
1

Circuits and Expressions over Finite Semirings

MOSES GANARDI, DANNY HUCKE, DANIEL KÖNIG, and MARKUS LOHREY, University
of Siegen, Germany

The computational complexity of the circuit and expression evaluation problem for finite semirings is con-

sidered, where semirings are not assumed to have an additive or a multiplicative identity. The following

dichotomy is shown: If a finite semiring is such that (i) the multiplicative semigroup is solvable and (ii) it

does not contain a subsemiring with an additive identity 0 and a multiplicative identity 1 , 0, then the circuit

evaluation problem is in DET ⊆ NC2
and the expression evaluation problem for the semiring is in TC0

. For all

other finite semirings, the circuit evaluation problem is P-complete and the expression evaluation problem is

NC1
-complete. As an application we determine the complexity of intersection non-emptiness problems for

given context-free grammars (regular expressions) with a fixed regular language.

CCS Concepts: • Theory of computation→ Circuit complexity;

Additional Key Words and Phrases: semirings, circuit evaluation problem, expression evaluation

ACM Reference Format:
Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey. 2018. Circuits and Expressions over Finite

Semirings. ACM Trans. Comput. Theory 1, 1, Article 1 (January 2018), 29 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Circuit and expression evaluation problems are among the most well-studied computational

problems in complexity theory. In its most general formulation, one has an algebraic structure

A = (A, f1, . . . , fk) with operations fi : Ani → A over some domain A. A circuit over A is a

directed acyclic graph (dag) where every inner node is labelled with one of the operations fi and
has exactly ni outgoing edges that are linearly ordered. The leaf nodes of the dag are labelled with

elements of A (for this, one needs a suitable finite representation of elements from A), and there is

a distinguished output node. The circuit evaluation problem for A, short CEP(A), is to evaluate

this dag in the natural way, and to return the value of the output node. Circuits can be seen as a

succinct representation of expressions over the algebra. An expression over the structure A is a

term built up from elements in A and the function symbols fi . The expression evaluation problem

for A, short EEP(A), is to output the value of a given expression over A. It can be viewed as a

generalization of the well-known word problemWP(G) over a group, which asks whether a given

product of group elements evaluate to the group identity.

In his seminal paper [27], Ladner proved that the circuit evaluation problem for the Boolean

semiring B2 = ({0, 1},∨,∧) is P-complete. This result marks a cornerstone in the theory of P-
completeness [22], andmotivated the investigation of circuit evaluation problems for other algebraic

structures. A large part of the literature is focused on arithmetic (semi)rings like (Z,+, ·), (N,+, ·)

Authors’ address: Moses Ganardi, ganardi@eti.uni-siegen.de; Danny Hucke, hucke@eti.uni-siegen.de; Daniel König,

koenig@eti.uni-siegen.de; Markus Lohrey, lohrey@eti.uni-siegen.de, University of Siegen, Lehrstuhl für theoretische

Informatik, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

1942-3454/2018/1-ART1 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

or the max-plus semiring (Z ∪ {−∞},max,+) [2, 3, 26, 30, 31, 38]. These papers mainly consider

circuits of polynomial formal degree. For commutative semirings, circuits of polynomial formal

degree can be restructured into equivalent (unbounded fan-in) circuits of polynomial size and

logarithmic depth [38]. This result leads toNC-algorithms for evaluating polynomial degree circuits

over commutative semirings [30, 31]. Over non-commutative semirings, circuits of polynomial

formal degree do in general not allow a restructuring into circuits of logarithmic depth [26]. In [31]

it was shown that also for finite non-commutative semirings circuit evaluation is in NC for circuits

of polynomial formal degree. On the other hand, the authors are not aware of any NC-algorithms

for evaluating general (exponential degree) circuits over semirings. The lack of such algorithms is

probably due to Ladner’s result, which seems to exclude any efficient parallel algorithms (unless

P = NC).
It is known that evaluating expressions over every fixed finite algebra is in NC1

[28]. This was

first proved by Buss for the case of Boolean formulas [13], where he also proved that the problem

is in fact NC1
-complete. Later this result was extended to arbitrary finite algebras [28]. In the

context of semigroups, the expression evaluation problem is usually called the word problem and

has turned out to be useful in the description of complexity classes inside of NC1
. In [7, 9], the

following dichotomy result was shown for finite semigroups: If the finite semigroup is solvable

(meaning that every subgroup is a solvable group), then the word problem is in ACC0
, otherwise the

word problem is NC1
-complete. A similar result holds for the circuit evaluation problem [12]: For

solvable semigroups circuit evaluation is in NC (in fact, in DET, which is the class of all problems

that are AC0
-reducible to the computation of an integer determinant [16, 17]), otherwise circuit

evaluation is P-complete.

1.1 Main results
In this paper, we extend the previously mentioned work of [7, 9, 12] from finite semigroups to

finite semirings. Let us first discuss the case of circuit evaluation. On first sight, it seems again that

Ladner’s result excludes efficient parallel algorithms: It is not hard to show that if the finite semiring

has an additive identity 0 and a multiplicative identity 1 , 0 (where 0 is not necessarily absorbing

with respect to multiplication), then circuit evaluation is P-complete, see Corollary 4.5. Therefore,

we take the most general reasonable definition of semirings: A semiring is a structure (R,+, ·),
where R+ := (R,+) is a commutative semigroup, R• := (R, ·) is a semigroup, and · distributes (on the

left and right) over +. In particular, we neither require the existence of a 0 nor a 1. We call a semiring

{0, 1}-free if there exists no subsemiring in which an additive identity 0 and a multiplicative identity

1 , 0 exist. The first main result of this paper states:

Theorem 1.1. Let R be a finite semiring. If R is {0, 1}-free, then CEP(R) is AC0-Turing-reducible to
CEP(R+) and CEP(R•). Otherwise CEP(R) is P-complete.

Together with the result for semigroups from [12] (and the fact that commutative semigroups

are solvable) we can conclude from Theorem 1.1 that there are only two obstacles to efficient

parallel circuit evaluation: non-solvability of the multiplicative structure and the existence of a

zero and a one (different from the zero) in a subsemiring. More precisely, we obtain the following

classification:

Corollary 1.2. Let R be a finite semiring.
• If R is {0, 1}-free and both R+ and R• are aperiodic, then CEP(R) is in NL (nondeterministic
logspace).
• If R is {0, 1}-free and R• is solvable, then CEP(R) is in DET.
• If R is not {0, 1}-free or R• is not solvable, then CEP(R) is P-complete.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:3

The hard part of the proof of Theorem 1.1 is the case when the semiring is {0, 1}-free. We will

proceed in three steps. In the first two steps we reduce the circuit evaluation problem for a finite

semiring R to the evaluation of a so-called type admitting circuit. This is a circuit where every

gate evaluates to an element of the form ea f , where e and f are multiplicative idempotents of R.
Moreover, these idempotents e and f have to satisfy a certain compatibility condition that will be

expressed by a so called type function. In the last step, we present a parallel evaluation algorithm

for type admitting circuits. Only for this last step we need the assumption that the semiring is

{0, 1}-free.
Our second main result concerns the expression evaluation problem for finite semirings. Here

we have a dichotomy similar to that found for the circuit evaluation problem:

Theorem 1.3. Let R be a finite semiring. If R is {0, 1}-free, then EEP(R) is TC0-reducible toWP(R•).
Otherwise EEP(R) is NC1-complete.

To prove Theorem 1.3 we use the same proof strategy as for Theorem 1.1. To carry out the same

reduction steps on expressions, i.e., circuits which are trees, we use the fact that for the given

semiring expression an equivalent circuit of logarithmic depth can be computed in TC0
, which

was proven in [20]. Moreover, this logarithmic depth circuit is given in the so-called extended

connection (EC) representation, which is a set of tuples (u,p,v) where u and v are circuit gates and

p is a bit string that addresses a path from gateu to gatev . It turns out that our circuit manipulations

can be carried out in TC0
on the EC-representations of log-depth circuits. Theorem 1.3 together

with the results from [7, 9] imply:

Corollary 1.4. Let R be a finite semiring. If R is {0, 1}-free and R• is solvable, then EEP(R) is in
TC0. Otherwise EEP(R) is NC1-complete.

1.2 Application: Intersection non-emptiness problems
In Section 6 we present an application of our results for formal language theory. We consider the

intersection non-emptiness problem for a given context-free language and a fixed regular language

L. If the context-free language is given by an arbitrary context-free grammar, then we show that

the intersection non-emptiness problem is P-complete as long as L is not empty (Lemma 6.1). It

turns out that the reason for this are non-productive nonterminals, i.e., nonterminals which derive

no word over the terminal alphabet. We therefore consider a restricted version of the intersection

non-emptiness problem, where every nonterminal of the input context-free grammar must be

productive. To avoid a promise problem (testing productivity of a nonterminal is P-complete), we

in addition provide a witness of productivity for every nonterminal. This witness is an acyclic

context-free grammarH whose productions are a subset of the productions of the input grammar G

such that each nonterminal occurs on exactly one left-hand side of a production inH . This ensures

thatH derives for every nonterminal A exactly one string that is a witness of the productivity of

A. We then show that this restricted version of the intersection non-emptiness problem with the

fixed regular language L is equivalent (with respect to constant depth reductions) to the circuit

evaluation problem for a certain finite semiring that is derived from the regular language L.
As an application of the results for the expression evaluation problem,we consider the intersection

non-emptiness problem for a given regular expression and a fixed regular language L. Again, we
pose the restriction that the regular expression does not contain the empty set as an atomic

expression; otherwise the problem is NC1
-complete for all non-empty languages L. Here it is also

important that the given regular expression is balanced first, which is possible in TC0
by [20].

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

1.3 Further related work
We mentioned already the existing work on circuit evaluation for infinite semirings. The question

whether a given circuit over a polynomial ring evaluates to the zero polynomial is also known

as polynomial identity testing. For polynomial rings over Z or Zn (n ≥ 2), polynomial identity

testing has a co-randomized polynomial time algorithm [1, 23]. Moreover, the question, whether a

deterministic polynomial time algorithm exists is tightly related to lower bounds in complexity

theory, see [35] for a survey.

For finite non-associative groupoids, the complexity of circuit evaluation was studied in [32],

and some of the results from [12] for semigroups were generalized to the non-associative setting.

In [10], the problem of evaluating tensor circuits is studied. The complexity of this problem is quite

high: Whether a given tensor circuit over the Boolean semiring evaluates to the (1 × 1)-matrix

(0) is complete for nondeterministic exponential time. Finally, let us mention the papers [29, 37],

where circuit evaluation problems are studied for the power set structures (2N,+, ·,∪,∩,) and
(2Z,+, ·,∪,∩,), where + and · are evaluated on sets via A ◦ B = {a ◦ b | a ∈ A,b ∈ B}.
A variant of our intersection non-emptiness problem was studied in [34]. There, a context-free

language L is fixed, a (deterministic or non-deterministic) finite automaton A is the input, and

the question is, whether L ∩ L(A) = ∅ holds. The authors present large classes of context-free
languages such that for each member the intersection non-emptiness problem with a given regular

language (specified by a non-deterministic automaton) is P-complete (resp., NL-complete).

2 PRELIMINARIES
Graphs in this paper will be finite, directed and node-labelled. Formally, a graph is a triple G =

(V ,E, λ) consisting of a finite set of nodes V = V (G), a set of edges E ⊆ V × V , and a labelling

function λ : V → A into a set of labels A (for unlabelled graphs choose a singleton A). In an ordered
graph G the outgoing edges of a node are linearly ordered. Formally, the edge relation E is a finite

subset E ⊆ V × N ×V such that, if v ∈ V has k outgoing edges then for each 1 ≤ i ≤ k there exists

a unique node vi with (v, i,vi) ∈ E. The number k is also called the out-degree of v . If each node

has out-degree at most k , then G is called k-ordered. An (ordered) acyclic graph is called (ordered)
dag. A tree T with root r is a graph such that for every node v ∈ V (T) there exists exactly one

path from r to v in T . For a k-ordered graph G, we define the set path(G) as the set of all triples
(u, ρ,v) ∈ V (G) × {1, . . . ,k }∗ ×V (G) such that ρ is the sequence of edge labels along a path from

node u to node v .

2.1 Algebraic and Boolean circuits
In this paper, an (algebraic) structure A = (A, f1, . . . , fk) consists of a non-empty domain A and

finitely many operations fi : Ani → A, where ni ∈ N ∪ {∗} is the arity of fi for 1 ≤ i ≤ k . Arity
ni = ∗ means that the operation fi : A∗ → A gets an arbitrary number of input values from A (like

for instance the Boolean or- and and-functions). We often identify the domain with the structure,

if it is clear from the context.

A circuit over A with inputs x1, . . . ,xn is a tuple C = (V ,E, λ,v0) with the following properties:

• (V ,E, λ) is an ordered dag, whose nodes are called gates and whose edges are called wires.
• v0 ∈ V is a distinguished output gate.
• λ : V → A ∪ {x1, . . . ,xn } ∪ { f1, . . . , fk } is the node labelling function.

Moreover, the out-degree of a gate
1 v has to match the arity of its label: if λ(v) ∈ A ∪ {x1, . . . ,xn },

then v must have out-degree 0 and is called an input gate of C. We also write v → λ(v) in this case.

1
The out-degree of a gate is also called its fan-in in the literature. But since it is more convenient for our definition to direct

edges towards the input gates, we prefer to use the term “out-degree”.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:5

If λ(v) is a function fi , then the out-degree of v is the arity of fi , where the out-degree of v can

be any number in case the arity of fi is ∗. Moreover, v is called an inner gate of C in this case. If

(v, i,vi) for 1 ≤ i ≤ m are all the outgoing edges of v , then the gates v1, . . . ,vm are the input gates
of v . For simplicity we also write v → fi (v1, . . . ,vm) in this case. For gates u,v we write u ≤C v
if there exists a path from v to u in the circuit C. Thus (V , ≤C) is a partial order, whose minimal

elements are the input gates. A circuit C = (V ,E, λ,v0) is a tree if the graph (V ,E) is a tree.
Fix a circuit C = (V ,E, λ,v0) over A. Every gate v ∈ V computes a mapping [v] : An → A

in the natural way. Intuitively, [v](a1, . . . ,an) is the value computed by gate v if the value ai is
assigned to the input xi . Formally, let ā = (a1, . . . ,an) and define [v](ā) inductively as follows:

If v → a ∈ A, then [v](ā) = a. If v → xi , then [v](ā) = ai . If v → fi (v1, . . . ,vm) then [v](ā) =
fi ([v1](ā), . . . , [vm](ā)). If we want to make the underlying circuit C clear, we also write [v]C

instead of [v]. The function computed by C is defined as [C] = [v0]. If n = 0, then C is called

variable-free. In this case, [v] ∈ A is called the value computed by gate v . Moreover, [C] is called the

value computed by C.

A Boolean circuit is a circuit over a structure with domain {0, 1}. Specifically, we will consider
such structures containing some of the following operations, where p ≥ 2:

• not: {0, 1} → {0, 1} (Boolean negation),

• or: {0, 1}∗ → {0, 1} (the Boolean or-function)

• and: {0, 1}∗ → {0, 1} (the Boolean and-function),

• modp : {0, 1}∗ → {0, 1} with modp (a1, . . . ,ak) = 1 iff p divides

∑k
i=1

ai ,

• maj : {0, 1}∗ → {0, 1} with maj(a1, . . . ,ak) = 1 iff

∑k
i=1

ai ≥ k/2.

2.2 Computational complexity
For background in complexity theory we refer the reader to [5]. We assume that the reader is familiar

with the complexity classes NL (non-deterministic logspace) and P (deterministic polynomial time).

The canonical NL-complete problem is the graph accessibility problem GAP. A function is logspace-

computable if it can be computed by a deterministic Turing-machine with a logspace-bounded

work tape, a read-only input tape, and a write-only output tape. Note that the logarithmic space

bound only applies to the work tape.

We use standard definitions concerning circuit complexity, see e.g. [40]. Consider a family of

Boolean circuits (Cn)n≥0, where Cn has n inputs x1, . . . ,xn . Such a family defines the language

L ⊆ {0, 1}∗ of all words w ∈ {0, 1}∗ such that [C|w |](w) = 1. The size (resp., depth) of the family

(Cn)n≥0 is the function mapping n ∈ N to the number of gates (resp., the length of a longest path

from the output gate to an input gate) of the circuit Cn . The out-degree of the circuit family is the

maximal out-degree of a gate in any circuit Cn ; if this maximum does not exist, the circuit family

has unbounded out-degree.
We only consider circuit families (Cn)n≥0 of polynomially bounded size. For such a family, gates

of Cn as well as the labels of gates can be encoded by bit strings of length O (logn). Moreover,

we will only consider uniform circuit families (Cn)n≥0, which roughly speaking means that the

circuits Cn have to follow a common pattern. The precise notion of uniformity we are using is

known asDLOGTIME-uniformity and is nowadays the standard choice of uniformity for low circuit

complexity classes. To define DLOGTIME-uniformity one defines two representations for a circuit

family (Cn)n≥0:

• The direct connection language of (Cn)n≥0 contains all tuples (n,u, i,v) and (n,u, t), where n
is a binary encoded natural number, u and v are binary encoded gates of Cn , (u, i,v) is an
edge of Cn , and t is the (binary encoding of the) label of gate u.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

• The extended connection language of (Cn)n≥0, which is only defined if the circuit family has

out-degree two, contains all tuples (n,u, ρ,v, t), wheren is a binary encoded natural number,u
andv are binary encoded gates of Cn , ρ ∈ {1, 2}

∗
has length at most log

2
n, (u, ρ,v) ∈ path(C)

and t is the (binary encoding of the) label of gate u.

A circuit family (Cn)n≥0 of out-degree two is UE -uniform if the extended connection language

can be decided in linear time on a random access Turing machine, which means that the running

time is in O (logn) for an input tuple (n,u, ρ,v, t) (since n,u, ρ,v, t are encoded by bit strings of

length O (logn)). A circuit family (Cn)n≥0 (of possibly unbounded out-degree) is UD -uniform if

the directed connection language can be decided in linear time. These notions both strengthen

logspace uniformity, where it is required that the mapping an 7→ Cn is logspace computable.

The following two standard circuit complexity classes will be used in this paper:

• AC0
: the class of all languages that can be recognized by a UD -uniform circuit family of

polynomial size and constant depth built up from the Boolean functions not, or, and and.

• NC1
: the class of all languages that can be recognized by a UE -uniform circuit family of

out-degree two, polynomial size and depthO (logn) built up from the Boolean functions not,

or, and and.

• NCi
for i ≥ 2: the class of all languages that can be recognized by a logspace uniform circuit

family of out-degree two, polynomial size and depth O (log
i n) built up from the Boolean

functions not, or, and and.

• NC =
⋃

i≥1
NCi

.

In order to compute a function f : {0, 1}∗ → {0, 1}∗ with a circuit family, we encode f by

the language Lf = {1
i
0w | w ∈ {0, 1}∗, the i-th bit of f (w) is 1}. We only consider functions

f : {0, 1}∗ → {0, 1}∗ such that | f (w) | is polynomially bounded by |w |.
Unless noted otherwise, hardness results in this paper refer to AC0-many-one reductions, i.e.,

many-one reductions that can be computed by AC0
circuit families. We also use the standard notion

of AC0
-Turing-reducibility: A function f : {0, 1}∗ → {0, 1} is AC0-Turing-reducible to functions

f1, . . . , fk : {0, 1}∗ → {0, 1} if f can be computed with a UD -uniform circuit family of polynomial

size and constant depth built up from the Boolean functions not, or, and, and f1, . . . , fk . The
class AC0 (f1, . . . , fk) contains all functions that are AC0

-Turing-reducible to f1, . . . , fk . By taking

the characteristic function of a language, we can also allow a language Li ⊆ {0, 1}
∗
in place of fi .

Similarly, by taking the (characteristic function of the) language Lfi , we can also allow functions

fi : {0, 1}∗ → {0, 1}∗. The two classes ACC0
:=
⋃

p≥2
AC0 (modp) and TC0

:= AC0 (maj) are well-
studied in circuit complexity.

Let DET = AC0 (det), where det is the function that maps a binary encoded integer matrix to

the binary encoding of its determinant, see [16]. Actually, Cook defined DET as NC1 (det) [16], but
the above definition via AC0

-circuits seems to be more natural. For instance, it implies that DET
is equal to the #L-hierarchy, see also the discussion in [17]. We defined DET as a function class,

but the definition can be extended to languages by considering their characteristic functions. The

following inclusions are well known:

AC0 ⊆ ACC0 ⊆ TC0 ⊆ NC1 ⊆ NL ⊆ DET ⊆ NC2 ⊆ NC ⊆ P

2.3 Tree and graph representations
Recall the definition of an algebraic structure A = (A, f1, . . . , fk) and a circuit C over A from

Section 2.1. For the rest of the paper, we only consider the case that all operations fi are of type
fi : Ani → A with ni ∈ N. Operations of type fi : A∗ → A were only needed for the definition of

circuit complexity classes, and the same holds for circuits that are not variable-free. Hence, we only

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:7

consider variable-free circuits in the following. Let us fix an algebraic structureA = (A, f1, . . . , fk)
as above for the following definitions.

When dealing with low complexity classes, the precise input representation is quite often very

important. The standard input representation of a circuit C = (V ,E, λ,v0) is its pointer representation,
where we assume w.l.o.g. that V = {1, . . . ,n} for some n and v0 = 1: The pointer representation

stores a list of the node labels λ(v) and a list of all edges. In order to ensure acyclicity of the circuit,

we can assume that i < j whenever there is an edge from node i to node j.
For trees (which were defined as particular circuits) the pointer representation is not suitable

when working with complexity classes below logarithmic space, since deciding whether a node v
is an ancestor of another node u is already hard for logarithmic space [19]. Hence, we will deal

with two alternative representations of trees. The first one is the ancestor representation, which
consists of the pointer representation of a tree T together with (a list of all pairs from) the ancestor

relation ≤T . In order to emphasize that a tree T is given in ancestor relation, we also write the

tree as (T , ≤T).
It is known that the ancestor representation of a tree is equivalent (with respect to TC0

-reductions)

to its term representation. The set of terms (or expressions) over the structure A is the set of all

strings over the alphabet A ∪ { f1, . . . , fk } that can be constructed inductively as follows: Every

element of A is a term overA and if t1, . . . , tni are terms overA then also fit1 · · · tni is a term over

A. The following result seems to be folklore but we provide a proof because we were not able to

find a reference.

Proposition 2.1. LetA = ({a}, f) where f is a binary symbol. Deciding whether a string over the
alphabet { f ,a} is a valid term over A is TC0-hard with respect to AC0-Turing-reductions.

Proof. We reduce from the TC0
-complete equality problem [15], i.e., the problem whether a

given word w ∈ { f ,a}∗, contains an equal number of f ’s and a’s. This is the case if and only if

f n w an+1
is a valid term, where n = |w |. □

The value [t] ∈ A of a term overA is defined in the natural way. A tree T = (V ,E, λ,v0) defines
a term in the natural way. Formally, we assign to each gate v ∈ V a term tv as follows: If v is an

input gate then tv = λ(v) and if v → f (v1, . . . ,vn) then tv = f tv1
· · · tvn . We call the term tv0

the

term representation of the tree T . In fact, this construction can be done for an arbitrary circuit

C = (V ,E, λ,v0). The term tv0
is then called the unfolding of the circuit. Of course, it evaluates to

[C].

Convention. Unless otherwise specified,
• circuits are always represented in pointer representation and
• trees are always represented in ancestor representation.

Finally, we introduce the extended connection representation of a k-ordered graph, which is

very similar to the extended connection language of a circuit family defined in Section 2.2. In fact,

we will only need the extended connection representation for circuits. The extended connection
representation, briefly EC-representation, of a k-ordered graph G = (V ,E, λ), denoted by ec(G), is
the pair (G, P) where P is the set of all tuples (u, ρ,v) ∈ path(G) such that |ρ | ≤ logn |V |. The
EC-representation of a circuit will be only useful for circuits of logarithmic depth.

The relationships between the different representations are summarized in the following lemma.

Lemma 2.2 ([18, 20]). The following holds:
(1) There is a TC0-computable function converting the term representation of a tree into its ancestor

representation, and vice versa.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

(2) There is a TC0-computable function converting the ancestor representation of a tree into its
EC-representation.

(3) For every fixed c > 0 there is a TC0-computable function which, given a circuit C in EC-
representation of depth ≤ c · log

2
|C|, outputs the unfolding of C (in term or ancestor represen-

tation).

2.4 Preliminary algorithmic results for circuits and trees
It is sometimes convenient to compute arbitrary terms in circuit gates, namely terms built from

constants, gates and operations of the structure. For instance, over a semiring (R,+, ·) we might

consider the following circuit: v0 → a · v1 · b + v2, v1 → v3, v2 → v3 · v3, v3 → c . Formally, this

is a circuit over an algebraic structure extended by certain term functions; in our example this is

structure (R,+, ·, f ,д, i) where f (x ,y) = a · x · b + y, д(x) = x · x and i is the identity function.

The gate v1 (with v1 → v3) is called a copy gate. Allowing copy gates is often convenient for the

construction of circuits. We say that a circuit is in normal form to emphasize that the circuit only

contains the operators of the initial algebraic structure. By the following lemma, we can always

assume that circuits are in normal form:

Lemma 2.3 ([25, Lemma 1]). A given circuit can be transformed in logspace into an equivalent
normal form circuit.

Also for trees we can allow arbitrary terms as node labels, with the restriction that every non-

output gate of the tree has exactly one occurrence among the terms that appear as node labels.

For instance, v0 → a · v1 · b + v2, v1 → v3, v2 → v4 · v5, v3 → c , v4 → d , v5 → a, where a,b, c,d
are constants, specifies a valid tree. The ancestor relation is the reflexive and transitive closure of

{(v0,v1), (v0,v2), (v1,v3), (v2,v4), (v2,v5)}.

Lemma 2.4. A given tree (T , ≤T) can be transformed in TC0 into an equivalent normal form tree
(T ′, ≤T ′).

Proof. As for circuits (see [25, Lemma 1]) we can easily compute the intermediate gates inAC0
for

right-hand sides with multiple operators. Then we have to recompute the ancestor relation, which

is possible by keeping track of which intermediate gates originate from which gates. Eliminating

the copy gates is possible in TC0
because we have access to the ancestor relation. □

A function I mapping ordered graphs (over a fixed set of node labels A) to ordered graphs (over a
possibly different fixed set A′ of node labels) is called a guarded transduction if there exist numbers

m, c ∈ N such that every ordered graph G = (V ,E, λ : V → A) is mapped to an ordered graph

I (G) = (V ′,E ′, λ′ : V ′ → A′) with the following properties:

• V ′ ⊆ Vm × {1, . . . , c}, and
• for each edge ((u1, . . . ,um ,a), (v1, . . . ,vm ,b)) ∈ E

′
and every 1 ≤ j ≤ m there exists 1 ≤ i ≤

m such that (ui ,vj) ∈ E or ui = vj .

We will need the following lemma:

Lemma 2.5 ([20]). For every TC0-computable guarded graph transduction I there exists a TC0-
computable function that maps ec(G) to ec(I (G)) for all k-ordered graphs G.

3 SEMIGROUPS AND SEMIRINGS
Let A = (A, f A

1
, . . . , f Ak), B = (B, f B

1
, . . . , f Bk) be two algebraic structures where f Ai and f Bi

have the same arity for all 1 ≤ i ≤ k . A homomorphism from A to B is a function h : A→ B such

that

h(f Ai (a1, . . . ,ani)) = f Bi (h(a1), . . . ,h(ani))

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:9

for all a1, . . . ,an ∈ A and all operations fi : Ani → A. A bijective homomorphism is called an

isomorphism.

We mainly deal with semigroups and semirings. In the following two subsections we present the

necessary background. For further details on semigroup theory (resp., semiring theory) see [33]

(resp., [21]).

3.1 Semigroups
A semigroup (S, ·) is an algebraic structure with a single associative binary operation · : S × S → S .
We usually write st for s · t . If st = ts for all s, t ∈ S , then S is commutative. A subset T ⊆ S is a

subsemigroup of S if it is closed under ·. A subset I ⊆ S is called a semigroup ideal if for all s ∈ S ,
a ∈ I we have sa,as ∈ I . An element e ∈ S is called idempotent if e2 = e . It is well-known that for

every finite semigroup S and s ∈ S there exists an n ≥ 1 such that sn is idempotent. In particular,

every finite semigroup contains an idempotent element. By taking the smallest common multiple

of all these n, one obtains a number ω ≥ 1 such that sω is idempotent for all s ∈ S . The set of all
idempotents of S is denoted with E (S), or simply E. If S is finite, then Sn = SES for all n ≥ |S |. For a
set Σ, the free semigroup generated by Σ is the set Σ+ of all finite non-empty words over Σ together

with the operation of concatenation.

A monoid (M, ·, 1) is a semigroup (M, ·) with an identity element 1 ∈ M , i.e., 1m =m1 =m for

allm ∈ M . Every semigroup S can be extended to a monoid S1 = S ∪ {1} by adding a new identity

element 1, i.e., we extend the multiplication to S1 = S ∪ {1} by setting 1s = s1 = s for all s ∈ S ∪ {1}.
A subset N ⊆ M is a submonoid of M if it is closed under · and has an identity element e ∈ N .

Notice that we do not require that 1 = e but clearly e must be an idempotent element ofM . In fact,

for every semigroup S and every idempotent e ∈ S , the set eSe = {ese | s ∈ S } is a submonoid of S
with identity e , which is also called a local submonoid of S . The local submonoid eSe is the maximal

submonoid of S whose identity element is e . If each local submonoid eSe is a group, then S is a local
group. A semigroup S is aperiodic if every subgroup of S is trivial. A semigroup S is solvable if every
subgroup G of S is a solvable group, i.e., for the series defined by G0 = G and Gi+1 = [Gi ,Gi] (the

commutator subgroup of Gi) there exists an i ≥ 0 with Gi = 1. Since Abelian groups are solvable,

every commutative semigroup is solvable.

3.2 Semirings
A semiring (R,+, ·) consists of a non-empty set R with two binary operations + and · such that

R+ := (R,+) is a commutative semigroup, R• := (R, ·) is a semigroup, and · left- and right-distributes

over +, i.e., a · (b + c) = ab + ac and (a +b) · c = ab + ac . Note that we neither require the existence
of an additive identity 0 nor the existence of a multiplicative identity 1. We call (R,+, ·, 0, 1) a
{0, 1}-semiring if (R,+, ·) is a semiring, (R,+, 0) and (R, ·, 1) are monoids, and 0 , 1. Note that in a

{0, 1}-semiring we do not require that 0 is absorbing, i.e., a · 0 = 0 · a = 0.

A subset T ⊆ R is a subsemiring if it is closed under + and ·. For a non-empty subset T ⊆ R
we denote by ⟨T ⟩ the subsemiring generated by T , i.e., the smallest subsemiring of R containing

T . For n ≥ 1 and r ∈ R we write n · r or just nr for

∑n
i=1

r . With E (R) = {e ∈ R | e2 = e} we
denote the set of multiplicative idempotents of R. Examples for semirings are the Boolean semiring
B2 = ({0, 1},∨,∧) or the ring Zq = ({0, . . . ,q − 1},+, ·).
For a given non-empty set Σ, the free semiring N[Σ] generated by Σ consists of all mappings

α : Σ+ → N such that the support of α defined by supp(α) := {w ∈ Σ+ | α (w) , 0} is finite and

non-empty. Addition is defined pointwise, i.e., (α + β) (w) = α (w) + β (w), and multiplication is

defined by the convolution: (α · β) (w) =
∑
w=uv α (u) · β (v), where the sum is taken over all factor-

izationsw = uv with u,v ∈ Σ+. We view an element α ∈ N[Σ] as a non-commutative polynomial

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

∑
w ∈supp(α) α (w) ·w . Then addition (resp. multiplication) inN[Σ] corresponds to addition (resp. mul-

tiplication) of non-commutative polynomials. Wordsw ∈ supp(α) are also called monomials of α .
A wordw ∈ Σ+ is identified with the non-commutative polynomial 1 ·w , i.e., the mapping α with

supp(α) = {w } and α (w) = 1. For every semiring R which is generated by Σ there exists a canonical

surjective homomorphism from N[Σ] to R which evaluates non-commutative polynomials over

Σ. Since a semiring is not assumed to have a multiplicative identity (resp., additive identity), we

have to exclude the empty word from supp(α) for every α ∈ N[Σ] (resp., exclude the mapping with

empty support from N[Σ]).

A crucial definition in this paper is that of a {0, 1}-free semiring. A semiring R is {0, 1}-free if it
does not contain a subsemiring which is a {0, 1}-semiring. The class of finite {0, 1}-free semirings

has several characterizations:

Lemma 3.1. For a finite semiring R, the following are equivalent:
(1) R is not {0, 1}-free.
(2) R contains B2 or the ring Zq for some q ≥ 2 as a subsemiring.
(3) R is divided by B2 or Zq for some q ≥ 2 (i.e., B2 or Zq is a homomorphic image of a subsemiring

of R).
(4) There exist elements 0, 1 ∈ R such that 0 , 1, 0 + 0 = 0, 0 + 1 = 1, 0 · 1 = 1 · 0 = 0 · 0 = 0, and

1 · 1 = 1 (but 1 + 1 , 1 is possible).

Proof. The implication from (2) to (3) is of course trivial. It therefore suffices to show the

implications (1)⇒ (2), (3)⇒ (4), and (4)⇒ (1).

(1)⇒ (2): Let (T ,+, ·, 0, 1) be a {0, 1}-subsemiring of R. Note that 0 · 0 = 0 · 0 + 0 = 0 · 0 + 1 · 0 =

(0 + 1) · 0 = 1 · 0 = 0. Let T ′ = {0} ∪ {k · 1 | k ∈ N}, which is the subsemiring generated by these

elements. It is isomorphic to some semiring B (t ,q) (t ≥ 0, q ≥ 1), which is the semiring (N,+, ·)
modulo the congruence relation θt,q defined by

i θt,q j ⇐⇒ i = j or [i, j ≥ t and i ≡ j (mod q)].

Since 0 , 1, we have (t ,q) , (0, 1). If t = 0, then B (0,q) is isomorphic to Zq for q ≥ 2. If t ≥ 1, then

choose a ≥ t such that q divides a, for example a = qt . Then {0,a · 1} is a subsemiring isomorphic

to the Boolean semiring B2.

(3)⇒ (4): Assume that φ : T → T ′ is a surjective homomorphism from a subsemiring T of R to T ′,
where T ′ is B2 or Zq with q ≥ 2. In particular, there exist 0, 1 ∈ T ′ with 0 , 1, 0 + 0 = 0, 0 + 1 = 1,

0 · 1 = 1 · 0 = 0 · 0 = 0, and 1 · 1 = 1. Let n ≥ 1 be such that n · x is additively idempotent and xn is

multiplicatively idempotent for all x ∈ R. Then n · xn is additively and multiplicatively idempotent

for all x ∈ R. Let a, e ∈ T be such that φ (a) = 0 and φ (e) = 1. Since φ (n · an) = 0 and φ (en) = 1, we

can replace a by n · an and e by en . Then, a + a = aa = a and ee = e . For a′ = n · (eae)n we have

φ (a′) = 0 and a′e = ea′ = a′ + a′ = a′a′ = a′. For e ′ = a′ + e we have φ (e ′) = 1 (hence, a′ , e ′)
and e ′e ′ = a′a′ + a′e + ea′ + ee = a′ + e = e ′, a′ + e ′ = a′ + a′ + e = e ′. Furthermore, we have

a′e ′ = a′(a′ + e) = a′ + a′e = a′ and similarly e ′a′ = a′. Hence, a′ and e ′ satisfy all equations from

point 4.

(4) ⇒ (1): Assume that there exist elements 0, 1 ∈ R such that 0 , 1, 0 + 0 = 0, 0 + 1 = 1,

0 · 1 = 1 · 0 = 0 · 0 = 0, and 1 · 1 = 1. Consider the subsemiring generated by {0, 1}, which is

{0} ∪ {n · 1 | n ≥ 1}. By the above identities 0 (resp., 1) is an additive (resp., multiplicative) identity

in this subsemiring. □

As a consequence of Lemma 3.1 (point 4), one can check in time O (n2) for a semiring of size

n whether it is {0, 1}-free. We will not need this fact, since in our setting the semiring will be

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:11

always fixed, i.e., not part of the input. Moreover, the class of all {0, 1}-free semirings is closed

under taking subsemirings (this is trivial) and taking homomorphic images (by point 3). Finally, the

class of {0, 1}-free semirings is also closed under direct products. To see this, assume that R × R′

is not {0, 1}-free. Hence, there exists a subsemiring T of R × R′ with an additive zero (0, 0′) and a

multiplicative one (1, 1′) , (0, 0′). W.l.o.g. assume that 0 , 1. Then the projection π1 (T) onto the

first component is a subsemiring of R, where 0 is an additive identity and 1 , 0 is a multiplicative

identity. By these remarks, the class of {0, 1}-free finite semirings forms a pseudo-variety of finite

semirings. Again, this fact will not be used in the rest of the paper, but it might be of independent

interest.

4 EVALUATING CIRCUITS AND EXPRESSIONS
4.1 Evaluation problems
LetA = (A, f1, . . . , fn) be an algebraic structure with a countable domainA. We assume some fixed

finite representation of elements from A. The circuit evaluation problem CEP(A) is the following
decision problem:

Input A normal form circuit C over A and an element a ∈ A.
Question Does [C] = a hold?

The word problem WP(S) of a semigroup S is defined as follows:

Input A word s1 · · · sn ∈ S
+
and an element s ∈ S .

Question Does s1 · . . . · sn = s hold in S?

The natural generalization of the word problem to nonassociative structures is the expression

evaluation problem EEP(A) for A:

Input An expression t over A and an element a ∈ A.
Question Does [t] = a hold?

For a semigroup S one can clearly reduce EEP(S) to WP(S) in TC0
. As explained in Section 2.3 we

can convert in TC0
an expression into an equivalent tree T in ancestor representation and vice

versa. Therefore from Section 5 on, we consider the equivalent tree evaluation problem TEP(A),
which is technically more convenient.

Input A normal form tree (T , ≤T) over A and an element a ∈ A.
Question Does [T] = a hold?

We emphasize that the ancestor relation ≤T is part of the input. Also note that in the problem

CEP(A) (resp., TEP(A)), we always assume that the input circuit (resp., tree) is in normal form.

4.2 Evaluation over finite structures, semigroups and semirings
Asmentioned in the introduction, evaluation problems for finite structures, in particular semigroups,

have already been thoroughly studied. Clearly, for every finite structure the circuit evaluation

problem can be solved in polynomial time by evaluating all gates along the partial order ≤C .

Furthermore, it is known that expressions over any finite structure can be evaluated in NC1
[28].

Theorem 4.1 ([28]). For every finite algebraic structure A, the problem CEP(A) is in P and the
problem EEP(A) is in NC1.

For finite semigroups the complexity of the circuit evaluation problem and the word problem is

very well-understood. We briefly summarize the results in the following:

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

Theorem 4.2. Let S be a finite semigroup.
(1) If S is aperiodic, then CEP(S) is in NL [12] andWP(S) is in AC0 [14].
(2) If S is not a local group, then CEP(S) is NL-hard [12].
(3) If S is solvable, then CEP(S) is in DET [12] andWP(S) is in ACC0 [7].
(4) If S is not solvable, then CEP(S) is P-complete [12] and WP(S) is NC1-complete [7].

Some remarks should be made:

• In [12], the results for the circuit evaluation problem from (1) and (3) are only shown for

monoids, but the extension to semigroups is straightforward, by going from a semigroup S
over to the monoid S1

. The subgroups of S1
are exactly the subgroups of S together with {1},

and hence S is solvable (resp., aperiodic) if and only if S1
is solvable (resp., aperiodic).

• In [12], statement (2) is only shown for the case that S contains a non-trivial aperiodic monoid.

But if S contains a local submonoid eSe which is not a group, then eSe contains an idempotent

element f which is different from e . Then {e, f } is a non-trivial aperiodic monoid.

• In [12], the authors use the original definition DET = NC1 (det) of Cook. But the arguments

in [12] actually show that for a finite solvable semigroup, CEP(S) belongs to AC0 (det) (which
is our definition of DET).
• In [12], the authors study two versions of the circuit evaluation problem for a semigroup

S : What we call CEP(S) is called UCEP(S) (for “unrestricted circuit evaluation problem”)

in [12]. The problem CEP(S) is defined in [12] as the circuit evaluation problem, where

in addition the input circuit must have the property that the output gate has no ingoing

edges and all gates are reachable from the output gate. Since graph reachability is in NL, the
difference between the two variants is only relevant for classes below NL. We only consider

the unrestricted version of the circuit evaluation problem (where the input circuit is arbitrary).

To keep notation simple, we decided to refer with CEP to the unrestricted version.

For finite semirings much less is known about the circuit and the expression evaluation problem.

The classical results by Ladner and Buss for the Boolean circuit value problem and the Boolean

formula value problem, respectively, can be stated as follows:

Theorem 4.3 ([13, 27]). For the Boolean semiring B2 = ({0, 1},∨,∧), the problem CEP(B2) is
P-complete and the problem EEP(B2) is NC1-complete.

Proposition 4.4. For any q ≥ 2 the problem CEP(Zq) is P-complete and the problem EEP(Zq) is
NC1-complete.

Proof. One can simulate conjunction and negation over {0, 1} in Zq for q ≥ 2: A conjunction

z → x ∧ y is simulated by z → x · y and a negation y → ¬x is simulated by y → 1 − x , which is

formally 1+ (q−1) ·x . Hence, a disjunction z → x∨y can be simulated by z → 1− (1−x) · (1−y). This
proves that CEP(Zq) is P-hard (under AC0

-many-one-reductions), and that EEP(Zq) is NC1
-hard

under TC0
-many-one-reductions, since one can convert to the tree representation first and carry

out the simulation by a guarded transduction.

In fact, EEP(Zq) is NC1
-hard under AC0

-many-one reductions, which we prove by a reduction

from the word problem of the symmetric group Sm for somem ≥ 5. Since Sm is nonsolvable for all

m ≥ 5, the word problem WP(Sm) is NC1
-complete under AC0

-many-one reductions [7, 8].
2
We

view Sm as the subgroup of permutation matrices in Zm×mq , i.e., matrices which contain exactly one

1-entry in each row and each column, and otherwise only 0-entries. Given permutation matrices

M1, . . . ,Mn ∈ Z
m×m
q it suffices to construct for each 1 ≤ i, j ≤ m an expression ti, j over Zq

2
Barrington shows in [7] only completeness with respect to AC0

-Turing-reductions. Barrington, Immerman and Straubing

[8] prove completeness with respect to AC0
-many-one reductions (in fact, DLOGTIME-reductions).

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:13

+

(ABCD)11

×

+

(CD)21

×

D21C22

×

D11C21

+

(AB)12

×

B22A12

×

B12A11

×

+

(CD)11

×

D21C12

×

D11C11

+

(AB)11

×

B21A12

×

B11A11

Fig. 1. An expression computing the (1, 1)-entry of the (2 × 2)-matrix product A · B ·C · D.

computing the (i, j)-entry of the matrix product M1 · · ·Mn . The final expression is t =
∏m

i=1
ti,i .

SinceM1, . . . ,Mn are permutation matrices, t evaluates to 1 if and only ifM1 · · ·Mn is the identity

matrix.

For simplification we assume that the length n and the dimensionm ≥ 5 are powers of 2. The

productM1 · · ·Mn can be computed by a full binary tree of height logn and hence each entry can

be computed by a full binary tree of height (log
2
m + 1) · log

2
n = O (logn) over the ring Zq , as

illustrated in Figure 1. We argue that the term representation of this tree can be computed in AC0
.

Suppose we want to compute the symbol of the expression at a given position s . First we compute

the word ρ ∈ {0, 1}∗ of length O (logn) which describes the path from the root to the node at

position s , which is possible in AC0
due to the regular structure of the tree. Notice that the node

addressed by ρ is a leaf if and only if |ρ | = (logm + 1) · logn. If |ρ | < (logm + 1) · logn, then the

node is a ×-gate if and only if |ρ | + 1 is divisible by logm + 1.

Now let ρ be a string of length (logm + 1) · logn, which addresses a leaf node labelled by the

(i, j)-entry of matrix Mk . Projecting ρ to all positions divisible by (logm + 1) yields the binary
representation of the number k . The position (i, j) can be easily calculated by a finite automaton

which reads ρ. This automaton can be simulated in AC0
by guessing and verifying a run of length

O (logn). □

By Lemma 3.1, any finite semiring R which is not {0, 1}-free contains either B2 or Zq for some

q ≥ 2, which implies the lower bounds in Theorem 1.1 and Theorem 1.3:

Corollary 4.5. If a finite semiring R is not {0, 1}-free, then CEP(R) is P-complete and EEP(R) is
NC1-complete.

Let us finally state the following result from [20] which is needed for the proof of Theorem 1.3:

Proposition 4.6. There is a TC0-computable function which transforms a given tree (T , ≤T) over
a semiring into an equivalent tree (T ′, ≤T ′) in normal form of depthO (logn), where n is the number
of nodes of T .

Note that the normal form of the output tree means that the output tree is a binary tree of depth

O (logn).

4.3 Circuits over power semirings
Let us present an application of Corollary 1.2 and Corollary 1.4. An important semigroup construc-

tion found in the literature is the power semiring. For a semigroup S one definesP (S) = (2S \{∅},∪, ·)
and P0 (S) = (2S ,∪, ·) with the multiplication A · B = {ab | a ∈ A,b ∈ B}. The latter definition of

power semirings only yields P-complete circuit evaluation problems (resp., NC1
-complete expres-

sion evaluation problems):

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

Lemma 4.7. Let S be a finite semigroup. Then CEP(P0 (S)) is P-complete and EEP(P0 (S)) is NC1-
complete.

Proof. For any idempotent e ∈ S , the subsets ∅ and {e} form a copy of B2. Hence, the result

follows from Theorem 4.3. □

Now we will classify the complexity of CEP(P (S)) and EEP(P (S)) for arbitrary semigroups S . It
is known that in every finite local group S of size n the minimal semigroup ideal is Sn = SE (S)S ,
see [4, Proposition 2.3].

Proposition 4.8. Let S be a finite semigroup.
(1) If S is a local group and solvable, then P (S) is {0, 1}-free and P (S)• is solvable.
(2) If S is not a local group, then B2 is a subsemiring of P (S).
(3) If S is not solvable, then P (S)• is not solvable.

Proof. For (1) let S be a finite solvable local group. By [6, Corollary 2.7] the multiplicative

semigroup P (S)• is solvable as well. It remains to show that the semiring P (S) is {0, 1}-free:
Towards a contradiction assume that P (S) is not {0, 1}-free. By Lemma 3.1, there exist non-empty

setsA,B ⊆ S such thatA , B,A∪B = B (henceA ⊊ B),AB = BA = A2 = A and B2 = B. Hence, B is

a subsemigroup of S , which is also a local group, and A is a semigroup ideal in B. Since the minimal

semigroup ideal of B is Bn for n = |B | and Bn = B, we obtain A = B, which is a contradiction.

For (2) assume that S is not a local group. Hence, there exists a local monoid eSe which is not a

group and hence contains an idempotent f , e . The subsemiring {{ f }, {e, f }} is isomorphic to B2.

Finally, we show (3). Notice that the subsemigroup {{s} | s ∈ S } of singleton sets in P (S)• is
isomorphic to S . Hence, if S is not solvable, then P (S) is also not solvable. □

Together with Corollary 1.2 and Corollary 1.4 we obtain:

Theorem 4.9. Let S be a finite semigroup. If S is a local group and solvable, then CEP(P (S))
belongs to DET and EEP(P (S)) belongs to TC0. Otherwise CEP(P (S)) is P-complete and EEP(P (S))
is NC1-complete.

5 CIRCUITS AND EXPRESSIONS OVER {0, 1}-FREE SEMIRINGS
Throughout this section we fix a finite semiring R of size n = |R |. Let E = E (R) be the set of

multiplicative idempotent elements. The proof of Theorem 1.1 will proceed in three reduction steps.

(1) Reduce CEP(R) to CEP(R+) and CEP(⟨Rn⟩).
(2) Reduce CEP(⟨Rn⟩) to the restriction of CEP(R) to type admitting circuits.
(3) If R is {0, 1}-free, reduce the restriction of CEP(R) to type admitting circuits to CEP(R•).

The precise reduction types are made specific in the following lemmas. Theorem 1.3 will be proved

simultaneously by a similar reduction chain.

5.1 Step 1: Reduction to R+ and ⟨Rn⟩
Recall that ⟨Rn⟩ is the subsemiring of R generated by Rn ⊆ R. Since Rn · Rn = Rn , ⟨Rn⟩ is the set of
all finite sums of elements from Rn . We will need the following lemma.

Lemma 5.1. Let R be a finite {0, 1}-free semiring. If R+ and R• are local groups, then |⟨Rn⟩| = 1.

Proof. Let E be the set of multiplicative idempotents and A be the set of additive idempotents

in R.
First we show that |A| = 1. Clearly, (A,+) is a commutative semigroup in which every element

is idempotent (also called semi-lattice). For each a ∈ A the set a + A forms a submonoid of A

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:15

with identity a and by assumption a +A is in fact a group. Since any group contains exactly one

idempotent element, we must have a +A = {a}. For any a,b ∈ A we have a + b ∈ (a +A) ∩ (b +A),
which implies a = a + b = b and proves the claim.

Next we show that E ⊆ A. Let e ∈ E be an arbitrary multiplicative idempotent. The set eRe forms

a subsemiring of R and a submonoid of (R, ·). By assumption, (eRe, ·) is a group with identity e . Now
let k ≥ 1 be any number such that k · e is additively idempotent. Then k · e is also a multiplicative

idempotent because (k · e)2 = k2 · e = k · e . Since e is the only idempotent in the multiplicative

group eRe and k · e ∈ eRe , we have k · e = e and hence e ∈ A. This implies E = A = {e}.
Furthermore, for all s ∈ R we have ese = (e +e)se = ese +ese , which means that ese is an additive

idempotent and hence ese = e .
Finally, we show that es = se = e for all s ∈ R. From (es) (es) = (ese)s = es it follows that es

is a multiplicatively idempotent element, which must be e . Similarly one shows that se = e . This
shows that Rn = RER = {e} and therefore ⟨Rn⟩ = {e} because e is additively and multiplicatively

idempotent. □

As a first step, we reduce CEP(R) (resp., TEP(R)) to the two problems CEP(R+) and CEP(⟨Rn⟩)
(resp., TEP(R+) and TEP(⟨Rn⟩)). This lemma is useful because Rn = RER and hence every element

r ∈ Rn can be factorized as r = set where e ∈ E. These idempotent elements will later be used to

transform the circuit into a type admitting circuit.

Lemma 5.2. The following holds:

• CEP(R) is AC0-Turing-reducible to CEP(R+) and CEP(⟨Rn⟩).
• TEP(R) is TC0-Turing-reducible to TEP(⟨Rn⟩).

In particular, if R+ and R• are local groups, then:

• CEP(R) is AC0-Turing-reducible to CEP(R+).
• TEP(R) belongs to TC0.

Proof. Let us first prove the statements for circuits. For a circuit C in normal form with the gate

setV we define a circuit Clong (which is not in normal form) with the gate setV ≤2n
(all sequences of

at most 2n gates). A gate in Clong is a k-tuple (v1, . . . ,vk) ∈ V
k
where 1 ≤ k ≤ 2n, which evaluates

to

[(v1, . . . ,vk)]Clong
=

k∏
i=1

[vi]C . (1)

The circuit computes the product in (1) from products of lower gates v ′j of length at most 2n. The

edges of Clong are defined as follows: Let (v1, . . . ,vk) ∈ V
k
be a gate in Clong. If all gates v1, . . . ,vk

are input gates of C, then

(v1, . . . ,vk) →
k∏
i=1

[vi]C .

Otherwise let 1 ≤ i ≤ k be such that vi is not an input gate and the depth of the subcircuit rooted

in vi is maximal.

• If vi is an addition gate in C with vi → ui +wi then

(v1, . . . ,vk) → (v1, . . . ,vi−1,ui ,vi+1, . . . ,vk) + (v1, . . . ,vi−1,wi ,vi+1, . . . ,vk).

• If vi is a multiplication gate in C with vi → ui ·wi and k < 2n then

(v1, . . . ,vk) → (v1, . . . ,vi−1,ui ,wi ,vi+1, . . . ,vk). (2)

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

• If vi is a multiplication gate in C and k = 2n then

(v1, . . . ,v2n) → (v1, . . . ,vn) · (vn+1, . . . ,v2n).

This circuit Clong can be constructed in AC0
. One can easily verify that (1) indeed holds. Notice

that the setW :=
⋃

n≤k≤2n V
k
forms a downwards closed set and therefore defines a subcircuit of

Clong. All gates inW evaluate to an element of Rn . Since we always expand a gate vi with maximal

height, the depth of Clong only increases by a factor of 2n in comparison to C.

Let us first assume that R+ and R• are local groups. By Lemma 5.1 we have ⟨Rn⟩ = {a} for a
semiring element a. We can therefore turn every gate v ∈W into an input gate with v → a. The
resulting circuit only contains addition gates, copy gates (see (2)) and input gates. Since every chain

of copy gates has length at most n (which is a constant), we can eliminate the copy gates in AC0
.

The resulting circuit can be evaluated using the oracle for CEP(R+).
Now assume that R+ or R• is not a local group. Hence, CEP(R+) or CEP(R•) is NL-hard by

Theorem 4.2 and normal form can be established using oracle access to CEP(R+) or CEP(R•). Using
theCEP(⟨Rn⟩)-algorithm one evaluates the subcircuit induced byW . The remaining circuit contains

no multiplication gates and hence can be evaluated using the CEP(R+)-algorithm.

For the tree evaluation problem TEP(R), let T be the given tree in ancestor representation. By

Proposition 4.6 we can assume that the depth of T is O (log |T |). Let Clong be the circuit defined

above for T , which is indeed computable by a guarded transduction (see the paragraph before

Lemma 2.5). After computing the EC-representation of T using Lemma 2.2, we can apply Lemma 2.5

to obtain the EC-representation of Clong, which has depth O (log |T |) as well. Again in TC0
(using

Lemma 2.2) we can unfold Clong to the tree Tlong in ancestor representation. Normal form can be

established in TC0
by Lemma 2.4. The rest of the proof follows the above argument for the circuit

case. Note that TEP(R,+) belongs to TC0
. □

Hence, for the case that both R+ and R• are local groups, Theorem 1.1 is already proven. In the

following two Subsections 5.2 and 5.3 we can therefore assume that R+ or R• is not a local group.
Hence, CEP(R+) or CEP(R•) is NL-hard by Theorem 4.2. We can therefore solve graph reachability

problems using oracle access to CEP(R+) or CEP(R•).

5.2 Step 2: Reduction to type admitting circuits
For the next step, it is more convenient to evaluate a circuit C over the free semiringN[R] generated

by the set R.3 Recall that this semiring consists of all mappings α : R+ → N with finite and non-

empty support, where R+ consists of all finite non-empty words over the alphabet R.
So, there are two ways to evaluate C: We can evaluate C over R (and this is our main interest)

and we can evaluate C over N[R]. In order to distinguish these two ways of evaluation, we write

⟦v⟧C ∈ N[R] for the value of gate v ∈ V in C, when C is evaluated in N[R]. Let h be the canonical

semiring homomorphism from N[R] to R that evaluates a non-commutative polynomial in the

semiring R. Thus, we have [v]C = h(⟦v⟧C) for every gate v and [C] = h(⟦C⟧).

Definition 5.3. Let E = E (R) be the set of multiplicative idempotents. A type function for a normal

form circuit C is a mapping type : V → E × E such that for each gate v ∈ V (C) the following
conditions hold:

• If type(v) = (e, f) then [v]C ∈ eR f .
• If v → u +w then type(v) = type(u) = type(w).
• If v → u ·w , type(u) = (e, e ′) and type(w) = (f ′, f) then type(v) = (e, f).

3
Of course, it is not possible to evaluate a circuit over the free semiring N[R] in polynomial time, since this might produce a

doubly exponential number of monomials of exponential length. Circuit evaluation over N[R] is only used as a tool in our

proofs.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:17

A circuit is called type admitting if it admits a type function.

We write CEPt (R) (TEPt (R)) for the restriction of CEP(R) (TEP(R)) to type admitting circuits

(trees). A type function for a circuit guarantees that a gatev with type (e, f) evaluates to an element

from eR f without concretely knowing the value of v . This additional structure will be helpful for
the final evaluation step in Section 5.3.

Lemma 5.4. The following hold:
• CEP(⟨Rn⟩) is AC0-Turing-reducible to CEPt (R) and GAP.
• TEP(⟨Rn⟩) is TC0-Turing-reducible to TEPt (R).

Proof. Let us interpret the input circuit C over the free semiring N[R]. Since Rn = RER, for
each input gate v we can write [v]C as

[v]C =

k∑
i=1

sieiti =
k∑
i=1

(siei)ei (eiti)

for si , ti ∈ R, ei ∈ E. By factoring out common prefixes and suffixes we can write [v]C as

[v]C =

m∑
i=1

(siei)ai (eiti)

such that si , ti ,ai ∈ R, ei ∈ E, and the triples (s1, e1, t1), . . . , (sm , em , tm) are pairwise distinct. Here
m is bounded by a fixed constant since the size of the underlying semiring is a constant. We

redefine v →
∑m

i=1
(siei)ai (eiti) (a sum ofm monomials of length 5). Thus for all v ∈ V we have

supp(⟦v⟧C) ⊆ (RERER)+ ⊆ RER+ER. Let us emphasize again that here and in the following sets

like RE or ER are sets of words of length two over the alphabet R.
For a gate v ∈ V we define the sets prefix(α) ⊆ RE, suffix(α) ⊆ ER, and ps(α) ⊆ RE × ER (“ps”

for “prefix-suffix”) as follows:

• prefix(v) = {se | s ∈ R, e ∈ E, supp(⟦v⟧C) ∩ seR∗ , ∅},
• suffix(v) = { f t | f ∈ E, t ∈ R, supp(⟦v⟧C) ∩ R∗ f t , ∅},
• ps(v) = {(se, f t) | s, t ∈ R, e, f ∈ E, supp(⟦v⟧C) ∩ seR∗ f t , ∅}.

We first compute these sets using the GAP-oracle, which is possible due to the following easy

observations:

• For an input gate v with v →
∑m

i=1
(siei)ai (eiti) we have:

prefix(v) = {siei | 1 ≤ i ≤ k },

suffix(v) = {eiti | 1 ≤ i ≤ k },

ps(v) = {(siei , eiti) | 1 ≤ i ≤ m}.

• For an addition gate v with v → v1 +v2 we have:

prefix(v) = prefix(v1) ∪ prefix(v2),

suffix(v) = suffix(v1) ∪ suffix(v2),

ps(v) = ps(v1) ∪ ps(v2).

• For a multiplication gate v with v → v1 · v2 we have:

prefix(v) = prefix(v1),

suffix(v) = suffix(v2),

ps(v) = prefix(v1) × suffix(v2).

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

Using these identities, one can define the sets prefix(v), suffix(v) and ps(v) using graph reachability:
se belongs to prefix(v) if there exists an input gate u such that se ∈ prefix(v) and there exists a path
from u to v in the circuit such that for every edge (v ′,u ′) along this path either v ′ is an addition

gate or v ′ is a multiplication gate and the u ′ is the left successor of v ′. The set suffix(v) can be

obtained analogously. Moreover, we have (se, f t) ∈ ps(v) if there exists a (possibly empty) path

from v to a gate u such that every gate v ′ , u along the path is an addition gate and one of the

following two cases holds:

• u is an input gate and (se, f t) ∈ ps(u).
• u is a multiplication gate, se ∈ prefix(u), and f t ∈ suffix(u).

Now we will construct in logspace a circuit D containing for each v ∈ V (C) with (se, f t) ∈ ps(v)
a gate vs,e,f ,t such that

⟦v⟧C =
∑

(se,f t)∈ps(v)

s · ⟦vs,e,f ,t ⟧D · t (3)

and every monomial in ⟦vs,e,f ,t ⟧D is from eR∗ f .

Case 1. If v is an input gate with v →
∑m

i=1
(siei)ai (eiti) as above, then we set

vsi ,ei ,ei ,ti → eiaiei .

Case 2. If v → u ·w , we set

vs,e,f ,t →
∑

(se,f ′t ′)∈ps(u)

∑
(s ′e ′,f t)∈ps(w)

us,e,f ′,t ′ · (f
′t ′s ′e ′) ·ws ′,e ′,f ,t .

Note that the right-hand side of this definition is a sum of a constant number of products since we

deal with a fixed semiring.

Case 3. If v → u +w , we set

vs,e,f ,t →




us,e,f ,t +ws,e,f ,t if (s, e, f , t) ∈ ps(u) ∩ ps(w),

us,e,f ,t if (s, e, f , t) ∈ ps(u) \ ps(w),

ws,e,f ,t if (s, e, f , t) ∈ ps(w) \ ps(u).

It is easy to verify that (3) holds and that every monomial in ⟦vs,e,f ,t ⟧D belongs to eR∗ f . Hence,
one can define a type function on D by type(vs,e,f ,t) = (e, f). Moreover, using Lemma 2.3 we

transform D in logspace into normal form. Thereby we extend the type-mapping to the new

gates that are introduced. For example, all partial sums in Case 2 get type (e, f) and the product

(f ′t ′s ′e ′) gets type (f ′, e ′). Once the circuit D is evaluated in the semiring R (using an oracle for

the restriction of CEP(R) to type admitting circuits) the circuit C can be evaluated in AC0
using (3).

This last step only involves a constant number of semiring operations.

The statement for trees is proved using the same arguments as in the proof of Lemma 5.2, since

(i) one can again assume a logarithmic depth input tree over ⟨Rn⟩ using Proposition 4.6, and (ii) the

transformation C 7→ D above is a guarded transduction that preserves the depth up to a constant

factor. Also note that the three sets prefix(v), suffix(v) and ps(v) can be computed in AC0
(without

oracle access to GAP) for every node of the input tree since we assume that the ancestor relation is

available. □

5.3 Step 3: A parallel evaluation algorithm for type admitting circuits and trees
In this section we present an evaluation algorithm for type admitting circuits and trees. This

algorithm terminates after at most |R | rounds, if R has a so-called rank-function, which we define

first. As before, let E = E (R).

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:19

Definition 5.5. We call a function rank : R → N \ {0} a rank-function for R if it satisfies the

following conditions for all a,b ∈ R:

(1) rank(a) ≤ rank(a + b)
(2) rank(a), rank(b) ≤ rank(a · b)
(3) If a,b ∈ eR f for some e, f ∈ E and rank(a) = rank(a + b), then a = a + b.

Note that if R• is a monoid, then one can choose e = 1 = f in the third condition in Definition 5.5,

which is therefore equivalent to: If rank(a) = rank(a + b) for a,b ∈ R, then a = a + b.

Example 5.6. LetG be a finite group and consider the power semiring P (G) defined in Section 4.3.

One can verify that the function A 7→ |A|, where ∅ , A ⊆ G, is a rank-function for P (G). On the

other hand, if S is a finite semigroup, which is not a group, then S cannot be cancellative. Assume

that ab = ac for a,b, c ∈ S with b , c . Then {a} · {b, c} = {ab}. This shows that the functionA 7→ |A|
is not a rank-function for P (S).

Lemma 5.7. Let R be either B2 or Zq for some q ≥ 2. Then R does not have a rank-function.

Proof. Assume that rank is a rank-function for R and let 0 , 1 be the additive and multiplicative

units in R. The first two properties of a rank-function imply that rank(0) ≤ rank(0+1) = rank(1) ≤
rank(1 · 0) = rank(0), and hence rank(0) = rank(0 + 1). Since e := 1 is multiplicatively idempotent

and 0, 1 ∈ eRe = R, we know 0 = 0 + 1 = 1 by the third property of a rank-function. □

Lemma 5.8. If R is a finite semiring which is not {0, 1}-free, then it does not have a rank-function.

Proof. By Lemma 3.1 R contains a subsemiring T which is either B2 or Zq for some q ≥ 2.

If rank would be a rank-function for R, then its restriction to T would be a rank-function for T ,
contradicting Lemma 5.7. □

Theorem 5.9. Assume that R has a rank-function.
(1) CEPt (R) is AC0-Turing-reducible to CEP(R•) and GAP.
(2) TEPt (R) is TC0-Turing-reducible to WP(R•).

Proof. Let C be a type admitting circuit. We present an algorithm which partially evaluates the

circuit in a constant number of phases, where each phase can be carried out in AC0
with oracle

access to CEP(R•) and GAP. The following invariant is preserved:

Invariant. After phase k all gates A with rank([A]C) ≤ k are evaluated, i.e., are input gates from
phase k + 1 onwards.

In the beginning, i.e., for k = 0, the invariant clearly holds (since 0 is not in the range of the rank-

function). Aftermax{rank(a) | a ∈ R} (which is a constant) many phases, all gates are evaluated. We

present phase k of the algorithm, assuming that the invariant holds after phase k − 1. Thus, all gates

v with rank([v]C) < k of the current circuit C are input gates. The goal of phase k is to evaluate

all gates v with rank([v]C) = k . For this, we define the circuit C• over R• with V (C•) = V (C): If
v ∈ V (C) is a multiplication or an input gate, then v has the same incoming wires in C• as in C. If

v ∈ V (C) is an addition gate with v → u +w in C, then in the circuit C• we set

v →




a + b if u → a ∈ R andw → b ∈ R,

u if u is an inner gate,

w if u is not inner butw is an inner gate,

(4)

i.e.,v is directly evaluated if both of its input gates are already evaluated and otherwise it copies the

value of one of its inner input gates (our priority choice for u is arbitrary). Note that the value of

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

such an inner gate has rank at least k because it is not evaluated yet. The circuit C• can be brought

into normal form by Lemma 2.3 and then evaluated using the oracle for CEP(R•). A gate v ∈ V is

called locally correct if (i) v is an input gate or a multiplication gate of C, or (ii) v is an addition

gate of C with v → u +w and [v]C• = [u]C• + [w]C• . We compute the set

W := {v ∈ V | all gatesw ≤C v are locally correct} (5)

using the GAP-algorithm. A simple induction shows that for all v ∈ W we have [v]C = [v]C• .

Hence we can set v → [v]C• in C for all v ∈W . This concludes phase k of the algorithm.

To prove that the invariant still holds after phase k , we show that for each gate v ∈ V with

rank([v]C) ≤ k we have v ∈ W . This is shown by induction over the depth of v in C. Assume

that rank([v]C) ≤ k . By the first two conditions from Definition 5.5, all gates w <C v satisfy

rank([w]C) ≤ k . Thus, the induction hypothesis yields w ∈ W and hence [w]C = [w]C• for all

gatesw <C v .
It remains to show thatv is locally correct, which is clear ifv is an input gate, a multiplication gate

or an addition gate whose input gates are input gates of C. So assume thatv → u+w where w.l.o.g.u
is an inner gate, which implies [v]C• = [u]C• by (4). Since u is an inner gate, which is not evaluated

after phase k − 1, it holds that rank([u]C) ≥ k and therefore k ≥ rank([v]C) ≥ rank([u]C) ≥ k ,
i.e., rank([v]C) = rank([u]C) = k . Since C is type admitting, there exist idempotents e, f ∈ E with

[u]C, [w]C ∈ eR f . The third condition from Definition 5.5 implies that [v]C = [u]C + [w]C = [u]C .

We get

[v]C• = [u]C• = [u]C = [v]C = [u]C + [w]C = [u]C• + [w]C• .

Therefore v is locally correct.

The second statement concerning trees is clear: If T is a tree then T• is a tree, which is TC0
-

computable. To see that the ancestor relation of T• is TC0
-computable, note that v is an ancestor

of u in T• if v is an ancestor of u in T and for every multiplication gate w , v along the unique

T -path from u to v one of the following two cases holds: (i) both T -children ofw are input gates,

(ii) the unique childw ′ ofw along the path to v is an inner node of T and if the other child ofw is

also an inner node, thenw ′ is the left child ofw . Normal form of T• can be established in TC0
by

Lemma 2.3. Once T• is evaluated using the oracle forWP(R•), the setW from (5) is TC0
-computable

using the ancestor relation of T . □

Example 5.10 (Example 5.6 continued). Figure 2 shows a circuit C over the power semiring P (G)
of the group G = (Z5,+). Recall from Example 5.6 that the function A 7→ |A| is a rank function

for P (G). We illustrate one phase of the algorithm. All gates A with rank([A]) < 3 are evaluated

in the circuit C shown in (a). The goal is to evaluate all gates A with rank([A]) = 3. The circuit

C• (shown in (b)) from the proof of Theorem 5.9 is computed and evaluated using the oracle for

CEP(Z5,+). The dotted wires do not belong to the circuit C•. All locally correct gates are shaded.

The shaded gates form a downwards closed set, which is the setW from (5). These gates can be

evaluated such that in the resulting circuit (shown in (c)) all gates which evaluate to elements of

rank 3 are evaluated.

It remains to show that every finite {0, 1}-free semiring has a rank-function.

Lemma 5.11. Let R be {0, 1}-free. If e, f ∈ E and f = e f = f e = f + f , then e + f = f .

Proof. Setting 0 := f and 1 := e + f we have 0 + 0 = 0, 0 + 1 = 1, 0 · 1 = 1 · 0 = 0 · 0 = 0, and

1 · 1 = 1. Since R is {0, 1}-free, Lemma 3.1 (point 4) implies that 0 = 1, i.e. e + f = f . □

Lemma 5.12. Let R be a finite semiring. Then R is {0, 1}-free if and only if R has a rank-function.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:21

∪

{0, 1, 2, 3, 4}

∪

{1, 2, 3}

∪

{0, 1, 2, 3, 4}

+

{1, 2, 3}

+

{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

∪

{1, 2, 3}

∪

{1, 2, 3}

∪

{1, 2, 3, 4}

+

{1, 2, 3}

+

{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

∪

{1, 2, 3} ∪

{1, 2, 3} {1, 2, 3, 4}

{0, 1}
{1, 2} {0, 2}

Fig. 2. The parallel evaluation algorithm over the power semiring P (Z5).

Proof. The “if”-direction is Lemma 5.8. For the “only if”-direction assume that R is {0, 1}-free.
For a,b ∈ R we define a ⪯ b if b can be obtained from a by iterated additions and left- and

right-multiplications of elements from R. This is equivalent to the following condition:

∃ℓ, r , c ∈ R : b = ℓar + c (where each of the elements ℓ, r , c can be also missing)

Since ⪯ is a preorder on R, there is a function rank : R → N \ {0} such that for all a,b ∈ R we have

• rank(a) = rank(b) iff a ⪯ b and b ⪯ a,
• rank(a) ≤ rank(b) if a ⪯ b.

We claim that rank satisfies the conditions of Definition 5.5. The first two conditions are clear, since

a ⪯ a + b and a,b ⪯ ab. For the third condition, let e, f ∈ E, a,b ∈ eR f such that rank(a + b) =
rank(a), which is equivalent to a + b ⪯ a. Assume that a = ℓ(a + b)r + c = ℓar + ℓbr + c for some

ℓ, r , c ∈ R (the case without c can be handled in the same way). Since a,b ∈ eR f we know a = ea f
and b = eb f , and therefore a = ℓe (a + b) f r + c . Hence we can assume that ℓ and r are not missing.

By multiplying with e from the left and f from the right we get a = (eℓe) (a + b) (f r f) + (ec f), so
we can assume that ℓ = eℓe and r = f r f . Afterm repeated applications of a = ℓar + ℓbr + c we
obtain

a = ℓmarm +
m∑
i=1

ℓibr i +
m−1∑
i=0

ℓicr i . (6)

Let n ≥ 1 such that nx is additively idempotent and xn is multiplicatively idempotent for all x ∈ R.
Hence nxn is both additively and multiplicatively idempotent for all x ∈ R. If we choosem = n2

, the

right hand side of (6) contains the partial sum

∑n
i=1
ℓinbr in . Furthermore, e (nℓn) = (nℓn)e = nℓn

and f (nrn) = (nrn) f = nrn . Therefore, Lemma 5.11 implies that nℓn = nℓn + e and nrn = nrn + f ,
and hence:

n∑
i=1

ℓinbr in = n(ℓnbrn) = n2 (ℓnbrn) = (nℓn)b (nrn) = (nℓn + e)b (nrn)

= (nℓn)b (nrn) + eb (nrn) = (nℓn)b (nrn) + eb (nrn + f)

= (nℓn)b (nrn) + eb (nrn) + eb f = *
,

n∑
i=1

ℓinbr in+
-
+ b .

Thus, we can replace in (6) the partial sum

∑n
i=1
ℓinbr in by

∑n
i=1
ℓinbr in + b, which proves that

a = a + b. □

We remark that if a finite semiring R is not {0, 1}-free, then it cannot possess a rank-function:

Proof of Theorem 1.1 and Theorem 1.3. The case that R+ and R• are local groups is clear, see
the comment following the proof of Lemma 5.2. For the case R+ or R• is not a local group we carry

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

out the reductions from Lemma 5.2 and Lemma 5.4, followed by Theorem 5.9. In each step, oracle

access toGAP can be replaced by oracle access toCEP(R+) orCEP(R•) (one of them isNL-hard). □

6 APPLICATIONS TO FORMAL LANGUAGE THEORY
In this section we present applications of our main results to intersection problems from formal

language theory. More precisely, we will apply Theorem 1.1 on circuit evaluation to the problem

whether a given context-free language intersects a fixed regular language. Theorem 1.3 on ex-

pression evaluation is applied to the problem whether the language produced by a given regular

language intersects a fixed regular language.

6.1 Intersection problem for context-free grammars
Recall that a context-free grammar (over Σ) is a tuple G = (V , Σ, S, P) consisting of a finite set of

variablesV , a finite alphabet Σ, a start variable S ∈ V and a set P of productionsA→ α whereA ∈ V
and α ∈ (V ∪Σ)∗. We write LG (A) for the language ofA ∈ V , i.e., the set of wordsw ∈ Σ∗ which can

be derived fromA using the productions in P , and write L(G) for LG (S). If LG (A) , ∅, we say thatA
is productive. If the start variable S is productive, then G is called productive. Every circuit over the

free monoid Σ∗ can be seen as a context-free grammar producing exactly one word. Such a circuit

is also called a straight-line program, briefly SLP. It is a context-free grammarH = (V , Σ, S, P) that
contains for every variable A ∈ V exactly one rule of the form A → α . Moreover, H is acyclic,

i.e., there is no non-empty derivation from a variable A to a word containing A. We denote with

valH (A) the unique word in the language LH (A). Moreover, let val(H) = valH (S).
Given an alphabet Σ and a language L ⊆ Σ∗, the CFG-intersection non-emptiness problem for L,

denoted by CFG-IP(L, Σ), is the following decision problem:

Input A context-free grammar G over Σ
Question Does L(G) ∩ L , ∅ hold?

For every regular language L, this problem is solvable in polynomial-time, which seems to be

folklore but we will reprove this fact in the following. The standard proof constructs a context-free

grammar for L(G) ∩ L from the given grammar G and a finite automaton for L. The constructed
grammar then has to be tested for emptiness, which is possible in polynomial time. However, testing

emptiness of a given context-free language is P-complete [24]. An easy reduction shows that the

problem CFG-IP(L, Σ) is P-hard for any non-empty language L.

Lemma 6.1. For every non-empty language L ⊆ Σ∗ the problem CFG-IP(L, Σ) is P-hard.

Proof. Let G = (V , Σ, S, P) be a context-free grammar. We reduce emptiness of G to the inter-

section non-emptiness problem as follows. Let X < V be a new variable. We replace all occurrences

of terminal symbols in productions of G by X and then add the rules X → ε and X → aX for all

a ∈ Σ (thus, X produces Σ∗). Observe that the new grammar G′ satisfies L(G) , ∅ if and only if

L(G′) , ∅. Further, L(G′) is either ∅ or Σ∗. Hence, L(G) , ∅ if and only if L(G′) ∩ L , ∅. Clearly,
the reduction can be performed in logspace. □

By Lemma 6.1 we have to put some restriction on context-free grammars in order to get NC-
algorithms for the intersection non-emptiness problem. It turns out that productivity of all variables

is the right assumption. Thus, we require that LG (A) , ∅ for all A ∈ V . In order to avoid a

promise problem (testing productivity of a variable is P-complete) we add to the input grammar

G = (V , Σ, S, P) an SLPH = (V , Σ, S,R) which uniformizes G in the sense that R contains for every

variable A ∈ V exactly one rule (A→ α) ∈ P . Hence, the word valH (A) ∈ LG (A) is a witness for
LG (A) , ∅.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:23

Example 6.2. Here is a context-free grammar, where the underlined productions form a uni-

formizing SLP:

S → SS, S → aSb, S → A, A→ aA, A→ B, B → bB, B → b

We study the following decision problem PCFG-IP(L, Σ) in the rest of this section:

Input A productive context-free grammar G over Σ and a uniformizing SLPH for G.

Question Does L(G) ∩ L , ∅ hold?

The goal of this section is to classify regular languages L by the complexity of PCFG-IP(L, Σ).

6.1.1 Reduction to circuit evaluation. In the following we prove that PCFG-IP(L, Σ) is equivalent
(with respect to AC0

-Turing-reductions) to the circuit evaluation problem for a suitable finite

semiring that is derived from L.
We start with a few standard notations from algebraic language theory. A language L ⊆ Σ∗ is

recognized by a monoid M if there exists a homomorphism h : Σ∗ → M such that h−1 (F) = L for

some F ⊆ M . It is known that a language is regular if and only if it is recognized by a finite monoid.

The syntactic congruence ≡L is the equivalence relation on Σ∗ that is defined by u ≡L v (u,v ∈ Σ∗) if
the following holds: ∀x ,y ∈ Σ∗ : xuy ∈ L ⇔ xvy ∈ L. It is indeed a congruence relation on the free

monoid Σ∗. The quotient monoid Σ∗/≡L is the smallest monoid which recognizes L; it is called the

syntactic monoid of L. From now on we fix a regular language L ⊆ Σ∗, a surjective homomorphism

h : Σ∗ → M onto the finite syntactic monoidM of L and a set F ⊆ M satisfying h−1 (F) = L.
Given an algebraic structure A with domain A ⊆ 2

M
(which will be either P (M) or P0 (M); see

Section 4.3) we define the decision problem CEP(A, F):

Input A circuit C over A

Question Does [C] ∩ F , ∅ hold?

Lemma 6.3. CFG-IP(L, Σ) is AC0-many-one-reducible to CEP(P0 (M), F).

Proof. Let h : Σ∗ → M be the syntactic homomorphism and let G = (V , Σ, S, P) be a context-free
grammar. To decide whether L(G) ∩ L , ∅, we construct a circuit whose gates compute all sets

XA = h(LG (A)) ∈ P0 (M) for A ∈ V . Then we test whether XS intersects F .
The tuple (XA)A∈V is the least fixed-point of the following monotone operator µ:

µ :

(
2
M
) |V |
→
(
2
M
) |V |

(7)

µ ((YA)A∈V) =
(
YA ∪

⋃
h(α0)YA1

h(α1) · · ·YAkh(αk)
)
A∈V

(8)

where the union in (8) ranges over all productions A→ α0A1α1 · · ·Akαk ∈ P for A1, . . . ,Ak ∈ V
and α0, . . . ,αk ∈ Σ

∗
. The smallest fixed-point of µ can be computed by the fixed-point iteration

Y (0)
A = ∅, Y (n+1)

A = µ ((Y (n)
A)A∈V) (9)

which reaches the least fixed-point after at most |V | · |M | steps. Equation (9) gives rise to an

AC0
-computable circuit over the semiring P0 (M) computing XS = h(L(G)). □

Corollary 6.4. For every regular language L ⊆ Σ∗ the problem CFG-IP(L, Σ) is in P.

Lemma 6.5. PCFG-IP(L, Σ) is equivalent toCEP(P (M), F) with respect toAC0-many-one-reductions.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

Proof. For the reduction from PCFG-IP(L, Σ) to CEP(P (M), F) we only give the modifications

for the proof of Lemma 6.3. We are given a productive context-free grammar G = (V , Σ, S, P) and
a uniformizing SLPH = (V , Σ, S,R) for G. We modify the fixed point iteration in (9) as follows:

Instead of initializing the sets Y (0)
A with the empty set, we start the fixed point iteration with

Y (0)
A := {h(valH (A))} for A ∈ V . For this we compute from H a circuit whose gates evaluate to

the singleton sets {h(valH (A))} for A ∈ V . Every production (A → α0A1α1 · · ·Akαk) ∈ R with

A1, . . . ,Ak ∈ V and α0, . . . ,αk ∈ Σ
∗
is translated to the definition

Y (0)
A → {h(α0)} · Y

(0)
A1

· {h(α1)} · · ·Y
(0)
Ak
· {h(αk)}

Let us now reduce CEP(P (M), F) to PCFG-IP(L, Σ). Let C = (V ,E, λ,v0) be a circuit over P (M).
We define a grammar G = (V , Σ,v0, P) as follows:

• If v → {m1, . . . ,mk } ∈ P (M), add the rules A → wi to P (1 ≤ i ≤ k) where wi ∈ Σ∗ is any
word with h(wi) =mi .

• If v → u ∪w , add the rules v → u and v → w to P .
• If v → u ·w , add the rules v → uw to P .

Then every gate v ∈ V evaluates to h(LG (v)). In particular, we have h(L(G)) = [C]. Therefore,

[C] ∩ F , ∅ if and only if L(G) ∩ L , ∅. □

Now clearlyCEP(P (M), F) is AC0
-Turing-reducible toCEP(P (M)) but not necessarily vice versa

(assuming NL , P) as the following example shows:

Example 6.6. Consider the language L = {a,b}∗a{a,b}∗ ⊆ {a,b}∗ of all words which contain the

symbol a. Its syntactic monoid is the two-element monoid M = {1, e} where e is an idempotent

element. We have L = h−1 ({e}) for the homomorphismh : {a,b}∗ → M defined byh(a) = e ,h(b) = 1.

One can decide CEP(P (M), {e}) in NL: For a circuit C we have e ∈ [C] if and only if an input gate

with e on the right-hand side is reachable from the output gate. However, since M is not a local

group, CEP(P (M)) is P-complete by Theorem 4.9. This can be also seen directly: The sets {e} and
{1, e} form a Boolean semiring. On the other hand, for the purpose of deciding CEP(P (M), {e})
one does not have to distinguish the sets {e} and {1, e}. Identifying these two sets in P (M) yields a
{0, 1}-free semiring whose circuit evaluation problem is in NL.

The example above motivates to define a congruence relation on P (M) where congruent subsets
are either both disjoint from F or both not. Define the equivalence relation ∼F on P (M) by

A1 ∼F A2 ⇐⇒ ∀ℓ, r ∈ M : ℓA1r ∩ F , ∅ ⇐⇒ ℓA2r ∩ F , ∅

for subsets A1,A2 ∈ P (M). The following lemma summarizes the basic properties of ∼F .

Lemma 6.7. The following properties hold.

(1) A1 ∼F A2 implies (LA1R ∩ F , ∅ ⇐⇒ LA2R ∩ F , ∅) for all L,R ⊆ M .
(2) The relation ∼F is a semiring congruence on P (M). In particular, the quotient P (M)/∼F is a

semiring.
(3) Every ∼F -class contains a largest subset with respect to ⊆.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:25

Proof. Property (1) is clear because LAiR∩F , ∅ if and only if ℓAir∩F , ∅ for some ℓ ∈ L, r ∈ R.
For (2), assume A1 ∼F A2 and B1 ∼F B2. Then for all ℓ, r ∈ M we have

ℓ(A1 ∪ B1)r ∩ F , ∅ ⇐⇒ (ℓA1r ∪ ℓB1r) ∩ F , ∅

⇐⇒ ℓA1r ∩ F , ∅ or ℓB1r ∩ F , ∅

⇐⇒ ℓA2r ∩ F , ∅ or ℓB2r ∩ F , ∅

⇐⇒ (ℓA2r ∪ ℓB2r) ∩ F , ∅

⇐⇒ ℓ(A2 ∪ B2)r ∩ F , ∅

and, by (1),

ℓA1 (B1r) ∩ F , ∅ ⇐⇒ (ℓA2)B1r ∩ F , ∅ ⇐⇒ ℓA2B2r ∩ F , ∅.

For (3) note that by (2), A1 ∼F A2 implies A1 = A1 ∪A1 ∼F A1 ∪A2. Thus, every ∼F -class is closed

under union and therefore has a largest element with respect to ⊆. □

Lemma 6.8. CEP(P (M), F) is equivalent to CEP(P (M)/∼F) with respect to AC0-Turing-reductions.

Proof. Clearly, every circuit C over P (M) can be regarded as a circuit C′ over P (M)/∼F such

that [C′] is the ∼F -class of [C]. Every ∼F -class either contains only subsets ofM which are disjoint

to F or only subsets with non-empty intersection with F . Thus, [C′] determines whether [C]∩F , ∅.
For the other direction, given a circuit C′ over P (M)/∼F , we define a circuit C over P (M)

by picking arbitrary representative elements (subsets of M) for the input values (which are ∼F -

classes) of the circuit C′. Then we test for all ℓ, r ∈ M whether ℓ[C]r ∩ F , ∅. This information

is independent from the choice of representative elements and uniquely determines the ∼F -class

[C′]. □

From Corollary 1.2, Lemma 6.5 and Lemma 6.8 we obtain:

Theorem 6.9. PCFG-IP(L, Σ) is equivalent toCEP(P (M)/∼F) with respect toAC0-Turing-reductions.
Therefore,
• PCFG-IP(L, Σ) is P-complete if P (M)/∼F is not {0, 1}-free or its multiplicative semigroup is not
solvable,
• PCFG-IP(L, Σ) is in DET if P (M)/∼F is {0, 1}-free and its multiplicative semigroup is solvable,
and
• PCFG-IP(L, Σ) is in NL if P (M)/∼F is {0, 1}-free and its multiplicative semigroup is aperiodic.

It would be nice to have a simple characterization of when P (M)/∼F is {0, 1}-free (resp., its
multiplicative semigroup is solvable). For {0, 1}-freeness, we can show:

Proposition 6.10. P (M)/∼F is {0, 1}-free if and only if

∀s, t ∈ M, e ∈ E (M) : st ∈ F =⇒ set ∈ F . (10)

Proof. Assume first that P (M)/∼F is {0, 1}-free. Let s, t ∈ M such that st ∈ F and let e ∈
E (M) \ {1}. We have {e} ∼F {1, e} since otherwise their two ∼F -classes would form a Boolean

subsemiring B2 in P (M)/∼F . From st ∈ F it follows that s{1, e}t ∩ F , ∅ and hence s{e}t ∩ F , ∅.
Therefore set ∈ F .

Assume now that the implication (10) holds and towards a contradiction assume that R is a

subsemiring of P (M) with the zero-element [A]∼F and the one-element [B]∼F , where A /F B. By
Lemma 6.7(3), we can choose A and B to be the largest elements in their classes with respect to

⊆. Then we have A ⊆ B because [A ∪ B]∼F = [A]∼F ∪ [B]∼F = [B]∼F . Similarly, A2 ∼F A implies

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

A2 ⊆ A and therefore A contains an idempotent e ∈ A (take aω for any a ∈ A). Finally we have

AB ∼F A, which implies AB ⊆ A.
Since A /F B, we can distinguish the following cases:

Case 1. There are s, t ∈ M , a ∈ A with sat ∈ F and sBt ∩ F = ∅. Since a ∈ A ⊆ B, this immediately

leads to a contradiction.

Case 2. There are s, t ∈ M , b ∈ B with sbt ∈ F and sAt ∩ F = ∅. We have eb ∈ AB ⊆ A and sebt ∈ F
by (10), which again yields a contradiction. □

We do not have a nice characterization for solvability of themultiplicative semigroup ofP (M)/∼F .
Let us conclude this section with an application of Theorem 6.9:

Example 6.11. Consider a language of the form L = Σ∗a1Σ
∗a2Σ

∗ · · ·akΣ
∗
for a1, . . . ,ak ∈ Σ, which

is a so-called piecewise testable language. We claim that PCFG-IP(L, Σ) is decidable in NL. First,
since uw ∈ L implies uvw ∈ L for all u,v,w ∈ Σ∗, the syntactic monoidM and the accepting subset

F ⊆ M of L clearly satisfy condition (10) from Proposition 6.10. Second, P (M)+ and hence also

(P (M)/∼F)+ are aperiodic. Third, we show that P (M)• and hence also (P (M)/∼F)• are aperiodic.
Simon’s theorem [36] states that a language is piecewise testable if and only if its syntactic monoid

is J -trivial.
4
We claim that P (M)• is also J -trivial, in particular aperiodic. Let A,B ∈ P (M) such

that A ≡J B, i.e., A = XBY and B = X ′AY ′ for some X ,Y ,X ′,Y ′ ∈ P (M). Consider the directed
bipartite graph on A ⊎ B with edges

{(a,b) ∈ A × B | a ≤J b} ∪ {(b,a) ∈ B ×A | b ≤J a}.

Every vertex has at least one outgoing and one incoming edge, which means that it belongs to a

non-trivial strongly connected component. Assume now that A , B. W.l.o.g. assume that there

exists a ∈ Awith a < B. Since a belongs to a non-trivial strongly connected component, there exists

b ∈ B with a ≡J b, which contradicts the fact thatM is J -trivial. Hence, we have A = B.

6.2 Intersection problem for regular expressions
In the following we consider the intersection non-emptiness problem for regular expressions. Given

an alphabet Σ and a language L ⊆ Σ∗, the REG-intersection non-emptiness problem for L, denoted by

REG-IP(L, Σ), is the following decision problem:

Input A regular expression t over Σ
Question Does L(t) ∩ L , ∅ hold?

Lemma 6.12. REG-IP(L, Σ) is NC1-hard for every non-empty language L ⊆ Σ∗.

Proof. We present a simple reduction from EEP(B2). Given a Boolean expression t , we replace
every occurrence of the truth value 0 (resp., 1) by ∅ (resp., Σ∗). Every occurrence of the Boolean

operator ∨ (resp., ∧) is replaced by ∪ (resp., ·). Let t ′ be the resulting regular expression. If [t] = 1

then L(t ′) = Σ∗, and if [t] = 0 then L(t ′) = ∅. Hence [t] = 1 if and only if L(t ′) ∩ L , ∅. □

As for PCFG-IP(L, Σ), Lemma 6.12 motivates to consider a restricted problem. A positive regular
expression is a regular expression which does not use the empty set as an atom. We study the

following decision problem PREG-IP(L, Σ):

4
Here are the relevant definitions concerning J -trivial monoids: On a monoidM one defines the J -preorder ≤J by s ≤J t
if s = xty for some x, y ∈ M . The corresponding J -equivalence ≡J is defined by s ≡J t if and only if s ≤J t ≤J s ; it
is an equivalence relation. The monoid M is called J -trivial if every equivalence class with respect to ≡J contains only

one element.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:27

Input A positive regular expression t over Σ
Question Does L(t) ∩ L , ∅ hold?

We fix the same terminology as in Section 6.1.1: Let L be a regular language, h : Σ∗ → M a

surjective homomorphism into the syntactic monoid ofM of L, and F ⊆ M such that L = h−1 (F).
Given an algebraic structure A with domain A ⊆ 2

M
we define the decision problem TEP(A, F):

Input A tree (T , ≤T) over A
Question Does [T] ∩ F , ∅ hold?

Proposition 6.13. REG-IP(L, Σ) is TC0-reducible to TEP(P0 (M), F).

Proof. Let t be the given regular expression, which we convert into a tree T in ancestor

representation over the algebra (2Σ
∗

,∪, ·, ∗) = (P0 (Σ
∗), ∗) (which is also known as a Kleene algebra).

In [20] it was shown that a given regular expression can be transformed in TC0
into an equivalent

regular expression of logarithmic depth. Hence, we can assume that T has logarithmic depth.

Consider the Kleene algebra (2M ,∪, ·, ∗) = (P0 (M), ∗) where X ∗ is defined as

X ∗ =
∞⋃
i=0

X i =

|M |⋃
i=0

X i
(11)

The last equality holds since M is finite. By replacing each input gate v → X for X ⊆ Σ∗ by
v → h(X), we get a tree T ′ of logarithmic depth over (P0 (M), ∗) such that L(t) ∩ L , ∅ if and only
if [T ′] ∩ F , ∅.

To eliminate the ∗-operation, we introduce intermediate gates which compute the partial sums

and products in (11). This yields a circuit C of logarithmic depth (note that |M | is a fixed constant).

Moreover, the transformation T ′ 7→ C is a guarded transduction, and hence we can compute the

EC-representation of the logarithmic depth circuit C in TC0
by Lemma 2.5. After unfolding the

circuit again (which by Lemma 2.2 can be done in TC0
), we obtain a tree over P0 (M) with the

desired property. □

Corollary 6.14. For every regular language L ⊆ Σ∗ the problem REG-IP(L, Σ) is in NC1.

Lemma 6.15. PREG-IP(L, Σ) is equivalent to TEP(P (M), F) with respect to TC0-reductions.

Proof. For the reduction from PREG-IP(L, Σ) to TEP(P (M), F), notice that the tree T ′ con-

structed in the proof of Proposition 6.13 is indeed defined over the semiring P (M) if the input
regular expression is positive.

Let us now reduce TEP(P (M), F) to PREG-IP(L, Σ). Let T = (V ,E, λ,v0) be a tree over P (M),
given in ancestor representation. We compute a regular expression (represented as a tree T ′

in ancestor representation) over the alphabet Σ by replacing the input gates as follows: If v →
{m1, . . . ,mk } ∈ P (M) is an input gate in T , define v →

⋃k
i=1

wi in T
′
wherewi ∈ Σ

∗
is any word

with h(wi) = mi . Then, for every node v ∈ V we have [v]T = h(Lv), where Lv is the language

produced by the regular expression that is rooted in v . In particular, we have h(L(T ′)) = [T].

Therefore, [T] ∩ F , ∅ if and only if L(T ′) ∩ L , ∅. □

Lemma 6.16. TEP(P (M), F) is equivalent to TEP(P (M)/∼F) with respect to AC0-Turing-reductions.

Proof. Similar to Lemma 6.8. □

From Corollary 1.4, Lemma 6.15 and Lemma 6.16 we obtain:

Theorem 6.17. PREG-IP(L, Σ) is equivalent to TEP(P (M)/∼F) with respect to TC0-Turing-reductions.
Therefore,

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 Moses Ganardi, Danny Hucke, Daniel König, and Markus Lohrey

• PREG-IP(L, Σ) is NC1-complete if P (M)/∼F is not {0, 1}-free or its multiplicative semigroup is
not solvable,
• PREG-IP(L, Σ) is in TC0 if P (M)/∼F is {0, 1}-free and its multiplicative semigroup is solvable.

7 CONCLUSION AND OUTLOOK
We proved a dichotomy result for the circuit evaluation problem for finite semirings: If (i) the

semiring has no subsemiring with an additive and multiplicative identity and both are different and

(ii) the multiplicative subsemigroup is solvable, then the circuit evaluation problem is inDET ⊆ NC2
,

otherwise it is P-complete.

The ultimate goal would be to obtain such a dichotomy for all finite algebraic structures. One

might ask whether for every finite algebraic structure A, CEP(A) is P-complete or in NC. It is
known that under the assumption P , NC there exist problems in P \ NC that are not P-complete

[39]. In [11] it is shown that every circuit evaluation problem CEP(A) is equivalent to a circuit

evaluation problem CEP(A, ◦), where ◦ is a binary operation.

ACKNOWLEDGMENTS
We thank Benjamin Steinberg for helpful discussions on semigroups. We are grateful to Volker

Diekert for pointing out to us the proof of the implication (3⇒ 4) in the proof of Lemma 3.1. We

thank the anonymous reviewers for helpful comments.

The third and fourth author were supported by the DFG research project Lo 748/12-1.

REFERENCES
[1] Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese remaindering. Journal of the

Association for Computing Machinery, 50(4):429–443, 2003.
[2] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity of numerical

analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
[3] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth reduction and size

lower bounds. Theor. Comput. Sci., 209(1-2):47–86, 1998.
[4] Jorge Almeida, Stuart Margolis, Benjamin Steinberg, and Mikhail Volkov. Representation theory of finite semigroups,

semigroup radicals and formal language theory. Transactions of the American Mathematical Society, 361(3):1429–1461,
2009.

[5] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009.

[6] Karl Auinger and Benjamin Steinberg. Constructing divisions into power groups. Theoretical Computer Science,
341(1–3):1–21, 2005.

[7] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC
1
.

Journal of Computer and System Sciences, 38:150–164, 1989.
[8] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC

1
. Journal of Computer and System

Sciences, 41:274–306, 1990.
[9] David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC

1
. Journal of the ACM,

35(4):941–952, 1988.

[10] Martin Beaudry and Markus Holzer. The complexity of tensor circuit evaluation. Computational Complexity, 16(1):60–
111, 2007.

[11] Martin Beaudry and Pierre McKenzie. Circuits, matrices, and nonassociative computation. Journal of Computer and
System Sciences, 50(3):441–455, 1995.

[12] Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. Finite monoids: From word to circuit evaluation.

SIAM Journal on Computing, 26(1):138–152, 1997.
[13] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19th Annual Symposium

on Theory of Computing (STOC 87), pages 123–131. ACM Press, 1987.

[14] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits and associative functions. J.
Comput. Syst. Sci., 30(2):222–234, 1985.

[15] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM J. Comput., 13(2):423–439,
1984.

[16] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control, 64:2–22, 1985.

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Circuits and Expressions over Finite Semirings 1:29

[17] Stephen A. Cook and Lila Fontes. Formal theories for linear algebra. Logical Methods in Computer Science, 8(1), 2012.
[18] M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of constant and logarithmic depth.

In Proceedings of STACS 2012, volume 14 of LIPIcs, pages 66–77. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2012.

[19] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal of Computer and System
Sciences, 54(3):400 – 411, 1997.

[20] Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. CoRR, abs/1704.08705, 2017.
[21] Jonathan S. Golan. Semirings and their Applications. Springer, 1999.
[22] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation: P -Completeness Theory.

Oxford University Press, 1995.

[23] Oscar H. Ibarra and Shlomo Moran. Probabilistic algorithms for deciding equivalence of straight-line programs. Journal
of the ACM, 30(1):217–228, 1983.

[24] Neil D. Jones and William T. Laaser. Complete problems for deterministic polynomial time. Theor. Comput. Sci.,
3(1):105–117, 1976.

[25] Daniel König and Markus Lohrey. Evaluation of circuits over nilpotent and polycyclic groups. Algorithmica, 2017.
[26] S. Rao Kosaraju. On parallel evaluation of classes of circuits. In Proceedings of the 10th Conference on Foundations of

Software Technology and Theoretical Computer Science, FSTTCS 1990, volume 472 of Lecture Notes in Computer Science,
pages 232–237. Springer, 1990.

[27] Richard E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):18–20, 1975.
[28] Markus Lohrey. On the parallel complexity of tree automata. In Aart Middeldorp, editor, Proceedings of the 12th

International Conference on Rewrite Techniques and Applications (RTA 2001), Utrecht (The Netherlands), volume 2051 of

Lecrture Notes in Computer Science, pages 201–215. Springer, 2001.
[29] Pierre McKenzie and Klaus W. Wagner. The complexity of membership problems for circuits over sets of natural

numbers. Computational Complexity, 16(3):211–244, 2007.
[30] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient parallel evaluation of straight-line code and

arithmetic circuits. SIAM J. Comput., 17(4):687–695, 1988.
[31] Gary L. Miller and Shang-Hua Teng. The dynamic parallel complexity of computational circuits. SIAM J. Comput.,

28(5):1664–1688, 1999.

[32] Cristopher Moore, Denis Thérien, François Lemieux, Joshua Berman, and Arthur Drisko. Circuits and expressions

with nonassociative gates. J. Comput. Syst. Sci., 60(2):368–394, 2000.
[33] John Rhodes and Benjamin Steinberg. The q-theory of Finite Semigroups. Springer, 2008.
[34] Alexander A. Rubtsov and Mikhail N. Vyalyi. Regular realizability problems and context-free languages. In Proceedings

of the 17th International Workshop on Descriptional Complexity of Formal Systems, DCFS 2015, volume 9118 of Lecture
Notes in Computer Science, pages 256–267. Springer, 2015.

[35] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[36] Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata Theory and Formal
Languages, 1975, volume 33 of Lecture Notes in Computer Science, pages 214–222. Springer, 1975.

[37] Stephen D. Travers. The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci.,
369(1-3):211–229, 2006.

[38] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of polynomials using few

processors. SIAM J. Comput., 12(4):641–644, 1983.
[39] Heribert Vollmer. The gap-language-technique revisited. In Proceedings of the 4th Workshop on Computer Science Logic,

CSL ’90, volume 533 of Lecture Notes in Computer Science, pages 389–399. Springer, 1990.
[40] Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999.

Received January 2018; revised January 2018; accepted January 2018

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	1.1 Main results
	1.2 Application: Intersection non-emptiness problems
	1.3 Further related work

	2 Preliminaries
	2.1 Algebraic and Boolean circuits
	2.2 Computational complexity
	2.3 Tree and graph representations
	2.4 Preliminary algorithmic results for circuits and trees

	3 Semigroups and semirings
	3.1 Semigroups
	3.2 Semirings

	4 Evaluating circuits and expressions
	4.1 Evaluation problems
	4.2 Evaluation over finite structures, semigroups and semirings
	4.3 Circuits over power semirings

	5 Circuits and expressions over {0,1}-free semirings
	5.1 Step 1: Reduction to R+ and "426830A Rn "526930B
	5.2 Step 2: Reduction to type admitting circuits
	5.3 Step 3: A parallel evaluation algorithm for type admitting circuits and trees

	6 Applications to formal language theory
	6.1 Intersection problem for context-free grammars
	6.2 Intersection problem for regular expressions

	7 Conclusion and outlook
	Acknowledgments
	References

