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Abstract—We apply so-called tree straight-line programs to the
problem of universal source coding for binary trees. We derive
an upper bound on the maximal pointwise redundancy (or worst-
case redundancy) that improve previous bounds on the average
case redundancy obtained by Zhang, Yang, and Kieffer using
directed acyclic graphs. Using this, we obtain universal codes for
new classes of tree sources.

I. INTRODUCTION

Universal source coding for finite sequences over a finite
alphabet Σ (i.e., strings over Σ) is a well-established topic
of information theory. Its goal is to find prefix-free lossless
codes that are universal (or optimal) for classes of information
sources. Kieffer and Yang developed grammar-based codes
that are universal for the class of finite state sources [8].
Grammar-based compression works in two steps: In a first
step, from a given input string w ∈ Σ∗ a context-free grammar
Gw that produces only the string w is computed. Context-free
grammars that produce exactly one string are also known as
straight-line programs, briefly SLPs, and are currently an ac-
tive topic in text compression and algorithmics on compressed
texts, see [10] for a survey. In a second step, the SLP Gw is
encoded by a binary string B(Gw). There exist several algo-
rithms that compute from a given input string w of length n
an SLP Gw of size O(n/ log n) (the size of an SLP is the total
number of symbols in all right-hand sides of the grammar) [8];
the best known example is probably the LZ78 algorithm [14].
By combining any of these algorithms with the binary encoder
B for SLPs from [8], one obtains a grammar-based encoder
E : Σ∗ → {0, 1}∗, whose worst-case redundancy for input
strings of length n is bounded by O(log log n/ log n) for every
finite state information source over the alphabet Σ. Here, the
worst-case redundancy for strings of length n is defined as the
maximum of n−1 · (|E(w)|+ log2 P (w)) taken over all words
w ∈ Σn with P (w) > 0, where P (w) is the probability that
the finite state information source emits w. Thus, the worst-
case redundancy measures the maximal additive deviation of
the code length from the self information, normalized by the
length of the source string.

Over the last few years, we have seen increasing efforts
aiming to extend universal source coding to structured data
like trees [9], [12], [13] and graphs [1], [7]. In this paper,
we are concerned with trees. In their recent paper [13],
Zhang, Yang, and Kieffer started to extend grammar-based
source coding from strings to binary trees. For this, they
first represent a binary tree t by its minimal directed acyclic
graph Dt (the minimal DAG of t). This is the directed acyclic

graph obtained by removing multiple occurrences of the same
subtree from t. In a second step, Dt is encoded by a binary
string B(Dt); this step is similar to the binary coding of
SLPs from [8]. Combining both steps yields a tree encoder
Edag : T → {0, 1}∗, where T is the set of all binary trees.
In order to define universality of such a tree encoder, the
classical notion of an information source on finite sequences
is replaced in [13] by the notion of a tree source. This is a
collection of probability distributions (Pn)n∈N, where every
Pn is a distribution on a finite non-empty subset Fn ⊆ T ,
and these sets partition T (see also Sec. II-B). Two classes of
tree sources are considered in [13]: leaf-centric sources (Fn
is the set of all binary trees with n leaves) and depth-centric
sources (Fn is the set of all binary trees of depth n). Then, two
properties on binary tree sources are introduced in [13]: the
domination property (see Sec. III, where it is called the weak
domination property) and the representation ratio negligibility
property. The latter states that

∑
t∈Fn

Pn(t) · |Dt|/|t| (the
average compression ratio achieved by the minimal DAG)
converges to zero for n→∞, where the size |t| of the binary
tree is defined as its number of leaves. The main result of
[13] states that for every tree source (Pn)n∈N satisfying the
domination property and the representation ratio negligibility
property the average case redundancy∑

t∈Fn,Pn(t)>0

|t|−1 · (|Edag(t)|+ log2 Pn(t)) · Pn(t)

converges to zero for n → ∞. Finally, two classes of tree
sources having the domination property and the representation
ratio negligibility property are presented in [13]. One is a class
of leaf centric sources, the other one is a class of depth centric
sources. Both sources have the property that every tree with a
non-zero probability is balanced in a certain sense, the precise
definitions can be found in Sec. III-C. As a first contribution,
we show that for these sources not only the average case
redundancy but also the worst-case redundancy

max
t∈Fn,Pn(t)>0

|t|−1 · (|Edag(t)|+ log2 Pn(t)) (1)

converges to zero for n → ∞. More precisely, we
show that (1) is bounded by O(log log n/ log n) (resp.,
O((log log n)2/ log n)) for the presented class of leaf-centric
tree sources (resp., depth-centric tree sources). To prove this,
we use results from [5], [6] according to which the minimal
DAG of a suitably balanced binary tree of size n is bounded
by O(n/ log n), respectively O(n · log log n/ log n).



Our second main contribution is the application of tree
straight-line programs, briefly TSLPs, for universal tree cod-
ing. A TSLP is a context-free tree grammar that produces
exactly one tree, see Sec. II-C for the precise definition
and [11] for a survey. TSLPs can be viewed as the proper
generalization of SLPs for trees. Whereas DAGs only have
the ability to share repeated subtrees of a tree, TSLPs can also
share repeated tree patterns with a hole (so-called contexts).
In [5], the authors presented a linear time algorithm that
computes for a given binary tree t of size n a TSLP Gt of
size O(n/ log n). This shows the main advantage of TSLPs
over DAGs: There exist trees of any size n for which the
minimal DAG has size n as well. In Sec. IV-B we define a
binary encoding B of TSLPs similar to the ones for SLPs [8]
and DAGs [13]. We then consider the combined tree encoder
Etslp : T → {0, 1}∗ with Etslp(t) = B(Gt), and prove that its
worst-case redundancy (defined as in (1) with Edag replaced
by Etslp) is bounded by O(log log n/ log n) for every tree
source that satisfies the strong domination property defined in
Sec. IV-C. The strong domination property is a strengthening
of the domination property from [13], and this is what we have
to pay extra for our TSLP-based encoding in contrast to the
DAG-based encoding from [13]. On the other hand, the TSLP-
based encoding has two main advantages over the DAG-based
encoding: (i) The representation ratio negligibility property
from [13] is no longer needed, and (ii) we get bounds on the
worst-case redundancy instead of the average case redundancy.
Both advantages are based on the fact that the grammar-based
compressor from [5] computes a TSLP of size O(n/ log n) for
every binary tree of size n. We conclude the paper with the
presentation of two natural classes of leaf-centric and depth-
centric tree sources having the strong domination property.
These classes are orthogonal to the classes from [13].

For a full version of the paper see [4].

II. PRELIMINARIES

In this section, we introduce basic definitions concerning
information theory (Sec. II-A), binary trees (Sec. II-B) and
tree straight-line programs (Sec. II-C). The latter are our key
formalism for compressing binary trees. With N we denote the
natural numbers including 0. We use the standard O-notation
and for a constant b we write O(log n) instead of O(logb n).

A. Empirical distributions and empirical entropy

Let a = (a1, a2, . . . , an) be a tuple of elements that
are from some (not necessarily finite) set A. The empirical
distribution pa : {a1, a2, . . . , an} → R of a is defined by
pa(a) = n−1 ·|{i | 1 ≤ i ≤ n, ai = a}|. We use this definition
also for words over some alphabet by identifying a word
w = a1a2 · · · an with the tuple (a1, a2, . . . , an). The unnor-
malized empirical entropy of a is H(a) := −

∑n
i=1 log pa(ai).

B. Trees, tree sources, and tree compressors

With T we denote the set of all binary trees. We identify
T with the set of terms that are built from the binary symbol
f and the constant a. Formally, T is the smallest set such that

a ∈ T and if t1, t2 ∈ T then also f(t1, t2) ∈ T . With |t| we
denote the number of occurrences of the constant a in t. This
is the number of leaves of t. Let Tn = {t ∈ T | |t| = n}
for n ≥ 1. The depth d(t) of the tree t is recursively defined
by d(a) = 0 and d(f(t1, t2)) = max{d(t1), d(t2)} + 1. Let
T d = {t ∈ T | d(t) = d} for d ∈ N.

Occasionally, we will consider a binary tree t as a graph
with nodes and edges in the usual way. Note that a tree t ∈ Tn
has 2n− 1 nodes in total: n leaves and n− 1 internal nodes.
For a node v we write t[v] for the subtree rooted at v in t.

A context is a binary tree t, where exactly one leaf is
labelled with the special symbol x (called the parameter); all
other leaves are labelled with a. For a context t we define
|t| to be the number of a-labelled leaves of t (which is the
number of leaves of t minus 1). We denote with C the set of
all contexts and define Cn = {t ∈ C | |t| = n} for n ∈ N. For
a tree or context t ∈ T ∪C and a context s ∈ C, we denote by
s(t) the tree or context which results from s by replacing the
parameter x by t. For example s = f(a, x) and t = f(a, a)
yields s(t) = f(a, f(a, a)). The depth d(t) of a context t ∈ C
is defined as the depth of the tree t(a).

A tree source is a pair ((Fi)i∈N, P ) such that:
• Fi ⊆ T is non-empty and finite for every i ≥ 0,
• Fi ∩ Fj = ∅ for i 6= j and

⋃
i≥0 Fi = T , i.e., the sets

Fi form a partition of T ,
• P : T → [0, 1] and

∑
t∈Fi

P (t) = 1 for every i ≥ 0, i.e.,
P restricted to Fi is a probability distribution.

In this paper, we consider only two cases for the partition
(Fi)i∈N: either Fi = Ti+1 for all i ∈ N (note that there is
no tree of size 0) or Fi = T i for all i ∈ N. Tree sources
of the former (resp., latter) type are called leaf-centric (resp.,
depth-centric). More specifically, we follow [13] to specify
a leaf-centric (resp. depth-centric) tree source as follows: Let
Σleaf be the set of all functions σ : (N\{0})×(N\{0})→ [0, 1]
such that for all n ≥ 2:∑

i,j≥1, i+j=n

σ(i, j) = 1. (2)

Moreover, let Σdepth be the set of all mappings σ : N× N →
[0, 1] such that for all n ≥ 1:∑

i,j≥0, max(i,j)=n−1

σ(i, j) = 1. (3)

For σ ∈ Σleaf we define Pσ : T → [0, 1] inductively by

Pσ(a) = 1 and Pσ(f(s, t)) = σ(|s|, |t|) · Pσ(s) · Pσ(t). (4)

We have
∑
t∈Tn Pσ(t) = 1 and thus Slσ := ((Ti)i≥1, Pσ) is a

leaf-centric tree source.
For σ ∈ Σdepth, we define Pσ : T → [0, 1] by

Pσ(a) = 1, Pσ(f(s, t)) = σ(d(s), d(t)) · Pσ(s) · Pσ(t). (5)

We have
∑
t∈T n Pσ(t) = 1. Thus, Sdσ := ((T i)i≥0, Pσ) is a

depth-centric tree source.
A tree encoder is an injective mapping E : T → {0, 1}∗

whose range E(T ) is prefix-free, i.e., there do not exist t, t′ ∈



T with t 6= t′ such that E(t) is a prefix of E(t′). We define the
worst-case redundancy (also known as the maximal pointwise
redundancy) of E w.r.t. the tree source S = ((Fi)i∈N, P ) as
the mapping i 7→ R(E,S, i) (i ∈ N) with

R(E,S, i) := max
t∈Fi,P (t)>0

|t|−1 · (|E(t)|+ log2 P (t))

C. Tree straight-line programs
We now introduce tree straight-line programs. Let V be a

finite set of nonterminals disjoint from {f, a, x}. Each symbol
A ∈ V has an associated rank 0 or 1. We use V0 (resp., V1)
for the set of nonterminals of rank 0 (resp. of rank 1) and
we assume that V0 6= ∅. The idea is that nonterminals from
V0 (resp., V1) derive to trees from T (resp., contexts from
C). We denote by TV the set of trees over {f, a} ∪ V , i.e.
each node in a tree t ∈ TV is labelled with a symbol from
{f, a} ∪ V and the number of children of a node corresponds
to the rank of its label. With CV we denote the corresponding
set of all contexts, i.e., the set of trees over {f, a, x} ∪ V ,
where the parameter symbol x occurs exactly once and at a
leaf position. Clearly, T ⊂ TV and C ⊂ CV . A tree straight-
line program, or short TSLP, is a tuple G = (V,A0, r), where
A0 ∈ V0 is the start nonterminal and r : V → (TV ∪ CV )
is the function which assigns each nonterminal its right-hand
side. It is required that if A ∈ V0 (resp., A ∈ V1), then
r(A) ∈ TV (resp., r(A) ∈ CV ). Furthermore, the binary
relation {(A,B) ∈ V × V | B is a label in r(A)} needs
to be acyclic. These conditions ensure that exactly one tree
is derived from the start nonterminal A0 by using the rules
A → r(A) for A ∈ V . Formally, we define valG(t) ∈ T for
t ∈ TV and valG(t) ∈ C for t ∈ CV inductively:
• valG(a) = a and valG(x) = x
• valG(f(t1, t2)) = f(valG(t1), valG(t2)) for f(t1, t2) ∈
TV ∪ CV

• valG(A) = valG(r(A)) for A ∈ V0
• valG(A(s)) = t′(valG(s)) for A ∈ V1, t′ = valG(r(A)) ∈
C, and s ∈ TV ∪ CV .

The tree defined by G is val(G) := valG(A0) ∈ T . Moreover,
for A ∈ V1 we also write valG(A) for valG(A(x)).

Example 1. Let G = ({A0, A1, A2}, A0, r) be a TSLP
with A0, A1 ∈ V0, A2 ∈ V1, r(A0) = f(A1, A2(a)),
r(A1) = A2(A2(a)), r(A2) = f(x, a). We get valG(A2) =
f(x, a), valG(A1) = f(f(a, a), a) and val(G) = valG(A0) =
f(f(f(a, a), a), f(a, a)).

In this paper, we will consider two classes of syntactically
restricted TSLPs: (i) DAGs (directed acyclic graphs) and (ii)
TSLPs in normal form. Let us start with the former; normal
form TSLPs will be introduced in Sec. IV-A.

III. TREE COMPRESSION WITH DAGS

In this section we sharpen some of the results from [13],
where universal source coding of binary trees using minimal
DAGs (directed acyclic graphs) is investigated. In [13], only
bounds on the average redundancy for certain classes of tree
sources were shown. Here we extend these bounds (for the
same classes of tree sources) to the worst-case redundancy.

A. Directed acyclic graphs (DAGs)

A DAG is a TSLP D = (V,A0, r) such that V =
{A0, A1, . . . , An−1} for some n ∈ N, n ≥ 1, V = V0
(i.e., all nonterminals have rank 0), and for every Ai ∈ V ,
the right-hand side r(Ai) is of the form f(α1, α2) with
α1, α2 ∈ {a,Ai+1, . . . , An−1}. Its size is |D| = n + 1. Note
that a TSLP of this form generates a tree with at least two
leaves. In order to include the tree a with a single leaf, we
also allow the TSLP Ga = ({A0}, A0, A0 7→ a) of size 1.

In contrast to general TSLPs, every binary tree t has
a unique (up to renaming of nonterminals) minimal DAG
Dt, whose size is the number of different (pairwise non-
isomorphic) subtrees of t. The idea is to introduce for every
subtree f(t1, t2) of size at least two a nonterminal Ai with
r(Ai) = f(α1, α2), where αi = a if ti = a and αi is the
nonterminal corresponding to the subtree ti if |ti| ≥ 2. We will
only use this minimal DAG Dt in the sequel. The following
example shows that in the worst-case, the size of the minimal
DAG is not smaller than the size of the tree.

Example 2. Let tn = f(f(f(· · · f(a, a), · · · a), a), a) ∈
Tn+1, where f occurs n times. The minimal DAG of tn is
({A0, . . . , An−1}, A0, rn), where rn(Ai) = f(Ai+1, a) for
0 ≤ i ≤ n− 2 and rn(An−1) = f(a, a) and its size is n+ 1.

B. Universal source coding with DAGs

The following property was introduced in [13], where it
is called the domination property (later, we will introduce a
strong domination property): A tree source ((Fi)i∈N, P ) (as
defined in Sec. II-B) has the weak domination property if there
is a mapping λ : T → R>0 such that:
• λ(t) ≥ P (t) for every t ∈ T ,
• λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T , and
• there are constants c1, c2 such that

∑
t∈Tn λ(t) ≤ c1 ·nc2

for all n ≥ 1.
In [13], the authors define a binary encoding B(Dt) ∈ {0, 1}∗,
such that B(Dt) is not a prefix of B(Dt′) for all binary
trees t, t′ with t 6= t′. The precise definition of B(Dt) is not
important for us; all we need is the following bound from [13,
Thm. 2], where Edag : T → {0, 1}∗ is the tree encoder with
Edag(t) = B(Dt), ((Fi)i∈N, P ) is a tree source with the weak
domination property, and t ∈ Tn (n ≥ 2) with P (t) > 0:

1

n
· (|Edag(t)|+ log2(P (t)))

≤ O(|Dt|/n) +O(|Dt|/n · log2(n/|Dt|)).
(6)

This bound is used in [13] to show that for certain leaf-centric
and depth-centric tree sources the encoding Edag is universal
in the sense that the average redundancy converges to zero.
In the next section, we show that for the same tree sources
already the worst-case redundancy converges to zero.

C. Tree sources with the weak domination property

The following result is implicitly shown in [13].



Lemma 1. For every σ ∈ Σleaf (resp., σ ∈ Σdepth) the leaf-
centric (resp., depth-centric) tree source Slσ (resp., Sdσ) has
the weak domination property.

We say that σ ∈ Σleaf is leaf-balanced if there exists a
constant c such that (i + j)/min{i, j} ≤ c for all (i, j) ∈
(N \ {0}) × (N \ {0}) with σ(i, j) > 0. In [13] it is shown
that for a leaf-balanced σ ∈ Σleaf, the tree source Slσ has the
property that the average compression ratio achieved by the
minimal DAG (formally,

∑
t∈Tn Pσ(t) · |Dt|/n) converges to

zero for n → ∞. Using a result from [5], we can show the
following stronger property.

Lemma 2. For every leaf-balanced mapping σ ∈ Σleaf, there
exists a constant α such that for every binary tree t ∈ Tn with
Pσ(t) > 0 we have |Dt| ≤ α · n/ log2 n.

Lemma 2 and the bound (6) directly yield:

Corollary 1. If the mapping σ ∈ Σleaf is leaf-balanced, then
R(Edag,Slσ, i) ≤ O(log log i/ log i).

We say σ ∈ Σdepth is depth-balanced if there exists a
constant c such that |i − j| ≤ c for all (i, j) ∈ N × N with
σ(i, j) > 0. In [13], the authors define a condition on σ that
is slightly stronger than depth-balancedness, and show that for
every such σ, the average compression ratio achieved by the
minimal DAG converges to zero. Using results from [5], [6],
we can show the following stronger property:

Lemma 3. For every depth-balanced mapping σ ∈ Σdepth

there exists a constant α such that for every binary tree t ∈ Tn
with Pσ(t) > 0 we have |Dt| ≤ α · n · log2(log2 n)/ log2 n.

Lemma 3 and the bound (6) yield:

Corollary 2. If the mapping σ ∈ Σdepth is depth-balanced,
then R(Edag,Sdσ, i) ≤ O((log log i)2/ log i).

IV. TREE COMPRESSION WITH TSLPS

In this section, we will use general TSLPs for the compres-
sion of binary trees. The limitations of DAGs for universal
source coding can be best seen for a tree source ((Fi)i∈N, P )
such that P (t) > 0 for all t ∈ T . Example 2 shows that for
every n ≥ 1, there is a tree t ∈ Tn with |Dt| = n. In that
case, the bound (6) cannot be used to show that the worst-case
redundancy converges to zero.

A. TSLPs in normal form

A TSLP G = (V,A0, r) is in normal form if the following
conditions hold:

• V = {A0, A1, . . . , An−1} for some n ∈ N, n ≥ 1.
• For every Ai ∈ V0, the right-hand side r(Ai) is a term

of the form Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ {a}.
• For every Ai ∈ V1 the right-hand side r(Ai) is a

term of the form Aj(Ak(x)), f(α, x), or f(x, α), where
Aj , Ak ∈ V1 and α ∈ V0 ∪ {a}.

• For every Ai ∈ V define ρ(Ai) ∈ (V ∪ {a})∗ as

ρ(Ai) :=


Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(x))

α if r(Ai) = f(α, x) or f(x, α).

Let ρG := ρ(A0) · · · ρ(An−1) ∈ {a,A1, . . . , An−1}∗.
Then we require that ρG is of the form ρG =
A1u1 · · ·An−1un−1 with ui ∈ {a,A1, A2, . . . , Ai}∗.

• valG(Ai) 6= valG(Aj) for i 6= j

As for DAGs we allow the TSLP Ga = ({A0}, A0, A0 7→ a) in
order to get the tree a. In this case, we set ρGa = ρ(A0) = a.

Let G = (V,A0, r) be a TSLP in normal form with V =
{A0, . . . , An−1}. We define the size of G as |G| = |ρG |. This
is the total number of occurrences of symbols from V ∪{a} in
all right-hand sides of G. Let ωG be the word obtained from ρG
by removing for every 1 ≤ i ≤ n−1 the first occurrence of Ai
from ρG . Thus, if ρG = A1u1A2u2 · · ·An−1un−1 with ui ∈
{a,A1, A2, . . . , Ai}∗, then ωG = u1u2 · · ·un−1. The entropy
H(G) of the normal form TSLP G is defined as the empirical
unnormalized entropy of the word ωG : H(G) := H(ωG).

Example 3. Let G = ({A0, A1, A2, A3, A4}, A0, r) be the
normal form TSLP with A0, A2, A3 ∈ V0, A1, A4 ∈ V1 and
r(A0) = A1(A2), r(A1) = f(x,A3), r(A2) = A4(A3),
r(A3) = A4(a), r(A4) = f(x, a). We have val(G) =
f(f(f(a, a), a), f(a, a)), ρG = A1A2A3A4A3A4aa, |G| = 8
and ωG = A3A4aa.

A grammar-based tree compressor is an algorithm ψ that
produces for a given tree t ∈ T a TSLP Gt in normal form.
The compression ratio of ψ is the mapping n 7→ γψ(n) with

γψ(n) := max
t∈Tn
|Gt|/n.

Every TSLP can be transformed with a linear size increase into
a normal form TSLP that derives the same tree. For example,
the TSLP from Example 1 is transformed into the normal form
TSLP described in Example 3. We will not use this fact, since
all we need is the following theorem from [5]:

Theorem 1. There exists a grammar-based compressor ψ
(working in linear time) with γψ(n) ∈ O(1/ log n).

B. Binary coding of TSLPs in normal form
In this section we fix a binary encoding for normal form

TSLPs. This encoding is similar to the one for SLPs [8] and
DAGs [13]. Let G = (V,A0, r) be a TSLP in normal form
with n = |V | nonterminals. Let m = |G| = |ρG | be the size
of G. We define the type τ(Ai) ∈ {0, 1, 2, 3} of a nonterminal
Ai ∈ V as follows:

τ(Ai) =


0 if ρ(Ai) ∈ V1(V0 ∪ {a})
1 if ρ(Ai) ∈ V1V1
2 if ρ(Ai) = f(α, x) for some α ∈ V0 ∪ {a}
3 if ρ(Ai) = f(x, α) for some α ∈ V0 ∪ {a}

We define the binary word B(G) := w0w1w2w3w4, where
w0 = 0n−11 and w1, w2, w3, w4 ∈ {0, 1}+ are de-
fined as follows: Let w1 = a0b0 · · · an−1bn−1, where ajbj



is the 2-bit binary encoding of τ(Aj). Next, let ρG =
A1u1A2u2 · · ·An−1un−1 with ui ∈ {a,A1, . . . , Ai}∗. Then
w2 = 10|u1|10|u2| · · · 10|un−1|. To define w3, let ki =
|ρG |Ai

≥ 1 (1 ≤ i ≤ n − 1) be the number of occur-
rences of the nonterminal Ai in the word ρG . Then w3 =
0k1−110k2−11 · · · 0kn−1−11. Finally, the word w4 encodes the
word ωG using enumerative encoding [2]: Every nonterminal
Ai, 1 ≤ i ≤ n − 1, has η(Ai) := ki − 1 occurrences in
ωG . The symbol a has η(a) := m − (k1 + · · · + kn−1)
many occurrences in ωG . Let S be the set of words over the
alphabet {a,A1, . . . , An−1} with η(a) occurrences of a and
η(Ai) occurrences of Ai for every 1 ≤ i ≤ n− 1. Hence,

|S| = (m− n+ 1)! / (η(a)! ·
n−1∏
i=1

η(Ai)!) (7)

Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration of the
words from S w.r.t. the alphabet order a,A1, . . . , An−1. Then
w4 is the binary encoding of the unique i such that ωG = vi,
where |w4| = dlog2 |S|e (leading zeros are added to the binary
encoding of i to obtain length dlog2 |S|e).

Example 4. Consider the normal from TSLP G from Ex-
ample 3. We have w0 = 00001, w1 = 0011000011, w2 =
11110000, w3 = 110101. To compute w4, note first that there
are |S| = 12 words with two occurrences of a and one occur-
rence of A3 and A4. It follows that |w4| = dlog2(12)e = 4.
Further, since the order of the alphabet is a,A3, A4, there are
only three words in S (A4A3aa, A4aA3a and A4aaA3), which
are lexicographically larger than ωG = A3A4aa. Hence,
ωG = v8 and w4 = 1000.

It is easy to show that the set of code words B(G), where
G ranges over all TSLPs in normal form, is a prefix code.
Moreover, note that |B(G)| ≤ O(|G|) + |w4|. By using the
well-known bound on the code length of enumerative encoding
[3, Thm. 11.1.3], we get the following lemma:

Lemma 4. We have |B(G)| ≤ O(|G|) +H(G).

C. Universal source coding based on TSLPs in normal form

Let ((Fi)i∈N, P ) be a tree source as defined in Sec. II-B.
We say that ((Fi)i∈N, P ) has the strong domination property
if there exists a mapping λ : T ∪ C → R>0 such that:

(i) λ(t) ≥ P (t) for every t ∈ T ,
(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T ,

(iii) λ(s(t)) ≤ λ(s) · λ(t) for all s ∈ C and t ∈ T , and
(iv) there are constants c1, c2 such that

∑
t∈Tn∪Cn λ(t) ≤

c1 · nc2 for all n ≥ 1.
The proof of the next lemma combines ideas from [8], [13].

Lemma 5. Assume that ((Fi)i∈N, P ) has the strong domina-
tion property. Let t ∈ Tn with n ≥ 2 and P (t) > 0, and let
G = (V,A0, r) be a TSLP in normal form with val(G) = t. We
have H(G) ≤ − log2 P (t) +O(|G|) +O(|G| · log2(n/|G|)).

Let us fix the grammar-based tree compressor ψ : t 7→ Gt
from Theorem 1; thus γψ(n) ∈ O(1/ log n). We define the
tree encoder Etslp : T → {0, 1}∗ by Etslp(t) = B(Gt).

Theorem 2. If S = ((Fi)i∈N, P ) has the strong domination
property, ni := min{|t| | t ∈ Fi} and ni < ni+1 for all i ∈ N,
then, R(Etslp,S, i) ≤ O(log log ni/ log ni).

Note that the minimal size of a tree in Ti+1 (resp. T i) is
i+ 1. Hence, Thm. 2 yields:

Corollary 3. If S is a leaf-centric or depth-centric tree source
with the strong domination property, then R(Etslp,S, i) ≤
O(log log i/ log i) .

In the rest of the paper, we present two classes of tree
sources having the strong domination property. Recall the
definition of the class of mappings Σleaf (resp., Σdepth) by (2)
and (4) (resp., (3) and (5)) in Sec. II-B. A mapping σ ∈ Σleaf
(resp. σ ∈ Σdepth) is monotone, if σ(i, j) ≥ σ(i, j + 1) and
σ(i, j) ≥ σ(i + 1, j) for all i, j ≥ 1 (resp., i, j ≥ 0). The
following theorem allows to apply Cor. 3 to the tree source
Slσ (resp., Sdσ) for a monotone σ.

Theorem 3. If σ ∈ Σleaf (resp., σ ∈ Σdepth) is monotone, then
the leaf-centric tree source Slσ (resp., the depth-centric tree
source Sdσ) has the strong domination property.

Example 5. Consider σ ∈ Σleaf with σ(i, j) = 1/(i+ j). It is
clearly monotone. Hence, R(Etslp,Slσ, i) ≤ O(log log i/ log i).
The tree source Slσ is the famous binary search tree model; see
[9] for an investigation in the context of information theory.
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