that Boolean expressions can be balanced in NC
1
.

In this paper, we achieve this goal as a corollary of our main result. We show that the first step

of our balancing procedure can be carried out in TC
0
(using an algorithm different from the one in

[16]). More precisely, we show that from a given expression of size n one can construct in TC
0
a

tree straight-line program of depth O (logn) and size O (n/ logn). The tree straight-line program is

given in the extended connection representation, which is crucial for the applications. Our approach

uses the tree contraction procedure of Abrahamson et al. [1]. Buss [10] proved that tree contraction

can be implemented in NC
1
. Elberfeld et al. [15] improved this result to TC

0
, thereby showing that

one can compute a tree decomposition of width three and logarithmic height from a given tree in

TC
0
.

We follow the ideas from [10, 15] but have to do several modifications, in particular in order to

achieve the size bound O (n/ logn). To avoid the usually very technical considerations concerning

DLOGTIME-uniformity, we use the characterization of TC
0
by FOM (first-order logic with the

majority quantifier). This is quite common in circuit complexity, see also [15, 21]. In a first step, we

show how to define in FOM for a given expression a hierarchical decomposition into subexpressions

and contexts, where the depth of the composition is logarithmic in the size of the expression. In a

second step, this decomposition is then transformed into a tree straight-line program. To achieve

the size bound ofO (n/ logn) we use a preprocessing of the tree that is based on the tree contraction

approach from [19].

Our main result assumes that the input expression comes from a fixed setT (Σ) of trees, i.e., the set
Σ of ranked symbols is not part of the input. This excludes important applications, e.g., evaluation

of arithmetic expressions where arbitrary integer constants may appear or depth reduction for

arithmetic expressions that may contain an arbitrary number of variables. To model this setting,

we can take a fixed but countably infinite set Σ of ranked symbols. It may consist for instance

of the two binary ring operations and all integer constants. In order to carry over our universal

balancing procedure to this setting, we have to assume that the maximal rank of the symbols in Σ is

bounded. Under this assumption, we can show that from a given expression of size n that contains

only ℓ different symbols from Σ one can construct in TC
0
a tree straight-line program of depth
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O (logn) and size O (n/ logℓ n) = O (n log ℓ/ logn). The size bound O (n/ logℓ n) again matches the

information theoretic lower bound for compression.

1.5 Applications of the main result
We present three applications of our universal TC

0
-balancing result:

• We present an alternative (and hopefully simpler) proof of the main result of [25], which states

that the evaluation problem for expressions over an algebra A can be solved in DLOGTIME-

uniform F (A)-NC1
. Here, F (A) is the extension of A by A[x], i.e. all linear unary term

functions overA, together with the evaluation operationA[x]×A → A and the composition

operation A[x] × A[x] → A[x]. The class F (A)-NC1
is defined by log-depth circuits of

polynomial size over the algebra F (A) that may also contain Boolean gates (the interplay

between Boolean gates and non-Boolean gates is achieved by multiplexer gates). We prove

the result from [25] as follows: Using our universal balancing theorem, we transform the

input expression over the algebraA into an equivalent expression over F (A) of logarithmic

depth and polynomial size; see also Theorem 5.4. This first stage of the computation can

be done in TC
0
and hence in Boolean NC

1
. In a second stage we use a universal evaluator

circuit for the algebra F (A) to evaluate the log-depth expression computed in the first

stage. Whereas our proof is based on tree contraction, the proof in [25] is in contrast more

in the spirit of Buss’ Boolean formula evaluation algorithms [10] and works with so called

PLNF-encoded terms that are split at certain break-points and recursively evaluated.

• We show that for any fixed semiring S, one can transform in TC
0
an arithmetic expression of

size n into an equivalent arithmetic circuit of size O (n/ logn) and depth O (logn). This result
is used in our recent paper [17], where we proved a dichotomy result for the expression

evaluation problem for finite semirings: for every finite semiring, the expression evaluation

problem is NC
1
-complete or in TC

0
(precise algebraic characterizations of the corresponding

semiring classes are given in [17] as well). Our TC
0
-balancing procedure is used for the

TC
0
-part of this dichotomy. This shows that depth reduction can be also used to prove that a

problem belongs to TC
0
, despite the fact that the circuit after depth reduction has logarithmic

depth and not constant depth.

• We show that every regular expression of size n can be transformed in TC
0
into an equivalent

circuit (that uses the operators +, · and ∗) of sizeO (n/ logn) and depthO (logn). This strength-
ens a result from [20] stating that every regular expression of size n has an equivalent regular

expression of star heightO (logn) (the complexity of this transformation and the total height

of the resulting expression are not analyzed in [20]). In [17], we used our depth reduction

result for regular expressions (as well as the above stated dichotomy for expression evaluation

over finite semirings) in order to prove a dichotomy for the following intersection problem,

which is parameterized by a fixed regular language L: given an ϵ-free regular expression
e , does L ∩ L(e ) = ∅ hold? We proved that this problem is either NC

1
-complete or in TC

0
,

depending on the regular language L.

Some of the above mentioned applications (in particular those from [17]) only use the depth bound

O (logn) from our universal tree balancing result, whereas the size bound O (n/ logn) could be

replaced by any polynomial bound. Nevertheless, we believe that the size bound O (n/ logn) is a
significant feature. We mentioned already its importance in the context of compression, since it

matches the information theoretic lower bound for tree compression. But also in the context of

expression evaluation, the size bound O (n/ logn) might be useful. Consider the scenario, where an

expression of size n has to be evaluated over a ring with expensive operations (e.g. a matrix ring of

large dimension). Classical tree contraction algorithms need Θ(n) arithmetic operations in total. We
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1:6 Moses Ganardi and Markus Lohrey

can construct in parallel (TC
0
) an equivalent circuit of size O (n/ logℓ n) and depth O (logn), where

ℓ is the number of different ring constants that appear in the expression. This step is independent

of the concrete ring. Finally, the circuit can then be evaluated in parallel time O (logn) using only

O (n/ logℓ n) ring operations in total. Hence, for expression where only a small number of different

ring constants appears (think about the evaluation of a multivariate noncommutative polynomial

with a small number of variables), this may save some expensive ring operations.

1.6 Related work
1.6.1 Depth reduction. In this paper, we only consider depth reduction for expressions. For

circuits, depth reduction becomes more difficult. A seminal result in this context was shown by

Valiant, Skyum, Berkowitz and Rackoff [34]: for any commutative semiring, every circuit of size

n and degree d can be transformed into an equivalent circuit of depth O (logn logd ) and size

polynomial in n and d . This result led to many further investigations on depth reduction for

bounded degree circuits over various classes of commutative as well as noncommutative semirings;

see [2] for an excellent survey. If one drops the restriction to bounded degree circuits, then depth

reduction gets even harder. For general Boolean circuits, the best known result states that every

Boolean circuit of size n is equivalent to a Boolean circuit of depth O (n/ logn) [31].

1.6.2 Tree compression. Tree straight-line programs of worst case size O (n/ logn) have been
recently used in the context of universal tree source coding [22]. Here the term “universal” has

an information-theoretic meaning. Roughly speaking, it means that the gap between the average

compression ratio and the normalized entropy converges to zero. Our TC
0
-construction of tree

straight-line programs of worst case size O (n/ logn) therefore opens up a road for parallel tree

compression.

Apart from the algorithms in this work and its predecessor from [16] several other so called

grammar-based tree compressors can be found in the literature [28]. These algorithms compute

from a given input tree a (hopefully) small tree straight-line program. In practice, the TreeRePair

algorithm from [28] compresses quite well. Whereas the computation of a smallest tree straight-line

program from a given input tree is not possible in polynomial time unless P = NP (the same result

is already true for strings [11]), a linear time approximation algorithm has been presented in [24].

This algorithm computes from a given input tree t of size n a tree straight-line program that is only

by a factor ofO (logn) larger than the smallest tree straight-line program for t . No polynomial time

grammar-based tree compressor with a better approximation ratio is known (again, this holds also

for strings).

Recently, several generalizations of tree straight-line programs to unranked trees (i.e., trees

where the number of children of a node is arbitrary and not determined by the node label) have

been proposed [4, 14, 18] and worst-case upper bound of the form O (n/ logn) have been shown

[14, 18].

2 PRELIMINARIES
2.1 Terms over algebras
The definitions introduced in this section are standard in universal algebra (see e.g. [36, Sec-

tion 4.1.1]) and term rewriting [13]. Let S be a finite set of sorts. An S-sorted set X is a family of sets

{Xs }s ∈S ; it is finite if every Xs is finite. An S-sorted signature Σ is a finite F -sorted set Σ of function
symbols, where F ⊆ (S∗ × S ) is finite. If f has sort (s1 · · · sr , s ), we simply write f : s1 × · · · × sr → s
and call r ∈ N the rank of f . An S-sorted algebraA over Σ consists of an S-sorted non-empty domain
A = {As }s ∈S and operations f A : As1 × · · · ×Asr → As for each function symbol f : s1× · · · ×sr → s
in Σ. Instead of S-sorted signatures and algebras we also speak of |S |-sorted signatures and algebras.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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A one-sorted signature Σ is a ranked alphabet and a one-sorted algebra is simply called an algebra.
A classical example for a two-sorted algebra is a vector space consisting of the sort of vectors and

the sort of scalars.

We define the S-sorted set T (Σ) of terms over Σ inductively: If f : s1 × · · · × sr → s is a function
symbol in Σ where r ≥ 0 and t1, . . . , tr are terms over Σ of sorts s1, . . . , sr , respectively, then
f (t1, . . . , tr ) is a term over Σ of sort s . A term t over an algebra A is a term over its signature Σ
and we will also write T (A) for T (Σ). The value tA ∈ A of a term t ∈ T (A) is defined inductively:

If t = f (t1, . . . , tr ), then tA = f A (tA
1
, . . . , tAr ). If a term t is part of the input for a computational

problem then we view t as a string over the finite alphabet consisting of Σ, brackets and comma.

We will also consider terms with a hole, also known as contexts, which we will need only for the

case |S | = 1, i.e., a ranked alphabet Σ. Let us fix a special symbol x < Σ of rank 0 (the parameter).

A context is obtained from a term t ∈ T (Σ) by replacing an arbitrary subterm t ′ by the symbol x .
The set of all contexts over Σ is denoted with C (Σ), and if A is an algebra over Σ, we also write

C (A) for C (Σ). Formally, C (Σ) is inductively defined as follows: x ∈ C (Σ) and if f ∈ Σ has rank

r , t1, . . . , tr−1 ∈ T (Σ), s ∈ C (Σ) and 1 ≤ i ≤ r , then f (t1, . . . , ti−1, s, ti , . . . , tr−1) ∈ C (Σ). Given a

context s and a term (resp., context) t , we can obtain a term (resp., context) s (t ) by replacing the

unique occurrence of x in s by t .
In an algebra A, a context t ∈ C (A) defines a (unary) linear term function tA : A → A in the

natural way:

• If t = x then tA is the identity function.

• If t = f (t1, . . . , ti−1, s, ti , . . . , tr−1) with t1, . . . , tr−1 ∈ T (Σ), s ∈ C (Σ), then for every a ∈ A:
tA (a) = f A (tA

1
, . . . , tAi−1, s

A (a), tAi , . . . , t
A
r−1).

2.2 Logical structures and graphs
We will view most objects in this paper as logical structures in order to describe computations on

them by formulas of (extensions of) first-order logic in the framework of descriptive complexity

[23]. A vocabulary τ is a tuple (R1, . . . ,Rk ) of relation symbols Ri with a certain arity ri ∈ N. A
τ -structure G = (V ,RG

1
, . . . ,RGk ) consists of a non-empty domainV = V (G) and relations RGi ⊆ V ri

for 1 ≤ i ≤ k . The relation symbols are usually identified with the relations themselves. All

structures in this paper are defined over finite domains V , and the size |V | is also denoted by |G|.

A graph G is a structure of the form G = (V , (Ei )1≤i≤k , (Pa )a∈A), where all Ei are binary edge

relations and all Pa are unary relations. The elements of A can be viewed as node labels. If

⋃k
i=1 Ei

is acyclic, G is called a dag. A graph G is k-ordered if for all u ∈ V and all 1 ≤ i ≤ k there exists

at most one v ∈ V with (u,v ) ∈ Ei . If (u,v ) ∈ Ei exists, we call v the i-th successor of u. A tree
T = (V , (Ei )1≤i≤k , (Pa )a∈A) is a graph such that (V ,

⋃k
i=1 Ei ) is a rooted tree in the usual sense and

the edge relations Ei are pairwise disjoint. We write u ⪯T v if u is an ancestor of v in the rooted

tree (V ,
⋃

i Ei ). The depth-first (left-to-right) order onV defines v to be smaller thanw if and only if

v is an ancestor ofw or there exists a node u and numbers 1 ≤ i < j ≤ k such that the i-th child of

u is ancestor of v and the j-th child of u is ancestor ofw .

2.3 Circuits
We also make use of a more succinct representation of terms as defined in Section 2.1, namely as

circuits. Let Σ be an S-sorted signature with maximal rank k . A circuit over Σ is a k-ordered dag

C whose nodes are called gates. The set of gates V is implicitly S-sorted. Each gate v is labelled

with a function symbol f : s1 × · · · × sr → s from Σ such that v has sort s and exactly r successors
where the i-th successor of A has sort si for all 1 ≤ i ≤ r . Furthermore C has a distinguished output
gate vout ∈ V (labelled by some special symbol). The depth of C is the maximal path length in C.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:8 Moses Ganardi and Markus Lohrey

The value of C over an S-sorted algebra A over Σ is defined naturally: One evaluates all gates of

C bottom-up: If all successor gates of a gate v are evaluated then one can evaluate v . Finally, the
value of C is the value of the output variable vout.

In a slightly more general definition, we also allow copy gates to simplify certain constructions. A

copy gate v (labelled by a special symbol) has exactly one successorw and the value of v is defined

as the value ofw .

2.4 Circuit complexity and descriptive complexity
In Section 2.3 we considered circuits as a succinct representation of input terms. In this section

we will use Boolean circuits also as a computational model, which can process circuits over an

arbitrary signature as described in Section 2.3.

We use standard definitions from circuit complexity, see e.g. [35]. The main complexity class used

in this paper is DLOGTIME-uniform TC
0
, which is the class of languages L ⊆ {0, 1}∗ recognized

by DLOGTIME-uniform circuit families of polynomial size and constant depth with not-gates and

threshold gates of unbounded fan-in. If instead of general threshold gates only and-gates and or-

gates (again of unbounded fan-in) are allowed, one obtains DLOGTIME-uniform AC
0
. Analogously,

one defines AC
0
- and TC

0
-computable functions f : {0, 1}∗ → {0, 1}∗ where the circuit outputs a

bit string instead of a single bit. The definition of DLOGTIME-uniformity can be found in [3]. The

precise definition is not needed in this paper.

Instead of working with DLOGTIME-uniform circuit families, we will use equivalent concepts

from descriptive complexity based on the logics FO (first-order logic) and FOM (first-order logic

with the majority quantifier) [23]. In this setting we assume that the domain of a structure has the

form {1, . . . ,n}. Furthermore, the vocabulary implicitly contains the binary relations < and BIT,

where < is always interpreted as the natural linear order on {1, . . . ,n} and BIT(i, j ) is true iff the j-th
bit of i is 1. We will not explicitly list these relations when defining structures. The relations < and

BIT allow to access the bits of elements of the domain and to do arithmetic manipulation with these

elements. In particular, addition and multiplication on the numbers {1, . . . ,n} are FO-definable
using < and BIT [23, Theorem 1.17]. Furthermore, if Σ is a finite alphabet, in a structure G of size n
we can quantify over sequences a1 · · ·as ∈ Σ

∗
of length s = O (logn) by identifying such sequences

by numbers of size nO (1)
, or tuples over V (G) of constant length. Using a suitable encoding, the

BIT-predicate allows us to access each symbol ai in a FO-formula.

An FO-computable function (or FO-query) maps a structure G over some vocabulary to a structure

I (G) over a possibly different vocabulary which is definable in G by a d-dimensional interpretation
I using first-order formulas. That means, the domain V (I (G)) is an FO-definable subset of V (G)d

and each r -ary relation in I (G) is an FO-definable subset of V (G)d ·r ; for precise definitions we
refer the reader to [23].

If we additionally allow a majority quantifier in the formulas, we obtain FOM-computable func-
tions. Roughly speaking, FOM-logic is the extension of FO-logic with the ability to count. Note

that the size of I (G) is polynomially bounded in the size of G.

Notice that, formally one also needs to logically define a linear order < and the BIT-predicate on

the output structure I (G). For < one can always use the lexicographical order onV (I (G)) ⊆ V (G)d

whereas the BIT-predicate might not be definable in first-order logic, cf. [23, Remark 1.32]. For

example, BIT is FO-definable if the domain formula is valid, i.e. V (I (G)) = V (G)d for all G.

Furthermore, since the BIT-predicate is already FOM-definable from <, this technicality vanishes

for FOM-computable functions [3, Theorem 11.2].

The connection between descriptive complexity and circuit complexity is drawn as follows. A

non-empty word a1 · · ·an ∈ {0, 1}
+
can be viewed as a word structure ({1, . . . ,n}, S ) where the
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unary relation S contains those positions i where ai = 1. A structure G can be encoded by a bit

string bin(G) ∈ {0, 1}∗ in such a way that the conversions between G and the word structure of

bin(G) are FO-computable [23].

It is known that a function f : {0, 1}+ → {0, 1}+ is FO-computable (respectively, FOM-computable)

if and only if it is computable in DLOGTIME-uniform AC
0
(respectively, DLOGTIME-uniform TC

0
).

Hence we can describe AC
0
- and TC

0
-computations on the binary encoding of a structure by logical

formulas on the structure itself.

3 REPRESENTATIONS FOR TREES AND DAGS
It is known that the circuit complexity of algorithmic problems for trees highly depends on the

representation of the trees. For example, for trees given in the standard pointer representation,

reachability is complete for deterministic logarithmic space [12]. In the ancestor representation,
which is the extension of a tree T by its ancestor relation ⪯T , queries like reachability, least

common ancestors and the depth-first order become first-order definable. Note that a term t ∈ T (Σ)
can be represented by a k-ordered tree T = (V , (Ei )1≤i≤k , (Pa )a∈Σ) where k is the maximal rank

of a symbol in Σ. Furthermore, each node has a unique label which determines the number of its

children, i.e. T is a ranked tree.

Lemma 3.1 ([15, Lemma 4.1]). There is an FOM-computable function which transforms a given term
t (viewed as a string with opening and closing parentheses) into the corresponding labelled ordered
tree T in ancestor representation, and vice versa.

For ordered dags of logarithmic depth, we propose a representation scheme which allows us

to access paths of logarithmic length. It is similar to the extended connection languages of circuit
families in the context of uniform circuit complexity [32].

A path in a k-ordered graph G can be specified by its start node and a so called address string
over {1, . . . ,k }. Formally, for a string ρ ∈ {1, . . . ,k }∗ and a node u ∈ V (G) we define the node ρ (u)
(it may be undefined) inductively as follows: If ρ = ε then ρ (u) = u. Now assume that ρ = π ·d with

d ∈ {1, . . . ,k } and the node v = π (u) is defined. Then ρ (u) is the d-th successor of v , if it is defined,
otherwise ρ (u) is undefined. The extended connection representation, briefly EC-representation, of G,
denoted by ec(G), is the extension of G by the relation consisting of all so called EC-tuples (u, ρ,v )
where u,v ∈ V (G) and ρ ∈ {1, . . . ,k }∗ is an address string of length at most logk |G| − 1 such

that ρ (u) = v . Note that there are at most |G| many such address strings, which therefore can be

identified with numbers from 1 to |G|. Hence, we can view the set of EC-tuples as a ternary relation

over V (G). As remarked above, we can access any position of the address string in a first-order

formula using the BIT-predicate. For trees we have:

Lemma 3.2. There is an FOM-computable function which converts the ancestor representation of a
k-ordered tree T into its EC-representation ec(T ).

Proof. Let u,v be nodes and ρ = d1 · · ·ds−1 ∈ {1, . . . ,k }
∗
be an address string of logarithmic

length. Then (u, ρ,v ) is an EC-tuple of T if and only if for all 1 ≤ i ≤ s − 1 there exist nodesvi ,vi+1
(which must be unique) such that

• vi+1 is the di -th successor of vi ,
• |{w ∈ V | u ⪯ w ⪯ vi }| = i , and
• |{w ∈ V | vi+1 ⪯ w ⪯ v}| = s − i ,

which is FOM-definable using the ancestor relation on T . □

Let G be a k-ordered dag and v0 be a node in G. The unfolding of G from v0, denoted by

unfold(G,v0), is defined as follows: Its node set is the (finite) set of paths (v0,v1, . . . ,vn ) ∈ V (G)+
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1:10 Moses Ganardi and Markus Lohrey

starting at v0. If vn+1 is the i-th successor of vn in G, then (v0,v1, . . . ,vn+1) is the i-th successor

of (v0,v1, . . . ,vn ) in the unfolding. The labels of a node (v0,v1, . . . ,vn ) in the unfolding are the

labels of vn in G. Note that the size of unfold(G,v0) can be exponential in the depth of G.

Lemma 3.3. For any c > 0 there exists an FOM-computable function which, given a k-ordered dag G
of size n and depth ≤ c · logn in EC-representation, and a node v0, outputs the ancestor representation
of the tree unfold(G,v0).

Proof. A node in the unfolding is an address string ρ ∈ {1, . . . ,k }∗ of length ≤ c · log |G |, such
that ρ (v0) exists. By an FO-formula one can test whether ρ (v0) exists and also compute this node.

The i-th successor of an address string ρ is the address string ρi . The ancestor relation is the prefix

relation on the set of address strings. □

In combination with Lemma 3.1 this yields:

Lemma 3.4. For any c > 0 there exists an FOM-computable function which, given a circuit C of size
n and depth ≤ c · logn in EC-representation, outputs an equivalent term t .

Vice versa, one can compact an ordered tree T to its minimal dag dag(T ). It is the up to

isomorphism unique smallest dag G such that T is isomorphic to unfold(G,v ) for some v . One
can identify the nodes of dag(T ) with the isomorphism classes of the subtrees of T .

Lemma 3.5. There exists an FOM-computable function which maps a k-ordered tree T in ancestor
representation to dag(T ) in EC-representation.

Proof. Using Lemma 3.2 we convert the ancestor representation of T into its EC-representation.

With the help of the depth-first order on V (T ), it is FOM-definable whether the subtrees rooted

in two given nodes u,v are isomorphic. For a node v ∈ V (T ) let min(v ) be the first node (with
respect to the built-in order on V (T )) such that the subtrees below v and min(v ) are isomorphic.

The mapping min is also FOM-definable. Then the node set of dag(T ) can be identified with

V ′ = {min(v ) | v ∈ V (T )}. A pair (u ′,v ′) ∈ V ′ ×V ′ belongs to E
dag(T )
i if there exists u ∈ V (T )

such that (u ′,u) ∈ ETi andv ′ = min(u). The set of EC-tuples of dag(T ) is the set of tuples (u ′, ρ,v ′)
such that there exists an EC-tuple (u, ρ,v ) of T with min(u) = u ′ and min(v ) = v ′. □

For an arbitrary FOM-computable function I on k-ordered graphs, it is not clear whether the

function ec(G) 7→ ec(I (G)) is FOM-computable as well. On the other hand, this is possible for so

called guarded transductions. A (m-dimensional) connector has the form γ : {1, . . . ,m} → {1, . . . ,k,=
} × {1, . . . ,m}. Given a k-ordered graph G and two tuples u = (u1, . . . ,um ),v = (v1, . . . ,vm ) ∈
V (G )m , we say that the connector γ connects u to v if for all 1 ≤ j ≤ m the following holds:

• If γ (j ) = (d, i ) for some 1 ≤ d ≤ k , then (ui ,vj ) ∈ E
G

d .

• If γ (j ) = (=, i ), then ui = vj .

Notice that u and γ uniquely determine v . Also note that if k andm are constants (as in the lemma

below), then a connector can be specified with O (1) many bits. Hence, a sequence of connectors

of length O (log |G|) needs O (log |G|) bits and can be identified with a tuple over V (G) of fixed
length.

Lemma 3.6. Let k and m be constants. Given a k-ordered graph G in EC-representation, tuples
u,v ∈ V (G)m and a sequence γ (1) · · ·γ (s ) of connectors of length s = O (log |G|), it is FO-definable
whether there exists a (necessarily unique) sequence of tuples v (1), . . . ,v (s+1)

∈ V (G)m such that
v (1) = u, v (s+1) = v , and γ (i ) connects v (i ) to v (i+1) for all 1 ≤ i ≤ s . If so, the tuple sequence
is FO-computable in the sense that the (m + 1)-ary relation R = {(t ,v (t ) ) | 1 ≤ t ≤ s + 1} is
FO-computable.
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Fig. 2. If I is a guarded transduction, a path in I (G) describes a sequence of connectors.

Proof. Let u = (u1, . . . ,um ). The FO-formula says that for all 2 ≤ t ≤ s + 1 there exists a tuple
w = (w1, . . .wm ) ∈ V (G)m such that for all 1 ≤ j ≤ m there is a sequence (j1,d1) · · · (jt−1,dt−1) ∈
({1, . . . ,m} × {1, . . . ,k,=})∗ (which is necessarily unique) with the following properties:

• γ (i ) (ji+1) = (di , ji ) for all 1 ≤ i ≤ t − 2, γ (t−1) (j ) = (dt−1, jt−1) and
• (uj1 ,πt ,w j ) is an EC-tuple of G, where the address string πt ∈ {1, . . . ,k }

∗
is the projection

of d1 · · ·dt−1 to the subalphabet {1, . . . ,k }.

Moreover, in case t = s + 1 we must havew = v . The relation R from the lemma contains all tuples

(t ,w ) and (1,u). □

A graph transduction I computes from a k-ordered graph G a k ′-ordered graph I (G) whose node
set is a subset ofV (G)m ×{1, . . . , c} for some constantsm, c (we can assume that {1, . . . , c} ⊆ V (G)).
A graph transduction I is guarded if for every k-ordered graph G and every edge ((u,a), (v,b))
in I (G) there exists a connector γ which connects u to v . The idea is that for a given path

(v (1),a (1) ) (v (2),a (2) ) · · · (v (s ),a (s ) ) in I (G), the connectorsγ (1)γ (2) · · ·γ (s−1)
describe a forest of paths

in G with its roots in v (1)
, see Figure 2. Based on this forest we can construct the EC-tuples of I (G)

from the EC-tuples of G.

Lemma 3.7. For every FOM-computable guarded graph transduction I there exists an FOM-computable
function mapping ec(G) to ec(I (G)) for all k-ordered graphs G.

Proof. It suffices to compute the EC-tuples of I (G). Assume that the the output vocabulary has k ′

edge relations E1, . . . ,Ek ′ . Let (u,a) and (v,b) be two nodes in I (G) and ρ
′ = d ′

1
· · ·d ′s ∈ {1, . . . ,k

′}∗

be an address string of length at most logk ′ |I (G) | − 1. We claim that one can express by an FO-

formula whether ((u,a), ρ ′, (v,b)) is an EC-tuple of I (G). This is the case if and only if there exist

nodes (v (1),a (1) ), . . . , (v (s+1),a (s+1) ) in I (G) such that (v (1),a (1) ) = (u,a), (v (s+1),a (s+1) ) = (v,b),
and

((v (t ),a (t ) ), (v (t+1),a (t+1) )) ∈ EI (G)d ′t
(1)

for all 1 ≤ t ≤ s . Since I (G) is k ′-ordered, these nodes must be unique.

Our FO-formula says that there exists a sequence a (1) · · ·a (s+1) ∈ {1, . . . , c}s+1 and connectors

γ (1), . . . ,γ (s )
such that there exists a (unique) sequence of tuples v (1), . . . ,v (s+1)

∈ V (G)m with

v (1) = u, v (s+1) = v , and γ (i )
connects v (i )

to v (i+1)
for all 1 ≤ i ≤ s . The existence of the sequence

v (1), . . . ,v (s+1)
is expressed using Lemma 3.6. Moreover, if this sequence exists we can also express

whether (1) holds for all 1 ≤ t ≤ s using the FO-computable relation R from Lemma 3.6. □

Let us remark that in this paper we only need graph transductions where m = 1. The more

general definition will be used in a forthcoming paper. Finally, we will need the following lemma:
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Lemma 3.8. For any c > 0 there exists an FOM-computable function which maps a circuit with copy
gates of size n and depth ≤ c · logn to an equivalent circuit without copy gates with the same depth
bound, where both circuits are given in EC-representation.

Proof. Let C be a circuit with copy gates. Let E be the binary relation consisting of all pairs

(A,B), where A is a copy gate and B is the unique successor of A. For each copy gate A ∈ V we

define the first non-copy gate on the unique E-path starting in A, which is first-order definable

using the EC-representation. By contracting all such paths we can define on all non-copy gates of

C an equivalent circuit C′ without copy-gates.

The EC-tuples of C′ can also be defined in FOM: Let A and B be non-copy gates and ρ ′ ∈
{1, . . . ,k }∗ be a string of length at most logk |C

′ | − 1 where k is the maximal rank of a function

symbol in B. Then (A, ρ ′,B) is an EC-tuple in C′ if and only if there exists an EC-tuple (A, ρ,B) in
C such that ρ ′ is obtained from ρ by omitting those symbols which describe an edge to a non-copy

gate on the path (A, ρ,B). Formally, we guess a “bit mask” z ∈ {0, 1}∗ with |z | = |ρ | using a single
existential quantifier and test whether ρ ′ is obtained from ρ by removing the positions marked

with a 0-bit in z. Then, for each non-empty prefix π of ρ we test whether π (A) is a non-copy gate

if and only if z has a 1-bit at position |π |. □

4 HIERARCHICAL TREE DEFINITIONS
In the following we will show how to construct a hierarchical definition of a given tree which has

logarithmic depth. Throughout this section all trees are implicitly given in ancestor representation.

The idea is to decompose a tree in a well-nested way into (i) subtrees, (ii) contexts (trees with a

hole) and (iii) single nodes. From such a decomposition, it is easy to derive a tree straight-line

program; this will be done in Section 5. The advantage of hierarchical decompositions over tree

straight-line programs is that the former perfectly fit into the descriptive complexity framework:

There is a natural representation of a hierarchical decomposition by two relations – a unary one

and a binary one – on the node set of the tree.

A pattern p in a k-ordered tree T is either a single node v ∈ V (T ), called a subtree pattern, or a
pair of nodes (v,w ) ∈ V (T )2, called a context pattern, such thatw is a proper descendant of v . A
subtree pattern v covers all descendants of v (including v), whereas a context pattern (v,w ) covers
all descendants of v which are not descendants of w . The set of nodes covered by a pattern p is

denoted by V [p] and T [p] is the subtree of T induced by V [p]. The root of p is the root of T [p]
and its size is |T [p]|. We call q a subpattern of p, denoted by q ≤ p, if V [q] ⊆ V [p], which partially

orders the set of all patterns in a tree. Note that the root of T is the largest pattern with respect

to ≤. Two patterns p,q are disjoint if V [p] ∩V [q] = ∅. A set P of patterns in T is a hierarchical
definition of T if

• P contains the largest pattern (the root of T ), and

• P is well-nested, i.e. any two patterns p,q ∈ P are disjoint or comparable (p ≤ q or q ≤ p).

The pair (T , P ) is also called a hierarchical definition, which is formally represented as the logical

structure (T , P ∩V (T ), P ∩V (T )2).
One can view a hierarchical definition itself as a tree where the patterns are its nodes. We say

that q ∈ P is a direct subpattern of p ∈ P in P , denoted by q ⋖ p, if q < p and there exists no r ∈ P
with q < r < p. The pattern tree of P is the tree with node set P where the children of a pattern are

its direct subpatterns, ordered by the depth-first order on their roots. The height of the pattern tree

is the depth of P , denoted by depth(P ). Furthermore, each pattern p in the pattern tree is annotated

by its branching tree, which is defined as follows: The boundary ∂p of p is ∂p = V [p] \
⋃

q⋖p V [q],
i.e. the set of nodes covered by p but not by any of its (direct) subpatterns. The branching tree
of a pattern p ∈ P is obtained from T [p] by contracting the direct subpatterns to single nodes
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Fig. 3. A hierarchical definition with its pattern tree. Each pattern in the pattern tree is labelled by its branching
tree. The symbol ∗ represents a direct subpattern.

labelled by a special symbol (in order to distinguish them from boundary nodes), i.e. its node set is

∂p ∪ {q | q ⋖ p}. The width of P is the maximal size of a branching tree of a pattern p ∈ P , denoted
by width(P ).

Example 4.1. Figure 3 shows an example of a hierarchical definition P and a top part of its pattern
tree, which has height 4. The largest pattern in blue has two direct subpatterns (in green and orange)
and its boundary is {a,d,u}, which are the nodes that are not covered by the green or the orange
pattern. Hence the branching tree of the largest pattern has size 5 (2 subpatterns plus 3 boundary
nodes), which is also the width of P .

4.1 Hierarchical definitions via tree contraction
This section is the core of the paper. Using the tree construction technique of Abrahamson et al. [1]

we construct a hierarchical definition for a given binary tree. Here, a binary tree is a 2-ordered

tree T = (V ,E1,E2, (Pa )a∈A) where every node u ∈ V is either a leaf (i.e., there is no v with

(u,v ) ∈ E1 ∪ E2) or has a left and a right child (i.e., there exist v1,v2 ∈ V with (u,v1) ∈ E1 and
(u,v2) ∈ E2). Such trees are also called full binary trees.

The unary relations Pa that define the node labels are not important in this section and can be

completely ignored; the number of node labels will be relevant only in Section 4.2.

Let T be a binary tree with at least two leaves. The basic operation of tree contraction is called

prune-and-bypass. Letw be a leaf node, v its parent node and u be the parent node of v . Applying
the prune-and-bypass operation to w means: both v and w are removed and the sibling w ′ of
w becomes a new child of u. We say that the edges (u,v ), (v,w ) and (v,w ′) are involved in this

prune-and-bypass step. In our definition the operation can only be applied to leaves of depth at

least 2 so that the root is never removed.

To verify the correctness of our (parallel) tree contraction algorithm, we first present a sequential

tree-contraction algorithm. A pattern p in T is hidden in a context pattern (u,v ) if p is a subpattern

of (u,v ) but does not cover u. Starting with P0 = ∅ and T0 = T , we maintain the following

invariants: (1) each pattern p ∈ Pi is hidden in some edge of Ti (interpreted as patterns in T ) and

(2) Pi is well-nested. We obtain Ti+1 from Ti by pruning-and-bypassing an arbitrary leaf nodew in

Ti (of depth at least 2). Let u be the grandparent node of w and w ′ be the sibling of w in Ti . The

contraction pattern p formed in this prune-and-bypass step is the maximal subpattern p which is

hidden in (u,w ′). It is the pattern p = (u ′,w ′) where u ′ is the child of u that belongs to the path in

T from u down tow . We add p to Pi to obtain Pi+1.
Clearly, property (1) is preserved because the edge (u,w ′) is introduced in Ti+1 and all patterns

which are hidden in some involved edge in Ti are hidden in the edge (u,w ′) in Ti+1. By property

(1) every pattern q ∈ Pi which intersects the contraction pattern p is hidden in one of the three
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Fig. 4. Example for the tree contraction algorithm. Alternatingly, left and right internal leaves are pruned-
and-bypassed. The contraction patterns introduced in Ti are hidden in the edges of Ti+1, e.g. the pattern
(m,o) introduced in T0 is hidden in the edge (l ,o) in T1.

edges involved in the prune-and-bypass operation, therefore q is a subpattern of p. This proves
that Pi+1 is indeed well-nested. By adding the largest pattern in T to any set Pi , we clearly obtain

a hierarchical definition for T .

Now we proceed with the parallel tree-contraction algorithm. Notice that we can apply the

prune-and-bypass operation to a set of leaves in parallel if no edge is involved in more than one

prune-and-bypass operation. We apply the prune-and-bypass operation only to internal leaves,
i.e. leaves which are not the left- or the right-most leaf in the tree. This implies that leaves which

are children of the root node are not pruned, i.e., every pruned leaf has a grandparent as required

above.
3
Let T0 be the input tree T with n internal leaves and hence n + 2 leaves and 2(n + 2) − 1

nodes. We label the internal leaves by the numbers 1, . . . ,n from left to right. It may be helpful for

the reader to think of the leaf numbers in their binary encodings. We construct a sequence of trees

T0, . . . ,Tm as follows.

• If T2i has two leaves, the algorithm terminates.

• If T2i has at least one internal leaf, we prune-and-bypass all internal leaves in T2i with an odd

number that are left children to obtain the tree T2i+1. Then we prune-and-bypass all internal

leaves in T2i+1 with an odd number that are right children and relabel the remaining internal

leaves (divide leaf number by 2) to obtain the tree T2i+2.

Notice that T2i contains exactly those internal leaves whose number in T0 is divided by 2
i
. Hence the

algorithm terminates afterm = 2(⌊log
2
n⌋ + 1) rounds. In Figure 4 we illustrate the tree contraction

algorithm. The leaves which are pruned and bypassed are colored together with their parent nodes

and the involved edges.

Lemma 4.2. There is an FOM-computable function which maps a binary tree T and a number
0 ≤ i ≤ m to Ti .

Proof. Similar proofs are given in [10, 15]. The main observation is that the least common

ancestor of two nodes in Ti is the same as their least common ancestor in T0. Therefore it suffices

to compute the set of leaves of Ti , which directly also yields the inner nodes as the least common

ancestors of any two leaves.

3
Elberfeld et al. [15] enforce this by adding at the very beginning a fresh root with a fresh leaf as its left child, and the

original tree as its right subtree. Here, we want to avoid adding new nodes to the tree.
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First, the numberm is FOM-definable using the BIT-predicate (⌊logn⌋ + 1 is the largest number i
with BIT(n, i ) = 1). The leaves of the tree Ti are the left- and rightmost leaf of T0, together with the

internal leaves. The internal leaves of a tree T2i are the internal leaves of T0 whose number in T0 is

divided by 2
i
. The internal leaves of T2i+1 are the internal leaves of T2i+2 and all internal leaves of

T2i which are right children. □

As in the sequential tree contraction algorithm we obtain a hierarchical definition by taking the

set of all contraction patterns which are formed in every prune-and-bypass operation together

with the largest pattern. We call this hierarchical definition CP(T ). Figure 3 shows the hierarchical
definition obtained from the example in Figure 4. The blue pattern is the largest pattern (the subtree

pattern a).
Explicitly written down, we have

CP(T ) = {a, (e,д), (h, j ), (m,o), (s,u), (l ,o), (k,q), (c,d ), (b,d ), (q,u)}.

Proposition 4.3. There is an FOM-computable function whichmaps a binary treeT to (T ,CP(T )),
which is a hierarchical definition of depth O (logn) and width at most 5.

Proof. The FOM-definition of CP(T ) follows easily from Lemma 4.2. In every round of the

algorithm all new contraction patterns are pairwise disjoint. Furthermore every new contraction

pattern is maximal, i.e. it is not a subpattern of a previously introduced contraction pattern, because

every previously introduced contraction patterns is hidden in some edge. Hence, the depth of

CP(T ) is bounded by the number of rounds, which isO (logn). It remains to show that (T ,CP(T ))
has width at most 5.

Every edge (u,w ′) in a tree Ti which is not contained in T originates from an earlier prune-

and-bypass operation, which implies that CP(T ) contains the maximal subpattern p hidden in

(u,w ′). Letw be the pruned leaf and v be the parent node ofw . Thus, the three edges involved in

the prune-and-bypass operation are (u,v ), (v,w ) and (v,w ′). The direct subpatterns of p must be

hidden in the three patterns (u,v ), (v,w ) and (v,w ′). This proves that p has at most three direct

subpatterns (if say (u,v ) is an edge of T = T0 then there is no contraction pattern yet hidden

in (u,v ), and similarly for (v,w ) and (v,w ′); hence the number of direct subpatterns of p can be

smaller than three). Furthermore p has exactly two boundary nodes, namely the leaf w and its

parent nodev . The largest pattern has three boundary nodes (the root of the tree and the outermost

leaves) and at most two direct subpatterns. Hence the width of CP(T ) is bounded by 5. □

4.2 Compression to size n/ logn
We improve Proposition 4.3 by constructing a hierarchical definition in which many patterns

are equivalent in a strong sense. This will be crucial for proving the size bound O (n/ logn) for
tree straight-line programs in Section 5. The result from this section will be only needed for our

applications in Section 6.2 (but not Section 6.1).

For a pattern p ∈ P the set P[p] = {q ∈ P | q ≤ p} forms a hierarchical definition of T [p]. Two
patterns p1,p2 ∈ P are equivalent if the structures (T [p1], P[p1]) and (T [p2], P[p2]) are isomorphic.

Alternatively, p1 is equivalent to p2 if the subtrees of the pattern tree rooted in p1 and p2 are

isomorphic. The goal is to construct an FOM-definable hierarchical definition in which there are at

mostO (n/ logn) inequivalent patterns. We follow the method of [19], in which the authors describe

a parallel tree contraction algorithm which uses O (n/ logn) processors on an EREW PRAM. The

idea is to decompose the input tree into O (n/ logn) many patterns of size O (logn).
We briefly summarize the notions and results from [19]. Let T be a binary tree with n nodes

and let 1 < m ≤ n be an integer. An inner node v in T ism-critical if ⌈|T [v]|/m⌉ , ⌈|T [w]|/m⌉
for all childrenw of v , which is equivalent to saying that there exists a multiplem′ ofm such that
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Fig. 5. Removing the 6-critical nodes (in red) and certain auxiliary nodes (in white), yields a disjoint union of
patterns (the set B in the proof of Proposition 4.4), which are depicted in black. The binary tree TC is obtained
by contracting all patterns in B.

|T [w]| ≤ m′ < |T [v]| for all children w of v . Consider the set C of allm-critical nodes and the

subgraph of T induced by V (T ) \C . Each of its connected components is a tree T [p] for some

pattern p (this is implicitly stated in [19, Lemma 9.2.1]). These patterns p are calledm-bridges.4 It
was proven in [19] that eachm-bridge has size at mostm and that the number ofm-critical nodes

in T is at most 2n/m − 1.

Proposition 4.4. For every constant ℓ, there is an FOM-computable function which maps a binary
tree T of size n and with ℓ node labels to a hierarchical definition (T , P ) of constant width, depth
O (logn), and with O (n/ logn) inequivalent patterns.

Proof. Letm = Θ(logn), which will be made explicit in the following. The numberm ≤ n will

be FOM-definable, which implies that the set ofm-critical nodes will be also FOM-definable. The

idea is to contract allm-bridges in T and then apply Proposition 4.3. However, the resulting tree is

not necessarily a binary tree and may not be rooted in the root of T , see Figure 5 for an example.

Define C to be the set of allm-critical nodes together with the root of T . We have |C | = O (n/m).
Furthermore we add certain leaf nodes to C . If the left (resp., right) subtree below a node v ∈ C
contains no node in C , then we add an arbitrary leaf (e.g. the smallest one with respect to the

built-in order on the domain) from the left (resp., right) subtree to C . Since we add at most two

nodes for eachm-critical node, we still have |C | = O (n/m). Notice thatV (T ) \C is a disjoint union

of sets V [p] for certain patterns p in T . Let B be the set of all these patterns, which can be seen to

be FOM-definable. If we contract all patterns in B to edges we obtain the binary tree TC over the

node setC of sizeO (n/m). Since the set ofm-critical nodes is FOM-definable, also the setC and the

binary tree TC are FOM-definable.

We can now apply Proposition 4.3 to obtain a hierarchical definitionCP(TC ) of depthO (log |TC |) =
O (log(n/m)) = O (logn) and width 5. Since the size of CP(TC ) is at most O (n/m), the number of

inequivalent patterns is also bounded by the same number.

Let us count the number of non-isomorphic trees T [p] where p ∈ B. Let ℓ be the number of

node labels in T . Since everym-bridge has size at mostm, this also holds for all p ∈ B. By inserting

a distinguished leaf node to context patterns p, we can instead count the number of binary trees

with at mostm + 1 nodes and ℓ + 1 labels. Using the formula for the Catalan number, one can

upper-bound the number of such trees by
4

3
(4ℓ + 4)m+1 ≤ (4ℓ + 4)m+2, see e.g. [16, Lemma 1].

Hence by choosingm = ⌊1/2 · log
4ℓ+4 (n) − 2⌋ ∈ Θ(logn) (which is indeed FOM-definable since all

the involved arithmetic operations can be implemented in DLOGTIME-uniform TC
0
), the number

of non-isomorphic trees T [p] for p ∈ B is bounded by

√
n ∈ o(n/ logn).

4
Our definition slightly deviates from the one given in [19] where a bridge also contains the neighbouring critical nodes as

“attachments”.
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Fig. 6. The shaded pattern contains four maximal subpatterns (framed in blue) which are unions of zones.

For every p ∈ B we define a canonical well-nested set of patterns Qp which contains for each

covered node v ∈ V [p] the maximal subpattern q ≤ p which is rooted in v . Clearly, Qp is a

hierarchical definition for T [p] whose size and depth is bounded by O (logn). Its width is at

most 3 because every pattern in Qp has exactly one boundary node (its root) and at most two

direct subpatterns. Furthermore, Qp is FO-definable from p and canonical in the sense that the

isomorphism type of the pattern tree of Qp is determined by the isomorphism type of T [p]. Hence
the number of inequivalent patterns in Q =

⋃
p∈B Qp is bounded by the number of patterns of size

at mostm, which by the above calculation is bounded by o(n/ logn).
Now we claim that P = CP(TC ) ∪Q is a hierarchical definition for T with the desired properties.

Clearly the largest pattern is contained in P , and both CP(TC ) and Q are well-nested. Furthermore,

since each patternp ∈ B is hidden in some edge ofTC , also P is well-nested. The depth of P is bounded

by O (logn) and the number of inequivalent patterns is O (n/ logn) + o(n/ logn) = O (n/ logn). To
prove that the width of P is bounded by some constant, we notice that the patterns p ∈ B are the

maximal subpatterns of T hidden in some edge of TC . More precisely, if p ∈ B is a direct subpattern

of a pattern q ∈ CP(TC ) then p must be hidden in an edge of TC [q] which is not covered by any

subpattern q′ of q. Since the branching tree of q has size at most 5, there are at most 4 such possible

edges. This proves that the width of P is at most 9. □

4.3 Non-binary trees
Now we extend Proposition 4.4 to arbitrary k-ordered trees, for any constant k ≥ 1.

Proposition 4.5. For all constants k, ℓ ≥ 1, there is an FOM-computable function which maps a
k-ordered tree T of size n and with ℓ node labels to a hierarchical definition (T , P ) of depth O (logn),
constant width, and with O (n/ logn) inequivalent patterns.

Proof. The idea is that one can embed T into an FOM-definable binary tree T ′ and transform

a hierarchical definition for T ′ into one for T . More precisely, an embedding of T into T ′ is an

injective function φ : V (T ) → V (T ′) such that φ maps the root of T to the root of T ′, u ⪯T v
if and only if φ (u) ⪯T ′ φ (v ) and φ preserves the depth-first order of nodes in T , see [15]. Nodes

which are not in the image of φ are labelled by a fresh symbol to distinguish them from nodes in

the image of φ. Each node v ∈ V (T ) defines the zone

V [φ (u)] \
⋃

w child of v

V [φ (w )].

The set of all zones form a partition of V (T ′). We require that the size of each zone is bounded by

a function of the maximum out-degree k , which can be done by embedding a node with r children
into a chain of at least r − 1 binary nodes.
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From Proposition 4.3 we obtain a hierarchical definition P ′ = CP(T ′) for T ′ of depth O (logn)
and width at most 5, and by Proposition 4.4 it has only O (n/ logn) inequivalent patterns. Notice
that the patterns in P ′ can intersect arbitrarily with the zones, as illustrated in Figure 6. We adapt

P ′ in such a way that every pattern is a union of zones. Since φ respects the ancestor relation and

the depth-first order, this directly yields a hierarchical definition of T (by taking the preimages

under φ).
For a pattern p ′ ∈ P ′ let Z (p ′) ⊆ V [p ′] be the union of all zones which are contained in V [p ′].

Notice that V [p ′] \ Z (p ′) has constant size (it is contained in at most two zones) and that Z (p ′)
can be written (uniquely) as a disjoint union of a constant number of maximal subpatterns of

p ′ (the constants only depend on the maximum out-degree of T and can be set to 1 + 2(k − 1)).
We denote the set of these subpatterns by S (p ′), which are framed in blue in Figure 6. Define the

set P =
⋃

p′∈P ′ S (p
′), which is clearly FO-definable from P ′. We claim that (1) P is a hierarchical

definition for T ′ of depth O (logn), (2) its width is bounded by some constant, and (3) the number

of inequivalent patterns in P is O (n/ logn).
Clearly the largest pattern is contained in P and we need to verify that P is well-nested. Observe

that for all p ′,q′ ∈ P ′ we have:

• if p ′ ≤ q′ then Z (p ′) ⊆ Z (q′), and
• if V [p ′] ∩V [q′] = ∅ then Z (p ′) ∩ Z (q′) = ∅.

Consider p ∈ S (p ′) and q ∈ S (q′). If p ′ and q′ are disjoint, then also p and q are disjoint. If p ′ ≤ q′

then p is a subpattern of some pattern r ∈ S (q′). If r = q then p ≤ q, otherwise q is disjoint from

r and therefore also from p. This concludes the proof that P is well-nested. Furthermore these

observations imply that, if p ∈ S (p ′) and q ∈ S (q′) such that p < q, then p ′ < q′. Hence the depth
of P is bounded by the depth of P ′.

Next we show that the width of P is bounded by some constant. Consider a pattern p ∈ P and let

p ′ ∈ P ′ be the minimal pattern such that p ∈ S (p ′). Let p ′
1
, . . . ,p ′m ∈ P

′
be the direct subpatterns

of p ′. Since the width of P ′ is constant,m is bounded by a constant. Moreover, also the size of the

boundary ∂p ′ is bounded by a constant. Since ∂p ′ = V [p ′] \
⋃m

i=1V [p ′i ] and Z (p
′) \
⋃m

i=1 Z (p
′
i ) only

differ by a constant number of nodes, it follows that the size of Z (p ′) \
⋃m

i=1 Z (p
′
i ) is bounded by a

constant. Note that V [p] ⊆ Z (p ′). Moreover, by the minimality of p ′, every pattern in

⋃m
i=1 S (p

′
i )

is either disjoint or properly contained in V [p]. It follows that the boundary ∂p is contained in

V [p] \
⋃m

i=1 Z (p
′
i ) ⊆ Z (p ′) \

⋃m
i=1 Z (p

′
i ). Hence, there is a constant that bounds the size of every

boundary ∂p for p ∈ P .
To show that P has bounded width, it remains to show that the number of direct subpatterns

of a pattern p ∈ P is bounded by a constant. Consider such a direct subpattern q ∈ P , i.e. q ⋖ p.
Choose q′ ∈ P ′ maximal such that q ∈ S (q′) and choose p ′ ∈ P ′ minimal such that p ∈ S (p ′). We

already know that q′ < p ′ and we claim that in fact q′ ⋖ p ′ holds. Towards a contradiction let

r ′ ∈ P ′ with q′ < r ′ < p ′. By the choice of q′ and p ′ we have p,q < S (r ′). This means that q is a

proper subpattern of some pattern r ∈ S (r ′). Since both r and p share the subpattern q, the patterns
r and p are comparable. Furthermore, since r is a subpattern of some pattern in S (p ′), we must

have r ≤ p. We conclude that q ≤ r ≤ p and q , r , p, which contradicts q ⋖ p. This proves that
the number of direct subpatterns of p is bounded by |S (p ′) | (a constant) times the number of direct

subpatterns of p ′. The latter is bounded by the width of P ′, which is a constant.

It remains to show that P hasO (n/ logn) inequivalent patterns. First, if p ′,q′ ∈ P ′ are equivalent
then there is an isomorphismψ : (T ′[p ′], P ′[p ′]) → (T ′[q′], P ′[q′]). This isomorphism induces a

bijection between S (p ′) and S (q′) which maps each pattern p ∈ S (p ′) to the isomorphic pattern

ψ (p) ∈ S (q′). Since each set S (p ′) has constant size, it suffices to show thatψ yields an isomorphism

from (T ′[p], P[p]) to (T ′[ψ (p)], P[ψ (p)]) for allp ∈ S (p ′). Recall that if r < p for a pattern r ∈ S (r ′),
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Fig. 7. Four types in which a pattern can be decomposed in a normal form hierarchical definition.

then r ′ < p ′ and thus r ′ ∈ P ′[p ′], and similarly for ψ (p). It follows that the isomorphism types

of (T ′[p], P[p]) and (T ′[ψ (p)], P[ψ (p)]) are completely determined by the isomorphism types of

(T ′[p ′], P ′[p ′]) and (T ′[q′], P ′[q′]), which are equal. □

4.4 Normal form
In a final step, we bring the computed hierarchical definition into a normal form. A hierarchical

definition (T , P ) is in normal form if for each pattern p ∈ P one of the following two cases holds:

(1) If u is the root of p, then ∂p = {u} and every direct subpattern of p is a subtree pattern (which

must be rooted in a child of u).
(2) p has exactly two direct subpatterns p1 and p2, and

V [p] is the disjoint union of V [p1] and V [p2].

Figure 7 illustrates the four types that a pattern can be decomposed into, where the first two

patterns have type 1 and the latter two have type 2.

Theorem 4.6. For all constants k, ℓ ≥ 1, there is an FOM-computable function which maps a
k-ordered tree T of size n and with ℓ node labels to a hierarchical definition (T , P ) in normal form
where P has depth O (logn) and O (n/ logn) inequivalent patterns.

Proof. Let P be the hierarchical definition from Proposition 4.5. Note that P has constant width.

For each pattern p ∈ P we introduce new subpatterns corresponding to the subtrees of its branching

tree: For each node w ∈ ∂p on the boundary, we add the maximal subpattern of p rooted in w .

Furthermore, for each direct subpattern q ⋖ p we add the maximal subpattern of p rooted in the

root of q. This ensures that the branching tree of each pattern has height at most 1. The depth of P
increases at most by a factor of its width. Now consider a context pattern (v,w ) ∈ P which has

a direct subpattern (v ′,w ) ∈ P such that v ′ is a child of v . To establish normal form it suffices to

introduce the pattern (v,v ′). In this step the depth of P increases at most by a factor of two.

Both steps are FO-computable. Finally, notice that for any two equivalent patterns we introduce

equivalent new subpatterns, therefore, the number of inequivalent patterns increases by a constant

factor. □

5 BALANCING OVER FREE TERM ALGEBRAS AND ARBITRARY ALGEBRAS
In this section, we transform the hierarchical decomposition constructed in the previous section

into a so called tree straight-line programs, or TSLPs for short. TSLPs are used as a compressed

representation of trees, see [27] for a survey. Formally, a TSLP G = (N , Σ, S, P ) consists of two
disjoint ranked alphabets N and Σ, where symbols in N are called nonterminals and have rank at

most one, a start nonterminal S ∈ N of rank zero, and a set of productions P . For each nonterminal

A ∈ N there exists exactly one production (A→ t ) ∈ P , where t ∈ T (Σ ∪ N ) if A has rank zero and

t ∈ C (Σ∪N ) ifA has rank one. Furthermore the relation {(A,B) ∈ N×N | B occurs in t where (A→
t ) ∈ P } must be acyclic. These properties ensure that the start nonterminal S derives exactly one

term t ∈ T (Σ) by applying the productions in any order, starting with S , as long as possible, see [27]
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for more details (we will give an alternative circuit based definition below). A TSLP is in normal
form if every production has one of the following forms:

• A→ f (A1, . . . ,Ar )
• A(x ) → f (A1, . . . ,Ai−1,x ,Ai+1, . . . ,Ar )
• A→ B (C )
• A(x ) → B (C (x ))

We will work here with an alternative definition of TSLPs as circuits over an extended term algebra.

Definition 5.1. Let Σ be a ranked alphabet. The two-sorted algebra A (Σ) consists of the two sorts
T (Σ) (all terms) and C (Σ) (all contexts) and the following operations:
• for all f ∈ Σ of rank r ≥ 0 the operation f : T (Σ)r → T (Σ) that maps (t1, . . . , tr ) to
f (t1, . . . , tr ),
• for all f ∈ Σ of rank r ≥ 1 and 1 ≤ i ≤ r the operation ˆfi : T (Σ)r−1 → C (Σ) with

ˆfi (t1, . . . , tr−1) = f (t1, . . . , ti−1,x , ti , . . . , tr−1),
• the substitution operation sub : C (Σ) ×T (Σ) → T (Σ) with sub(s, t ) = s (t ),
• the composition operation ◦ : C (Σ) ×C (Σ) → C (Σ) with ◦(s, t ) = s (t ).

Theorem 5.2 (universal balancing theorem). Let Σ be a fixed ranked alphabet. Given a term
t over Σ of size n, one can compute in TC

0 a normal form TSLP for t of size O (n/ logn) and depth
O (logn). The TSLP is given as a circuit over A (Σ) in EC-representation.

Proof. In TC
0
we convert t into a Σ-labelled tree T in ancestor representation (see Theorem 3.1)

and apply Theorem 4.6 to obtain a hierarchical definition (T , P ), which has depth O (logn) and
O (n/ logn) many inequivalent patterns. We can translate (T , P ) directly into a tree T ′ in ancestor

representation over the two-sorted algebra A (Σ) that evaluates to t : Patterns of rank zero (resp.,

one) are nodes of sort T (Σ) (resp., C (Σ)), and the children of a pattern are its direct subpatterns.

The pattern type (whether the pattern is a subtree pattern or a context pattern) determines the

operator of the corresponding node. The ancestor relation is FO-definable since pattern p is an

ancestor of pattern q if and only if T [q] ⊆ T [p]. From the tree T ′ we can compute in TC
0
by

Lemma 3.5 the EC-representation of the minimal dag C, which is a circuit over the structure A (Σ).
Since the number of inequivalent patterns of the hierarchical definition is O (n/ logn) and its depth

is O (logn), the circuit C has size O (n/ logn) and depth O (logn). □

The following definition can also be found in [25].

Definition 5.3. For an algebra A over Σ, the two-sorted algebra F (A) extends A by a second
sort A[x] containing all linear term functions p : A→ A. The operations of F (A) are the following:
• for all f ∈ Σ of rank r ≥ 0 the operation f A : Ar → A,
• for all f ∈ Σ of rank r ≥ 1 and and 1 ≤ i ≤ r the operation ˆfi : A

r−1 → A[x] that maps
(a1, . . . ,ar−1) ∈ A

r−1 to the linear term function f A (a1, . . . ,ai−1,x ,ai , . . . ,ar−1),
• the substitution operation sub : A[x] ×A→ A with sub(p,a) = p (b),
• the composition operation ◦ : A[x] × A[x]→ A[x] that maps (p,q) to the composition of the
mappings p and q.

From Theorem 5.2 we immediately get:

Theorem 5.4. Given a term t over A of size n, one can compute in TC
0 an equivalent circuit over

A[x] in EC-representation of size O (n/ logn) and depth O (logn).

By applying Lemma 3.4 we obtain:
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Theorem 5.5. Given a term over A of size n, one can compute in TC
0 an equivalent term over

A[x] of depth O (logn).

Theorem 5.2 and 5.4 assume that the number ℓ = |Σ| of function symbols is a constant. This is

certainly true if we work over a fixed algebra with finitely many operations and constants. On the

other hand, for many applications it is useful to allow a countably infinite set Σ of ranked symbols.

Examples are arithmetic expressions where arbitrary ring constants and/or an arbitrary number of

variables may occur.

Hence, for the further considerations we fix a countably infinite set Σ of ranked functions

symbols. We need the assumption that the rank of symbols in Σ is bounded by a constant k . In the

examples from the previous paragraph this assumption would be not crucial since ring constants

and variables would be symbols of rank zero. W.l.o.g. we can identify the elements of Σ with natural

numbers. Consider now a term t over Σ of size n. It is represented as a string where the node label

k ∈ Σ is represented by the unary string ak for some fixed symbol a. Let Σt ⊆ Σ be the set of node

labels that occur in t , and let ℓ = |Σt |. As in Section 3 (first paragraph) we can represent t by the

relational structure T = (V , (Ei )1≤i≤k , (Pa )a∈Σt ), and the notion of a hierarchical definition can be

defined as before (note that the definition of a hierarchical definition does not refer to the edge

labels). The problem with this definition is that we do no longer work with relational structures

over a fixed vocabulary, which is problematic if we want to use the FOM-framework. The crucial

observation is that the algorithm for constructing a hierarchical definition is “almost” independent

of the node labels. Only the number of node labels ℓ appears once in the proof Proposition 4.4 when

the numberm is defined asm = ⌊1/2 · log
4ℓ+4 (n) − 2⌋. We can therefore run our algorithm on the

unlabelled tree structure T0 = (V , (Ei )1≤i≤k ) with the valuem = ⌊1/2 · log
4ℓ+4 (n) − 2⌋ ∈ Θ(logℓ n)

and obtain a hierarchical definition (T , P ) of depth O (logn) in which only O (n/m) = O (n/ logℓ n)
many inequivalent patterns exist. The rest of the proof follows the arguments from the proof of

Theorem 5.2: From (T , P ) we construct in TC
0
the tree T ′ for which the EC-representation of

the minimal dag C is computed in TC
0
using Lemma 3.5. For this last step, the node labels of T ′

(which are symbols from {sub, ◦} ∪ {a, âi | a ∈ Σt , 1 ≤ i ≤ k }) are important. These node labels

can be computed easily using the labels of the original term t . Moreover, for the computation of

the minimal dag it is only important that one can check whether two nodes have the same label.

This is possible in TC
0
also in the case where the node label are not from a fixed alphabet. We have

shown the following result:

Theorem 5.6 (universal balancing theorem). Let Σ be countably infinite set of function symbols
such that the rank of symbols in Σ is bounded by a constant. Given a term t over Σ of size n which
contains ℓ different symbols from Σ, one can compute in TC

0 a normal form TSLP for t of size
O (n/ logℓ n) and depth O (logn). The TSLP is given as a circuit over A (Σ) in EC-representation.

6 APPLICATIONS
6.1 Alternative proof of a result by Krebs, Limaye and Ludwig
Recently, Krebs, Limaye and Ludwig presented a similar result to ours [25]. We will state their

result and reprove it using our balancing theorem. For an S-sorted algebraA we define the algebra

(B,A) which extends A by the Boolean sort B = {0, 1}. All operations from A are inherited to

(B,A), with the addition of the Boolean disjunction ∨, conjunction ∧ and negation ¬, and for each

sort s ∈ S a multiplexer function

mps : {0, 1} ×As ×As → As

where mps (b,d0,d1) = db . A circuit family (Cn )n≥0 of circuits over (B,A) where Cn has Boolean

input gates x1, . . . ,xn computes a function f : {0, 1}∗ → A. The class A-NC
1
denotes the class
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of functions computed by a DLOGTIME-uniform circuit family over (B,A) of constant fan-in,
polynomial size and logarithmic depth.

Theorem 6.1. For every algebra A there exists a DLOGTIME-uniform F (A)-NC1 circuit family
which computes the value of a given expression over A.

Proof. For a given input expression one can compute in TC
0 ⊆ NC

1
an equivalent logarithmic

depth expression t over F (A) by Theorem 5.5. It suffices to construct a DLOGTIME-uniform

circuit family which evaluates t . Let n = |t | and assume that the depth of t is at most d = O (logn).
Furthermore, let k be the maximal arity of an operation in F (A) (this is a constant). We can test in

TC
0
whether a given string ρ ∈ {1, . . . ,k }∗ of length at mostd is a valid address string of a path from

the root of t to some node and, if so, we can compute the node label in TC
0
. Consider the circuit

with gates of the form vρ , where ρ ∈ {1, . . . ,k }
∗
is a string of length at most d , and vρ computes

the value of the addressed node, or computes some arbitrary value if ρ is not a valid address string.

With the help of multiplexer gates and the node label information we can clearly compute vρ from

the gates vρ ·i . Clearly, the described circuit has depth O (logn) and the constructed circuit family

can be seen to be DLOGTIME-uniform. □

As shown in [25], many known results on the complexity of expression evaluation problems can

be derived from Theorem 6.1. The following list is not exhaustive:

• Buss’ theorem [9]: The expression evaluation problem for ({0, 1},∧,∨,¬, 0, 1) belongs to
DLOGTIME-uniform NC

1
.

• More generally, for every fixed finite algebra A the expression evaluation problem belongs

to DLOGTIME-uniform NC
1
[26].

• Expression evaluation for the semirings (N,+, ·, 0, 1) (resp., (Z,+, ·, 0, 1)) belongs to #NC
1

(resp., GapNC
1
) [8].

6.2 Regular expressions and semirings
It has been shown in [20, Theorem 6] that from a given regular expression of size n one can obtain

an equivalent regular expression of star height O (logn). Here, we strengthen this result in several

directions: (i) the resulting regular expression (viewed as a tree) has depth O (logn) (and not only

star height O (logn)), (ii) it can be represented by a circuit with only O (n/ logn) nodes, and the

construction can be carried out in TC
0
(or, alternatively in linear time if we use [16]).

For a finite alphabet Σ, let Reg(Σ) be the set of regular languages over Σ. It forms an algebra

with the constants a ∈ Σ, ∅ and {ε }, the unary operator
∗
and the binary operations union + and

concatenation ·. It is also known as the free Kleene algebra.

Theorem 6.2. Given a regular expression t over Σ, one can compute in TC
0 an equivalent circuit

over Reg(Σ) in EC-representation of size O (n/ logn) and depth O (logn).

Proof. Let R = Reg(Σ). We claim the following for any context t ∈ C (R ). If the parameter x is

not below any ∗-operator, then the linear term function tR has the form

tR (x ) = axb + c for some a,b, c ∈ R, (2)

otherwise it has the form

tR (x ) = α (axb + c )∗γ + δ for some a,b, c,α ,γ ,δ ∈ R . (3)

The linear term functions (2) and (3) are closed under union and left/right concatenation with

constants from R. If a term function is of the form (2) then its star is of the form (3). The only
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non-trivial part is to prove that the set of term functions of type (3) are closed under ∗ (this shows

then also closure under composition). Let β = axb + c and p (x ) = αβ∗γ + δ . We claim that

p (x )∗ = (αβ∗γ + δ )∗
(†)
= δ ∗α (β + γδ ∗α )∗γδ ∗ + δ ∗ = δ ∗α (axb + c + γδ ∗α )∗γδ ∗ + δ ∗.

Note that this expression is indeed of the form (3). To verify the identity (†), one should consider

α , β,γ and δ as letters. The inclusion δ ∗α (β + γδ ∗α )∗γδ ∗ + δ ∗ ⊆ (αβ∗γ + δ )∗ is obvious. For the
other inclusion, one considers a wordw ∈ (αβ∗γ + δ )∗. We show thatw ∈ δ ∗α (β +γδ ∗α )∗γδ ∗ + δ ∗.
The case that w ∈ δ ∗ is clear. Otherwise, w contains at least one occurrence of α and γ , and
we can factorize w uniquely as w = w0αw1γw2, where w0,w2 ∈ δ ∗. Moreover, we must have

w1 ∈ (β + γδ ∗α )∗, which shows thatw ∈ δ ∗α (β + γδ ∗α )∗γδ ∗.
Note that a term function of type (2) (resp., (3)) can be represented by the three (resp., six)

elements a,b, c ∈ R (resp., a,b, c,α ,γ ,δ ∈ R).
By Theorem 5.4 we compute from the input regular expression t in TC

0
an equivalent circuit

C over R[x] in EC-representation. We partition V (C) into three sets: the set V0 of nodes which
evaluate to elements in R , the setV1 of nodes that evaluate to a linear term function of type (2), and

the set of nodes that evaluate to a linear term function of type (3). The distinction between nodes

that evaluate to elements of R and nodes that evaluate to elements of R[x] is directly displayed

by the node label. Furthermore, if a node u ∈ V has a descendant v ∈ V labelled by ∗̂ such that all

nodes on the path from u to v are labelled by ◦, except from v itself, then u belongs toV2, otherwise
to V1. This allows to define V0, V1, and V2 in FO using the EC-representation of the circuit.

Using a guarded transduction we keep every node in V0, replace every node in V1 by 3 nodes

(which compute the three regular languages a,b, c in (2)) and replace every node in V2 by 6 nodes

(which compute the six regular languages a,b, c,α ,γ ,δ in (2)). Moreover, we can define the wires

accordingly.

Let us consider one specific case (themost difficult one) for the definition of thewires. Assume that

A = A1◦A2 whereA1,A2,A ∈ V2,Ai is replaced by the six nodesai ,bi , ci ,αi ,γi ,δi andAwas replaced

by the six nodes a,b, c,α ,γ ,δ . Then Ai computes the term function ti (x ) = α (aixbi + ci )
∗γi + δi

and A has to compute the composition

t (x ) = t2 (t1 (x )) = α2 (a2[α1 (a1xb1 + c1)
∗γ1 + δ1]b2 + c2)

∗γ2 + δ2

= α2 ( a2α1︸︷︷︸
α ′

( a1xb1 + c1︸      ︷︷      ︸
β ′

)∗ γ1b2︸︷︷︸
γ

+ a2δ1b2 + c2︸       ︷︷       ︸
δ ′

)∗ γ2 + δ2

Using the above identity (†), the expression in the last line becomes equivalent to

α2 (δ
′∗α ′(β ′ + γ ′δ ′∗α ′)∗γ ′δ ′∗ + δ ′∗) γ2 + δ2

= α2δ
′∗α ′(β ′ + γ ′δ ′∗α ′)∗γ ′δ ′∗γ2 + α2δ

′∗γ2 + δ2

= α2δ
′∗α ′︸  ︷︷  ︸
α

(a1xb1 + c1 + γ
′δ ′∗α ′︸        ︷︷        ︸
c

)∗ γ ′δ ′∗γ2︸  ︷︷  ︸
γ

+α2δ
′∗γ2 + δ2︸         ︷︷         ︸
δ

.

Hence, we can define a = a1, b = b1 (these are copy gates) and c,α ,γ , and δ as shown above. For

the latter, we have to introduce a constant number of additional gates to built up the above terms

for c,α ,γ , and δ . For instance, we have

α = α2δ
′∗α ′ = α2 (a2δ1b2 + c2)

∗α2α1,

and we need seven more gates to built up this expression from α1,α1,δ1,a2,b2, c2. These seven
gates are also produced by the guarded transduction. From Lemma 3.8 we obtain the desired circuit

over R. □
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A semiring R = (R,+, ·) is a structure with two associative binary operations + and ·, such that

a · (b + c ) = a ·b +a · c and (a +b) · c = a · c +b · c for all a,b, c ∈ R. Notice that we do not require a
semiring to have a zero- or a one-element. Using the same strategy as in the proof of Theorem 6.2

one can show the following result:

Theorem 6.3. Let R be a semiring. Given an expression t over R, one can compute in TC
0 an

equivalent circuit over R in EC-representation of size O (n/ logn) and depth O (logn).

Proof. For a semiring R one has to observe that every linear term function tR can be written

as tR (x ) = axb + c for semiring elements a,b, c ∈ R where any of the elements a,b, c can also be

missing. In other words, the right-hand side of tR (x ) can be of one of the following 8 forms for

a,b, c ∈ R: a · x · b + c , a · x · b, a · x + c , x · b + c , a · x , x · b, x + c , x . By Theorem 5.4 we compute

from the input semiring expression t in TC
0
an equivalent circuit C over R[x] in EC-representation.

We partition V (C) into V (C) = V0 ∪ V1 ∪ · · · ∪ V8 where V0 contains all gates which evaluate

to a semiring element and V1 ∪ · · · ∪ V8 contain gates which evaluate to a linear term function,

grouped by the 8 possible types listed above. It is easy to see that the sets Vi are FO-definable
using the EC-representation of C. For example, a gate v carries an a-coefficient, i.e. it computes a

term function of the form a · x , a · x · b, a · x + c or a · x · b + c , if and only if there exists a path

v = v1,v2, . . . ,vm such all nodes v1, . . . ,vm−1 are labelled by the binary F (R )-operation ◦ and vm
is labelled by the unary F (R )-operation ·̂2 that maps a ∈ R to the linear term function a · x . This
allows to carry over the arguments from the proof of Theorem 6.2. □

7 FUTUREWORK
An interesting problem in connection with Theorem 5.4 is to determine other classes of algebras

A which admit TC
0
-tree balancing algorithms. For this, one has to show that circuits over the

algebra A[x] can be transformed without depth increase into equivalent circuits over the algebra

A. For semirings and Kleene algebras (i.e., regular expressions) this is possible. Are there other

nice classes of algebras that allow such a reduction?
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