
June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Parallel Identity Testing for Skew Circuits with Big Powers and

Applications

Daniel König and Markus Lohrey

Department für Elektrotechnik und Informatik, Universität Siegen, Germany

{koenig,lohrey}@informatik.uni-siegen.de

Received (Day Month Year)

Accepted (Day Month Year)

Communicated by [editor]

Powerful skew arithmetic circuits are introduced. These are skew arithmetic circuits with
variables, where input gates can be labeled with powers xn for binary encoded numbers n.

It is shown that polynomial identity testing for powerful skew arithmetic circuits belongs

to coRNC2, which generalizes a corresponding result for (standard) skew circuits. Two
applications of this result are presented: (i) Equivalence of higher-dimensional straight-

line programs can be tested in coRNC2; this result is even new in the one-dimensional

case, where the straight-line programs produce words. (ii) The compressed word problem
(or circuit evaluation problem) for certain wreath products of finitely generated abelian

groups belongs to coRNC2. Using the Magnus embedding, it follows that the compressed

word problem for a free metabelian group belongs to coRNC2.

Keywords: Arithmetic circuits; polynomial identity testing; straight-line programs;

wreath products.

Mathematics Subject Classification 2010: 68W30; 68W20; 20F10

1. Introduction

Polynomial identity testing is the following computational problem: The input is

a circuit, whose internal gates are labeled with either addition or multiplication

and its input gates are labeled with variables (x1, x2, . . .) or constants (−1, 0, 1),

and it is asked whether the output gate evaluates to the zero polynomial (in this

paper, we always work in the polynomial ring over the coefficient ring Z or Zn for

n ≥ 2). Based on the Schwartz-Zippel-DeMillo-Lipton Lemma, Ibarra and Moran

[13] proved that polynomial identity testing over Z or Zn belongs to the class coRP

(the complements of problems in randomized polynomial time). Whether there is

a deterministic polynomial time algorithm for polynomial identity testing is an im-

portant problem. In [14] it is shown that if there exists a language in DTIME(2O(n))

that has circuit complexity 2Ω(n), then P = BPP (and hence P = RP = coRP).

There is also an implication that goes the other way round: Kabanets and Impagli-

azzo [16] proved that if polynomial identity testing belongs to P, then (i) there is a

1

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

language in NEXPTIME that does not have polynomial size circuits, or (ii) the per-

manent is not computable by polynomial size arithmetic circuits. Both conclusions

represent major open problems in complexity theory. Hence, although it is quite

plausible that polynomial identity testing belongs to P (by [14]), it will be probably

very hard to prove (by [16]).

It is known that for algebraic formulas (where the circuit is a tree) and more

generally, skew circuits (where for every multiplication gate, one of the two input

gates is a constant or a variable), polynomial identity testing belongs to coRNC (but

it is still not known to be in P), see [16, Corollary 2.1]. This holds, since algebraic

formulas and skew circuits can be evaluated in NC if the variables are substituted by

concrete (binary coded) numbers. Then, as for general polynomial identity testing,

the Schwartz-Zippel-DeMillo-Lipton Lemma yields a coRNC-algorithm.

In this paper, we identify a larger class of circuits, for which polynomial identity

testing is still in coRNC; we call these circuits powerful skew circuits. In such a

circuit, we require that for every multiplication gate, one of the two input gates is

either a constant or a power xN of a variable x, where the exponent N is given in

binary notation. One can replace this power xN by a subcircuit of size logN using

iterated squaring, but the resulting circuit is no longer skew. The main result of

this paper states that polynomial identity testing for powerful skew circuits over the

rings Z[x] and Fp[x] is still in coRNC (in fact, coRNC2). For this, we use an identity

testing algorithm of Agrawal and Biswas [1], which computes the output polynomial

of the circuit modulo a polynomial p(x) of polynomially bounded degree, which

is randomly chosen from a certain sample space. Moreover, in our application, all

computations can be done in the ring Fp[x] for a prime number p of polynomial size.

This allows us to compute the big powers xN modulo p(x) in NC2 using an algorithm

of Fich and Tompa [9]. It should be noted that the application of the Agrawal-

Biswas algorithm is crucial in our situation. If, instead we would use the Schwartz-

Zippel-DeMillo-Lipton Lemma, then we would be forced to compute aN mod m

for randomly chosen numbers a and m with polynomially many bits. Whether this

problem (modular powering) belongs to NC is a famous open problem [10, Problem

B.5.6].

We present two applications of our coRNC identity testing algorithm. The first

one concerns the equivalence problem for straight-line programs. Here, a straight-

line program (SLP) is a context-free grammar G that computes a single word val(G).

In this context, SLPs are extensively used in data compression and algorithmics on

compressed data, see [20] for an overview. It is known that equivalence for SLPs,

i.e., the question whether val(G) = val(H) for two given SLPs, can be decided in

polynomial time. This result was independently discovered by Hirshfeld, Jerrum,

and Moller [12], Mehlhorn, Sundar, and Uhrig [24], and Plandowski [25]. Another

algorithm was recently proposed by Jeż [15]. All known algorithms for the equiva-

lence test are sequential and it is not clear how to parallelize them. Here, we exhibit

an NC2-reduction from the equivalence problem for SLPs to identity testing for pow-

2

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

erful skew circuits. Hence, equivalence for SLPs belongs to coRNC. Moreover, our

reduction immediately generalizes to higher dimensional pictures for which SLPs

can be defined in a fashion similar to the one-dimensional (word) case, using one

concatenation operation in each dimension. For two-dimensional SLPs, Berman et

al. [5] proved that equivalence belongs to coRP using a reduction to PIT. We can

improve this result to coRNC. Whether equivalence of two-dimensional (resp., one-

dimensional) SLPs belongs to P (resp., NC) is open.

Our second application concerns the compressed word problem for groups. Let

G be a finitely generated (f.g.) group, and let Σ be a finite generating set for G.

For the compressed word problem for G, briefly CWP(G), the input is an SLP (as

described in the preceding paragraph) over the alphabet Σ ∪ Σ−1, and it is asked

whether val(G) evaluates to the group identity. The compressed word problem is a

succinct version of the classical word problem (does a given word over Σ∪Σ−1 eval-

uate to the group identity?). One of the main motivations for the compressed word

problem is the fact that the classical word problem for certain groups (automor-

phism groups, group extensions) can be reduced to the compressed word problem

for simpler groups [21, Section 4.2]. For finite groups (and monoids) the compressed

word problem was studied in Beaudry et al. [3], and for infinite groups the problem

was studied for the first time in [19]. Subsequently, several important classes of f.g.

groups with polynomial time compressed word problems were found: f.g. nilpotent

groups, f.g. free groups, graph groups (also known as right-angled Artin groups or

partially commutative groups), and virtually special groups. The latter contain all

Coxeter groups, one-relator groups with torsion, fully residually free groups, and

fundamental groups of hyperbolic 3-manifolds; see [21] for details. For the impor-

tant class of f.g. linear groups, i.e., f.g. groups of matrices over a field, one can show

that the compressed word problem reduces to polynomial identity testing (over Z
or Zp, depending on the characteristic of the field) and hence belongs to coRP [21,

Theorem 4.15]. Vice versa, it was shown that polynomial identity testing over Z
can be reduced to the compressed word problem for the linear group SL3(Z) [21,

Theorem 4.16]. The proof is based on a construction of Ben-Or and Cleve [4]. This

result indicates that derandomizing the compressed word problem for a f.g. linear

group will be in general very difficult.

In this paper, we consider the compressed word problem for wreath products.

If G is a f.g. non-abelian group, then the compressed word problem for the wreath

product G o Z is coNP-hard [21, Theorem 4.21]. On the other hand, we prove that

CWP(Z oZ) is equivalent w.r.t. NC2-reductions to identity testing for powerful skew

circuits. In particular, CWP(Z o Z) belongs to coRNC. The latter result generalizes

to any wreath product G o H, where H = Zn for some n and G is a finite direct

product of copies of Z and Zp for primes p. Using the Magnus embedding theorem,

it follows that the compressed word problem for a f.g. free metabelian group belongs

to coRNC.

A short version of this paper appeared in [17].

3

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

2. Background from complexity theory

We assume some basic knowledge in complexity theory; see e.g. [2] for a detailed

introduction. Recall that RP is the set of all problems A for which there exists a

polynomial time bounded randomized Turing machine R such that: (i) if x ∈ A

then R accepts x with probability at least 1/2, and (ii) if x 6∈ A then R accepts x

with probability 0. The class coRP is the class of all complements of problems from

RP. Thus, if L ∈ coRP then there exists a polynomial time bounded randomized

Turing machine R such that: (i) if x ∈ A then R accepts x with probability 1, and

(ii) if x 6∈ A then R accepts x with probability at most 1/2. The classes RP and

coRP are easily seen to be closed under polynomial time many-one reductions.

We use standard definitions concerning circuit complexity, see e.g. [26] for more

details. In particular we will consider the class NCi of all problems that can be

solved by a circuit family (Cn)n≥1, where the size of Cn (the circuit for length-n

inputs) is polynomially bounded in n, its depth is bounded by O(logi n), and Cn
is built from input gates, NOT-gates and AND-gates and OR-gates of fan-in two.

The class NC is the union of all classes NCi. All circuit families in this paper will

be logspace-uniform, which means that the mapping an 7→ Cn can be computed in

logspace. A few times, we will mention the class DLOGTIME-uniform TC0, see [11]

for details. Here, it is only important that DLOGTIME-uniform TC0 is contained

in NC1. The most important circuit complexity class in this paper is NC2. It is

well-known that logspace computations can be carried out in NC2.

To define a randomized version of NCi, one uses circuit families with additional

inputs. So, let the nth circuit Cn in the family have n normal input gates plus m

random input gates, where m is polynomially bounded in n. For an input x ∈ {0, 1}n
one defines the acceptance probability as

Prob[Cn accepts x] =
|{y ∈ {0, 1}m | Cn(x, y) = 1}|

2m

Here, Cn(x, y) = 1 means that the circuit Cn evaluates to 1 if the ith normal input

gate gets the ith bit of the input word x, and the ith random input gate gets the

ith bit of the random word y. Then, the class RNCi is the class of all problems A

for which there exists a polynomial size circuit family (Cn)n≥0 of depth O(logi n)

with random input gates that uses NOT-gates and AND-gates and OR-gates of

fan-in two, such that for all inputs x ∈ {0, 1}∗ of length n: (i) if x ∈ A, then

Prob[Cn accepts x] ≥ 1/2, and (ii) if x 6∈ A, then Prob[Cn accepts x] = 0. As usual,

coRNCi is the class of all complements of problems from RNCi. Section B.9 in [10]

contains several problems that are known to be in RNC, but which are not known

to be in NC; the most prominent example is the existence of a perfect matching in

a graph.

3. Polynomials and circuits

Input representations of polynomials. In this paper we deal with polynomial

rings R[x1, . . . , xk] in several variables, where R is the ring of integers Z or the ring

4

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Zn of integers modulo n ≥ 2. For computational problems, we have to distinguish

between two representations of polynomials. Let

p(x1, . . . , xk) =

l∑
i=1

aix
ei,1
1 · · ·xei,kk

be a multivariate polynomial.

• The standard representation of p(x) is the sequence of tuples

(ai, ei,1, . . . , ei,k), where the coefficient ai is represented in binary notation

and the exponents ei,j are represented in unary notation. Let

|p| =
n∑
i=1

(dlog |ai|e+ ei,1 + · · ·+ ei,k).

• The succinct representation of p(x) is the sequence of tuples

(ai, ei,1, . . . , ei,k), where both the coefficient ai and the exponents ei,j are

represented in binary notation. Let

||p|| =
n∑
i=1

(dlog |ai|e+ dlog ei,1e+ · · ·+ dlog ei,ke).

We use the following result of Eberly [8] (see also [11]).

Proposition 3.1. Iterated addition, iterated multiplication, and division with re-

mainder of polynomials from Z[x] or Fp[x] (p is a prime that can be part of the

input in binary encoding) that are given in standard representation belong to NC1

(in fact, DLOGTIME-uniform TC0).

Circuits and branching programs over semirings. Consider a commutative

semiring S = (S,⊕,⊗). An arithmetic circuit (or just circuit) over S is a triple

C = (V, rhs, S), where V is a finite set of gates or variables, S ∈ V is the output

gate, and rhs (for right-hand side) maps every A ∈ V to an expression (the right-

hand side of A) of one of the following three forms:

• a semiring element s ∈ S (such a gate is an input gate),

• B ⊕ C with B,C ∈ V (such a gate is an addition gate),

• B ⊗ C with B,C ∈ V (such a gate is a multiplication gate).

Moreover, we require that the directed graph

graph(C) = (V, {(A,B) ∈ V × V | B occurs in rhs(A)})

is acyclic. Every gate A ∈ V evaluates to an element valC(A) ∈ S in the natural way

and we set val(C) = valC(S). A circuit over S is called skew if for every multiplication

gate A one of the two gates (or both of them) in rhs(A) is an input gate.

Circuits in the way we defined them are also known as straight-line programs.

Often, it is convenient, to allow in right-hand side more complex arithmetic expres-

sions, like for instance (s ⊗ B ⊗ C) ⊕D. By adding additional gates, we can split

5

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

such right-hand sides into the basic forms s ∈ S, B ⊕ C, and B ⊗ C. In particular,

we sometimes allow so-called copy gates, where the right-hand side is another gate.

Such copy gates can be eliminated by a logspace computation, see [18, Lemma 1].

A branching program over S is a tuple A = (V,E, λ, s, t), where (V,E) is a

directed acyclic graph, λ : E → S assigns to each edge a semiring element, and

s, t ∈ V . Let P be the set of all paths from s to t. For a path p = (v0, v1, . . . , vn) ∈ P
(v0 = s, vn = t) we define λ(p) =

∏n
i=1 λ(vi−1, vi) as the product (w.r.t. ⊗) of all

edge labels along the path. Finally, the value defined by A is

val(A) =
∑
p∈P

λ(p).

It is well known that skew circuits and branching programs are basically the same

objects (note that S is assumed to be commutative).

NC2-evaluation of branching programs. It is well known that the value defined

by a branching program A can be computed using matrix powers. W.l.o.g. assume

that A = ({1, . . . , n}, E, λ, 1, n) and consider the adjacency matrix M of the edge-

labeled graph ({1, . . . , n}, E, λ), i.e., the (n × n)-matrix M with M [i, j] = λ(i, j).

Then

val(A) =

(n∑
i=0

M i

)
[1, n].

For many semirings S, this simple fact can be used to get an NC2-algorithm for

computing val(A). The n + 1 matrix powers M i (0 ≤ i ≤ n) can be computed in

parallel, and every power can be computed by a balanced tree of height log i ≤
log n, where every tree node computes a matrix product. Hence, we obtain an NC2-

algorithm, if

(i) the number of bits needed to represent a matrix entry in Mn is polynomially

bounded in n and the number of bits of the entries in M , and

(ii) the product of two matrices over the semiring S can be computed in NC1.

Point (ii) holds if products of two elements and iterated sums in S can be com-

puted in NC1. For the following important semirings these facts are well known (see

also Proposition 3.1): (Z[x],+, ·), (Zn[x],+, ·) for n ≥ 2, (Z ∪ {∞},min,+), and

(Z ∪ {−∞},max,+). Here, we assume that polynomials are given in the standard

representation. For the polynomial ring Z[x] also note that every entry p(x) of the

matrix power Mn is a polynomial of degree n ·m, where m is the maximal degree

of a polynomial in M , and all coefficients are bounded by (n ·m · a)n (and hence

need at most n · (log n+ logm+ log a) bits), where a is the maximal absolute value

of a coefficient in M . Hence point (i) above holds. The following lemma sums up

the above discussion.

Lemma 3.2. The output value of a given skew circuit (or branching program) over

one of the following semirings can be computed in NC2:

6

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

(i) (Z[x],+, ·) and (Zn[x],+, ·) for n ≥ 2 (polynomials are given in the standard

representation, and n can be part of the input in binary representation)

(ii) (Z ∪ {∞},min,+) and (Z ∪ {−∞},max,+) (integers are given in binary rep-

resentation)

Actually, one can calculate the output value of the skew circuits in point

(i) in the complexity class DET ⊆ NC2 (see [7]), but in the following we only

need the NC2-bound. Point (i) of Lemma 3.2 also holds for the polynomial rings

(Z[x1, . . . , xk],+, ·) and (Zn[x1, . . . , xk],+, ·) as long as the number k of variables is

not part of the input: The polynomial p(x1, . . . , xk) =
∏k
i=1(xi + 1) can be defined

by a branching program with O(k) edges labeled by the polynomials xi + 1, but

the product of these polynomials has 2k monomials. Also note that it is important

that we use the standard representation for polynomials in (i): The polynomial

p(x) =
∏n
i=1(x2i

+ 1) can be represented by a branching program with O(n) edges

labeled by the polynomials x2i

+ 1 but p(x) has 2n monomials.

Powerful skew circuits. In this paper, we will mainly deal with circuits over a

polynomial ring R[x1, . . . , xk], where the ring R is either (Z,+, ·) or (Zn,+, ·). Let R

be one of these rings. By definition, in such a circuit every input gate is labeled with

a polynomial from R[x1, . . . , xk]. Usually, one considers circuits where the right-

hand side of an input gate is a polynomial given in standard representation (or,

equivalently, a constant a ∈ R or variable xi); we will also use the term “standard

circuits” in this case. For succinctness reasons, we will also consider circuits over

R[x1, . . . , xk], where the right-hand sides of input gates are polynomials given in

succinct representation. For general circuits this makes no real difference (since a

power xN can be defined by a subcircuit of size O(logN) using iterated squaring),

but for skew circuits we will gain additional succinctness. We will use the term

“powerful skew circuits”. Formally, a powerful skew circuit over the polynomial ring

R[x1, . . . , xk] is a skew circuit over the ring R[x1, . . . , xk] as defined above, where

the right-hand side of every input gate is a polynomial that is given in succinct

representation (equivalently, we could require that the right-hand side is a constant

a ∈ R or a power xNi with N given in binary notation). We define the size of a

powerful skew circuit C as follows: First, define the size sizeC(A) of a gate A ∈ V
as follows: If A is an addition gate or a multiplication gate, then sizeC(A) = 1, and

if A is an input gate with rhs(A) = p(x1, . . . , xk), then sizeC(A) = ||p(x1, . . . , xk)||.
Finally, we define the size of C as

∑
A∈V sizeC(A).

A powerful branching program is a branching program (V,E, λ, s, t) over a poly-

nomial ring R[x1, . . . , xk], where every edge label λ(e) (e ∈ E) is a polynomial that

is given in succinct representation. The size of a powerful branching program is∑
e∈E ||λ(e)||. From a given powerful skew circuit one can compute in logspace an

equivalent powerful branching program and vice versa.

Note that the transformation of a powerful skew circuit over R[x1, . . . , xk] into an

equivalent standard skew circuit (where every input gate is labeled by a polynomial

7

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

given in standard representation) requires an exponential blow-up. For instance, the

smallest standard skew circuit for the polynomial xN has size N , whereas xN can

be trivially obtained by a powerful skew circuit of size dlogNe.

Polynomial identity testing. A central computational problem in computational

algebra is polynomial identity testing, briefly PIT. Let R be a ring that is effective

in the sense that elements of R can be encoded by natural numbers in such a way

that addition and multiplication in R become computable operations. Then, PIT

for the ring R is the following problem:

Input: A number k ≥ 1 and a circuit C over the ring R[x1, . . . , xk].

Question: Is val(C) the zero-polynomial?

For the rings Z and Zp (p prime) the following result was shown in [13]; for Zn with

n composite, it was shown in [1].

Theorem 3.3. For each of the rings Z and Zn (n ≥ 2), PIT belongs to the class

coRP.

Note that the number k of variables is part of the input in PIT. On the other

hand, there is a well-known reduction from PIT to PIT restricted to univariate

polynomials (polynomials with a single variable) [1]. For a multivariate polynomial

p(x1, . . . , xk) ∈ R[x1, . . . , xk] let degi(p) be the degree of p in the variable xi. It is

the largest number d such that xdi appears in a monomial of p. Let p(x1, . . . , xk) be

a polynomial and let d = 1 + max{degi(p) | 1 ≤ i ≤ k}. We define the univariate

polynomial U(p) as

U(p) = p(y1, yd, . . . , yd
k−1

).

Hence, the polynomial U(p) is obtained from p(x1, . . . , xk) by replacing every mono-

mial a · xn1
1 · · ·x

nk
1 by a · yN , where N = n1 + n2d+ · · ·nkdk−1 is the number with

base-d representation (n1, n2, . . . , nk). The polynomial p is the zero-polynomial if

and only if U(p) is the zero-polynomial.

The following lemma can be also shown for arbitrary circuits, but we will only

need it for powerful skew circuits.

Lemma 3.4. Given a powerful skew circuit C for the polynomial p(x1, . . . , xk), the

following can be be computed in NC2:

(i) The binary encoding of d = 1 + max{degi(p) | 1 ≤ i ≤ k} and

(ii) a powerful skew circuit C′ for U(p) .

Proof. Let C be a powerful skew circuit for the polynomial p(x1, . . . , xk). In order to

compute degi(p), we construct a circuit over the max-plus semiring as follows: Take

the circuit C. If A is an input gate that is labeled with the polynomial a(x1, . . . , xk),

then relabel A with the binary coded number degi(a). Moreover, for a gate A

with rhs(A) = B + C (resp., rhs(A) = B × C) we set rhs(A) = max(B,C) (resp.,

8

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

rhs(A) = B+C). The resulting circuit is clearly skew. Therefore it can be evaluated

in NC2 by Lemma 3.2.

Once the number d = 1 + max{degi(p) | 1 ≤ i ≤ k} is computed we simply

replace every monomial a ·xn1
1 · · ·x

nk

k in the circuit C by the monomial a ·yN , where

N = n1 + n2d + · · ·nkdk−1. The binary encoding of N can be computed from the

binary encodings of n1, . . . , nk even in DLOGTIME-uniform TC0.

Note that the above reduction from multivariate to univariate circuits does not

work for standard skew circuits: the output circuit will be powerful skew even if the

input circuit is standard skew. For instance, the polynomial
∏k
i=1 xi (which can be

produced by a standard skew circuit of size k) is transformed into the polynomial

y2k−1, for which the smallest standard skew circuit has size Ω(2k).

4. PIT for powerful skew circuits

Our main result for powerful skew circuits is:

Theorem 4.1. For each of the rings Z and Fp (p is a prime that can be part of

the input in unary encoding), PIT for powerful skew circuits belongs to the class

coRNC2.

The proof of Theorem 4.1 has two main ingredients: The randomized identity

testing algorithm of Agrawal and Biswas [1] and the modular polynomial powering

algorithm of Fich and Tompa [9]. Let us start with the identity testing algorithm of

Agrawal and Biswas. We will only need the version for the polynomial ring Fp[x],

where p is a prime number.

Consider a polynomial P (x) ∈ Fp[x] of degree d. The algorithm of Agrawal

and Biswas consists of the following steps (later we will apply this algorithm to

the polynomial defined by a powerful skew circuit), where 0 < ε < 1 is an error

parameter:

(1) Let ` be a number with ` ≥ log d and t = max{`, 1
ε }

(2) Find the smallest prime number r such that r 6= p and r does not divide

any of p− 1, p2 − 1, . . . , p`−1 − 1. It is argued in [1] that r ∈ O(`2 log p).

(3) Randomly choose a tuple b = (b0, . . . , b`−1) ∈ {0, 1}` and compute the

polynomial Tr,b,t(x) = Qr(Ab,t(x)), where Qr(x) =
∑r−1
i=0 x

i is the rth cy-

clotomic polynomial and Ab,t(x) = xt +
∑`−1
i=0 bi · xi.

(4) Accept, if P (x) mod Tr,b,t(x) = 0, otherwise reject.

Clearly, if P (x) = 0, then the above algorithm accepts with probability 1. For a

non-zero polynomial P (x), Agrawal and Biswas proved:

Theorem 4.2 ([1]). Let P (x) ∈ Fp[x] be a non-zero polynomial of degree d. The

above algorithm rejects P (x) with probability at least 1− ε.

The second result we are using was shown by Fich and Tompa:

9

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Theorem 4.3 ([9]). The following computation can be done in NC2:

Input: A unary encoded prime number p, polynomials a(x), q(x) ∈ Fp[x] such that

deg(a(x)) < deg(q(x)) = d, and a binary encoded number N .

Output: The polynomial a(x)N mod q(x).

Remark 4.4. In [9], it is stated that the problem can be solved using circuits

of depth (log n)2 log log n for the more general case that the underlying field is

Fp` , where p and ` are given in unary representation. The main bottleneck is the

computation of an iterated matrix product A1A2 · · ·Am (for m polynomial in the

input length) of (d × d)-matrices over the field Fp` . In our situation (where the

field is Fp) we easily obtain an NC2-algorithm for this step: Two (d × d)-matrices

over Fp can be multiplied in NC1 (actually in DLOGTIME-uniform TC0). Then we

compute the product A1A2 · · ·Am by a balanced binary tree of depth logm. Also

logspace-uniformity of the circuits is not stated explicitly in [9], but follows easily

since only standard arithmetical operations on binary coded numbers are used.

Now we can prove Theorem 4.1:

Proof of Theorem 4.1. By Lemma 3.4 we can restrict to univariate polynomials.

We first prove the theorem for the case of a powerful skew circuit C over the field

Fp, where the prime number p is part of the input but specified in unary notation.

Let p be a unary encoded prime number and A = ({1, . . . , n}, 1, n, λ) be a

powerful branching program with n nodes that is equivalent to C. We can assume

that every edge label λ(e) is either an element of Fp or a power xN , where N is

given in binary representation. Let P (x) = val(A) ∈ Fp[x]. Fix an error probability

0 < ε < 1. Our randomized NC2-algorithm is based on the identity testing algorithm

of Agrawal and Biswas. It accepts with probability 1 if val(A) = 0 and accepts with

probability at most ε if P (x) 6= 0. Let us go through the four steps of the Agrawal-

Biswas algorithm to see that they can be implemented in NC2.

Step 1. An upper bound on the degree of P (x) can be computed in NC2 as in the

proof of Lemma 3.4. For the number ` we can take the number of bits of this degree

bound, which is a polynomial bound in the input size. Let t = max{`, 1
ε }.

Step 2. For the prime number r we know that r ∈ O(`2 log p), which is a polynomial

bound. Hence, we can test in parallel all possible candidates for r. For a certain

candidate r, we check in parallel whether it is prime (recall that r is of polynomial

value and of logarithmic bit length) and whether it divides any of the numbers p−1,

p2 − 1, . . . , p`−1 − 1. The whole computation is possible in NC1.

Step 3. Let b = (b0, . . . , b`−1) ∈ {0, 1}` be the chosen tuple. We have to compute

the polynomial Tr,b,t(x) = Qr(Ab,t(x)), where Qr(x) =
∑r−1
i=0 x

i and Ab,t = xt +∑`−1
i=0 bi · xi. This is an instance of iterated multiplication (for the powers Ab,t(x)i)

and iterated addition of polynomials. Hence, by Proposition 3.1 also this step can

10

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

be carried out in NC1. Note that the degree of Tr,b,t(x) is t · (r− 1), i.e., polynomial

in the input size.

Step 4. For the last step, we have to compute P (x) mod Tr,b,t(x). For this, we

consider in parallel all edge labels xN in our powerful branching program A. Re-

call that N is given in binary notation. Using the Fich-Tompa algorithm we com-

pute xN mod Tr,b,t(x) (with a(x) = x) in NC2. We then replace the edge label

xN by xN mod Tr,b,t(x). Let B be the resulting branching program. Every polyno-

mial that appears as an edge label in B is now given in standard form. Hence, by

Lemma 3.2 we can compute in NC2 the output polynomial val(B). Clearly, P (x)

mod Tr,b,t(x) = val(B) mod Tr,b,t(x). The latter polynomial can be computed in

NC1 by Proposition 3.1.

Let us now prove Theorem 4.1 for the ring Z. Let A = ({1, . . . , n}, 1, n, λ) be

a powerful branching program over Z with n nodes and let P (x) = val(A). Let

us first look at the coefficients of P (x). Let m be the maximum absolute value of

some edge label a ∈ Z in A. Since there are at most nn paths from s to t in A,

every coefficient of the polynomial P (x) belongs to the interval [−(mn)n, (mn)n].

Let k = n · (dlogme+ dlog ne) + 1 and p1, . . . , pk be the first k prime numbers. Each

prime pi is polynomially bounded in k (and hence the input size) and the list of

these primes can be computed in NC1 by doing in parallel all necessary divisibility

checks on unary encoded numbers.

The Chinese remainder theorem implies that P (x) = 0 if and only if P (x) ≡ 0

mod pi for all 1 ≤ i ≤ k (since
∏k
i=1 pi > 2 · (mn)n). We can carry out the latter

tests in parallel using the above algorithm for a unary encoded prime number. The

overall algorithm accepts if we accept for every prime pi. If P (x) = 0, then we will

accept for every 1 ≤ i ≤ k with probability 1, hence the overall algorithm accepts

with probability 1. On the other hand, if P (x) 6= 0, then there exists a prime pi
(1 ≤ i ≤ k) such that the algorithm rejects with probability at least 1 − ε. Hence,

the overall algorithm will reject with probability at least 1− ε as well.

5. Multi-dimensional pictures

Let Γ be a finite alphabet. For l ∈ N let [l] = {1, . . . , l}. An n-dimensional picture

over Γ is a mapping p :
∏n
j=1[lj] → Γ for some lj ∈ N, where

∏
denotes the

Carteasian product. Let dom(p) =
∏n
j=1[lj]. For 1 ≤ j ≤ n we define |p|j = lj as

the length of p in the jth dimension. Note that one-dimensional pictures are simply

finite words. Let Γ∗n denote the set of n-dimensional pictures over Γ. On this set

we can define partially defined concatenation operations ◦i (1 ≤ i ≤ n) as follows:

For pictures p, q ∈ Γ∗n, the picture p ◦i q is defined if and only if |p|j = |q|j for

all 1 ≤ j ≤ n with i 6= j. In this case, we have |p ◦i q|j = |p|j (= |q|j) for j 6= i

and |p ◦i q|i = |p|i + |q|i. Let lj = |p ◦i q|j . For a tuple (k1, . . . , kn) ∈
∏n
j=1[lj] we

finally set (p ◦i q)(k1, . . . , kn) = p(k1, . . . , kn) if ki ≤ |p|i and (p ◦i q)(k1, . . . , kn) =

q(k1, . . . , ki−1, ki − |p|i, ki+1, . . . , kn) if ki > |p|i. These operations generalize the

concatenation of finite words.

11

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Example 5.1. Here is an example of the concatenation of two 2-dimensional pic-

tures, which are drawn as rectangular arrays. Dimension one (resp., two) is the

horizontal (resp., vertical) dimension. Notice that in contrast to matrices, the ver-

tical coordinate in a picture increase from bottom to top in the following diagrams.(
1 0 0

0 1 1
◦2 1 0 1

)
◦1

(
1 0

0 1
◦2 1 1

)

=

1 0 1

1 0 0

0 1 1

◦1
1 1

1 0

0 1

=

1 0 1 1 1

1 0 0 1 0

0 1 1 0 1

5.1. Multi-dimensional straight-line programs

We now present a succinct representation of multi-dimensional pictures, that allows

to compress pictures having repetitive subpatterns. An n-dimensional straight-line

program (SLP) over the terminal alphabet Γ is a triple A = (V, rhs, S), where V is

a finite set of variables, S ∈ V is the start variable, and rhs maps each variable A to

its right-hand side rhs(A), which is either a terminal symbol a ∈ Γ or an expression

of the form B◦iC, where B,C ∈ V and 1 ≤ i ≤ n such that the following additional

conditions are satisfied:

• The relation {(A,B) ∈ V × V | B occurs in rhs(A)} is acyclic.

• One can assign to each A ∈ V and 1 ≤ i ≤ n a number |A|i with the

following properties: If rhs(A) ∈ Γ then |A|i = 1 for all i. If rhs(A) = B ◦iC
then |A|i = |B|i + |C|i and |A|j = |B|j = |Cj | for all j 6= i.

These conditions ensure that every variable A evaluates to a unique n-dimensional

picture valA(A) such that |valA(A)|i = |A|i for all 1 ≤ i ≤ n. Finally, val(A) =

valA(S) is the picture defined by A. We omit the index A if the underlying SLP is

clear from the context. We define the size of the SLP A = (V,Γ, S, P) as |A| = |V |.
A one-dimensional SLP is a context-free grammar that generates a single word.

Two-dimensional SLPs were studied in [5].

For all dimensions i it is straightforward to define an SLP A of size m such that

|val(A)|i = 2m. Hence, an SLP can be seen as a compressed representation of the

picture it generates, and an exponential compression ratio can be achieved in this

way.

5.2. Equality testing for compressed words and n-dimensional

pictures

Given two n-dimensional SLPs we want to know whether they evaluate to the same

picture. In [5] it was shown that this problem belongs to coRP by translating it to

polynomial identity testing. For a given n-dimensional picture p : dom(p)→ {0, 1}

12

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

we define the polynomial

fp(x1, . . . , xn) =
∑

(e1,...,en)∈dom(p)

p(e1, . . . , en)

n∏
i=1

xei−1
i .

We consider fp as a polynomial from Z2[x1, . . . , xn]. For two n-dimensional pictures

p and q such that |p|i = |q|i for all 1 ≤ i ≤ n we clearly have p = q if and only

if fp + fq = 0 (recall that coefficients are from Z2). In [5], it was observed that

from an SLP A for a picture P , one can easily construct an arithmetic circuit for

the polynomial fp, which leads to a coRP-algorithm for equality testing. Since the

circuit for fp is actually powerful skew, we get:

Theorem 5.2. The question whether two n-dimensional SLPs A and B evaluate

to the same n-dimensional picture is in coRNC2 (here, n is part of the input).

Proof. Let A1 = (V1, rhs1, S1) and A2 = (V2, rhs2, S2) be n-dimensional SLPs over

the alphabet Γ. We can assume that V1∩V2 = ∅ and Γ = {0, 1} (if Γ = {a1, . . . , ak}
then we encode ai by 0i1k−i).

First we calculate |A|i for every 1 ≤ i ≤ n and every A ∈ V1 ∪ V2 in NC2

by evaluating additive circuits over N, see Lemma 3.2. If |S1|i 6= |S2|i for some

1 ≤ i ≤ n, then we have val(A1) 6= val(A2). Otherwise, we construct the circuit

C = (V1 ∪ V2 ∪ {S}, rhs, S)

over Z2[x1, . . . , xn] with:

• rhsC(A) = B + x
|B|k
k · C if A ∈ V1 and rhs1(A) = B ◦k C or A ∈ V2 and

rhs2(A) = B ◦k C (note that V1 ∩ V2 = ∅),
• rhsC(A) = a if rhs1(A) = a ∈ {0, 1} or rhs2(A) = a ∈ {0, 1}, and

• rhs(S) = S1 + S2.

Then val(C) = fval(A1) + fval(A2). Since we are working over the coefficient field

Z2, we have val(C) = 0 if and only if val(A1) = val(A2). Obviously C becomes a

powerful skew circuit after splitting right-hand sides of the form B+xNk ·C. Hence,

Theorem 4.1 implies that val(C) = 0 can be checked in coRNC2.

It should be noted that even in the one-dimensional case (where equality test-

ing for SLPs can be done in polynomial time [12,15,24,25]), no randomized NC-

algorithm was known before.

Example 5.3. We consider the 2-dimensional SLP A = (V, rhs, S) with

V = {S,C,D,X0, X1} ∪ {Ai, Bi | 0 ≤ i ≤ n− 1}

and the following right-hand side mapping:

• rhs(S) = An−1 ◦2 An−1,

• rhs(Ai) = Ai−1 ◦2 Ai−1 for 1 ≤ i ≤ n− 1,

13

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

• rhs(A0) = Bn−1 ◦1 Bn−1,

• rhs(Bi) = Bi−1 ◦1 Bi−1 for 1 ≤ j ≤ n− 1,

• rhs(B0) = C ◦1 D,

• rhs(C) = X0 ◦2 X1,

• rhs(D) = X1 ◦2 X0,

• rhs(X0) = 0.

• rhs(X1) = 1.

The picture p = val(A) is the (2n+1 × 2n+1)-picture with p(i, j) = (i+ j) mod 2 for

all i, j ∈ [1, 2n+1]. For n = 2 we obtain the following (8× 8)-picture:

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

The horizontal and vertical dimensions of the pictures defined by the variables are

the following:

• |S|1 = |S|2 = 2n+1,

• |Ai|1 = 2n+1, |Ai|2 = 2i+1 for 0 ≤ i ≤ n− 1,

• |Bi|1 = 2i+1, |Bi|2 = 2 for 0 ≤ i ≤ n− 1,

• |C|1 = |D|1 = 1, |C|2 = |D|2 = 2,

• |X0|1 = |X0|2 = |X1|1 = |X1|2 = 1.

A powerful skew circuit for this polynomial is obtained by the following right-hand

side mapping:

• rhs(S) = An−1 + x2n

2 An−1,

• rhs(Ai) = Ai−1 + x2i

2 Ai−1 for 1 ≤ i ≤ n− 1,

• rhs(A0) = Bn−1 + x2n

1 Bn−1,

• rhs(Bi) = Bi−1x
2i

1 Bi−1 for 1 ≤ i ≤ n− 1,

• rhs(B0) = C + x1D,

• rhs(C) = X0 + x2X1,

• rhs(D) = X1 + x2X0,

• rhs(X0) = 0,

• rhs(X1) = 1.

6. Circuits over wreath products

As a second application of identity testing for powerful skew circuits we will con-

sider the circuit evaluation problem (also known as the compressed word problem)

14

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

for wreath products of finitely generated abelian groups. The wreath product is an

important operation in group theory. The next subsection briefly recalls the defi-

nition and some well-known results. We assume some basic familiarity with group

theory.

6.1. Wreath products

Let G and H be groups. The restricted wreath product H oG is defined as follows:

• Elements of H o G are pairs (f, g), where g ∈ G and f : G → H is a

mapping such that f(a) 6= 1H for only finitely many a ∈ G (1H is the

identity element of H).

• The multiplication in H oG is defined as follows: Let (f1, g1), (f2, g2) ∈ H oG.

Then (f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g−1
1 a) for all a ∈ G.

For readers, who have not seen this definition before, the following intuition might

be helpful: An element (f, g) ∈ H o G can be thought as a finite collection of

elements of H that are sitting in certain elements of G (the mapping f) together

with a distinguished element of G (the element g), which can be thought as a cursor

moving around G. If we want to compute the product (f1, g1)(f2, g2), we do this as

follows: First, we shift the finite collection of H-elements that corresponds to the

mapping f2 by g1: If the element h ∈ H \ {1H} is sitting in a ∈ G (i.e., f2(a) = h),

then we remove h from a and put it to the new location g1a ∈ G. This new collection

corresponds to the mapping f ′2 : a 7→ f2(g−1
1 a). After this shift, we multiply the

two collections of H-elements pointwise: If in a ∈ G the elements h1 and h2 are

sitting (i.e., f1(a) = h1 and f ′2(a) = h2), then we put the product h1h2 into the

G-location a. Finally, the new distinguished G-element (the new cursor position)

becomes g1g2.

Example 6.1. The wreath product Z o Z is generated by {a, t, a−1, t−1}, where

a = (f0, 1), t = (f1, 0), a−1 = (f0,−1), and t−1 = (f−1, 0). Here, f0 : Z → Z
maps every integer to zero, and f1(0) = 1, f−1(0) = −1, and f1(z) = f−1(z) = 0

for z ∈ Z \ {0}. An element of Z o Z can be viewed as an assignment of integers

to the positions of a two-way infinite line whose positions are identified with the

integers. Only finitely many positions carry a non-zero integer. Moreover, the cursor

is sitting on a certain position on the line. Multiplying with a (resp., a−1) on the

right moves the cursor to the right (resp., left). Multiplying with t (resp., t−1)

increments (resp., decrements) the integer at the current cursor position. At the

beginning 0 assigned to every position and the cursor is at position 0. In this setting,

the word w = ataatata−1t−1 evaluates to the element in Figure 1(e), where the

position of the curser is marked grey.

The following lemma seems to be folklore.

Lemma 6.2. The group (A×B) oG embeds into (A oG)× (B oG).

15

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

0

−1

0

0

0

1

0

2

0

3

0

4

0

5

(a) w = ε

0

−1

0

0

1

1

0

2

0

3

0

4

0

5

(b) w = at

0

−1

0

0

1

1

0

2

0

3

0

4

0

5

(c) w = ataa

0

−1

0

0

1

1

0

2

1

3

0

4

0

5

(d) w = ataata

0

−1

0

0

1

1

0

2

0

3

1

4

0

5

(e) w = ataatata−1t−1

Fig. 1: The element in Z o Z corresponding to w = ataatata−1t−1.

Proof. Let πA : A×B → A be the natural projection morphism and similarly for

πB : A×B → B. We define an embedding ϕ : (A×B) oG→ (A oG)× (B oG) by

ϕ(f, g) =

(
(f ◦ πA, g), (f ◦ πB , g)

)
.

Clearly, ϕ is injective. Moreover, ϕ is a group homomorphism.

A proof of the following simple lemma can be found for instance in [22].

Lemma 6.3. Let K be a subgroup of H of finite index m and let G be a group.

Then Gm oK is isomorphic to a subgroup of index m in G oH.

6.2. Compressed word problems

Let G be a finitely generated (f.g.) group and let Σ be a finite generating set for

G, i.e., every element of G can be written as a finite product of elements from Σ

and inverses of elements from Σ. Let Γ = Σ∪ {a−1 | a ∈ Σ}. For a word w ∈ Γ∗ we

write w = 1 in G if and only if the word w evaluates to the identity of G. The word

problem for G asks, whether w = 1 in G for a given input word. There exist finitely

generated groups and in fact finitely presented groups (groups that are defined by

16

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

finitely many defining relations) with an undecidable word problem. Here, we are

interested in the compressed word problem for a finitely generated group. In this

problem, the input word w is given in a compressed form by a one-dimensional SLP

as defined in Section 5. Recall that a one-dimensional picture over an alphabet Γ is

simply a finite word over Γ. Hence, val(A) is a word if A is a one-dimensional SLP.

In the following we always mean one-dimensional SLPs when using the term SLP.

A right-hand side A ◦1 B of such an SLP is simply written as AB in the following.

The compressed word problem for G asks, whether val(A) = 1 in G for a given SLP

A. We use the abbreviation CWP(G) for the compressed word problem for G.

The compressed word problem is related to the classical word problem. For

instance, the classical word problem for a f.g. subgroup of the automorphism group

of a group G can be reduced to the compressed word problem for G, and similar

results are known for certain group extensions, see [21] for more details. Groups,

for which the compressed word problem can be solved in polynomial time are [21]:

finite groups, f.g. nilpotent groups, f.g. free groups, graph groups (also known as

right-angled Artin groups or partially commutative groups), and virtually special

groups, which are groups that have a finite index subgroup that embeds into a

graph group. The latter groups form a rather large class that include for instance

Coxeter groups, one-relator groups with torsion, fully residually free groups, and

fundamental groups of hyperbolic 3-manifolds. In [3] the parallel complexity of the

compressed word problem (there, called the circuit evaluation problem) for finite

groups was studied, and the following result was shown:

Theorem 6.4 ([3]). Let G be a finite group. If G is solvable, then CWP(G) belongs

to the class NC2. If G is not solvable, then CWP(G) is P-complete.

The following two results are proven in [21].

Theorem 6.5 ([21, Theorem 4.15]). For every f.g. linear group the compressed

word problem belongs to the class coRP.

This result is shown by reducing the compressed word problem for a f.g. linear

group to polynomial identity testing for the ring Z. Also a kind of converse of

Theorem 6.5 is shown in [21]:

Theorem 6.6 ([21, Theorem 4.16]). The problem CWP(SL3(Z)) and polynomial

identity testing for the ring Z are polynomial time reducible to each other.

This result is shown by using the construction of Ben-Or and Cleve [4] for

simulating arithmetic circuits by matrix products.

Finally, the following result was recently shown in [18]; it generalizes the NC2-

statement from Theorem 6.4.

Theorem 6.7 ([18]). Let G be a f.g. group having a normal subgroup H such that

H is f.g. nilpotent and the quotient group G/H is finite solvable. Then CWP(G) ∈
NC2.

17

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

To the knowledge of the authors, there is no example of a group G not having

the properties from Theorem 6.7, for which CWP(G) belongs to NC.

In the rest of the paper, we study the compressed word problem for wreath

products. For the case that the left factor of a wreath product is not abelian, the

following hardness result was shown in [21]:

Theorem 6.8 ([21, Theorem 4.21]). If G is a f.g. non-abelian group, then

CWP(G o Z) is coNP-hard.

Because of this result we will only consider wreath products G o H with G

f.g. abelian.

6.3. CWP(Z o Z) and identity testing for powerful skew circuits

In this section, we explore the relationship between the compressed word problem

for the wreath product Z o Z and polynomial identity testing for powerful skew

circuits. We show that these two problems are equivalent w.r.t. NC2-reductions.

Let G = Z o Z. We consider the generators a and t of G, where t (resp., a)

generates the Z-copy on the left (resp., right). So, with a (resp., a−1) we move the

cursor to the left (resp., right) and with t (resp., t−1) we add one (resp., subtract

one) from the value at the current cursor position. Let Γ = {a, t, a−1, t−1}.
For a word w ∈ Γ∗ we define ∆(w) = |w|a − |w|a−1 ∈ Z. The word w is positive

if ∆(u) ≥ 0 for every prefix u of w that ends with t or t−1. The word w is well-

formed, if it is positive and ∆(w) = 0. If w is positive and (f, g) ∈ G is the group

element represented by the word w, then f(x) 6= 0 implies that x ∈ N (intuitively,

the Z-generator t or its inverse is never added to a position outside of N). If in

addition w is well-formed then g = 0. For a given positive word w ∈ Γ∗ we define a

polynomial pw(x) ∈ Z[x] inductively as follows:

• pε(x) = 0.

• If w = ua or w = ua−1, then pw(x) = pu(x).

• If w = utδ with δ ∈ {1,−1}, then pw(x) = pu(x)+δ ·xd, where d = ∆(w) =

∆(u).

If the positive word w represents the group element (f, g) ∈ G, then

pw(x) =
∑
e≥0

f(e) · xe.

In particular, the following equivalence holds for every positive word w ∈ Γ∗:

w = 1 in G ⇔ (pw(x) = 0 and ∆(w) = 0)

Lemma 6.9. From a given SLP A over the alphabet Γ one can compute in logspace

an SLP A′ over the alphabet Γ such that (i) val(A) = 1 in G if and only if val(A′) = 1

in G and (ii) for every variable A of A′ the word valA′(A) is positive.

18

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Proof. Let A = (V, rhsA, S) and let k = |val(A)|. We can assume that V contains

two unique variables T and T−1 such that rhsC(T) = t and rhsA(T−1) = t−1.

From the SLP A we can compute in logspace new SLPs B and B−1 such that

val(B) = ak and val(B−1) = a−k. For this we replace in A all letters in Γ by the

letter a (resp., a−1). Let B be the start variable of B and let B−1 be the start variable

of B−1. We now construct a third SLP C with the variable set {X,X−1, Y, Y −1}]V ,

where] denotes the disjoint union. We define rhsC(Y) = BT , rhsC(Y −1) = BT−1,

rhsC(X) = Y B−1, rhsC(X−1) = Y −1B−1. For all variables A ∈ V we obtain rhsC(A)

from rhsA(A) by replacing every occurrence of the variable T δ by Xδ. We then define

A′ as the disjoint union of the SLPs B, B−1 and C. Then, valA′(A) = ak valA(A) a−k

for every variable A of A.

Lemma 6.10. From a given SLP A over the alphabet Γ such that valA(A) is positive

for every variable A of A one can compute in NC2 a powerful skew circuit C such

that val(C) = pval(A)(x). In particular, val(A) = 1 in G if and only if (val(C) = 0

and ∆(val(A)) = 0).

Proof. Let A = (V, rhsA, S) for the further consideration. For every A ∈ V , the

word valA(A) is positive. Hence, for every A ∈ V we can define the polynomial

pA(x) := pval(A)(x). Moreover, let

d(A) = ∆(val(A)) ∈ Z and

m(A) = min({∆(u) | u is a prefix of val(A) that ends with t or t−1}),

where we set min(∅) =∞. Since val(A) is positive, we have m(A) ≥ 0. The numbers

d(A) can be computed by an additive circuit in NC2, see Lemma 3.2. The numbers

m(A) can be computed in NC2 as well, using the following identity:

m(A) =


∞ if rhsA(A) ∈ {a, a−1},
0 if rhsA(A) ∈ {t, t−1},
min{m(B), d(B) +m(C)} if rhsA(A) = BC.

Note that these rules define a skew circuit in the semiring (Z ∪ {∞},min,+) with

binary encoded input values. Hence, by Lemma 3.2 the circuit can be evaluated in

NC2.

In case m(A) <∞, we can write the polynomial pA(x) uniquely as

pA(x) = xm(A) · qA(x),

for a polynomial qA(x). Note that qA(x) can be a multiple of x due to cancellation of

monomials in pA(x). For instance, if val(A) = att−1at then pA(x) = x2, m(A) = 1,

and qA(x) = x.

We now construct a circuit D such that for every A ∈ V we have:

valD(A) = qA(x).

We define the rules of the circuit D as follows, where A is a variable with m(A) <∞:

19

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

• If rhsA(A) = tδ for δ ∈ {−1, 1}, then we set rhsD(A) = δ.

• If rhsA(A) = BC and m(C) =∞, then we set rhsD(A) = B.

• If rhsA(A) = BC and m(B) =∞, then we set rhsD(A) = C.

• If rhsA(A) = BC and m(B) < ∞, m(C) < ∞, then we have m(A) =

min{m(B), d(B) + m(C)} and we set rhsD(A) = (MB × B) + (MC × C),

where

MB =

{
1 if m(B) ≤ d(B) +m(C)

xm(B)−d(B)−m(C) if m(B) > d(B) +m(C)

MC =

{
1 if m(B) ≥ d(B) +m(C)

xd(B)+m(C)−m(B) if m(B) < d(B) +m(C).

Note that the circuit D is powerful skew. The final circuit C can be easily obtained

by multiplying the output gate of D with xm(S) (if m(S) = ∞ we set the output

gate to zero).

From Lemma 6.9 and 6.10 we get:

Lemma 6.11. The compressed word problem for Z oZ is NC2-reducible to PIT for

powerful skew circuits over the ring Z[x].

Example 6.12. Consider the SLP with the following right-hand side mapping:

• rhs(A0) = a, rhs(B0) = a−1,

• rhs(Ai) = Ai−1Ai−1, rhs(Bi) = Bi−1Bi−1 for 1 ≤ i ≤ 4

• rhs(T) = t,

• rhs(A) = A4T

• rhs(B) = AB2

• rhs(C) = BT

• rhs(S) = CC

All words val(X) for the above nonterminals X are positive, and we have

• pAi(x) = 0, d(Ai) = 2i, m(Ai) =∞ for 0 ≤ i ≤ 4,

• pBi
(x) = 0, d(Bi) = −2i, m(Bi) =∞ for 0 ≤ i ≤ 4,

• pT (x) = 1, d(T) = m(T) = 0,

• pA(x) = x16, d(A) = m(A) = 16,

• pB(x) = x16, d(B) = 16− 4 = 12, m(B) = 16,

• pC(x) = x12 + x16, d(C) = m(C) = 12,

• pS(x) = x12 + x16 + x24 + x28, d(S) = 28, m(S) = 12.

The polynomials qX(s) for X ∈ {T,A,B,C, S} are

• qT (x) = qA(x) = qB(x) = 1,

• qC(x) = 1 + x4,

• qS(x) = 1 + x4 + x12 + x16.

20

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

A powerful skew circuit for these polynomials is obtained by the construction from

the proof of Lemma 6.10:

• rhs(T) = 1,

• rhs(A) = T

• rhs(B) = A

• rhs(C) = x4 ×B + 1× T
• rhs(S) = 1× C + x12 × C

In the rest of this section we show that PIT for powerful skew circuits can

be reduced in NC2 to CWP(Z o Z). By Proposition 3.4, it suffices to consider the

univariate case. The following two lemmas are obvious.

Lemma 6.13. Let u, v ∈ Γ∗ be well-formed. Then w = uv is well-formed too and

pw(x) = pu(x) + pv(x).

Lemma 6.14. Let u ∈ Γ∗ be well-formed, n,m ∈ N and let w = anuma−n. Then

w is well-formed too and pw(x) = m · xn · pu(x).

Lemma 6.15. From a given powerful skew circuit C over the ring Z[x], one can

compute in NC2 an SLP A over the alphabet Γ such that the following holds:

• val(A) is well-formed and

• pval(A)(x) = val(C).

Proof. Let C = (V, rhsC , S). The set of variables of our SLP A contains V , a disjoint

copy V ′ = {A′ | A ∈ V } of V , plus some auxiliary variables. The start variable is S.

For every variable A ∈ V we will have pvalA(A)(x) = valC(A) and for every variable

A′ ∈ V ′ we will have pvalA(A′)(x) = −valC(A). We now define the right-hand sides of

the A. Thereby we allow powers of the form αn (for α a letter from Γ or a variable)

in right-hand sides. Such powers can be produced using auxillary variables and

iterated squaring.

• If rhsC(A) = b·xn, then we set rhsA(A) = antba−n and rhsA(A′) = ant−ba−n.

• If rhsC(A) = B + C, then we set rhsA(A) = BC and rhsA(A′) = B′C ′. The

correctness of this step follows from Lemma 6.13.

• If rhsC(A) = B × C, where w.l.o.g. C is an input gate with rhsC(C) =

b · xn, then we set rhsA(A) = anBba−n and rhsA(A′) = anB−ba−n, where

we set B−c = (B′)c for c ≥ 1. The correctness of this step follows from

Lemma 6.14.

It follows by a straightforward induction that for every A ∈ V , the word valA(A)

and valA(A′) are well-formed.

Example 6.16. Consider the powerful skew circuit

C = ({A,B,C,D,E, S}, rhsC , S)

21

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

with the following right-hand side mapping:

• rhsC(A) = −3 · x100,

• rhsC(B) = 5 · x200,

• rhsC(C) = A+B,

• rhsC(D) = C ×A,

• rhsC(E) = D +D,

• rhsC(S) = E ×B.

The construction from the proof of Lemma 6.15 yields the following SLP A (where

those variables that are not needed in order to produce val(A) are not shown):

• rhsA(A′) = a100t3a−100,

• rhsA(B′) = a100t−5a−100,

• rhsA(C ′) = A′B′,

• rhsA(D) = a100(C ′)3a−100,

• rhsA(E) = DD,

• rhsA(S) = a200E5a−200.

From Lemma 6.11 and 6.15 we directly obtain:

Corollary 6.17. The compressed word problem for Z o Z is equivalent w.r.t. NC2-

reductions to PIT for powerful skew circuits over the ring Z[x].

In exactly the same way we can show:

Corollary 6.18. The compressed word problem for Zn o Z (n ≥ 2) is equivalent

w.r.t. NC2-reductions to PIT for powerful skew circuits over the ring Zn[x].

Let us mention that in [18] it is shown that there exists a polycyclic group G

(of Hirsch length 3) such that PIT for powerful skew circuits over the ring Z[x] is

polynomial time reducible to the compressed word problem for G.

6.4. Compressed word problems in coRNC2

In this section, we apply the results from the last section to find groups for which

the compressed word problem belongs to coRNC2. Recall from Section 6.2 that the

only known examples of groups with a word problem in NC are groups G having a

normal subgroup H such that (i) H is f.g. nilpotent and (ii) G/H is finite solvable.

For wreath products we use the following lemma:

Lemma 6.19. For every k ≥ 1 and every finitely generated group G, CWP(G oZk)

is NC2-reducible to CWP(G o Z).

Proof. The idea is similar to the proof of Proposition 3.4. Let G be generated

by the finite set Σ. Fix the generating set {a1, a2, . . . , ak} for Zk, where every ai
generates a Z-copy. Then G o Zk is generated by the set Γ = Σ ∪ {a1, a2, . . . , ak}.

22

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

Let A be an SLP over the alphabet Γ∪ Γ−1. First, we compute in NC2 the number

d = 2(|val(A)|+ 1). Note that for all ai, bi ∈ Z (1 ≤ i ≤ k) with |ai|, |bi| ≤ |val(A)|
we have: (a1, . . . , ak) = (b1, . . . , bk) if and only if

∑k
i=1 ai · di−1 =

∑k
i=1 bi · di−1.

From our SLP A we construct a new SLP B by replacing every occurrence of

ai (resp., a−1
i) in a right-hand side by a new variable that produces ad

i−1

(resp.,

a−d
i−1

). This implies the following: If (f, (z1, . . . , zk)) (resp., (h, z)) is the group

element of CWP(G o Zk) (resp., CWP(G o Z)) represented by val(A) (resp., val(B)),

then z =
∑k
i=1 zi · di−1 and for all (x1, . . . , xk) ∈ Zk, f(x1, . . . , xk) = h(x), where

x =
∑k
i=1 xi · di−1. It follows that val(A) = 1 in G o Zk if and only if val(B) = 1 in

G o Z.

Corollary 6.20. Let G be a finite direct product of copies of Z and Zp for primes

p. Then, for every n ≥ 1, CWP(G o Zn) belongs to coRNC2.

Proof. Assume that G =
∏k
i=1Gi where for every 1 ≤ i ≤ k, either Gi = Z or

Gi = Zpi for a prime pi. By Lemma 6.2, G oZn is a subgroup of
∏k
i=1Gi oZn, which

implies that the compressed word problem for G o Zn is logspace-reducible to the

compressed word problem for
∏k
i=1Gi oZn [21, Proposition 4.3]. Hence, from an SLP

A over the generators of G oZn we can compute in logspace (and hence NC2) SLPs

A1, . . . ,Ak, where Ai is an SLP over the generators of Gi oZn such that val(A) = 1

in G o Zn if and only if for all 1 ≤ i ≤ k, val(Ai) = 1 in Gi o Zn. Moreover, from

the SLP Ai we can compute by Lemma 6.19 in NC2 an SLP Bi over the generators

of Gi o Z such that val(Ai) = 1 in Gi o Zn if and only if val(Bi) = 1 in Gi o Z
(the SLPs Bi can be computed in parallel). By Theorem 4.1 and Corollary 6.17

and 6.18 the compressed word problem for every group Gi o Z belongs to coRNC2.

The corresponding circuits are put in parallel with independent random bits. The

overall circuit accepts if and only if val(Bi) = 1 in Gi oZ for all 1 ≤ i ≤ k. The error

probability of the resulting circuit is bounded by the maximal error probability of

the circuits for the groups Gi oZ, 1 ≤ i ≤ k; see also the argument at the end of the

proof of Theorem 4.1.

It is not clear, whether in Corollary 6.20 we can replace G by an arbitrary finitely

generated abelian group. On the other hand, if we apply Theorem 3.3 instead of

Theorem 4.1 we obtain:

Corollary 6.21. Let G be f.g. abelian and let H be f.g. virtually abelian (i.e., H

has a f.g. abelian subgroup of finite index). Then CWP(G oH) belongs to coRP.

Proof. Let K ≤ H be a f.g. abelian subgroup of finite index m in H. Moreover,

either K = 1 or K ∼= Zk for some k ≥ 1. By Lemma 6.3, Gm o K is isomorphic

to a subgroup of index m in G o H. If the group A is a finite index subgroup of

the group B, then CWP(B) is polynomial-time many-one reducible to CWP(A) [21,

Theorem 4.4]. Hence, it suffices to show that CWP(Gm oK) belongs to coRP. Since

Gm is finitely generated abelian, it suffices to show that CWP(Zn o K) (n ≥ 2)

23

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

and CWP(Z o K) belong to coRP; the argument is the same as in the proof of

Corollary 6.20. The case K = 1 is clear. So, assume that K ∼= Zk for some k ≥ 1.

By Corollary 6.20, CWP(Z o Zk) belongs to coRNC. Moreover, by Lemma 6.19,

Theorem 3.3 and Corollary 6.18, CWP(Zn o Zk) belongs to coRP.

Let us conclude the paper with an application of Corollary 6.20 to free

metabelian groups. Recall that a group is metabelian if its commutator subgroup

is abelian. It is known that every f.g. metabelian group can be embedded into a

finite direct product of f.g. linear groups [27]. From this, one can deduce that the

compressed word problem of a finitely generated metabelian group belongs to coRP.

For f.g. free metabelian groups, we can sharpen this fact:

Theorem 6.22. For every f.g. free metabelian group the compressed word problem

belongs to coRNC2.

Proof. By the Magnus embedding theorem [23] the free metabelian group of rank

r can be embedded into the wreath product Zr oZr. The result follows from Corol-

lary 6.20.

7. Open problems

Our coRNC2 identity testing algorithm for powerful skew circuits only works for the

coefficient rings Z and Zp with p prime. It is not clear how to extend it to Zn with

n composite. The Agrawal-Biswas identity testing algorithm also works for Zn with

n composite. But the problem is that the Fich-Tompa algorithm only works for

polynomial rings over Zp with p prime. For equality testing for multi-dimensional

straight-line programs it remains open whether a polynomial time algorithm exists.

For the one-dimensional (word) case, a polynomial time algorithm exists. Here, it

remains open, whether the equality problem is in NC.

Acknowledgments

This work was supported by the DFG research project LO 748/12-1.

References

[1] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering.
Journal of the Association for Computing Machinery, 50(4):429–443, 2003.

[2] S. Arora and B.Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[3] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word
to circuit evaluation. SIAM Journal on Computing, 26(1):138–152, 1997.

[4] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of
registers. SIAM Journal on Computing, 21(1):54–58, 1992.

[5] P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the
complexity of pattern matching for highly compressed two-dimensional texts. Journal
of Computer and System Sciences, 65(2):332–350, 2002.

24

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

[6] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. Theoretical
Informatics and Applications. Informatique Théorique et Applications, 35(3):259–275,
2001.

[7] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64:2–22, 1985.

[8] W. Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Computing,
18(5):955–976, 1989.

[9] F. E. Fich and M. Tompa. The parallel complexity of exponentiating polynomials over
finite fields. In Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing, STOC ’85, pages 38–47. ACM, 1985.

[10] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -
Completeness Theory. Oxford University Press, 1995.

[11] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System
Sciences, 65:695–716, 2002.

[12] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theoretical Computer Science, 158(1&2):143–
159, 1996.

[13] O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence
of straight-line programs. Journal of the Association for Computing Machinery,
30(1):217–228, 1983.

[14] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, STOC 1997, pages 220–229. ACM Press, 1997.

[15] A. Jeż. Faster fully compressed pattern matching by recompression. ACM Transac-
tions on Algorithms, 11(3):20:1–20:43, 2015.

[16] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[17] D. König and M. Lohrey. Parallel identity testing for skew circuits with big powers and
applications. In Proceedings of the 40th International Symposium on Mathematical
Foundations of Computer Science 2015, MFCS 2015, Part II, volume 9235 of Lecture
Notes in Computer Science, pages 445–458. Springer, 2015.

[18] D. König and M. Lohrey. Evaluation of circuits over nilpotent and polycyclic groups.
Algorithmica, 80(5):1459–1492, 2018.

[19] M. Lohrey. Word problems and membership problems on compressed words. SIAM
Journal on Computing, 35(5):1210 – 1240, 2006.

[20] M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

[21] M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathemat-
ics. Springer, 2014.

[22] M. Lohrey, B. Steinberg, and G. Zetzsche. Rational subsets and submonoids of wreath
products. Information and Computation, 243:191–204, 2015.

[23] W. Magnus. On a theorem of Marshall Hall. Annals of Mathematics. Second Series,
40:764–768, 1939.

[24] K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

[25] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Pro-
ceedings of the 2nd Annual European Symposium on Algorithms, ESA 1994, volume
855 of Lecture Notes in Computer Science, pages 460–470. Springer, 1994.

[26] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

25

June 27, 2018 6:16 WSPC/INSTRUCTION FILE ijac

[27] B. A. Wehrfritz. On finitely generated soluble linear groups. Mathematische
Zeitschrift, 170:155–167, 1980.

26

