
An Architecture for Online-Diagnosis Systems
supporting Compressed Communication

Seungbum Jo∗, Markus Lohrey∗, Damian Ludwig†, Simon Meckel†, Roman Obermaisser†, Simon Plasger∗
∗Theoretical Computer Science, University of Siegen, Germany

seungbum.jo@uni-siegen.de, lohrey@eti.uni-siegen.de, simon.plasger@student.uni-siegen.de
†Embedded Systems Group, University of Siegen, Germany

damian.ludwig@uni-siegen.de, simon.meckel@uni-siegen.de, roman.obermaisser@uni-siegen.de

Abstract—With its ability to detect, identify and, if applicable,
recover from occurred faults, online-diagnosis can help achieving
fault-tolerant systems. A sound decision on an occurred fault
is the foundation for fault-specific recovery actions. For this,
typically a large amount of data has to be analyzed and evaluated.
A diagnostic process implemented on a distributed system needs
to communicate all those data among the network which is
an expensive affair in terms of communication resources and
time. In this paper we present an architecture for a distributed
online diagnosis system with real time constraints that supports
data compression to reduce the communication time. We further
present a lossy compression method with a guaranteed compres-
sion ratio that is suitable for real time purposes.

I. INTRODUCTION

In safety-critical application domains such as avionics,
health care or industrial automation, systems must provide
their services with a high reliability. Even in the case of a
fault in a hardware or software component or due to external
influences, an acceptable quality of the services must be
ensured. Typical faults are faults in the design of a com-
ponent or a system, transient or permanent hardware faults
or erroneous user operations amongst others. Applying fault-
diagnosis methods to the system its reliability and stability
can be significantly increased. In the widely-used offline fault-
diagnosis process information, sensor data or fault indications
exclusively get stored for later analysis. However, utilizing
online fault-diagnosis with the ability to detect a fault, identify
its location and potential effects at run time of the system, in
combination with interactions with the system, e.g. reconfig-
urations, a fault-tolerant system can be formed.

Enabling the diagnostic algorithms to make correct and fast
decisions on fault detection and identification, often a huge
amount of raw data of a variety of sensors as well as system
input and output parameters have to be processed, analyzed
and stored during the diagnostic process. Considering that
these tasks are computationally intensive in addition with the
fact that the diagnostic process allows a concurrent processing
of different tasks, parallelism can be exploited. By executing
tasks on separate processing units within a distributed network,
resources are planned meaningfully. According to the diag-
nostic process the calculated data must be consequently made
available to the other units as a message via the network.

In [6], an inference-based system for active diagnosis in
distributed embedded systems is presented, where diagnostic

information is inferred using SPARQL1 queries and stored
in a distributed real-time database. The needed real-time
guarantees are supported by a time-triggered schedule which
controls the execution of diagnostic tasks and the replication
of the database.

The quality of diagnostic decisions highly depends on the
available amount of data. A limited storage capacity of the
local real-time databases may therefore narrow the perfor-
mance of diagnostic decisions, e.g. of long term trend analyses.
Likewise, the required time that is needed to conclude a
specific fault from a first symptom can be seen as quality
characteristic of the diagnostic framework. It is the goal to
minimize this time as much as possible. Since the diagnostic
process requires both the storage and the fast exchange of
a huge amount of data within the distributed network, the
DAKODIS project deploys data compression for online fault-
diagnosis. The data compression is a feasible instrument which
can help to save bandwidth and hence provide stronger real-
time guarantees or save communication resources. Addition-
ally, it might save storage which can be used to store more
diagnostic information in the real-time database, to improve
the quality of the fault-diagnosis in terms of a more precise
and extensive fault detection and identification.

To support compression without loss of real-time guaran-
tees, one needs to obtain realistic bounds for the compression
ratio and the computational time needed for compression and
decompression. These bounds can then be used to consider
compression for resource planning.

In this paper we present an architecture for a distributed
online-diagnosis system with real-time constraints that sup-
ports compression for communication and is controlled by a
static time-triggered schedule.

II. MODEL

Our system model consists of three parts: the logical model
describing diagnostic tasks, the physical model describing a
network and the compression model, describing a set of dif-
ferent compression algorithms and schemes. These models are
needed to define a fourth model for scheduling diagnostic tasks
to the network using data compression for communication.

1https://www.w3.org/TR/sparql11-query/

A. Logical model

The prerequisite for fault-diagnosis, i.e. the detection and
identification of faults, is knowledge about the process or the
system in order to distinguish a faulty process behavior from
a healthy one. Often, knowledge about the system is available
from different sources. If a mathematical model of the system
is available, observer based fault classifiers can be utilized [4].
In signal-based fault analysis, the knowledge about the process
is typically available in the form of a signal model (signal
relations), process parameters (e.g. limits of a sensor signal)
and corresponding digital signal processing techniques [4].
The system behavior can also be extracted from a large amount
of historic data by utilizing digital signal and data processing
techniques such as machine learning, amongst others [7]. A
knowledge base combines the information about the healthy
process behavior and information about fault indications.

The process of fault-diagnosis from a detection of a first
fault-indication up to distinguished identification of a fault
type and its location requires to extract, analyze, interpret and
merge a multitude of diagnostic information. The diagnos-
tic information is extracted in different manners. Analytical
knowledge about the process, e.g. the signal model and
corresponding processing techniques such as correlation or
trend analyses, are utilized to extract characteristic information
(features) about the signals which provides evidence of the
current process state. Faults in the process are reflected in the
measured signals and the diagnostic features, accordingly. In
a complex system, several potential faults (e.g. of different
components) may lead to the same faulty signal behavior of
a monitored signal. In such a scenario, the fault detection is
followed by a process of evaluating confirmative and unsup-
portive diagnostic information, respectively, in order to include
or exclude particular faults, eventually specifying the actually
occurred fault. The diagnosis of different faults requires the
execution of different signal processing and feature extraction
tasks in a defined order.

The dependencies between the diagnostic operations are
modeled in a diagnostic directed acyclic graph (DDAG),
denoted as G = (T,E, (`e)e∈E), with T being a set of
tasks t and E being a set of ordered pairs (t, t′) modeling
a precedence relation between two tasks. Edges from E are
also called logical channels or just channels. For a channel e,
the number `e ∈ N specifies the bit length of the data values
sent via channel e. Thus, over a channel e a stream of data
values is sent and every data value is encoded using `e bits.

Task t′ depends directly on t, iff (t, t′) ∈ E. A task
may depend on multiple others and in turn may work as a
prerequisite for other tasks. In a directed acyclic graph we can
clearly identify all predecessors and successors of any task.

The DDAG combines the knowledge about the process and
potential faults, i.e. how far faults effect a change of measured
signals. Furthermore it describes the signal processing tech-
niques (at the nodes) to extract the diagnostic features. With
the edges showing the necessary information to be exchanged,
the fault inference process is modeled. In order to allow the

node operations (tasks) to be scheduled to the processing units
of a distributed network, the DDAG design underlies certain
rules which are abstracted in the following:
• A diagnostic task produces characteristic information (no

intermediate results).
• A task may comprise multiple processing steps.
• A task uses as little as possible input information.
• For the order of fault reasoning (seeking confirmative

or unsupportive information for a specific fault) several
factors (e.g. probability of a fault’s occurrence, computa-
tional cost of the diagnostic operation required) are taken
into account.

• Fault reasoning and intermediate conclusions are allowed
in every subgraph.

In the DAKODIS framework the processing steps are en-
capsulated into tasks which are executed at the processing
units of a distributed network. According to its objective, a
task utilizes modularized algorithms of the fields preprocessing
of sensor or process data, diagnostic information extraction,
further processing (e.g. combination) of diagnostic information
and data compression.

All necessary data is made available to the dedicated nodes
via messages through the network. As the diagnostic process
is performed at run time on a distributed system the inference
on faults is decomposed in the temporal and spatial domain. In
case of a fault, the attained fault indications initially provide
evidence for a certain fault but may yet hold inconclusive
information at a certain node of the DDAG (e.g. confirmative
information from other nodes is not yet available). The degree
of confidence of a correct fault identification increases with
more information merged.

B. Physical model

Our network model consists of a set C of computation
nodes and a set R of routers, where C ∩ R = ∅. The graph
representing the network is defined as Net = (V,L), with
V = C ∪ R and L ⊆ (R × R) ∪ (C × R) ∪ (R × C)
being an undirected edge relation. The definition of L assures
that a computation node can be directly connected to one or
more routers but not to any other computation node. Only
computation nodes can execute tasks and only routers are able
to forward messages.

Figure 1 shows the architecture of the proposed system.
Every computation node has access to a locally stored part
of the distributed real time database that can be queried with
SPARQL queries. This database holds all information needed
to execute the diagnostic tasks located on this node and also
stores the data produced by these tasks. The synchronization
of the database among all nodes of the network is done by a
dedicated synchronization unit available on each node. This
unit also purges expired data from the storage as needed.
As the communication between the nodes should use com-
pression, the synchronization unit should compress outgoing
messages, if the overhead is reasonable compared to the utility.
For incoming compressed messages the unit needs to perform
the decompression and write the newly arrived data to the

Diagnostic Task

Input Buffer Output Buffer

Local DB Manager

RT Database

Sync Egress UnitSync Ingress Unit

TT Network

Fig. 1. Physical model architecture

database. Compute nodes may buffer outgoing messages. In
contrast, routers are not able to do this. Instead, they must
forward incoming messages directly.

The tasks running on a node do not have direct access to
the database. Instead, they read from a task-exclusive input
buffer and write their results to an also task-exclusive output
buffer. These buffers are managed by a local database manager,
which is aware of every tasks’ needs. As the diagnostic tasks
can operate on sliding time windows, the manager will only
replace data which is not related to the current window, leaving
all other data untouched. This reduces read-operations on the
database and write-operations on the input buffers. The buffer
size and the SPARQL queries needed to collect the data from
the database are design-time parameters of the diagnostic task.

To put everything together, the local database manager, the
synchronization unit and the execution of diagnostic tasks are
controlled by a time triggered schedule. For that purpose the
scheduler knows about each tasks’ fireing rate and the worst-
case execution times of all involved processes. The schedule is
calculated at design-time and does not change during runtime.
It considers resource allocation, path- and slot-selection and
compression, while trying to keep the makespan minimal.

C. Compression model
The DAKODIS architecture is designed to work with dif-

ferent compression schemes. In order to provide real time
guarantees the following parameters have to be known:
• the worst case compression time (WCCT) for a data

value,
• the worst case decompression time (WCDT) for a com-

pressed data value,
• and the worst case compression ratio (WCCR).

Formally, a compression scheme is a tuple Z = (`, k, ct , dt),
where ` ∈ N is the bit length of an input data value, k ∈ N

is the maximal bit length of a compressed data value, ct ∈ N
is the WCCT, and dt ∈ N is the WCDT. Thus, a compression
scheme abstracts from a concrete compression algorithm that
receives a sequence of `-bit strings and transforms it into a
sequence of bit strings of length at most k. The time needed
to convert a single `-bit string into its compressed output (a bit
string of length at most k) is at most ct , and the time needed to
recover the original `-bit string from the output is at most dt .
A compression scheme is applicable to a channel as defined
in II-A, if the bit length `e of the data values transmitted
via channel e is `. Note that the WCCR is k/`. To profit
from compression, we want to have k < `. This is clearly
not possible using lossless compression. In section III we
will propose a lossy compression algorithm with k < `. The
algorithm fails to transmit data values with a small probability,
but those data values that are transmitted can be perfectly
recovered at the receiver.

D. Scheduling

Calculating a schedule is an important task when designing
a real time embedded system. Basically, the schedule provides
information about when and where a task can be executed
without violating resource restrictions or dependency relations.
For DAKODIS we choose a non-preemptive, static scheduling
model similar to partitioned scheduling. As discussed in
[3], a non-preemptive scheduling model has advantages on
multi-core systems or distributed systems, as the overhead
for migrating a task is more difficult to predict in case of
preemptive scheduling. The disadvantage of non-preemptive
tasks reducing the responsiveness of a system is not valid
for multi-core systems, since the natural parallelism of such a
system can hide this latency [3].

We need to consider task allocation, as the distance of
two tasks in the network has an impact on the time needed
for communication, thus on the makespan. An allocation
function is a mapping A : T → C which maps tasks
to computation nodes. We require that for every channel
e = (t, t′) ∈ E and A(t) 6= A(t′) there exists a path of
the form A(t), r1, . . . , rn, A(t

′) in the network Net, where
n ≥ 1, r1, . . . , rn ∈ R, (A(t), r1) ∈ L, (ri, ri+1) ∈ L for all
1 ≤ i ≤ n − 1, (rn, A(t

′)) ∈ L, and ri 6= rj for i 6= j. For
further consideration we fix such a path and denote it with
A(e).

Every path A(e) has the following properties relevant for
scheduling:
• it starts and ends with a computation node,
• only routers are allowed between those computation

nodes,
• it is simple, i.e., a node does not appear twice on the

path, and
• its length (number of nodes on the path) is between 3

and |R|+ 2.
Obviously, a path A(e) can intersect another path A(e′) in
one or more computation nodes or routers. In order to avoid
conflicts, one has to take a look at the ports being used at the
shared resources.

c0 c1

c2 c3

r

Fig. 2. Non-conflicting communication

c0 c1

c2

r

Fig. 3. Conflicting communication

In Figure 2 the communication between computation nodes
c0 and c1 does not conflict with the communication between
c2 and c3, because the paths use different sets of ports. Even
if two data values arrive at the same time, no collision can
occur. In contrast, Figure 3 shows conflicting communication,
since both paths share the port that the router uses to forward
data to c1. To avoid conflicts and collisions of data values, the
use of these ports has to be scheduled, too. This can either
be managed by delaying values at the sender to make them
arrive later at the shared resource (temporal separation), or by
trying to choose a conflict free path (spatial separation). Data
compression eases the scheduling of conflicting paths, as it
reduces the unavailability of involved resources.

The DAKODIS architecture adds the utilization of data
compression to the classical scheduling problems, like re-
source allocation and routing. As known from II-C a com-
pression scheme provides real time guarantees in terms of
WCCT and WCDT as well as a guarantee on the WCCR.
If the compression scheme Z = (`, k, ct , dt) is used for a
channel e (with `e = `) then the number of transmitted bits is
reduced by `−k for every single data value. On the other hand,
the costs ct and dt have to be added to the execution times of
the channel’s end points. Thus, the usage of data compression
is always a trade-off between less communication and longer
execution times.

A simpler version of this scheduling model with only one
compression algorithm and equal overheads for compression
and decompression has been formulated for MILP solvers in
[5]. This model also includes a stricter policy for using the
routers, so that even communication as shown in Figure 2 will
be treated as a potential conflict and needs temporal separation.

III. COMPRESSION

Our compression method has to cope with different types
of data values: Initially, data values are obtained by physical
sensors that produce data samples of real numbers (or tuples
of real numbers). We map these real-valued data samples to a
finite range of N values that we can identify with the numbers
0, . . . , N−1. For this we use standard quantization techniques,
see e.g. [8]. We can encode every number from the range
0, . . . , N − 1 with ` := dlog2Ne bits. During the diagnostic
process, the quantized values are transformed into symbolic
data values.

Our specific requirements for the DAKODIS architecture
imply the following features for the compression algorithm:

• Compression and decompression underlie hard real time
constraints.

• Only online (one-pass) compression algorithms can be
used that compress every arriving data value before the
next data value arrives.

• No statistical data concerning the probability distribution
of the data values is available.

• In order to utilize compression for the scheduling process,
the compressor should guarantee a certain worst-case
compression ratio below one.

• Compression should be lossless (after the initial quanti-
zation phase), with the exception that occasionally data
values can be completely lost. This means that every
data value is either transformed by the sender into a
compressed representation that can be exactly recovered
by the receiver, or it is transformed into a default value
that tells the receiver that the original data value is lost.
Loosing some data values is unavoidable if we want to
guarantee a worst-case compression ratio below one. A
small probability for loosing data values is tolerable in
our context, since diagnosis is typically not dependent on
single data values.

The above requirements rule out most of the classical com-
pressors (see [8] for an overview on classical compression
techniques):

• Lossy compressors based on transform coding (e.g. co-
sine transforms, wavelet transforms) are inherently lossy
and do not allow to recover data values without error
(which is a problem for symbolic data values that were
produced during the diagnostic process). Moreover, these
compressors typically exploit the limitations of human
perception (e.g. for the compression of pictures, audio or
video data), which is not relevant in our context.

• Lossless compressors (e.g. entropy-based coders like
Huffman coding or arithmetic coding and the dictionary-
based compressors from the Lempel-Ziv family) cannot
guarantee a fixed compression ratio. A lossless compres-
sor cannot properly compress every single input data
value and compressing larger blocks of values would
torpedo the real time constraints.

A. Cache-based code

In order to meet the above mentioned requirements for
the compression algorithm, we developed a cache-based com-
pression algorithm. In order to ensure a small rate of lost
data values, we have to assume some locality in the data
values: If the current data value is i ∈ [0, N − 1] then with
high probability the next data value should belong to a small
neighborhood of i. This is a reasonable assumption if the
data values 0, 1, . . . , N−1 represent neighboring quantization
levels of real valued sensor data.

For the compression algorithm, we assume that the number
N of data values is of the form N = 2s+t for some s, t ≥ 1
with s ≤ t. Then every value i ∈ [0, N−1] can be encoded by
a bit string of length ` := s+t. We call such a bit string a code
word in the following. The first s bits (resp., last t bits) of a
code word are its head (resp., tail). We assume that if the code
word w encodes the data value i, then the lexicographically
next code word encodes the next value i + 1. In particular,
for every fixed head u ∈ {0, 1}s, the set of code words {uv |
v ∈ {0, 1}t} corresponds to an interval of [0, N − 1]. For
example, if s = 4 and t = 8, then the head and tail of the code
word 100101110101 are 1001 and 01110101, respectively. We
also fix a number r ≤ s and construct a dictionary with at
most 2r − 1 entries such that each entry stores a head. Every
dictionary entry is addressed with a bit string u′ ∈ {0, 1}r
with u′ 6= 0r (there are 2r − 1 such bit strings). Initially, the
dictionary is either empty or filled with some heads that are
known to occur frequently in the data stream. Both, sender
and receiver will store the same dictionary at every instant.

Now we compress the input data as follows. Consider a
code word w = uv, where |u| = s and |v| = t. If u is
present in the dictionary (we can check this in constant time
by implementing the dictionary using hash table) at position
u′ (where u′ 6= 0r is a bit string of length r as described
above), then we write the bit string u′v of length r+ t on the
communication channel. In this way, we save s−r many bits.
On the other hand, if u is not in the dictionary, then we write
the bit string 0ru of length r+s ≤ r+t on the communication
channel. Moreover, the sender inserts the new head u into the
dictionary. If the dictionary is not yet fully filled (i.e. contains
less than 2r − 1 code words) then we just assign a free entry
to the new head u. If the dictionary is already full, then we
have to replace one of the old heads in the dictionary by u.
For this we use a the least-recently-used (LRU) strategy. Note
that the code word w = uv is lost in this situation and we
call this event a miss. If the receiver reads 0ru, then the prefix
0r tells him that the next s many bits represent a new head
u. The receiver inserts u into its dictionary using the same
strategy as the sender. It is clear that the compression ratio of
this algorithm is at most (r + t)/(s+ t).

B. Analysis of the probability of a miss

Let us now consider the probability of a miss. For this we
model the sequence of code words w1w2w3 · · · as a stochastic
process. Recall that we have N = 2s+t different code words.
Under the (not always realistic) assumption that successive

code words are identically and independently distributed (iid),
we have a so called iid process, which is described by a single
probability distribution (P [w] ∈ [0, 1])w∈{0,1}s+t on the set of
code words, where P [w] is the probability that code word w
appears. Whether a certain code word leads to a miss only
depends on the head of the code word. From the probabilities
P [w] we can compute the probability pu that a certain head
u ∈ {0, 1}s appears as

pu =
∑

v∈{0,1}t
P [uv].

For a uniform distribution (i.e. pu = pu′ for all heads u, u′)
the probability of a miss is 1 − (2r − 1)/2s. Flajolet et
al. [1] showed that given the head probabilities pu one can
in principle compute the miss probability with the following
formula, where k = 2r − 1 is the size of the dictionary:

1−
∑

u∈{0,1}s
p2u ·

k−1∑
q=0

(−1)k−1−q
(
2s − q − 2

2s − k − 1

) ∑
|J|=q,u6∈J

1

1− PJ
,

where PJ =
∑

v∈J pv . As also noted in [1] this formula is
not suitable for practical calculations of the probability of a
miss.

Franaszek and Wagner [2] consider the expected ratio
Flru/Fopt, where Flru is the miss probability under the LRU
strategy and Fopt is the miss probability of the optimal replace-
ment strategy. The latter stores the k−1 heads with the highest
probabilities in the dictionary. The remaining dictionary entry
is used for replacement. Note that the optimal strategy assumes
knowledge of the above probabilities pu. The result from [2]
(with our parameters) states that

Flru/Fopt ≤ 1 +
(2r − 1)(1− β)
1 + (2r − 2)β

,

where β is the sum of the smallest 2s − 2r + 1 many head
probabilities pu. The result assumes again that the sequence
of code words is produced by an iid process.

In practical situations, the next data value is highly depen-
dent on the previous values. In particular locality, which is
typically observed in physical processes, implies that the next
data value is with a high probability in a small neighborhood
of the previous data value. In such a setting, our cache based
compressor will show a much smaller probability of a miss
than in the above iid setting. This will be demonstrated by
our experimental data in the next section.

IV. EXAMPLES AND EVALUATION

Recent developments in the automotive industry yielded a
large number of driver assistance systems. Electronic stability
control, assistance for parking and distance keeping, and
especially autonomously driving vehicles (prototypes) require
a multitude of different sensor information to be gathered,
processed and evaluated. These systems demand a high re-
liability and with an increasing number of complex tasks
taken over from the driver, safety-related aspects of the driver
assistance systems become central concerns. In this context,

online diagnosis helps to detect, identify and manage faults
occurred in the system to prevent damage, stay operational or
increase the maintainability, amongst others.

A. Distributed architecture of modern cars

Modern cars have many built-in electronic control units,
most of which have to deal with specific tasks e.g. sensor
data processing or providing control signals for other devices.
However, these electronic control units may adopt diagnostic
tasks as well which are related to their predestinated task.
The overall electronic architecture of modern cars, can thus be
seen as a distributed network where several processing units
can execute diagnostic tasks leading to a distributed diagnostic
process.

We introduce a Simulink model to exemplarily demonstrate
the working principle of the diagnostic process on a distributed
network by means of a hybrid-electric vehicle (HEV) model2.
However, the aspects can be generalized for many other
systems or processes.

The HEV-model offers an abstracted replica of a hybrid-
electric car and allows to simulate the car’s behavior according
to a driving cycle input. The main components are the elec-
trical part including an electrical motor, a generator, a voltage
converter and a battery. The electrical motor is connected
to the driveshaft. Besides, a power split device combines an
internal combustion engine (ICE) with the generator and the
driveshaft. Via the power split device the ICE fulfills two
tasks: supporting the motor to drive the car and extending
the car’s operating range by charging the battery via the
generator. A mode logic manages the interaction between
these units (e.g. turning on or off the generator depending
on the current battery state of charge and driving situation).
The model is equipped with a variety of sensors, such as
voltage sensors, current sensors, torque sensors or tachometers.
The temperature of different components as well as the mode
logic is also monitored. Since faults in the system (e.g. failure
of a component) are reflected in the measured signals, a
diagnostic decision can be conducted based on the analysis
and processing of fault indications derived from the sensor
signals.

B. Working principles of a distributed fault-diagnosis process

In the following, we demonstrate a fault detection and
diagnostic inference process by means of a DDAG. The
DDAG in Figure 4 only models the diagnostic dependencies
for the faults specified in this example. It is not complete
for the whole HEV-model yet suitable for demonstration
purposes. Table I gives an overview of the diagnostic tasks
and necessary input signals.

In the simplified scenario we assume that only one fault
occurs at a time. Faults are limited to the following four
events: wrong mode logic signal, failure of the generator,

2Hybrid-Electric Vehicle Model in Simulink,
http://www.mathworks.com/matlabcentral/fileexchange/28441-hybrid-
electric-vehicle-model-in-simulink

SA

F

E

C D

B

A

G

SF

SC

SB

SD

mAB

Fig. 4. Diagnostic directed acyclic graph for the example model

TABLE I
DIAGNOSTIC TASKS AND SIGNALS

Node Task

A Evaluation of battery state of charge
B Verification of mode signaling
C Evaluate generator functioning
D Evaluate motor functioning
E Intermediate fault decision
F Electric circuit evaluation
G Final fault decision

Signal Measurements

SA Battery: state of charge
SB Mode logic: signaling
SC Generator: torque, generator speed, voltage, current
SD ICE: torque demand, torque, engine speed
SF Electrical system: voltages, currents

failure of the combustion engine or an electrical line defect.
Since all of these components are involved into the battery
charging process, a failure of one of the components leads
to an abnormal signal behavior of the battery measurements.
Applying limit, trend, and plausibility observations on the
monitored state of charge (SOC) signal SA, the first fault
indication is determined at node A (Figure 4), specifically,
battery not charged. At this stage a fault is detected, however, it
is not identified as it may have arisen from different component
failures. During the fault-inference process more sensor data
is evaluated to isolate the fault. The diagnostic information
obtained at node A is communicated via the message mAB

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
is

s
ra

te

(r + t)/(s + t)

car-accelerator, size of dictionary = 1

15141312

11

10

9

8

Fig. 5. Simulation with r = 1 (i.e. a dictionary of size 21−1 = 1). The tail
length t is written at each data point. The head length is s = 16 − t. Lines
between data points are shown for illustration only.

to node B. Examining the signaling of the mode logic device
(SB), node B is able to reason about a fault in the mode logic.
A faulty signaling immediately leads to a final fault decision
bringing us to node G. In our simplified example, a deeper
analysis for this type of fault is not performed, however, the
DDAG could be extended to allow more accurate conclusions.
A correct signaling excludes this potential fault and requires
further analyses of the components generator and motor at
nodes C and D, respectively. Evaluating torque, rotational
speed and electric measurements of these components (SC

and SD) and taking energy conservation into account, their
status is determined and the diagnostic features are combined
at node E, allowing a diagnostic intermediate decision based
on plausibility relations. If a correct working of the generator
and the ICE is stated, we proceed to node F . With SF being
voltage and current measurements in different locations of the
electric circuit, the fault can be identified.

A stepwise fault-inference process matches real world sys-
tems. The successive generation, evaluation, and combination
of the information for the fault-diagnosis process are often
required. Especially when a system to be diagnosed consists
of multiple independent processing units, not all relevant data
may be available for the diagnosis at all times. Furthermore,
the diagnostic feature extraction consumes computational re-
sources. Likewise, the broadcasting of the information through
the network impacts the overall transmission performance.
In these cases, one may concentrate on monitoring fewer
important signals continuously and ask for confirmative data
after the fault detection step. The ability to adopt the diagnostic
methods to a variety of applications may help to increase their
reliability, availability and especially the safety.

C. Example for a cache-based code

To examine the performance of the cache-based compressor
described in III-A, we implemented a simulation3 that works
on data sets from the HEV-Model. Figures 5 and 6 show the

3Implementation of cache-based code,
https://networked-embedded.de/es/index.php/dakodis.html

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
is

s
ra

te

(r + t)/(s + t)

car-accelerator, size of dictionary = 7

13121110

9

8

Fig. 6. Simulation with r = 3 (i.e. a dictionary of size 23−1 = 7). The tail
length t is written at each data point. The head length is s = 16 − t. Lines
between data points are shown for illustration only.

relationship between the miss rate and the compression ratio
(r+t)/(s+t) with different settings for the parameters r and t.
For the experiments we used the samples of the car-accelerator
signal from a WLTP4-Class 3 driving cycle simulation. The
data set contains 180100 samples that were quantized with 16
bits and a sampling frequency of 100 Hz. We see that with
a compression ratio of about 62.5% we achieve a miss rate
of less than 0.2% (Figure 5 for t = 9). With a compression
ratio of about 75% we even reach a miss rate of about 0.02%
(Figure 6 for t = 9).

D. Minimizing latency

We scheduled the DDAG from Figure 4 to a network and
analyzed the communication times between the computation
nodes. Tasks observing similar objects are allocated on the
same node. For simplicity the network is designed in such a
way that each channel can use two completely disjoint routes.
Because of the network design and the allocation there is no
need to consider collisions.

2

1

3

R

R

B, E, GC, D

A, F
(A, B), (F, G)

(E, F)

{(C, E), (D, E)}

{(B, C), (B, D)}

Fig. 7. Network with allocated tasks and communication

4Worldwide Harmonized Light-Duty Vehicles Test Procedure,
https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/
ECE-TRANS-WP29-2014-027e.pdf

Figure 7 shows the network and the 7 tasks A,B, . . . , G
allocated to the three computation nodes as well as the
communication links. Note, that the stated allocation is not
optimal as the concurrency of C and D is not exploited.
The communication pattern of the DDAG is shown by red
directed egdes between the involved computation nodes. These
edges are labeled with channels (see Section II-A). A group of
channels surrounded by curly braces means that these channels
are mapped to disjoint communication paths (via the two
routers). Hence, for the computation of the makespan, such
a group can be considered as one channel. Note, that the
two channels (B,G) and (E,G) are not present in Figure 7
because the three tasks B,E,G are mapped to the same
computation node. In this example we assume a worst-case
execution time (WCET) of 4 ticks per task and a per-hop
transmission time of 8 ticks per message. Hence, we can
calculate the makespan as 7 · 4 + 5 · (2 · 8) = 108 ticks (7
tasks, each requiring 4 ticks, and 5 (groups of) channels, each
mapped to a communication path of length 2). Note, that the
two topological orderings (which result from the two different
orderings of C and D) have no influence on the makespan.
Assuming the compression parameters WCCR = 0.75 and
WCCT = WCDT = 1, we are able to decrease the makespan.
Task A must handle only one compression for channel (A,B)
and G must handle only one decompression for channel
(F,G). Therefore, both end up with an accumulated WCET of
5 ticks. Tasks C, D and F must each perform one compression
and one decompression. They all end up with a WCET of
6 ticks. The remaining tasks B and E must handle two
compressions and one decompression (B) or one compression
and two decompressions (E). They both end up with a WCET
of 7 ticks. The per-hop transmission time of the messages is
reduced to 6 = 8 · 0.75 ticks. The makespan of the DDAG
with compression is 2 · 5+2 · 7+3 · 6+5 · (2 · 6) = 102 ticks.

V. FUTURE WORK

In this section we provide an overview of research activities
planned to improve the proposed architecture.

A. Diagnostic framework
The diagnostic framework contains different atomic compo-

nents. In order to extract features from different streams, these
atomics can be combined to more powerful blocks. Complex
processes may require different procedures. For this, a library
of diagnostic feature extraction blocks along with interfaces
and instruction sets will be established to allow an application
specific and user-friendly integration of the diagnostic methods
for many fields. In the future, we also aspire an extension
of the DDAG design-rules with a special focus on handling
huge and complex DDAGs. A tool for timing analyses of the
diagnostic feature extractions and all other processing blocks
is also necessary, in order to provide worst case execution
times and thus, time guarantees for the fault diagnosis.

B. Compression library
In order to complete the compression library, we will

investigate in which way different compression methods fit

the needs of the diagnostic framework while still providing
real time guarantees. Additionally, we will try to make use of
correlation between streams to achieve better compression.

C. Scheduler

The scheduling model introduced in section II-D has to
be implemented. Our goal is to calculate a static schedule
considering different compression methods using genetic algo-
rithms. Although these types of algorithms will not necessarily
solve the problem optimally, we hope to obtain near-optimal
solutions in a feasible amount of computing time. First exper-
iments have shown promising results regarding these topics.
Furthermore, the model needs to be generalized, so that a
computation node can handle multiple jobs.

VI. CONCLUSION

In this paper, we firstly motivated the usage of data
compression in distributed online-diagnosis systems. We then
presented an architecture for such a system by defining models
for diagnostic graphs (DDAG), networks of computation nodes
and routers, as well as a model for compression schemes
that allows to provide real time guarantees. After discussing
the scheduling model that now includes compression, a lossy
cache-based compressor with a guaranteed compression ratio
and low costs was proposed. With an example we showed
that depending on the parameters more than one third of the
bits (∼ 37.5%) can be saved, while still not loosing more
than 0.2% of the values. In turn, this means that 99.8% of
the values are delivered correctly and without any losses, but
with a significant reduction of bandwidth demands. The small
loss-rate, the low costs and the fixed compression ratio make
this compressor suitable for real time purposes.

ACKNOWLEDGMENT

This work was supported by the DFG research grants
LO748/11-1 and OB384/5-1.

REFERENCES

[1] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birthday para-
dox, coupon collectors, caching algorithms and self-organizing search.
Discrete Applied Mathematics, 39(3):207–229, 1992.

[2] Peter A. Franaszek and T. J. Wagner. Some distribution-free aspects of
paging algorithm performance. Journal of the ACM, 21(1):31–39, 1974.

[3] Nan Guan. Techniques for building timing-predictable embedded systems.
Springer, 2016.

[4] Rolf Isermann. Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer Science & Business Media, 2006.

[5] Damian Ludwig and Roman Obermaisser. Scheduling of datacompression
on distributed systems with time-and event-triggered messages. In
International Conference on Architecture of Computing Systems, pages
193–204. Springer, 2017.

[6] Roman Obermaisser, Rubaiyat Islam Sadat, and Fabian Weber. Active
diagnosis in distributed embedded systems based on the time-triggered ex-
ecution of semantic web queries. In Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2014 IEEE 17th International
Symposium on, pages 222–229. IEEE, 2014.

[7] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[8] Khalid Sayood. Introduction to Data Compression, fourth edition.
Morgan Kaufmann, 2012.

