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Abstract. In this paper the computational complexity of the (bi)simulation problem
over restricted graph classes is studied. For trees given as pointer structures or terms the
(bi)simulation problem is complete for logarithmic space or NC1, respectively. This solves
an open problem from Balcázar, Gabarró, and Sántha. Furthermore, if only one of the
input graphs is required to be a tree, the bisimulation (simulation) problem is contained
in AC1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete
already for graphs of bounded path-width.

1. Introduction

Courcelle’s theorem states that every problem definable in monadic second-order logic (MSO)
is solvable in linear time on graphs of bounded tree-width. In recent works by Elberfeld,
Jakoby, and Tantau, techniques have been developed to transfer this famous result to low
space and circuit complexity classes [EJT10, EJT12]. In particular, the following logspace
(resp., NC1) version of Courcelle’s theorem was shown (see Section 2 for the necessary
definitions):

Theorem 1.1 ([EJT10, EJT12]). For a fixed MSO-sentence ψ and a fixed constant k one
can check in logspace whether a given structure A of tree-width at most k satisfies ψ. If a
tree decomposition of A of width k is given in term representation, then one can check in
DLOGTIME-uniform NC1 whether A satisfies ψ.

This result is a very powerful metatheorem, which can be applied to many computational
problems. On the other hand, there are important problems solvable in logspace on graphs
of bounded tree-width that are not covered by Theorem 1.1. One example is the graph
isomorphism problem. Graph isomorphism is not MSO-definable even over finite paths since
two finite paths are isomorphic if they have the same length, but one cannot express in MSO
that two finite sets have the same size. Lindell [Lin92] has shown that isomorphism of trees
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is in logspace, and only very recently Elberfeld and Schweitzer [ES16] extended this result
to graphs of bounded tree-width.

In this paper, we are concerned with the complexity of simulation and bisimulation,
which are of fundamental importance in the theory of reactive systems, see e.g. [AI07] for
more background. It is known that on finite state systems simulation and bisimulation are
both P-complete [BGS92], and hence have no efficient parallel algorithm unless P = NC.
Surprisingly, no results on the complexity of (bi)simulation on natural subclasses of finite
state systems are known (whereas there exists an extensive literature on (bi)simulation
problems for various classes of infinite state systems, like pushdown systems or Petri nets).
The authors of [BGS92] pose this open question and suggest to consider the bisimulation
problem on trees. The above remark that tree isomorphism cannot be expressed in MSO
applies to bisimulation on trees as well (two finite paths are bisimilar if and only if they
are isomorphic). Moreover, it is not clear, whether there is a natural reduction of the
bisimulation problem on trees to the logspace-solvable isomorphism problem for trees (or
even bounded tree-width graphs).

In this paper, we determine the complexity of the bisimulation problem and simulation
problem on several subclasses of finite state systems. More precisely, we show the following
results; see also Table 1.

(1) On trees the (bi)simulation problem is complete for logarithmic space (resp., NC1) if the
trees are given as pointer structures (resp., in term representation).

(2) The bisimulation problem between a tree and a dag (or arbitrary graph) belongs to AC1

and is NL-hard.
(3) The simulation problem is P-hard (and hence P-complete) already for graphs of bounded

path-width.
(4) Simulation of a tree by a dag as well as simulation of a dag by a tree is LogCFL-complete.

Whether the bisimulation problem on graphs of bounded tree-width is in NC remains open.
We prove our results for the bisimulation problem for trees (statement (1) above) by

a reduction to the evaluation problem for a new class of Boolean circuits that we call
tree-shaped circuits. These are circuits that are composed in a tree-like fashion of smaller
subcircuits. We define the width of such a circuit as the maximal number of different paths
from the root to an input in one of the above mentioned subcircuits. The main technical
contributions of this paper are logspace- and NC1-evaluation algorithms (depending on the
input representation) for tree-shaped circuits of bounded width. These circuits should not
be confused with circuits of bounded tree-width, which are known to have logspace- and
NC1-evaluation algorithms (depending on the representation) by the above Theorem 1.1.
We show how to partially unfold tree-shaped circuits of bounded width into circuits of
bounded tree-width. This unfolding is possible in TC0 (assuming the right representation
of the circuit). Finally, the resulting bounded tree-width circuit can be evaluated using
Theorem 1.1. For the above logspace result we actually prove a stronger statement: A given
tree-shaped circuit of size N and width m can be evaluated in space O(logN · logm).

One should also mention the paper [GGHL12], where a logic LREG (which extends
classical first-order logic) is introduced. It is shown that LREG captures logspace on directed
trees. Hence, bisimulation for trees is expressible in LREG. Due to the very technical
definition of LREG we think that it is not easier to express the bisimulation problem in LREG
than giving a direct logspace algorithm. Moreover expressibility in LREG does not imply
that bisimulation for trees in term representation is in NC1.

A conference version of this paper appeared in [GGL16].
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trees
(term rep.)

trees
(pointer rep.)

tree,
graph

bounded
path-width

general
graphs

bisimulation
NC1-compl. L-compl.

in AC1, NL-hard in P, L-hard

simulation LogCFL-compl. P-compl.

Table 1. Parallel complexity of the (bi)simulation problem on restricted
classes of finite graphs.

2. Preliminaries

2.1. Graphs and trees. A (directed) graph G = (V,E) consists of a set of nodes V and a
set of edges E(G) = E ⊆ V × V . If (u, v) ∈ E, we call v a successor of u. A path (of length
n ≥ 0 from v0 to vn) in G is a node sequence v0, v1, . . . , vn such that (vi, vi+1) ∈ E for all
0 ≤ i < n. A graph is acyclic if there is no path of length ≥ 1 from a node to itself. We say
that two nodes u, v ∈ V are connected if there exists a path from u to v in the underlying
undirected graph (V,E ∪ {(v, u) | (u, v) ∈ E}). A set of nodes U ⊆ V is connected if any
two nodes in U are connected.

A graph T is a (rooted) tree if there exists a node r ∈ V (T ), called the root of T , such
that for all v ∈ V (T ) there exists exactly one path from r to v. The size |u| of a node u in a
tree is the size of the subtree rooted in u. The depth of a node u, denoted by depth(u), is
the length of the unique path from the root to u. A node u is an ancestor (resp., proper
ancestor) of v, briefly u � v (resp., u ≺ v), if there exists a path (resp., a path of length ≥ 1)
in T from u to v.

A node-labelled graph (V,E, β) is a graph (V,E) together with a labelling function
β : V → A into a finite set A. An edge-labelled graph (V,E) consists of a set of nodes

V and an labelled edge relation E ⊆ V × A × ×V . We also write u
a−→ v instead of

(u, a, v) ∈ E. Unlabelled graphs are also regarded as labelled graphs over a singleton label
set. An edge-labelled tree is an edge-labelled graph (V,E) where the sets Ea are pairwise
disjoint for a ∈ A and (V,

⋃
a∈AEa) is a rooted tree.

We denote by Graphs, Unlabelled-Graphs, Trees and Unlabelled-Trees the classes of
(unlabelled) graphs and (unlabelled) trees, respectively.

2.2. Circuits. A (Boolean) circuit C = (G, β) is a node-labelled graph, where G is acyclic
and β : V (G)→ {x1, . . . , xn, 0, 1,¬,∧,∨} for some n. Nodes of C are usually called gates.
Gates labelled by 0, 1 (constant gates) or by a variable xi (input gates) have no successors.
Gates labelled by ∧ or ∨ have at least one successor, and gates labelled by ¬ have exactly
one successor. A variable-free circuit is a circuit without input gates. In a variable-free
circuit every gate can be evaluated to either 0 or 1. The question, whether a given gate of a
given variable-free circuit evaluates to 1 is known as the circuit value problem. It is one of
the classical P-complete problems, see [GHR95] for more details.
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2.3. Computational complexity. In this paper we will work with the following complexity
classes:

AC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC ⊆ P,

In the following we briefly define these classe. Of course, P denotes deterministic polynomial
time. A function f : Σ∗ → Γ∗ is logspace-computable if it can be computed on a deterministic
Turing-machine with a read-only input tape, a write-only output tape and a working tape
whose length is bounded logarithmically in the input length; such a machine is also called
a logspace transducer. We denote by L the class of languages which can be decided in
logspace, i.e., for which the characteristic function is logspace-computable. Throughout
the paper we will use implicitly that compositions of logspace-computable functions are
logspace-computable again. The class NL is the set of languages that can be decided by
nondeterministic Turing machine in logarithmic space. It is closed under complement by the
famous theorem of Immerman-Szelepcsényi [Imm88, Sze88].

The complexity class NCi (i ≥ 0) contains all languages L ⊆ {0, 1}∗ such that there
exists a circuit family (Cn)n∈N where

(1) Cn has the input gates {x1, . . . , xn,¬x1, . . . ,¬xn}, ∧-gates and ∨-gates of fan-in two,
and a distinguished output gate,

(2) Cn has size nO(1) and depth O((log n)i),
(3) and Cn accepts x ∈ {0, 1}n if and only if x ∈ L.

If we allow in (1) ∧-gates and ∨-gates of unbounded fan-in, we obtain the class ACi. If we
allow in (1) ∧-gates, ∨-gates and majority-gates – all of unbounded fan-in – then we obtain the
class ACi. Finally, the class SACi is obtained by taking ∧-gates of fan-in two and unbounded
fan-in ∨-gates in (1). One can easily show that NCi ⊆ SACi ⊆ ACi ⊆ TCi ⊆ NCi+1 for all
i ≥ 0. For the classes above (and inclusively) SAC1, we assume logspace uniformity, which
means that there is a logspace transducer that computes from the unary enoding of the
number n the n-th circuit Cn. For the classes AC0, TC0 and NC1 (we do not have to deal
with NC0) logspace uniformity is too week. For these classes one usually imposes the stronger
DLOGTIME-uniformity condition on the circuit families. For the constant depth classes AC0

and TC0, DLOGTIME-uniformity means that for given binary coded gate numbers u, v of
the n-th ciruit Cn, one can (i) compute the type of gate u in time O(log n) and (ii) check in
time O(log n) whether u is an input gate for v. Since Cn has polynomially many gates, the
gates of Cn can be encoded by bit strings of length O(log n). Thus the time bound O(log n)
is linear in the input length |u|+ |v|. To define DLOGTIME-uniformity for NC1-circuits one
needs the so-called extended connection language. We do not have to go into details (which
can be found in [BIS90, Ruz81, Vol99]), since we will not work with uniformity explicitly.
The union of all classes NCi is denoted by NC.

The definitions of the above circuit complexity classes can be easily extended to functions
I : {0, 1}∗ → {0, 1}∗ by considering circuits with several output gates. The main complexity
class used in this paper is DLOGTIME-uniform TC0. It can be seen as the extension of
AC0 by the ability of counting. Typical problems in TC0 are the computation of the sum,
product and integer quotient of two binary encoded integers, and the sum and product of
an arbitrary number of binary encoded integers [HAB02].

The class LogCFL contains all languages L ⊆ {0, 1}∗ which are logspace-reducible to
a fixed context-free language. It coincides with logspace-uniform SAC1 [Ven91]. Another
characterizations uses alternating logspace Turing machines with polynomial proof trees.
Recall that an alternating Turing machine is a Turing machine where the set of states is
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partitioned into existential states and universal states. A configuration where the current
state is universal (resp., existential) is called a universal (resp., existential) configuration. A
universal (resp., existential) configuration is accepting if and only if there exists an accepting
successor configuration (resp., if all successor configurations are accepting). In particular, a
universal configuration that has no successor configurations is accepting. It is well known that
P is the class of languages that are accepted by alternating Turing machines in logarithmic
space. To get the subclass LogCFL one has to require that there exists a polynomial p(n)
such that for every accepted input word w of length n there exists a proof tree of size at
most p(n). A proof tree of an alternating Turing machine for input w is a finite tree where
the nodes are labeled with configurations and such that the following conditions hold:

• The root is labeled with the initial configuration for input w.
• If a node v is labeled with an existential configuration c, then v has exactly one child that

is labeled with a successor configuration of c.
• If a node v is labeled with a universal configuration c, then v has exactly one child v′ for

each successor configuration c′ of c, and v′ is labeled with c′.

Ruzzo [Ruz80] proved that LogCFL coincides with the class of languages that can be accepted
by an alternating Turing machine in logarithmic space and such that for every accepted
input there exists a polynomial size proof tree. It was shown by Borodin et al. that LogCFL
is closed under complement [BCD+89].

For more details on space and circuit complexity we refer to [Vol99].

2.4. Tree representations. The complexity of tree problems often depends on how the
trees are represented. Firstly, trees can be given as pointer structures where the edge relation
is given explicitly as a list of pairs consisting of two node names, which is the standard
encoding of graphs in general. Secondly, trees can be given in term representation (or bracket
representation): The string () represents a tree of size 1. If a tree T has a root and direct
subtrees T1, . . . , Tn which have term representations r1, . . . , rn, then the string (r1 · · · rn) is a
term representation of T . Notice that a tree can have multiple term representations. Thirdly,
trees can be represented in ancestor representation where we specify a list of all pairs (u, v)
where u is an ancestor of v. Elberfeld et al. showed that term and ancestor representations
can be converted into each other in TC0 [EJT12]. This is useful since operating on ancestor
representations of trees is technically easier than on term representations.

To represent node-labelled trees (e.g., tree decompositions), in the pointer and ancestor
representation we append a list of pairs consisting of a node name and a node label. In the
term representation node labelled trees can be encoded by introducing for each label a an
opening bracket symbol (a. For instance, (a(b)(a)) encodes a tree with an a-labelled root
and two children which are labelled by b and a. If the set of node labels is not fixed (this is
the case for tree decompositions) we choose an arbitrary binary block code for the opening
brackets (a. To represent an edge-labelled tree we transform it into a node-labelled tree, e.g.
by assigning the label of an edge (u, v) to its end point v and labelling the root by a special
symbol. Let us finally mention that these coding details for labelled trees are only relevant
for our NC1 lower bound in Section 3.1.4, which refers to AC0-reductions. The reason is that
different codings of labelled trees in term representation can be transformed in TC0, but not
necessarily in AC0, into each other.
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2.5. Tree-width and path-width. A tree decomposition (T, β) of a directed graph G

consists of a tree T and a function β : V (T )→ 2V (G) which assigns to each node of T a so
called bag such that

• for all v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} is non-empty and connected, and
• for all (u, v) ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ β(t).

The width of (T, β) is maxt∈V (T ) |β(t)| − 1 and the tree-width of a graph G is the minimum
width over all tree decompositions of G. A tree decomposition (T, β) is a path decomposition
if T is a path. The path-width of a graph G is the minimum width of all path decompositions
of G. Tree-width and path-width are also defined for node- and edge-labelled graphs via
their underlying unlabelled graph. More background on the notions of tree- and path-width
can be found for instance in [DF13].

2.6. Bisimulation and simulation.

Definition 2.1. A bisimulation on an edge-labelled graph (V,E) is a binary relation
R ⊆ V × V such that for all (u, v) ∈ R the following conditions hold:

(1) For all u
a−→ u′ there exists v

a−→ v′ such that (u′, v′) ∈ R.

(2) For all v
a−→ v′ there exists u

a−→ u′ such that (u′, v′) ∈ R.

A relation R that only satisfies condition 1 for all (u, v) ∈ R is called a simulation. A
(bi)simulation on two edge-labelled graphs is a (bi)simulation on their disjoint union. Two
nodes u, v are called bisimilar if there exists a bisimulation R such that (u, v) ∈ R. We say
that u is simulated by v if there exists a simulation R such that (u, v) ∈ R.

It is easy to see that the union of all bisimulations on a graph G is a bisimulation again
and an equivalence relation, called the bisimulation equivalence ∼G, or simply ∼ if G is
clear from the context. Similarly, the union of all simulations on a graph is a simulation
again and a preorder, called the simulation preorder vG, or simply v if G is clear from the
context. If u belongs to a graph G and v belongs to a graph H 6= G, we write u v v (resp.,
u ∼ v) if u vG]H v (resp., u ∼G]H v), where G ]H is the disjoint union of G and H. Note
that in general u ∼ v is not equivalent to u v v v u. For two graph classes C1, C2 we define
the bisimulation problem and the simulation problem:

Bisim(C1, C2)

Given: Two graphs G1 ∈ C1, G2 ∈ C2 and two nodes v1 ∈ V (G1), v2 ∈ V (G2)

Question: Are v1 and v2 bisimilar?

Sim(C1, C2)

Given: Two graphs G1 ∈ C1, G2 ∈ C2 and two nodes v1 ∈ V (G1), v2 ∈ V (G2)

Question: Is v1 simulated by v2?

Note that Bisim(C1, C2) and Bisim(C2, C1) are equivalent, since bisimulation is symmetric,
but this is not the case for simulation. If C1 = C2 then we just write Bisim(C1) or Sim(C1).
It is known that on a finite edge-labelled graph G = (V,E) bisimulation equivalence and
simulation preorder can be computed as a fixed point as follows. First we set u ∼0 v for all
u, v ∈ V . Inductively, we define u ∼k+1 v if

• for all u
a−→ u′ there exists v

a−→ v′ such that u′ ∼k v′, and

• for all v
a−→ v′ there exists u

a−→ u′ such that u′ ∼k v′.
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One easily sees that ∼i⊇∼i+1 for all i ∈ N. Hence there exists n ∈ N such that ∼n =∼n+i

for all i ∈ N and ∼n coincides with bisimulation equivalence ∼. Using the approximants
above the bisimulation equivalence can be decided on finite graphs in polynomial time by a
partition refinement algorithm [KS90]. The fastest known algorithm is due to Paige and
Tarjan, which runs in time O(m log n) where m is the number of edges and n is the number
of nodes [PT87]. The simulation problem on finite graphs is also decidable in polynomial
time by a refinement algorithm [CS01]. Similar as above, one defines preorders vi such that
vn =v for some n ∈ N. It is known that both problems are P-hard [BGS92, SJ05, Srb01],
and therefore:

Theorem 2.2 ([BGS92, SJ05]). Bisim(Graphs) and Sim(Graphs) are P-complete. For both
problems P-hardness already holds for dags.

3. Complexity of bisimulation

3.1. Bisimulation on trees. In this section we consider the bisimulation problem on
edge-labelled trees. Here we have two versions, depending on whether the trees are given as
pointer structures or in term representation. If the trees are given in term representation
then the nodes can be specified by numbers which refer to an opening bracket in the term.
Clearly, we can restrict ourselves to the problem whether the roots of the two input trees
are bisimilar, since one can compute subtrees rooted in a given node in the pointer (term)
representation in logspace (TC0).

Theorem 3.1. Bisim(Trees) is in L if the trees are given as pointer structures.

Theorem 3.2. Bisim(Trees) is in NC1 if the trees are given in term representation.

We remark that the same complexity bounds hold for the tree isomorphism problem
[Bus97, JKMT03, Lin92].

3.1.1. Tree-shaped Boolean circuits. Bisimilarity between two edge-labelled trees T1 and T2

can be expressed as a Boolean circuit C∼(T1, T2): For all u ∈ V (T1), v ∈ V (T2) such that
depth(u) = depth(v) the circuit contains a gate xu,v, which evaluates to true if and only if
u is bisimilar to v. We define

xu,v =
∧

u
a−→u′

∨
v

a−→v′

xu′,v′ ∧
∧

v
a−→v′

∨
u

a−→u′

xu′,v′ . (3.1)

As usual we regard an empty conjunction (resp., disjunction) as 1 (resp., 0). In particular, if
both u and v are leaves, then xu,v = 1, and if exactly one of u and v is a leaf, then xu,v = 0.
An example circuit is shown in Figure 1, where T1 and T2 are unlabelled. Note that the
circuit is composed in a tree-shaped form from smaller circuits. These smaller circuits
correspond to the definition in (3.1) and have the crucial property that there exist exactly
two paths from the root to an arbitrary leaf, which are highlighted in one subcircuit in
Figure 1. This is the case because each gate variable xu′,v′ occurs once in the first conjunction
and once in the second conjunction in (3.1). In fact, we will show that circuits with such a
path property can be evaluated in logspace.
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∧

∨∨ ∨ ∨

∧ 0 ∧ 0

∨∨ ∨

1 1

∨∨ ∨

1 1

Figure 1. Two trees T1, T2 and the tree-shaped circuit C∼(T1, T2) for bisim-
ulation equivalence.

x1

x3x2 x4

x5 x6 x7 x8 x9 x10

Figure 2. A tree-shaped circuit S where the underlying tree TS is drawn in
green.

We use a more syntactic definition of such circuits: A tree-shaped circuit is a sequence
of Boolean equations S = (xi = ϕi)1≤i≤n where ϕ1, . . . , ϕn are Boolean formulas over the
variables x1, . . . , xn such that the graph

TS = ({x1, . . . , xn}, {(xi, xj) | xj occurs in ϕi}) (3.2)

is a tree with root x1. This implies that there are no cyclic definitions in S and that no
variable xk appears in two distinct formulas ϕi and ϕj (i 6= j). The size of S is defined as
the sum of the sizes of all formulas ϕi. The width of S is defined as the maximal number
of occurrences of a variable xj in a formula ϕi. An example of a tree-shaped circuit of
width two is given by the formulas (3.1) for bisimulation. We can view S as an ordinary
Boolean circuit by taking the disjoint union of the formula trees of the ϕi and then merging
all xi-labelled leaves with the root of the formula tree of ϕi. For example, the tree-shaped
circuit C∼(T1, T2) for bisimulation equivalence can be regarded as a tree-shaped circuit of
width 2, which can be computed in logspace from T1 and T2. The main goal of this section
is to show that the circuit value problem restricted to tree-shaped circuits of bounded width
belongs to logspace.

It is interesting to compare tree-shaped circuits of constant width with a class of circuits
that is presented in [GGHL12, page 5]. For the latter, the authors require that for every
path in the circuit the product of the fan-outs (i.e., indegrees, since we direct circuits towards
the input gates) of the gates on the path is bounded polynomially by the circuit size. It is
shown that circuits with this property can be evaluated in logspace. Note that tree-shaped
circuits of constant width do not have this path property from [GGHL12]. On the other
hand, the circuits from [GGHL12] can have nodes with large fan-out, which is not possible
for tree-shaped circuits of constant width. Hence, the two circuit classes are incomparable.
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Note that a variable-free Boolean circuit can be represented by a relational structure
with a binary edge relation and unary relations for the labels 0, 1, ¬, ∧, ∨. Moreover, there
is a formula of monadic-second order logic (MSO) expressing that a variable-free Boolean
circuit evaluates to 1. As a consequence, by Theorem 1.1, we can evaluate variable-free
Boolean circuits of tree-width at most k in logspace for every fixed k. Moreover, the
complexity can be improved to NC1 if we also provide for the input circuit a bounded width
tree decomposition in term representation. For this one stores a tree decomposition (T, β)
by an expression for the node-labelled tree T , where every node t ∈ V (T ) is labelled by the
bag β(t). Note that β(t) is a set of gates of the circuit, and these gates are stored by their
addresses. To sum up, we have:

Theorem 3.3 ([EJT10, EJT12]). For every fixed k ∈ N, the circuit value problem restricted
to circuits of tree-width at most k can be solved in logspace. If in addition to the input circuit
C a width-k tree decomposition of C in term representation is given, then the circuit value
problem can be solved in NC1.

However, we cannot directly apply Theorem 3.3 to tree-shaped circuits since neither
their tree-width nor clique-width is bounded by the following lemma. Clique-width is another
graph measure defined by so called k-expressions, see e.g. [KLM09] for a survey. It is easy to
see that Theorem 3.3 can be generalized to circuits of clique-width k, provided a k-expression
for the circuit is part of the input.

Lemma 3.4. For n ≥ 1, let Tn be the tree of size n+1 whose root has exactly n children. The
set of circuits {C∼(Tn, Tn) | n ≥ 1} has unbounded tree-width and unbounded clique-width.

Proof. The underlying undirected graph of C∼(Tn, Tn) contains the complete bipartite graph
Kn,n as a (topological) minor. This can be seen by removing the output gate and dissolving
all constant gates (dissolving a node of degree 2 means deleting it and connecting its two
neighbors. Figure 3 shows an example for n = 3. Since the tree-width of Kn,n is n and the
tree-width of every minor of a graph G is bounded by the tree-width of G, it follows that
the tree-width of C∼(Tn, Tn) is at least n.

It is known that a set of graphs which has bounded clique-width and for which there
exist only finitely many n such that the bipartite graph Kn,n is contained as a subgraph
(not only minor) also has bounded tree-width [GW00]. We claim that for each n ≥ 1 the
undirected graph of C∼(Tn, Tn) does not contain K3,3 as a subgraph, which implies that
{C∼(Tn, Tn) | n ≥ 1} also has unbounded clique-width (note that C∼(Tn, Tn) contains a
K2,2, i.e., a cycle on four nodes). Note that in C∼(Tn, Tn) for every simple path of four
nodes, one of the four nodes has degree 2 (these are the gates in the middle layer of Figure
3). But this is not possible in a K3,3.

3.1.2. Evaluating tree-shaped circuits given in pointer representation. Before we show how
to evaluate tree-shaped circuits of bounded width in logspace, we introduce some notions.
Recall that the size of the subtree rooted in a node u is denoted by |u|. We say that a node
u is heavy if for all siblings v of u we either have (i) |u| > |v| or (ii) |u| = |v| and u < v
(where < denotes some fixed order on the nodes of the tree). Otherwise a node is called
light. Notice that the root is heavy and that every inner node has exactly one heavy child.
We can compute in logspace for each node its size and determine whether it is heavy. Note
that every path in a tree contains at most O(log n) light nodes.
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Figure 3. The circuit C∼(T3, T3) for bisimulation equivalence. Removing
the output gate on the left and dissolving the constant gates in the middle
layer shows that K3,3 is a minor of C∼(T3, T3).

By the following result, tree-shaped circuits of bounded width can be evaluated in
logspace (take m = O(1)). Also note that a tree-shaped circuit of width m = 1 is a tree and
therefore can be evaluated in logspace.

Theorem 3.5. A given tree-shaped circuit S = (xi = ϕi)1≤i≤n of width m ≥ 2 can be
evaluated in space O(log s+ log n · logm), where s = max{|ϕi| | 1 ≤ i ≤ n} is the maximal
size of one of the formulas ϕi. In particular, for every fixed m ∈ N, there is a logspace
algorithm which evaluates a given tree-shaped circuit of width at most m.

Proof. Let S = (xi = ϕi)1≤i≤n be a tree-shaped circuit of width m and let s = max{|ϕi| |
1 ≤ i ≤ n}. Recall the definition of the tree TS with node set {x1, . . . , xn} from (3.2).

First of all, we label every node xi of TS by (i) the size |xi| of the subtree rooted in xi
and (ii) a single bit indicating whether xi is a heavy node of TS . This information can be
computed in space O(log n) by traversing for each node xi the subtree of TS rooted in xi in
depth-first order and counting the number of nodes in binary representation.

The circuit S is evaluated in a recursive way using a pointer to one of the nodes x1, . . . , xn
(which needs space O(log n)) and a stack of height O(log n · logm) as follows. Initially the
pointer is set to the root x1. Assume that xk is the heavy child of x1 in TS . Then, the
pointer is moved to xk without writing anything on the stack. Next, the subcircuit rooted
at xk is evaluated recursively. By induction, space O(log s+ log n · logm) is used for this.
Once the algorithm returns from the recursion the pointer is back on xk and one can release
the space. The value of xk is stored on the stack, which now contains a single bit. Note that
the algorithm knows (using the labeling computed before) that xk is the heavy child of its
parent node x1. This information now triggers the evaluation of the Boolean formula ϕ1.
This is done by the standard evaluation algorithm that traverses the Boolean formula tree in
depth-first order and stores (i) a pointer to the current node of ϕ1 (this pointer needs space
O(log |ϕ1|) and (ii) a constant number of additional bits, indicating the current direction
of the traversal (up or down), and the value of the current node in case we move upwards.
Each time, this depth-first traversal of ϕ1 arrives at a leaf node, the following is done:

• If the leaf is labelled with the variable xk (the heavy child of x1 in TS), then the value of
xk is retrieved from the stack and the algorithm continues the evaluation of ϕ1.
• If the leaf is a light child labelled with the variable xi 6= xk, then let 1 ≤ c ≤ m such that

the leaf corresponds to the c-th occurrence of xi in ϕ1. The algorithm stores c on the
stack (which needs space O(logm)) and continues recursively with the evaluation of the
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subcircuit rooted at xi. Once it comes back from the recursion, the pointer is back on xi.
The algorithm sees that xi is a light child of x1. Using this information and the number c
stored on the stack, it continues the evaluation of ϕ1 at the right position in ϕ1.

Note that in the second case, we have |xi| ≤ |x1|/2. This implies that the number of bits
stored on the stack is bounded by O(log n · logm). The total space consumption is therefore
O(log n+ log s+ log n · logm) = O(log s+ log n · logm) (since we assume m ≥ 2).

Note that we do not assume m to be a constant in Theorem 3.5. In particular, since k,
n, and m are all bounded by the size of the tree-shaped circuit (which is the sum of the
sizes of the formulas ϕi), it follows that a tree-shaped circuit of size N can be evaluated
in space O(log2N). For the special case m = O(1) (which is used for the bisimulation
problem) we give an alternative proof below. This proof prepares our handling of trees in
term representation in the next section (proof of Theorem 3.6).

Alternative proof of Theorem 3.5 for constant width. Let N be the size of S and m ∈ O(1)
its width. We will construct from S in logspace an equivalent polynomially sized circuit with
constant tree-width, which can be seen as a partial tree unfolding of the circuit corresponding
to S. By Theorem 3.3 the resulting circuit can be evaluated in logspace.

As before, we view the Boolean formulas ϕi as labelled trees. For simplicity we assume
that all ϕi have at least size two, which can be ensured by replacing ϕi by ϕi ∧ 1, so that S
contains no “chain rules”. Moreover, we assume that the trees ϕi have disjoint node sets.
Let xi be an inner node of TS whose heavy child is xk. Inductively we define a circuit Ci as
follows: We take the formula ϕi, viewed as a tree, and merge all xk-labelled leaves into a
single node. Note that xj-labelled leaves for j 6= k are not merged. Then we insert into each
leaf labelled by some variable xj a copy of the circuit Cj . Finally let C be C1, which clearly
evaluates to the same truth value as S. Figure 4 shows the circuit resulting from the circuit
C∼(T1, T2) on the right in Figure 1.

Note that the number of copies of Ci in C is bounded by m`i where `i is the number of
light nodes on the path from x1 to xi in TS . Since `i ≤ log n, C has size at most mlogn ·N ,
which is bounded by nO(1) ·N since m is a constant.

Furthermore C can be computed in logspace from S. To make this explicit, we introduce
a naming scheme for the gates in C. The set Addr(xi) (addresses for the copies of xi) contains
finite words over the alphabet {1, . . . ,m} defined inductively: We set Addr(x1) = {ε} for
the root x1. If xj is the heavy child of xi in TS , we set Addr(xj) = Addr(xi). If xj is a light
child of xi in TS , we set Addr(xj) = Addr(xi) · {1, . . . , k} where k ≤ m is the number of
occurrences of xj in ϕi. The sets Addr(xi) contain words of length O(log n) over the constant
sized alphabet {1, . . . ,m}. Moreover, given a word of length O(log n) over {1, . . . ,m} we
can easily check in logspace whether it belongs to Addr(xi) by traversing the path from xi
to the root of TS . Now we can define the circuit C over the gate set

V (C) =

n⋃
i=1

{(u, a) | a ∈ Addr(xi), u is a non-input node of the tree ϕi}.

For every edge (u, u′) of ϕi (1 ≤ i ≤ n) and a ∈ Addr(xi), we add the following edges to
E(C):

(1) If u′ is a non-input gate, add the edge ((u, a), (u′, a)).
(2) If u′ is labelled by xj , let v be the root of ϕj and add the edge

(a) ((u, a), (v, a · d)) if xj is a light child of xi and u′ is its d-th occurrence of xj in ϕi,
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Figure 4. The partial unfolding of the tree-shaped circuit C∼(T1, T2) from
Figure 1.

(b) ((u, a), (v, a)) if xj is the heavy child of xi.

The labels of the gates in C are inherited from the formula trees ϕi. Note that a pair
(u, a) from V (C) can be stored in logspace. Moreover, whether a pair belongs to V (C) and
whether a pair of nodes from V (C) belongs to E(C) can be checked in logspace. Hence, the
circuit C can be constructed in logspace.

Finally we show that the tree-width of C is at most 2. Consider the subgraph T of C
where edges of type 2b in the above definition of C are removed if u′ is the d-th occurrence
of xj in ϕi for some d > 1. In Figure 4 such edges are drawn as dotted lines. The resulting
subgraph T is indeed a tree, on which we define a tree decomposition (T, β) of C. Let u
be a non-input node of ϕi and a ∈ Addr(xi). The bag β(u, a) contains the gate (u, a), its
parent node in the tree T (if existent) and the unique node (v, a) where v is the root of ϕj
and xj is the heavy child of xi (if existent). One can verify that (T, β) is indeed a valid tree
decomposition.

Theorem 3.5 applied to the tree-shaped circuit defined by (3.1) immediately yields
Theorem 3.1 for the problem Bisim(Trees) when trees are given in pointer representation.

3.1.3. Evaluating tree-shaped circuits given in term representation. In this section we will
prove Theorem 3.2 for the problem Bisim(Trees) when trees are given in term representation.
For that we prove an NC1-version of Theorem 3.5 for the case that m is constant, which
uses the NC1-part of Theorem 3.3, where a tree decomposition in term representation is
part of the input. Here we require that the tree-shaped circuit S = (xi = ϕi)1≤i≤n must be
given together with the underlying tree TS in term representation. We also assume that the
Boolean formulas ϕi are given in term representation. Recall the ancestor representation of
a tree from Section 2 and that it can be transformed into the term representation of a tree
in TC0 and vice versa.

Theorem 3.6. For every fixed m ∈ N, one can evaluate in NC1 a given tree-shaped circuit
S = (xi = ϕi)1≤i≤n (with all ϕi given in term representation) of width at most m that is
given together with the term representation of the tree TS .

Proof. Let S = (xi = ϕi)1≤i≤n be a tree-shaped circuit of width at most m, where every
ϕi is given in term representation. Moreover, we assume to have the term (or ancestor)
representation of the tree TS . We will show how to compute in TC0 the partial unfolding C
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of S and the tree decomposition of C in ancestor representation from the alternative proof
of Theorem 3.5 on page 11.

Let N be the size of S. For each node xi of TS we can compute in TC0 its depth (by
counting ancestors) and the size of the subtree below xi (by counting descendants). Hence,
we can also compute the heavy child of every inner node xi in TS . Additionally, if xi has a
parent node xj , we can compute the number d(xi) ∈ {1, . . . ,m} of occurrences of xi in ϕj .

We transform all formulas ϕi of S into ancestor representation in TC0 where we can assume
that the encodings of all nodes have length O(logN). Also we can ensure that all formulas
have at least size two.

Recall that every node u of a formula ϕi has multiple copies (u, a) in C where a ∈
Addr(xi) is an address of length O(log n) defined on page 11. Given a string a ∈ {1, . . . ,m}∗
of length O(log n) and a node xi we can verify in TC0 whether a ∈ Addr(xi): From the
ancestor representation of TS we can compute the sequence of all light nodes xi1 ≺ xi2 ≺
· · · ≺ xik in TS on the path from the root to xi. This can be done by sorting all light
ancestors of xi by their depth in ascending order. It is known that sorting n numbers with n
bits each is in TC0 [Vol99]. Then we have a1 · · · ak ∈ Addr(xi) if and only if aj ≤ d(xij ) for
all j ∈ {1, . . . , k}. Hence, we can also encode all gates of the partial unfolding C by strings
of length O(logN) and can compute V (C) in TC0. With the previous preparation the edge
relation E(C) can be computed in AC0 using the definition on page 11.

It remains to show that we can compute in TC0 the ancestor representation of the width-2
tree decomposition (T, β) of C from page 12. We set V (T ) = V (C). Let (u, a), (u′, a′) ∈ V (T )
be nodes where u (resp., u′) belongs to ϕi (resp., ϕj). Then (u, a) is an ancestor of (u′, a′)
in T if and only if xi � xj in TS , a is a prefix of a′ and the following holds:

(1) If xi = xj , then a = a′ and u � u′ in ϕi.
(2) If xi ≺ xj in TS , let xk be the unique child of xi which is an ancestor of xj .

(a) If xk is a light node, let d ∈ {1, . . . ,m} be the number in a′ at position |a| + 1.
Then the d-th occurrence of xk in ϕi is a descendant of u.

(b) If xk is a heavy node, then the first occurrence of xk in ϕi is a descendant of u.

The last condition forbids those edges that were deleted when constructing the tree T from
the partial unfolding C (the dotted edges in Figure 4). The bag-function β can be computed
straightforward in TC0 using its definition on page 12. By Theorem 3.3 we can evaluate C
in NC1, which concludes the proof.

Finally we can apply Theorem 3.6 to prove Theorem 3.2:

Proof of Theorem 3.2. First we convert the term representations of T1 and T2 into ancestor
representations in TC0. We can compute the tree-shaped circuit S corresponding to the
circuit C∼(T1, T2) and an ancestor representation of TS in TC0. The set of variables

{xu,v | u ∈ V (T1), v ∈ V (T2), depth(u) = depth(v)}
can be clearly computed in TC0 since for a given node of a tree in ancestor representation
one can compute its depth by counting ancestors. The term representations of the formulas
ϕu,v in (3.1) can then be computed in AC0. The ancestor representation of TS is also

AC0-computable, since xu,v is an ancestor of xu′,v′ if and only if u is an ancestor of u′ and v

is an ancestor of v′. By Theorem 3.6 we can evaluate S in NC1.
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a b a b

Figure 5. From labelled to unlabelled trees

3.1.4. Lower Bounds. In this section we prove matching lower bounds for the upper bounds
from Theorem 3.1 and 3.2.

Theorem 3.7. Bisim(Unlabelled-Trees) is L-hard if the trees are given as pointer structures
and NC1-hard if they are given in term representation (both with respect to many-one
AC0-reductions).

Before we prove Theorem 3.7 let us first show the following lemma:

Lemma 3.8. Bisim(Trees) is many-one AC0-reducible to Bisim(Unlabelled-Trees) in both
term and pointer representation.

Proof. We only show the lemma for the term representation; the same construction also works
for the pointer representation. In [Srb01] Srba presents a reduction from the bisimulation
problem for edge-labelled graphs to the bisimulation problem for unlabelled graphs. In fact,
this construction transforms trees into trees. We slightly modify the reduction to ensure
AC0-computability and assume that there are only two labels, say a and b (which is the case
for the trees constructed in the proof of Theorem 3.7).

Consider a tree T with edge labels a and b. First every labelled edge of T is subdivided
into two edges. In Figure 5 (middle tree), the new node added for an x-labelled edge
(x ∈ {a, b}) is labelled with x. To distinguish the original nodes from the new nodes, we
attach to each original node two paths of length 3. To each new node we attach one of two
small trees depending on the label of the original edge that is represented by the new node,
see the right tree in Figure 5. Let us denote the resulting unlabelled tree with ul(T ). It is
not hard to prove that two labelled trees T1 and T2 are bisimilar if and only if ul(T1) and
ul(T2) are bisimilar. The proof is basically given in [Srb01].

It remains to prove that the term representation of ul(T ) can be computed in AC0 from
the term representation of T . Consider the term representation t of T . Recall that we identify
the opening brackets in t with the nodes of T . We assume that the term representation t
contains the following three opening bracket types: (a and (b, which represent nodes with an
incoming a-labelled (resp. b-labelled) edge, and ( for the root. For example, t = ((a)(b)) is
a term representation for the left tree in Figure 5. The transformation T 7→ ul(T ) can be
described by two isometric homomorphisms. A homomorphism h : Σ∗ → Γ∗ is isometric if
there is an ` ≥ 1 such that |h(c)| = ` for all c ∈ Σ. In [LM98] it is shown that for a given
isometric homomorphism h : Σ∗ → Γ∗ and a word w ∈ Σ∗ one can compute h(w) in AC0.1

1If the homomorphism is fixed, this is even possible in NC0. Moreover, if the homomorphism is not
isometric then the problem is TC0-complete [LM98].
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We will proceed in two steps. Define the isometric homomorphism h1 : {(a, (b, )}∗ →
{(a, (b, (, ), ]}∗ by:

(a 7→ (a( (b 7→ (b( ) 7→ )]

Let u ∈ {(a, (b, )}∗ be the word such that t = (u) and consider the string (h1(u)).
Formally, it is not a term representation (since we have two types of closing brackets).
Nevertheless, it describes the tree obtained from T by subdividing every edge and labelling
each new node with the former edge label. For example t = ((a)(b)) is transformed into
(h1(u)) = ((a()](b()]), which describes the node-labelled tree in Figure 5. The second
isometric homomorphism h2 : {(a, (b, (, ), ]}∗ → {(, )}∗ is defined by:

• ( 7→ (((())) (an opening bracket followed by a path of length 3)
• ) 7→ ((()))) (a path of length 3 followed by a closing bracket)
• ] 7→ ()()()) (3 leaves followed by a closing bracket)
• (a 7→ (()()() (an opening bracket followed by 3 leaves)

• (b 7→ ((()()) (an opening bracket followed by the tree )

Then, the string h2((h1(u))) is indeed a term representation for the desired unlabelled tree
ul(T ).

Proof of Theorem 3.7. By Lemma 3.8 it suffices to show the lower bounds for edge-labelled
trees. We reuse the proofs from [JKMT03], where it is shown that the tree isomorphism
problem is L-hard (NC1-hard, respectively) with respect to AC0-reductions if the the trees
are given as pointer structures (in term representation, respectively). Let us start with the
bisimulation problem for trees given in pointer representation. Here, Jenner et al. reduce
from the L-complete reachability problem on paths, i.e., the question whether for a given
directed path graph G and two nodes vi, vj ∈ V (G), there is a path from vi to vj . Without
loss of generality, vi and vj are distinct and have successors vi+1 and vj+1, respectively.

Consider the tree with a root node which has two copies of G as direct subtrees. We
refer to nodes of the two copies by v1, . . . , vn and v′1, . . . , v

′
n, respectively. Additionally we

replace the edge (vi, vi+1) by the new edge (v′i, vi+1). Now let T1 (resp., T2) be the tree
where the edge (vj , vj+1) (resp., (v′j , v

′
j+1)) is labelled by a symbol a (all unlabelled edges

are assumed to be labelled with a symbol b 6= a). Clearly, T1 and T2 can be computed in
AC0 from G. There is a path from vi to vj in G if and only if T1 and T2 are bisimilar. See
Figure 6 for an illustration of the reduction.

Secondly, Jenner et al. present in [JKMT03] an AC0-reduction from the NC1-complete
evaluation problem of balanced Boolean expressions to the isomorphism problem for trees
in term representation. They use the AND-gadget T∧(G1, G2, H1, H2) and the OR-gadget
T∨(G1, G2, H1, H2) which are depicted in Figure 7. Notice that for all trees G1, G2, H1, H2

the following holds, where ∼ can both mean bisimilarity and isomorphism:

• G1 ∼ H1 and G2 ∼ H2 ⇐⇒ T∧(G1, G2, H1, H2) ∼ T∧(H1, H2, G1, G2), and
• G1 ∼ H1 or G2 ∼ H2 ⇐⇒ T∨(G1, G2, H1, H2) ∼ T∨(G1, H2, H1, G2).

Using the fact that the AND-gadget and the OR-gadget have the same tree structure (if
we ignore labels), one can show that the term representations for the resulting trees can be
computed in AC0 from the balanced Boolean expression; see the arguments in [JKMT03].
This yields an AC0-reduction from the evaluation problem of balanced Boolean expressions
to the bisimulation problem for trees in term representation.
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Figure 7. The trees for the NC1 lower bound

3.2. Bisimulation between trees and general graphs. As remarked in Section 2.6, the
bisimulation problem is P-complete for the class of all finite graphs. For trees we have shown
that the complexity reduces to logspace, respectively NC1, depending on the representation
of the input trees. This leaves the question for the complexity of the bisimulation problem,
when one of the input graphs is a tree, and the other graph is not restricted. In this section
we show that this problem belongs to AC1 and that it is NL-hard, but we are not able to
prove matching bounds. Let us start with the lower bound.

Theorem 3.9. Bisim(Unlabelled-Trees, Unlabelled-Graphs) is NL-hard.

Proof. We reduce from the following NL-complete problem: Given a graph G = (V,E), two
vertices s, t ∈ V and a number k ∈ N, does there exist a path of length exactly k from s to t?

Let H be the dag defined on V (H) = V × {1, . . . , k + 1} ∪ {∗} with the edge set

E(H) = {((u, i), (v, i+ 1)) | (u, v) ∈ E, 1 ≤ i ≤ k} ∪ {((t, k + 1), ∗)}.
Notice that t is reachable from s in exactly k steps if and only if the node (u, 1) is not
bisimilar to a path of length k. Clearly, H and the path graph can be constructed in logspace
from G. The result follows, since NL is closed under complement.

In the rest of the section, we show that Bisim(Trees, Graphs) belongs to AC1. Using
the reduction in [Srb01] (see also the proof of Lemma 3.8) we can assume that the input

tree and graph are unlabelled. For a number d ∈ N we write u
d−→ u′ if there exists a path

of length d from u to u′. Let G = (V,E) be a finite unlabelled directed graph, on which
we define approximants ≈k of the bisimulation equivalence ∼G. First we set u ≈0 v for all
u, v ∈ V . Inductively, we define u ≈k+1 v if for all d ∈ N we have
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• for all u
d−→ u′ there exists v

d−→ v′ such that u′ ≈k v′, and

• for all v
d−→ v′ there exists u

d−→ u′ such that u′ ≈k v′.
Notice that ≈i⊇≈i+1 for all i ∈ N. Hence there exists n ∈ N such that ≈n =≈n+i for
all i ∈ N and ≈n coincides with the bisimulation equivalence ∼. Before considering the
bisimulation problem between trees and graphs, we show that the approximants ≈k converge
after O(log n) rounds on trees of size n. For nodes u, v ∈ V we define

r(u, v) = sup{k ∈ N | u ≈k v} ∈ N ∪ {∞}.
and define r(G) = sup{k ∈ N | u ≈k v and u 6∼ v for u, v ∈ V } ∈ N ∪ {−∞}. Notice that
r(G) = −∞ if and only if all nodes in G are bisimilar. The following proposition shows that
r(T ) ≤ 2 log2(n) + 2 for every unlabelled tree T of size n.

Proposition 3.10. Let T = (V,E) be an unlabelled tree of size n. If u0, v0 ∈ V are not
bisimilar, then r(u0, v0) ≤ 2 log2(|u0|+ |v0|).

Proof. We prove the lemma by induction on k = r(u0, v0). The cases k = 0 and k = 1 are
clear since 2 log2(|u0|+ |v0|) ≥ 2. Now assume that k ≥ 2. Since u0 ≈k v0, there exist nodes
u1, u2, v1, v2 ∈ V and numbers d1, d2 ∈ N such that

• u0
d1−→ u1

d2−→ u2 and v0
d1−→ v1

d2−→ v2,
• r(u1, v1) = k − 1 and r(u2, v2) = k − 2.

Let d = d1 + d2. Since u0
d−→ u2 there exists v0

d−→ v3 such that u2 ≈k−1 v3, and since

v0
d−→ v2 there exists u0

d−→ u3 such that u3 ≈k−1 v2. Since u2 6≈k−1 v2, we get u2 6= u3

and v2 6= v3. From r(u2, v2) = k − 2 we get u3 ≈k−1 v2 ≈k−2 u2 ≈k−1 v3, which implies
u3 ≈k−2 v3. On the other hand, u3 ≈k−1 v3 would imply u2 ≈k−1 v2, which contradicts

r(u2, v2) = k − 2. We therefore have r(u3, v3) = k − 2. Since u0
d−→ u2, u0

d−→ u3, and
u2 6= u3, the nodes u2 and u3 are roots of disjoint subtrees, which implies |u0| ≥ |u2|+ |u3|.
Analogously, get |v0| ≥ |v2|+ |v3|, and hence

|u0|+ |v0| ≥ |u2|+ |v2|+ |u3|+ |v3|
Without loss of generality we assume that

1

2
(|u0|+ |v0|) ≥ |u2|+ |v2|,

otherwise the following argument holds for |u3|+ |v3|. The induction hypothesis implies

k − 2 ≤ 2 log2(|u2|+ |v2|) ≤ 2 log2(|u0|+ |v0|)− 2,

and hence k ≤ 2 log2(|u0|+ |v0|).

Lemma 3.11. Let G be an unlabelled dag with root u0 and T be an unlabelled tree with root
v0 of size n. If u0 ∼ v0, then r(G ] T ) ≤ 2 log2(n) + 2.

Proof. Assume that u0 ∼ v0. Since u0 and v0 are the roots of the dag G and the tree T ,
respectively, every node in G is bisimilar to some node in T . Furthermore r is invariant
under bisimulation, i.e., if u ∼ v and u′ ∼ v′, then r(u, u′) = r(v, v′). Therefore r(G ] T ) =
r(T ) ≤ 2 log2(n) + 2.
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Now we can show the AC1 upper bound for Bisim(Trees, Graphs):

Theorem 3.12. Bisim(Trees, Graphs) is in AC1.

Proof. Let T be the input tree and G be the input graph. As explained before, we can
assume that T and G are unlabelled. Assume we want to test whether node u0 ∈ V (T ) is
bisimilar to node v0 ∈ V (G). First we restrict G to the subgraph reachable from v0 using a
reachability oracle in NL ⊆ AC1. If G is not acyclic, which can be also tested in NL, then u0

and v0 are not bisimilar. If G is a dag, we construct a logspace-uniform AC1-circuit family
which computes the approximants ≈k on the disjoint union G]T for all 0 ≤ k ≤ 2 log2 |T |+2.
A similar construction can be found in [GV06]. To do so, we first compute for all nodes u, u′

the set of path lengths from u to u′. Note that one can test in NL ⊆ AC1 whether there is
(no) path of a given length between two given nodes. Using this information we can compute
≈k+1 by an AC0-circuit from ≈k.

Finally, we test whether ≈k = ≈k+1 for k = d2 log2 |T |+ 2e. If this is not the case, then
Lemma 3.11 implies u0 6∼ v0 and the circuit outputs false. Otherwise, ≈k = ∼. Hence the
circuit outputs true if u0 ≈k v0, and false otherwise.

4. Further applications

Before we consider simulation problems, let us present two further application of the
techniques from Section 3.

4.1. Equality of hereditarily finite sets. The bisimulation problem on trees in term
representation arises in a very natural way. A hereditarily finite set is either the empty set {}
or a set {a1, . . . , an} containing finitely many hereditarily finite sets a1, . . . , an. Hereditarily
finite sets have a natural string representation over the bracket symbols { and }. By counting
brackets, one can check in TC0, whether a string over { and } is well-bracketed [BC89]. As
before, such a well-bracketed string corresponds to a tree. By induction over the height of
trees, one can easily show that two well-bracketed strings over { and } represent the same
set if and only if the corresponding trees are bisimilar. Hence, the tree bisimulation problem
for (unlabelled) trees in term representation is equivalent to the set equality problem, which
asks whether two such string representations represent the same set. For example {{}{}}
and {{}} represent the same set. From Theorem 3.2 we obtain the NC1 upper bound in the
following result. The NC1 lower bound follows from the NC1-hardness of the bisimulation
problem for unlabelled trees in term representation (Theorem 3.7).

Corollary 4.1. The set equality problem is NC1-complete with respect to AC0-reductions.

4.2. Model checking on tree-shaped graphs. Recall that the starting point of our paper
was the algorithmic meta theorem of Elberfeld et al. (Theorem 1.1) which states that a fixed
MSO-property can be model-checked in logarithmic space on a graph class C of bounded
tree-width. On the other hand, if C has unbounded tree-width, then Theorem 1.1 cannot
be applied directly. In this section, we argue that we can extend Theorem 1.1 to some
graph classes of unbounded tree width if we restrict to bisimulation-invariant MSO (which
coincides with the modal µ-calculus).
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Consider an MSO-formula ψ = ψ(x) with a single free element variable x. We would
like to know, whether for a given graph G ∈ C and a node v ∈ V (G), ψ is satisfied in v;
(G, v) |= ψ for short. We say that ψ is bisimulation-invariant if for all graphs G and all
nodes u, v ∈ V (G) we have: if u and v are bisimilar and (G, u) |= ψ holds, then (G, v) |= ψ.
It is known that an MSO-formula ψ is bisimulation-invariant if and only if ψ is equivalent to
a formula in the modal µ-calculus [JW96]. Assume now that there exists a constant k and a
logspace transducer, that maps a graph G ∈ C to a pair (H,R), where H is a graph of tree
width at most k and R ⊆ V (G)× V (H) is a bisimulation R such that for all v ∈ V (G) there
exists (v, w) ∈ R. Then we can check in logspace, whether (G, v) |= ψ holds, by computing
a bisimilar node w ∈ V (H) with (v, w) ∈ R and checking (H,w) |= ψ in logspace using
Theorem 1.1.

Our second proof of Theorem 3.5 uses the above strategy. Whether a a certain gate of a
Boolean circuit (viewed as a node-labelled graph) evaluates to true is a bisimulation invariant
property. The partial tree unfolding constructed in the second proof of Theorem 3.5 has the
properties of the graph H from the previous paragraph.

The following definition presents a generalization of tree decompositions that allows to
compute a pair (H,R) with H of bounded tree width and R ⊆ V (G)× V (H) a bisimulation.

Definition 4.2. Let G = (V,E) be an edge-labelled graph. A tree-shaped decomposition for
G is a node-labelled tree (T, β) where β : V (T )→ 2V satisfies the following conditions:

• For all v ∈ V there exists t ∈ V (T ) such that v ∈ β(t).

• For all u
a−→ v there exists t ∈ V (T ) such that u, v ∈ β(t).

• Let u
a−→ v and t1 ∈ V (T ) such that u ∈ β(t1). Then there exists t3 ∈ V (T ) such that

u, v ∈ β(t3) and for all nodes t2 ∈ V (T ) on the path from t1 to t3, we have u ∈ β(t2).

The width of (T, β) is maxt∈V (T ) |β(t)|.

Note that every tree decomposition is also a tree-shaped decomposition but not vice
versa.

Proposition 4.3. For every constant k ∈ N, there exists a logspace transducer which, given
a graph G and a tree-shaped decomposition (T, β) for G of width at most k, outputs a graph
H of tree-width k− 1 and a bisimulation R ⊆ V (G)×V (H) such that for all v ∈ V (G) there
exists (v, w) ∈ R.

Proof. Consider the set of pairs

P = {(v, t) ∈ V (G)× V (T ) | v ∈ β(t)}.
We say that two pairs (v, t1), (w, t3) ∈ P are related if v = w and for all nodes t2 ∈ V (T )
on the path between t1 and t3 we have v ∈ β(t2), which can be tested in logspace. This
relation is an equivalence relation on P and we denote with [v, t] the equivalence class that
contains (v, t). We take the set of equivalence classes {[v, t] | (v, t) ∈ P} as the node set of

the graph H. For all t ∈ V (T ) and v, w ∈ β(t) with v
a−→ w we add the edge [v, t]

a−→ [w, t]
to H. Clearly, H is computable in logspace from G and (T, β).

First, we claim that (T, γ) is a tree decomposition for H of width k − 1 where γ(t) =
{[v, t] | v ∈ β(t)} for all t ∈ V (T ). Clearly, every node and every edge of H is contained in
some bag γ(t). Moreover, every bag γ(t) has size at most k. We need to show that for each
node [v, t] ∈ V (H) the set

{t′ ∈ V (T ) | [v, t] ∈ γ(t′)}
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is connected. Let t1, t3 ∈ V (T ) such that [v, t] ∈ γ(t1) ∩ γ(t3). By definition of γ the pairs
(v, t), (v, t1) and (v, t3) must be related. Hence for all t2 ∈ V (T ) on the path between t1 and
t3 we have v ∈ β(t2), which implies [v, t2] ∈ γ(t2). Since (v, t2) and (v, t) are also related,
we conclude [v, t] ∈ γ(t2).

Now we show that R = {(v, [v, t]) | (v, t) ∈ P} is a bisimulation between G and H.

Let (v, t) ∈ P , i.e., v ∈ β(t). If v
a−→ w in G, then there exists t′ ∈ V (T ) such that

v, w ∈ β(t′) and the pairs (v, t) and (v, t′) are related. Hence we find the matching edge

[v, t] = [v, t′]
a−→ [w, t′] in H. Conversely, if [v, t]

a−→ [w, t] is an edge in H, then we know

by definition that v
a−→ w is an edge in G.

Proposition 4.3 and Theorem 1.1 together yield:

Theorem 4.4. Let k ∈ N be a constant and ϕ be a µ-calculus formula. Then there exists a
logspace algorithm which, given a graph G, a node v ∈ V (G) and a tree-shaped decomposition
(T, β) for G of width at most k, tests whether (G, v) |= ϕ.

Note that in Theorem 4.4 we need the tree-shaped decomposition (T, β) as part of the
input. We do not know whether for every constant k ∈ N there exists a logspace transducer
that computes from a given graph G a tree-shaped decomposition (T, β) for G of width at
most k and polynomial size, or outputs 0 if such a decomposition does not exist. For tree
decompositions, such a logspace transducer indeed exists [EJT10].

5. Complexity of simulation

In this section, we consider simulation problems on restricted classes of finite graphs. As for
bisimulation, it is known that simulation on finite graphs is P-complete.

The upper bounds from Theorem 3.1 and 3.2 for Bisim(Trees) carry over to Sim(Trees).
The proofs are in fact much easier, since the simulation problem for trees reduces to the
evaluation of the Boolean circuit obtained from (3.1) by removing the second conjunction

over all edges v
a−→ v′; in fact, this circuit is a tree. Also the lower bound proofs for

Theorem 3.7 hold for the simulation problem: Note that in Figure 6(A) the trees T1 and
T2 are isomorphic and hence T1 is simulated T2. On the other hand, in Figure 6(B), T1

is not simulated by T2. Similarly, for the AND-gadget T∧(G1, G2, H1, H2) and OR-gadget
T∨(G1, G2, H1, H2) (see Figure 7) from the proof of Theorem 3.7 we have

• G1 v H1 and G2 v H2 ⇐⇒ T∧(G1, G2, H1, H2) v T∧(H1, H2, G1, G2), and
• G1 v H1 or G2 v H2 ⇐⇒ T∨(G1, G2, H1, H2) v T∨(G1, H2, H1, G2).

Hence we get:

Theorem 5.1. The problem Sim(Trees) is L-complete (resp., NC1-complete) if trees are
given in pointer representation (resp., term representation).

On the other hand, the construction from the proof of Lemma 3.8 (elimination of edge
labels) does not carry over to the simulation problem. Indeed, there is a difference in the
complexities of the simulation problems for edge-labelled trees and unlabelled trees, if trees
are given in term representation. The easy observation is that in unlabelled graphs, u is
simulated by v if and only if the longest path starting in u is at most as long as the longest
path starting in v (the path lengths can be infinite).

Theorem 5.2. The following holds:
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• The problem Sim(Unlabelled-Graphs) is NL-complete.
• The problem Sim(Unlabelled-Trees) is L-complete if the trees are given in pointer repre-

sentation.
• The problem Sim(Unlabelled-Trees) is TC0-complete if the trees are given in term repre-

sentation.

Proof. The upper bounds are easy to show. In general graphs we can test in NL whether
from a given node there exists a path of a given length d ∈ N ∪ {∞}. Since NL is closed
under complement, we can also check whether from a given node there does not exist a
path of a given length d ∈ N ∪ {∞}. To decide simulation for unlabelled trees we only
need to compare the heights, which can be done in logspace if the trees are given in pointer
representation, and in TC0 if the trees are given in term representation.

For the NL-hardness on general graphs we reduce from the NL-complete problem, whether
a cycle is reachable from a given node u in a given graph G. The latter holds if and only if
u is simulated by the root of a path of length |V (G)|.

For the L-hardness on trees we again reduce from the reachability problem on directed
paths. Assume that G is a path with n nodes and we want to test whether there exists a
path from vi ∈ V (G) to vj ∈ V (G). We attach a path of length n to vj and test whether vj
is simulated by vi.

For the TC0-hardness we reduce from the TC0-complete majority problem: Given a
string x = a1 · · · an ∈ {(, )}∗, is the number of opening brackets in x at least the number of
closing brackets in x? Consider the path T1 = (2n+2)2n+2 of length 2n+ 1 and the tree

T2 = (n+1x (n+1)n+1 x)n+1

where x = an · · · a1 and swaps ( and ). One can verify that T2 is indeed a valid term
representation and that both terms can be computed in AC0 from the string x. Notice that
the node in T2 that is represented by the innermost bracket pair () has maximal depth.
Now one can show that the root of T1 is simulated by the root of T2 if and only if the height
of T2 is at least 2n+ 1 if and only if the number of (’s in x is at least the number of )’s.

In the rest of Section 5 we complete the complexity picture for the simulation problem
on finite graphs with edge labels. In Section 5.1 we show that P-completeness for the
simulation problem already holds for graphs of bounded path-width. In Section 5.2 we show
that simulation between a tree and an arbitrary graph, as well as simulation between an
arbitrary graph and a tree is LogCFL-complete.

5.1. Simulation on graphs of bounded path-width. In this section we show that the
simulation problem is P-complete on graphs of bounded path-width, and hence also on
graphs of bounded tree-width. It remains open, whether the bisimulation problem for graphs
of bounded tree-width belongs to NC or remains P-complete. For integers i, j we use the
abbreviation [i, j] = {k ∈ N | i ≤ k ≤ j}. Let PW≤k denote the class of all graphs with
path-width at most k.

Theorem 5.3. There is a number k such that Sim(PW≤k) P-complete.

Proof. Fix a P-complete language L ⊆ {0, 1}∗ and a deterministic polynomial time bounded
Turing machine M = (Q,Γ, {0, 1}, q0, qf , δ) that accepts L. Here Q is the set of states,
Γ ⊇ {0, 1,�} is the tape alphabet (� is the blank symbol), q0 is the initial state, qf is the
final state, and δ : Q × Γ → Q × Γ × {→,←} is the transition function, where → and ←
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indicate the head direction. The machine has a single tape, whose cells are indexed with
integers. Initially, the input x is written in cells 0, . . . , |x| − 1 and the tape head scans cell
0. We can assume that there is a polynomial p(n) such that for every input x ∈ {0, 1}∗ we
have: x ∈ L if and only if after p(|x|) many transitions the machine is in state qf , cell 0
contains �, and the tape head scans cell 0.

We can view configurations of M as words from Γ∗(Q× Γ)Γ∗. Let Ω = Γ∪ (Q× Γ). We
define a partial mapping ∆ : Ω3 → Ω as follows, where a, a′, b, c ∈ Γ, p, q ∈ Q.

• ∆(a, b, c) = b
• ∆(b, c, (q, a)) = (p, c) if δ(q, a) = (p, a′,←)
• ∆(b, c, (q, a)) = c if δ(q, a) = (p, a′,→)
• ∆(b, (q, a), c) = a′ if δ(q, a) = (p, a′, d) for some d ∈ {→,←}
• ∆((q, a), b, c) = b if δ(q, a) = (p, a′,←)
• ∆((q, a), b, c) = (p, b) if δ(q, a) = (p, a′,→)

In all other cases, ∆ is undefined. The mapping ∆ computes from the three symbols
at positions i − 1, i, i + 1 in a configuration the symbol at position i in the successor
configuration.

Let us fix an input x = a0a1 · · · an−1 of length n > 0 for the machine M and let
N = p(n) + 1. Then there exists a unique computation of M on input x. We denote with C
the corresponding computation table. Formally, it is a mapping C : [−N,N ]× [0, N−1]→ Ω,
where C(i, t) is the symbol at cell i in the t-th configuration. It can be defined by the
following properties:

• C(0, 0) = (a0, q0), C(i, 0) = ai for i ∈ [1, n− 1], C(i, 0) = � for i ∈ [−N,N ] \ [0, n− 1],
• C(−N, t) = C(N, t) = � for all t ∈ [0, N − 1]
• C(i, t) = ∆(C(i−1, t−1), C(i, t−1), C(i+1, t−1)) for all t ∈ [1, N−1], i ∈ [−N+1, N−1].

Let us fix the set of edge labels A = {−1, 0, 1, α} ]Ω. We define two edge-labelled graphs P
(for position) and T (for time) with edge labels from A and the node sets

V (P ) = [−N,N ]× {0, 1}, V (T ) = [0, N − 1] ∪ [0, N − 1]× Ω ∪ [0, N − 1]× Ω3.

For better readability, we write edges of P (resp., T ) as x
a−→P y (resp., x

a−→T y). Then,
P and T contain the following edges:

(i, 0)
α−→P (i, 1) for all i ∈ [−N,N ]

(i, 1)
δ−→P (i+ δ, 0) for all i ∈ [−N,N ], δ ∈ {−1, 0, 1} with i+ δ ∈ [−N,N ]

(i, 0)
C(i,0)−−−−→P (i, 0) for all i ∈ [−N,N ]

(t, a)
α−→T (t− 1, b, c, d) for all a ∈ Ω, t ∈ [1, N − 1], (b, c, d) ∈ ∆−1(a)

(t, a−1, a0, a1)
δ−→T (t, aδ) for all t ∈ [0, N − 2], a−1, a0, a1 ∈ Ω, δ ∈ {−1, 0, 1}

(t, a)
b−→T t for all a, b ∈ Ω, t ∈ [1, N − 1]

(0, a)
b−→T 0 for all a ∈ Ω, b ∈ {a, α}

t
a−→T t for all t ∈ [0, N − 1], a ∈ A

An example of the construction is shown in Figure 8, where we assume N = 3 for simplicity.
It is easy to see that both P and T (and hence also the disjoint union of P and T )
have bounded path-width. More precisely, P has path-width 3 (the bags are the sets
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Figure 8. The edge-labelled graphs P and T , where we assume N = 3 for
simplicity.

{(i, 0), (i, 1), (i + 1, 0), (i + 1, 1)} for −N ≤ i ≤ N − 1), whereas the path-width of T is
bounded by |Ω|3 + |Ω| (the bags are the set {t, (t, a), (t − 1, b, c, d) | a, b, c, d ∈ Ω} for
1 ≤ t ≤ N − 1 and {(t, a), (t, b, c, d) | a, b, c, d ∈ Ω} for 0 ≤ t ≤ N − 2). Recall that |Ω| is a
fixed constant since the machine M is fixed.

The following claim proves the theorem, since M accepts x if and only if C(0, N − 1) =
(qf ,�) by our assumptions on M .

Claim. For all t ∈ [0, N − 1], i ∈ [−N,N ] and a ∈ Ω such that i+ t ≤ N and i− t ≥ −N we
have: C(i, t) = a if and only if (i, 0) v (t, a).

We prove the claim by induction on t. First, note that for every v ∈ V (P ) and every
t ∈ [0, N − 1] ⊆ V (T ) we have v v t, since at t we can loop with every a ∈ A. For t = 0 note
that indeed (i, 0) v (0, C(i, 0)): The only outgoing edges for (i, 0) are labelled with C(i, 0)
and α. From (0, C(i, 0)) these labels lead to node 0, which simulates every node of P . On
the other hand, if a 6= C(i, 0), then (i, 0) has a C(i, 0)-labelled outgoing edge, whereas (0, a)
has no such outgoing edge. This implies (i, 0) 6v (0, a).

Now assume that t ∈ [1, N − 1], i ∈ [−N,N ], i + t ≤ N , and i − t ≥ −N and that
the claim holds for t − 1. First assume that C(i, t) = a. Since t ≥ 1, we have i + 1 ≤ N
and i − 1 ≥ −N , i.e., i ∈ [−N + 1, N − 1]. We have to show that (i, 0) v (t, a). The

edge (i, 0)
C(i,0)−−−−→P (i, 0) can be simulated by the edge (t, a)

C(i,0)−−−−→T t (recall that (i, 0) v t).
Now consider the other possible edge (i, 0)

α−→P (i, 1). Since C(i, t) = a, there must exist
(b, c, d) ∈ ∆−1(a) such that b = C(i− 1, t− 1), c = C(i, t− 1), and d = C(i+ 1, t− 1). Also



24 M. GANARDI, S. GÖLLER, AND M. LOHREY

note that i + δ + (t − 1) ≤ N and i + δ − (t − 1) ≥ −N for all δ ∈ {−1, 0, 1}. Hence, by
induction (i− 1, 0) v (t− 1, b), (i, 0) v (t− 1, c), and (i+ 1, 0) v (t− 1, d). But this implies

that (i, 1) v (t− 1, b, c, d). Hence, we can choose the edge (t, a)
α−→T (t− 1, b, c, d) in order

to simulate the edge (i, 0)
α−→P (i, 1).

Finally, assume that C(i, t) 6= a. We have to show that (i, 0) 6v (t, a). Let us choose the

edge (i, 0)
α−→P (i, 1). We have to show that for every (b, c, d) ∈ ∆−1(a), (i, 1) 6v (t, b, c, d).

Let us fix a triple (b, c, d) ∈ ∆−1(a). Since C(i, t) 6= a, one of the following three statements
holds: C(i − 1, t − 1) 6= b, C(i, t − 1) 6= c, C(i + 1, t − 1) 6= d. Hence, by induction,
(i− 1, 0) 6v (t− 1, b) or (i, 0) 6v (t− 1, c) or (i+ 1, 0) 6v (t− 1, d). This implies that, indeed,
(i, 1) 6v (t, b, c, d).

It seems to be difficult to modify the above proof so that it shows P-hardness for
bisimulation on graphs of bounded path-width or bounded tree-width. One might try to
restrict the choices of the players in the bisimulation game (see e.g. [AI07]) so that they are
forced to play as in the simulation game. There is a technique to achieve this (defenders
forcing) but the problem is that it yields grid-like graph structures and hence graphs of
unbounded tree-width.

5.2. Simulation between trees and general graphs. In this section we show that the
problems Sim(Trees, Graphs) and Sim(Graphs, Trees) are both LogCFL-complete. Since
simulation is not symmetric, it is not obvious that these two problems are equivalent.

Theorem 5.4. Sim(Trees, Graphs) is LogCFL-complete.

Proof. Again we can restrict ourselves to the case that the input vertices are the roots of
the graph and the tree, respectively. We start with showing that the simulation problem in
the theorem belongs to LogCFL. For this we outline a straightforward alternating logspace
algorithm with polynomial proof tree size. Given a tree T and a graph G, the algorithm
stores a pair (u,w) ∈ V (T )× V (G) and continues as follows:

• Branches universally to all edges u
a−→ u′ in T .

• Branch existentially to all edges w
a−→ w′ in G.

• Continue with the pair (u′, w′).

The algorithm starts with the pair (r, v). It is obvious that there exists a proof tree if and
only if r v v. Moreover, a proof tree results from T by inserting on each edge a node with a
unique child.

Let us now prove the lower bound. Fix a LogCFL-complete problem L and w be an
input word of length n. Let (Cn)n≥0 be a logspace-uniform SAC1 circuit family for L. We
first construct in logspace the SAC1-circuit Cn for input length n. We set the input gates to
the bits in w; let C = (G0, β) be the resulting Boolean circuit. Recall from Section 2.2 that
G0 is a directed graph G0 = (V0, E0) and that edges from E0 are directed towards the input
gates.

Our goal is to reduce the question whether C evaluates to 1 to a simulation problem.
By [GLS01, Lemma 4.6] we can assume that C is layered and alternating, i.e., the set of
gates is partitioned into m ∈ O(log n) many layers L1, L2, . . . , Lm, where m > 1 is odd, L1

contains the input gates, all wires go from layer Li to layer Li−1 for some 2 ≤ i ≤ m, and
Lm = {g0} contains the output gate of the circuit. Moreover, layers 2i (2i+ 1, resp.) contain
only ∧-gates (∨-gates, resp.) for 1 ≤ i ≤ bm/2c. Since m is odd, the output gate g0 is a
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Figure 9. Reduction from SAC1-circuits to Sim(Trees, Graphs)

∨-gate. Recall that every ∧-gate u has exactly two input nodes that we denote with u1 and
u2 (we allow u1 = u2).

Define the edge-labelled graph G = (V0 ] {ω}, E), where E consists of the following set
of {a, b}-labelled edges.

• v a−→ ω for all v ∈ L1 with λ(v) = 1.

• v a−→ v′ for all v ∈ Li with i > 1 odd and (v, v′) ∈ E0.

• v a−→ v1, v
b−→ v2 for all v ∈ Li with i > 1 even, where v1, v2 are the left and right child

of v in G0.

The tree T is a full binary tree of height bm/2c with intermediate layers of unary nodes
inserted. More precisely, we define trees Ti (1 ≤ i ≤ m) recursively as follows:

• If i = 1 then Ti consists of a root node r with a unique outgoing edge r
a−→ r′, where r′ is

a leaf.
• If i > 1 is odd, then Ti consists of a root node r with a unique outgoing edge r

a−→ r′,
where r′ is the root of a copy of Ti−1.

• If i > 1 is even, then Ti consists of a root node r with two outgoing edges r
a−→ r1 and

r
b−→ r2. Each of the nodes r1 and r2 is the root of a copy of Ti−1.

The tree T is defined as Tm. Both T and G are displayed in Figure 9.

Claim. If r denotes the root of Ti and v ∈ V (G) belongs to layer Li then r v v if and only if
gate v evaluates to 1 in the circuit C.

We prove the claim by induction on i. The case i = 1 is clear: In the tree T1 the root

node r has a unique outgoing edge r
a−→ r′, where r′ has no outgoing edges. Moreover, layer

L1 contains the input gates of the circuit C. If v is labelled with 0, then v has no outgoing
edges in G, and hence r 6v v. On the other hand, if v is labelled with 1, then v has a single
outgoing a-labelled edge to a node without outgoing edges, which implies r v v.

Now assume that i > 1. Let us first assume that i is odd. Then, the root r of Ti has

a single outgoing edge r
a−→ r′, where r′ is a root of Ti−1. Moreover, v is a ∨-gate. If v

evaluates to 1, then v has an outgoing edge v
a−→ v′, where v′ ∈ Li−1 evaluates to 1. By

induction, we get r′ v v′, which implies r v v. On the other hand, if r v v, then v must
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have an outgoing edge (v, a, v′) such that r′ v v′. By induction, it follows that v′ evaluates
to 1. Hence, the ∨-gate v evaluates to 1 too.

Now assume that i is even. Then, the root r of Ti has two outgoing edges r
a−→ r1 and

r
b−→ r2 where ri is a root of a copy of Ti−1. Moreover, v is a ∧-gate, which has two input

gates v1 and v2 (we might have v1 = v2). In G, v has the two outgoing edges v
a−→ v1 and

v
b−→ v2. If v evaluates to 1, then v1 and v2 evaluate to 1. By induction, we get r1 v v1

and r2 v v2, which implies r v v. On the other hand, if r v v, then we must have r1 v v1

and r2 v v2. Hence, by induction, it follows that v1 and v2 both evaluate to 1. Thus, v
evaluates to 1.

Theorem 5.5. Sim(Graphs, Trees) is LogCFL-complete.

Proof. The proof of the upper bound is very similar to the previous proof, using an alternating
logspace machine with a polynomial proof tree size. Since LogCFL is closed under complement
[BCD+89], we can consider the problem whether a graph node u ∈ V (G) is not simulated by
a tree node w ∈ V (T ). The algorithm stores the pair (u,w) ∈ V (G)× V (T ) and continues
as follows:

• Branch existentially to all edges u
a−→ u′ in G.

• Branches universally to all edges w
a−→ w′ in T .

• Continue with the pair (u′, w′).

The correctness and the polynomial proof tree size of the algorithm can be argued as above.
For the LogCFL-hardness we can use the same graph G as in the proof of Theorem 5.4

but define a different tree T . First we reconsider the tree used in the proof of Theorem 5.4,
which we call T∗. Notice that every node in G which is contained in an odd level Li is
simulated by the root of T∗. Then we define trees Ti for all odd 1 ≤ i ≤ m and trees Ti,a, Ti,b
for all even 1 ≤ i ≤ m recursively as follows:

• If i = 1 then Ti consists of a single node.

• If i > 1 is odd, then Ti consists of a root node r with two outgoing edges r
a−→ ra

and r
a−→ rb. The nodes ra and rb are the roots of copies of the trees Ti−1,a and Ti−1,b,

respectively.

• If i > 1 is even, then Ti,a consists of a root node r with two outgoing edges r
a−→ ra and

r
b−→ rb. The node ra is the root of a copy of T∗, and rb is the root of a copy of Ti−1.

Finally the tree T is defined as Tm, which is displayed together with G in Figure 10.

Claim. Assume v ∈ V (G) belongs to layer Li.

• If i is odd, let r be the root of Ti. Then v 6v r if and only if gate v evaluates to 1 in the
circuit C.
• If i is even, let ra, rb be the roots of Ti,a and Ti,b, respectively. Then (v 6v ra and v 6v rb)

if and only if gate v evaluates to 1 in the circuit C.

For i = 1 this is clear because v has a successor if and only if it evaluates to 1. Now let
i > 1. First assume that i is odd, i.e., v is a ∨-gate. Let r be the root of Ti. Thus, r has two

outgoing edges r
a−→ ra and r

a−→ rb, where ra and rb are the roots of copies of the trees
Ti−1,a and Ti−1,b, respectively. The node v evaluates to 1 in C if and only if v has some
a-successor w in G which evaluates to 1. By induction, this is equivalent to saying w 6v ra
and w 6v rb for some successor w of v, which in turn is equivalent to v 6v r.
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Figure 10. Reduction from SAC1-circuits to Sim(Graphs, Trees)

Now let i be even, i.e., v is a ∧-gate, which has an a-successor v1 and a b-successor v2.
Let ra and rb be the roots of Ti,a and Ti,b, respectively. The node v evaluates to 1 in C if
and only if both successors v1 and v2 of v in G evaluate to 1. By induction, this is equivalent
to saying v1 6v r′ and v2 6v r′ where r′ is the root of Ti−1. Since the root of T∗ simulates
every node in an odd level of G, this is equivalent to v 6v ra and v 6v rb.

6. Conclusion

We proved the following results:

(1) The bisimulation problem for trees that are given by pointer structures (resp., in term
representation) is complete for deterministic logspace (resp. NC1). These results also
hold for the simulation problem for trees.

(2) Already for graphs of bounded path-width (a subclass of the graphs of bounded tree-
width), the simulation problem becomes P-complete.

(3) The bisimulation problem between a tree and a dag (or arbitrary graph) belongs to AC1

and is NL-hard.
(4) Simulation of a tree by a dag as well as simulation of a dag by a tree is LogCFL-complete.

As an application of (1), we showed that equality of hereditarily finite sets is NC1-complete.
For the proof of (1) we introduced the new class of tree-shaped circuits and proved that the
circuit evaluation problem for tree-shaped circuits of bounded width is in logspace or NC1,
depending on the representation of the circuit. It would be nice to find further applications
of tree-shaped circuits.

The main open problem that remains is whether the bisimulation problem for graphs of
bounded tree-width is in NC or P-complete. Another open problem is the exact complexity
of the bisimulation problem for a tree and a dag. Our bounds (in AC1 and NL-hard) are not
matching. In many situations (e.g. for various classes of infinite state systems), simulation
is harder than bisimulation. We proved that simulation of a tree by a dag (or vice versa)
is LogCFL-complete. Hence, one might conjecture that also the bisimulation problem for a
tree and a dag belongs to LogCFL.
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