
Grammar-based Compression of Unranked Trees

Adrià Gascón1, Markus Lohrey2, Sebastian Maneth3, Carl Philipp Reh2, and
Kurt Sieber2

1 Warwick University and Alan Turing Institute, UK
2 Universität Siegen, Germany
3 Universität Bremen, Germany

Abstract. We introduce forest straight-line programs (FSLPs) as a compressed
representation of unranked ordered node-labelled trees. FSLPs are based on the
operations of forest algebra and generalize tree straight-line programs. We compare
the succinctness of FSLPs with two other compression schemes for unranked trees:
top dags and tree straight-line programs of first-child/next sibling encodings.
Efficient translations between these formalisms are provided. Finally, we show
that equality of unranked trees in the setting where certain symbols are associative
or commutative can be tested in polynomial time. This generalizes previous results
for testing isomorphism of compressed unordered ranked trees.

1 Introduction

Generally speaking, grammar-based compression represents an object succinctly by
means of a small context-free grammar. In many grammar-based compression formalisms
such a grammar can be exponentially smaller than the object. Henceforth, there is a
great interest in problems that can be solved in polynomial time on the grammar, while
requiring at least linear time on the original uncompressed object. One of the most
well-known and fundamental such problems is testing equality of the strings produced by
two context-free string grammars, each producing exactly one string (such grammars are
also known as straight-line programs — in this paper we use the term string straight-line
program, SSLP for short). Polynomial time solutions to this problem were discovered,
in different contexts by different groups of people, see the survey [14] for references.

Grammar-based compression has been generalized from strings to ordered ranked
node-labelled trees, by means of linear context-free tree grammars generating exactly
one tree [6]. Such grammars are also known as tree straight-line programs, TSLPs for
short. Equality of the trees produced by two TSLPs can also be checked in polynomial
time: one constructs SSLPs for the pre-order traversals of the trees, and then applies
the above mentioned result for SSLPs, see [6]. The tree case becomes more complex
when unordered ranked trees are considered. Such trees can be represented using TSLPs,
by simply ignoring the order of children in the produced tree. Checking isomorphism
of unordered ranked trees generated by TSLPs was recently shown to be solvable in
polynomial time [16]. The solution transforms the TSLPs so that they generate canonical
representations of the original trees and then checks equality of these canonical forms.

The aforementioned result for ranked trees cannot be applied to unranked trees
(where the number of children of a node is not bounded), which arise for instance in

XML document trees. This is unfortunate, because (i) grammar-based compression is
particularly effective for XML document trees (see [15]), and (ii) XML document trees
can often be considered unordered (one speaks of “data-centric XML”, see e.g. [1, 3, 5,
20]), allowing even stronger grammar-based compressions [17].

In this paper we introduce a generalization of TSLPs and SSLPs that allows to
produce ordered unranked node-labelled trees and forests (i.e., ordered sequences of
trees) that we call forest straight-line programs, FSLPs for short. In contrast to TSLPs,
FSLPs can compress very wide and flat trees. For instance, the tree f(a, a, . . . , a) with
n many a’s is not compressible with TSLPs but can be produced by an FSLP of size
O(log n). FSLPs are based on the operations of horizontal and vertical forest composition
from forest algebras [4]. The main contributions of this paper are the following:

Comparison with other formalisms. We compare the succinctness of FSLPs with two
other grammar-based formalisms for compressing unranked node-labelled ordered trees:
TSLPs for ‘first-child/next-sibling” (fcns) encodings and top dags. The fcns-encoding is
the standard way of transforming an unranked tree into a binary tree. Then the resulting
binary tree can be succinctly represented by a TSLP. This approach was used to apply the
TreeRePair-compressor from [15] to unranked trees. We prove that FSLPs and TSLPs
for fcns-encodings are equally succinct up to constant multiplicative factors and that one
can change between both representations in linear time (Propositions 9 and 10).

Top dags are another formalism for compressing unranked trees [2]. Top dags use
horizontal and vertical merge operations for tree construction, which are very similar
to the horizontal and vertical concatenation operations from FSLPs. Whereas a top dag
can be transformed in linear time into an equivalent FSLP with a constant multiplicative
blow-up (Proposition 6), the reverse transformation (from an FSLP to a top dag) needs
time O(σ · n) and involves a multiplicative blow-up of size O(σ) where σ is the number
of node labels of the tree (Proposition 7). A simple example (Example 8) shows that
this σ-factor is unavoidable. The reason for the σ-factor is a technical restriction in the
definition of top dags: In contrast to FSLPs, top dags only allow sharing of common
subtrees but not of common subforests. Hence, sharing between (large) subtrees which
only differ in their root labels may be impossible at all (as illustrated by Example 8),
and this leads to the σ-blow-up in comparison to FSLPs. The impossibility of sharing
subforests would also complicate the technical details of our main algorithmic results
for FSLPs (in particular Proposition 10 and Theorem 13 which is discussed below) for
which we make heavy use of a particular normal form for FSLPs that exploits the sharing
of proper subforests. We therefore believe that at least for our purposes, FSLPs are a
more adequate formalism than top dags.

Testing equality modulo associativity and commutativity. Our main algorithmic
result for FSLPs can be formulated as follows: Fix a set Σ of node labels and take
a subset C ⊆ Σ of “commutative” node labels and a subset A ⊆ Σ of “associative”
node labels. This means that for all a ∈ A, c ∈ C and all trees t1, t2, . . . , tn (i) we
do not distinguish between the trees c(t1, . . . , tn) and c(tσ(1), . . . , tσ(n)), where σ is
any permutation (commutativity), and (ii) we do not distinguish the trees a(t1, . . . , tn)
and a(t1, . . . , ti−1, a(ti, . . . , tj−1), tj , . . . , tn) for 1 ≤ i ≤ j ≤ n + 1 (associativity).
We then show that for two given FSLPs F1 and F2 that produce trees t1 and t2 (of

2

possible exponential size), one can check in polynomial time whether t1 and t2 are
equal modulo commutativity and associativity (Theorem 13). Note that unordered tree
isomorphism corresponds to the case C = Σ and A = ∅ (in particular we generalize the
result from [16] for ranked unordered trees). Theorem 13 also holds if the trees t1 and t2
are given by top dags or TSLPs for the fcns-encodings, since these formalisms can be
transformed efficiently into FSLPs. Theorem 13 also shows the utility of FSLPs even
if one is only interested in say binary trees, which are represented by TSLPs. The law
of associativity will yield very wide and flat trees that are no longer compressible with
TSLPs but are still compressible with FSLPs.

Missing proofs can be found in the arXiv version of this paper [11].

2 Straight-line programs over algebras

We will produce strings, trees and forests by algebraic expressions over certain algebras.
These expressions will be compressed by directed acyclic graphs. In this section, we
introduce the general framework, which will be reused several times in this paper.

An algebraic structure is a tuple A = (A, f1, . . . , fk) where A is the universe and
every fi : Ani → A is an operation of a certain arity ni. In this paper, the arity of all
operations will be at most two. If ni = 0, then fi is called a constant. Moreover, it
will be convenient to allow partial operations for the fi. Algebraic expressions over
A are defined in the usual way: if e1, . . . , eni

are algebraic expressions over A, then
also fi(e1, . . . , eni

) is an algebraic expressions over A. For an algebraic expression e,
JeK ∈ A denotes the element to which e evaluates (it can be undefined).

A straight-line program (SLP for short) over A is a tuple P = (V, S, ρ), where V is
a set of variables, S ∈ V is the start variable, and ρ maps every variable A ∈ V to an
expression of the form fi(A1, . . . , Ani

) (the so called right-hand side of A) such that
A1, . . . , Ani ∈ V and the edge relationE(P) = {(A,B) ∈ V ×V | B occurs in ρ(A)}
is acyclic. This allows to define for every variable A ∈ V its value JAKP inductively
by JAKP = fi(JA1KP , . . . , JAni

KP) if ρ(A) = fi(A1, . . . , Ani
). Since the fi can be

partially defined, the value of a variable can be undefined. The SLP P will be called
valid if all values JAKP (A ∈ V) are defined. In our concrete setting, validity of an SLP
can be tested by a simple syntax check. The value of P is JP K = JSKP . Usually, we
prove properties of SLPs by induction along the partial order E(P)∗.

It will be convenient to allow for the right-hand sides ρ(A) algebraic expressions
over A, where the variables from V can appear as atomic expressions. By introducing
additional variables, we can transform such an SLP into an equivalent SLP of the original
form. We define the size |P | of an SLP P as the total number of occurrences of operations
f1, . . . , fk in all right-hand sides (which is the number of variables if all right-hand sides
have the standard form fi(A1, . . . , Ani

)).
Sometimes it is useful to view an SLP P = (V, S, ρ) as a directed acyclic graph

(dag) (V,E(P)), together with the distinguished output node S, and the node labelling
that associates the label fi with the node A ∈ V if ρ(A) = fi(A1, . . . , Ani

). Note that
the outgoing edges (A,A1), . . . , (A,Ani

) have to be ordered since fi is in general not
commutative and that multi-edges have to be allowed. Such dags are also known as
algebraic circuits in the literature.

3

String straight-line programs. A widely studied type of SLPs are SLPs over a free
monoid (Σ∗, ·, ε, (a)a∈Σ), where · is the concatenation operator (which, as usual, is
not written explicitly in expressions) and the empty string ε and every alphabet symbol
a ∈ Σ are added as constants. We use the term string straight-line programs (SSLPs for
short) for these SLPs. If we want to emphasize the alphabet Σ, we speak of an SSLP
over Σ. In many papers, SSLPs are just called straight-line programs; see [14] for a
survey. Occasionally we consider SSLPs without a start variable S and then write (V, ρ).

Example 1. Consider the SSLP G = ({S,A,B,C}, S, ρ) over the alphabet {a, b} with
ρ(S) = AAB, ρ(A) = CBB, ρ(B) = CaC, ρ(C) = b. We have JBKG = bab,
JAKG = bbabbab, and JGK = bbabbabbbabbabbab. The size of G is 8 (six concatenation
operators are used in the right-hand sides, and there are two occurrences of constants).

In the next two sections, we introduce two types of algebras for trees and forests.

3 Forest algebras and forest straight-line programs

Trees and forests. Let us fix a finite set Σ of node labels for the rest of the paper. We
consider Σ-labelled rooted ordered trees, where “ordered” means that the children of
a node are totally ordered. Every node has a label from Σ. Note that we make no rank
assumption: the number of children of a node (also called its degree) is not determined
by its node label. The set of nodes (resp. edges) of t is denoted by V (t) (resp., E(t)).
A forest is a (possibly empty) sequence of trees. The size |f | of a forest is the total
number of nodes in f . The set of all Σ-labelled forests is denoted by F0(Σ) and the
set of all Σ-labelled trees is denoted by T0(Σ). As usual, we can identify trees with
expressions built up from symbols in Σ and parentheses. Formally, F0(Σ) and T0(Σ)
can be inductively defined as the following sets of strings over the alphabet Σ ∪ {(,)}.

– If t1, . . . , tn are Σ-labelled trees with n ≥ 0, then the string t1t2 · · · tn is a Σ-
labelled forest (in particular, the empty string ε is a Σ-labelled forest).

– If f is a Σ-labelled forest and a ∈ Σ, then a(f) is a Σ-labelled tree (where the
singleton tree a() is usually written as a).

Let us fix a distinguished symbol x 6∈ Σ for the rest of the paper (called the parameter).
The set of forests f ∈ F0(Σ ∪ {x}) such that x has a unique occurrence in f and this
occurrence is at a leaf node is denoted by F1(Σ). Let T1(Σ) = F1(Σ) ∩ T0(Σ ∪ {x}).
Elements of T1(Σ) (resp., F1(Σ)) are called tree contexts (resp., forest contexts). We
finally define F(Σ) = F0(Σ) ∪ F1(Σ) and T (Σ) = T0(Σ) ∪ T1(Σ). Following [4],
we define the forest algebra FA(Σ) = (F(Σ),�,�, (a)a∈Σ , ε, x) as follows:

– � is the horizontal concatenation operator: for forests f1, f2 ∈ F(Σ), f1� f2 is
defined if f1 ∈ F0(Σ) or f2 ∈ F0(Σ) and in this case we set f1� f2 = f1f2 (i.e.,
we concatenate the corresponding sequences of trees).

– � is the vertical concatenation operator: for forests f1, f2 ∈ F(Σ), f1� f2 is
defined if f1 ∈ F1(Σ) and in this case f1� f2 is obtained by replacing in f1 the
unique occurrence of the parameter x by the forest f2.

4

– Every a ∈ Σ is identified with the unary function a : F(Σ)→ T (Σ) that produces
a(f) when applied to f ∈ F(Σ).

– ε ∈ F0(Σ) and x ∈ F1(Σ) are constants of the forest algebra.

For better readability, we also write f〈g〉 instead of f � g, fg instead of f � g, and
a instead of a(ε). Note that a forest f ∈ F(Σ) can be also viewed as an algebraic
expression over FA(Σ), which evaluates to f itself (analogously to the free term algebra).

First-child/next-sibling encoding. The first-child/next-sibling encoding transforms a
forest over some alphabet Σ into a binary tree over Σ]{⊥}. We define fcns : F0(Σ)→
T0(Σ] {⊥}) inductively by: (i) fcns(ε) = ⊥ and (ii) fcns(a(f)g) = a(fcns(f)fcns(g))
for f, g ∈ F0(Σ), a ∈ Σ. Thus, the left (resp., right) child of a node in fcns(f) is the
first child (resp., right sibling) of the node in f or a ⊥-labelled leaf if it does not exist.

Example 2. If f = a(bc)d(e) then

fcns(f) = fcns(a(bc)d(e)) = a(fcns(bc)fcns(d(e)))
= a(b(⊥fcns(c))d(fcns(e)⊥)) = a(b(⊥c(⊥⊥))d(e(⊥⊥)⊥)).

Forest straight-line programs. A forest straight-line program over Σ, FSLP for short,
is a valid straight-line program over the algebra FA(Σ) such that JF K ∈ F0(Σ). Iterated
vertical and horizontal concatenations allow to generate forests, whose depth and width
is exponential in the FSLP size. For an FSLP F = (V, S, ρ) and i ∈ {0, 1} we define
Vi = {A ∈ V | JAKF ∈ Fi(Σ)}.

Example 3. Consider the FSLP F = ({S,A0, A1, . . . , An, B0, B1, . . . , Bn}, S, ρ) over
{a, b, c} with ρ defined by ρ(A0) = a, ρ(Ai) = Ai−1Ai−1 for 1 ≤ i ≤ n, ρ(B0) =
b(AnxAn), ρ(Bi) = Bi−1〈Bi−1〉 for 1 ≤ i ≤ n, and ρ(S) = Bn〈c〉. We have
JF K = b(a2

n

b(a2
n · · · b(a2nc a2n) · · · a2n)a2n), where b occurs 2n many times. A more

involved example can be found in the arXiv version of this paper [11].

FSLPs generalize tree straight-line programs (TSLPs for short) that have been used for
the compression of ranked trees before, see e.g. [6, 15]. We only need TSLPs for binary
trees. A TSLP over Σ can then be defined as an FSLP T = (V, S, ρ) such that for every
A ∈ V , ρ(A) has the form a, a(BC), a(xB), a(Bx), or B〈C〉 with a ∈ Σ, B,C ∈ V .
TSLPs can be used in order to compress the fcns-encoding of an unranked tree; see also
[15]. It is not hard to see that an FSLP F that produces a binary tree can be transformed
into a TSLP T such that JF K = JT K and |T | ∈ O(|F |). This is an easy corollary of our
normal form for FSLPs that we introduce next (see also the proof of Proposition 9).

Normal form FSLPs. In this paragraph, we introduce a normal form for FSLPs that
turns out to be crucial in the rest of the paper. An FSLP F = (V, S, ρ) is in normal form
if V0 = V >0] V ⊥0 and all right-hand sides have one of the following forms:

– ρ(A) = ε, where A ∈ V >0 ,
– ρ(A) = BC, where A ∈ V >0 , B,C ∈ V0,
– ρ(A) = B〈C〉, where B ∈ V1 and either A,C ∈ V ⊥0 or A,C ∈ V1,
– ρ(A) = a(B), where A ∈ V ⊥0 , a ∈ Σ and B ∈ V0,

5

– ρ(A) = a(BxC), where A ∈ V1, a ∈ Σ and B,C ∈ V0.

Note that the partition V0 = V >0] V ⊥0 is uniquely determined by ρ. Also note that
variables from V1 produce tree contexts and variables from V ⊥0 produce trees, whereas
variables from V >0 produce forests with arbitrarily many trees.

Let F = (V, S, ρ) be a normal form FSLP. Every variableA ∈ V1 produces a vertical
concatenation of (possibly exponentially many) variables, whose right-hand sides have
the form a(BxC). This vertical concatenation is called the spine of A. Formally, we
split V1 into V >1 = {A ∈ V1 | ∃B,C ∈ V1 : ρ(A) = B〈C〉} and V ⊥1 = V1 \ V >1 . We
then define the vertical SSLP F� = (V >1 , ρ1) over V ⊥1 with ρ1(A) = BC whenever
ρ(A) = B〈C〉. For every A ∈ V1 the string JAKF� ∈ (V ⊥1)∗ is called the spine of A
(in F), denoted by spineF (A) or just spine(A) if F is clear from the context. We also
define the horizontal SSLP F� = (V >0 , ρ0) over V ⊥0 , where ρ0 is the restriction of ρ to
V >0 . For every A ∈ V0 we use hor(A) to denote the string JAKF� ∈ (V ⊥0)∗. Note that
spine(A) = A (resp., hor(A) = A) for every A ∈ V ⊥1 (resp., A ∈ V ⊥0).

The intuition behind the normal form can be explained as follows: Consider a tree
context t ∈ T1(Σ) \ {x}. By decomposing t along the nodes on the unique path from
the root to the x-labelled leaf, we can write t as a vertical concatenation of tree contexts
a1(f1xg1), . . . , an(fnxgn) for forests f1, g1, . . . , fn, gn and symbols a1, . . . , an. In
a normal form FSLP one would produce t by first deriving a vertical concatenation
A1〈· · · 〈An〉 · · ·〉. Every Ai is then derived to ai(BixCi), where Bi (resp., Ci) produces
the forest fi (resp., gi). Computing an FSLP for this decomposition for a tree context
that is already given by an FSLP is the main step in the proof of the normal form
theorem below. Another insight is that proper forest contexts from F1(Σ) \ T1(Σ) can
be eliminated without significant size blow-up.

Theorem 4. From a given FSLP F one can construct in linear time an FSLP F ′ in
normal form such that JF ′K = JF K and |F ′| ∈ O(|F |).

4 Cluster algebras and top dags

In this section we introduce top dags [2, 12] as an alternative grammar-based formalism
for the compression of unranked trees. A cluster of rank 0 is a tree t ∈ T0(Σ) of size
at least two. A cluster of rank 1 is a tree t ∈ T0(Σ) of size at least two together with a
distinguished leaf node that we call the bottom boundary node of t. In both cases, the
root of t is called the top boundary node of t. Note that in contrast to forest contexts
there is no parameter x. Instead, one of the Σ-labelled leaf nodes may be declared as
the bottom boundary node. When writing a cluster of rank 1 in term representation, we
underline the bottom boundary node. For instance a(b c(a b)) is a cluster of rank 1. An
atomic cluster is of the form a(b) or a(b) for a, b ∈ Σ. Let Ci(Σ) be the set of all clusters
of rank i ∈ {0, 1} and let C(Σ) = C0(Σ) ∪ C1(Σ). We write rank(s) = i if s ∈ Ci(Σ)
for i ∈ {0, 1}. We define the cluster algebra CA(Σ) = (C(Σ),�,�, (a(b), a(b))a,b∈Σ)
as follows:

– � is the horizontal merge operator: s� t is only defined if rank(s) + rank(t) ≤ 1
and s, t are of the form s = a(f), t = a(g), i.e., the root labels coincide. Then

6

s� t = a(fg). Note that at most one symbol in the forest fg is underlined. The rank
of s� t is rank(s) + rank(t). For instance, a(b c(a b))� a(b c) = a(b c(a b)b c).

– � is the vertical merge operator: s� t is only defined if s ∈ C1(Σ) and the label of
the root of t (say a) is equal to the label of the bottom boundary node of s. We then
obtain s� t by replacing the unique occurrence of a in s by t. The rank of s� t is
rank(t). For instance, a(b c(a b))� a(bc) = a(b c(a(bc) b)).

– The atomic clusters a(b) and a(b) are constants of the cluster algebra.

A top tree for a tree t ∈ T0 is an algebraic expression e over the algebra CA(Σ) such
that JeK = t. A top dag over Σ is a straight-line program D over the algebra CA(Σ)
such that JDK ∈ T0(Σ). In our terminology, cluster straight-line program would be a
more appropriate name, but we prefer to call them top dags.

Example 5. Consider the top dag D = ({S,A0, . . . , An, B0, . . . , Bn}, S, ρ), where
ρ(A0) = b(a), ρ(Ai) = Ai−1�Ai−1 for 1 ≤ i ≤ n, ρ(B0) = An� b(b)�An,
ρ(Bi) = Bi−1�Bi−1 for 1 ≤ i ≤ n, and ρ(S) = Bn� b(c). We have JDK =
b(a2

n

b(a2
n · · · b(a2nb(c) a2n) · · · a2n)a2n), where b occurs 2n + 1 many times.

5 Relative succinctness

We have now three grammar-based formalisms for the compression of unranked trees:
FSLPs, top dags, and TSLPs for fcns-encodings. In this section we study their relative
succinctness. It turns out that up to multiplicative factors of size |Σ| (number of node
labels) all three formalisms are equally succinct. Moreover, the transformations between
the formalisms can be computed very efficiently. This allows us to transfer algorithmic
results for FSLPs to top dags and TSLPs for fcns encodings, and vice versa. We start
with top dags:

Proposition 6. For a given top dag D one can compute in linear time an FSLP F such
that JF K = JDK and |F | ∈ O(|D|).

Proposition 7. For a given FSLP F with JF K ∈ T0(Σ) and |JF K| ≥ 2 one can compute
in time O(|Σ| · |F |) a top dag D such that JDK = JF K and |D| ∈ O(|Σ| · |F |).

The following example shows that the size bound in Proposition 7 is sharp:

Example 8. LetΣ = {a, a1, ..., aσ} and for n ≥ 1 let tn = a(a1(a
m) · · · aσ(am)) with

m = 2n. For every n > σ the tree tn can be produced by an FSLP of size O(n): using
n = logm many variables we can produce the forest am and then O(n) many additional
variables suffice to produce tn. On the other hand, every top dag for tn has size Ω(σ ·n):
consider a top tree e that evaluates to tn. Then e must contain a subexpression ei that
evaluates to the subtree ai(am) (1 ≤ i ≤ σ) of tn. The subexpression ei has to produce
ai(a

m) using the �-operation from copies of ai(a). Hence, the expression for ai(am)
has size n = log2m and different ei contain no identical subexpressions. Therefore
every top dag for tn has size at least σ · n.

In contrast, FSLPs and TSLPs for fcns-encodings turn out to be equally succinct up to
constant factors:

7

Proposition 9. Let f ∈ F(Σ) be a forest and let F be an FSLP (or TSLP) overΣ]{⊥}
with JF K = fcns(f). Then we can transform F in linear time into an FSLP F ′ over Σ
with JF ′K = f and |F ′| ∈ O(|F |).

Proposition 10. For every FSLP F over Σ, we can construct in linear time a TSLP T
over Σ ∪ {⊥} with JT K = fcns(JF K) and |T | ∈ O(|F |).

Proposition 10 and the construction from [7, Proposition 8.3.2] allow to reduce the
evaluation of forest automata on FSLPs (for a definition of forest and tree automata, see
[7]) to the evaluation of ordinary tree automata on binary trees. The latter problem can
be solved in polynomial time [18], which yields:

Corollary 11. Given a forest automaton A and an FSLP (or top dag) F we can check
in polynomial time whether A accepts JF K.

In [2], a linear time algorithm is presented that constructs from a tree of size n with σ
many node labels a top dag of size O(n/ log0.19σ n). In [12] this bound was improved
to O(n log log n/ logσ n) (for the same algorithm as in [2]). In [19] we recently pre-
sented an alternative construction that achieves the information-theoretic optimum of
O(n/ logσ n) (another optimal construction was presented in [9]). Moreover, as in [2],
the constructed top dag satisfies the additional size bound O(d · log n), where d is the
size of the minimal dag of t. With Proposition 6 and 10 we get:

Corollary 12. Given a tree t of size n with σ many node labels, one can construct in
linear time an FSLP for t (or an TSLP for fcns(t)) of size O(n/ logσ n) ∩O(d · log n),
where d is the size of the minimal dag of t.

6 Testing equality modulo associativity and commutativity

In this section we will give an algorithmic application which proves the utility of FSLPs
(even if we deal with binary trees). We fix two subsets A ⊆ Σ (the set of associative
symbols) and C ⊆ Σ (the set of commutative symbols). This means that we impose the
following identities for all a ∈ A, c ∈ C, all trees t1, . . . , tn ∈ T0(Σ), all permutations
σ : {1, . . . , n} → {1, . . . , n}, and all 1 ≤ i ≤ j ≤ n+ 1:

a(t1 · · · tn) = a(t1 · · · ti−1a(ti · · · tj−1)tj · · · tn) (1)
c(t1 · · · tn) = c(tσ(1) · · · tσ(n)). (2)

Note that the standard law of associativity for a binary symbol ◦ (i.e., x ◦ (y ◦ z) =
(x ◦ y) ◦ z) can be captured by making ◦ an (unranked) associative symbol in the sense
of (1). Our main result is:

Theorem 13. For trees s, t we can test in polynomial time whether s and t are equal
modulo the identities in (1) and (2), if s and t are given succinctly by one of the following
three formalisms: (i) FSLPs, (ii) top dags, (iii) TSLPs for the fcns-encodings of s, t.

8

6.1 Associative symbols

Below, we define the associative normal form nfA(f) of a forest f and show that from
an FSLP F we can compute in linear time an FSLP F ′ with JF ′K = nfA(JF K). For
trees s, t ∈ T0(Σ) we have that s = t modulo the identities in (1) if and only if
nfA(s) = nfA(t). The generalization to forests is needed for the induction, where a
slight technical problem arises. Whether the forests t1 · · · ti−1a(ti · · · tj−1)tj · · · tn and
t1 · · · tn are equal modulo the identities in (1) actually depends on the symbol on top
of these two forests. If it is an a, and a ∈ A, then the two forests are equal modulo
associativity, otherwise not. To cope with this problem, we use for every associative
symbol a ∈ A a function φa : F0(Σ)→ F0(Σ) that pulls up occurrences of a whenever
possible.

Let • /∈ Σ be a new symbol. For every a ∈ Σ ∪ {•} let φa : F0(Σ) → F0(Σ) be
defined as follows, where f ∈ F0(Σ) and t1, . . . , tn ∈ T0(Σ):

φa(b(f)) =

{
φa(f) if a ∈ A and a = b,

b(φb(f)) otherwise,
φa(t1 · · · tn) = φa(t1) · · ·φa(tn).

In particular, φa(ε) = ε. Moreover, define nfA : F0(Σ)→ F0(Σ) by nfA(f) = φ•(f).

Example 14. Let t = a(a(cd)b(cd)a(e)) and A = {a}. We obtain

φa(t) = φa(a(cd)b(cd)a(e)) = φa(a(cd))φa(b(cd))φa(a(e))

= φa(cd)b(φb(cd))φa(e) = cdb(cd)e,

φb(t) = a(φa(a(cd)b(cd)a(e))) = a(cdb(cd)e).

To show the following simple lemma one considers the terminating and confluent
rewriting system obtained by directing the equations (1) from right to left.

Lemma 15. For two forests f1, f2 ∈ F0(Σ), nfA(f1) = nfA(f2) if and only if f1 and
f2 are equal modulo the identities in (1) for all a ∈ A.

Lemma 16. From a given FSLP F = (V, S, ρ) over Σ one can construct in time
O(|F | · |Σ|) an FSLP F ′ with JF ′K = nfA(JF K).

For the proof of Lemma 16 one introduces new variables Aa for all a ∈ Σ ∪ {•} and
defines the right-hand sides of F ′ such that JAaKF ′ = φa(JAKF) for all A ∈ V0 and
JBa〈φb(f)〉KF ′ = φa(JB〈f〉KF) for all B ∈ V1, f ∈ F0(Σ), where b is the label of the
parent node of the parameter x in JBKF . This parent node exists if we assume the FSLP
F to be in normal form.

6.2 Commutative symbols

To test whether two trees over Σ are equivalent with respect to commutativity, we define
a commutative normal form nfC(t) of a tree t ∈ T0(Σ) such that nfC(t1) = nfC(t2) if
and only if t1 and t2 are equivalent with respect to the identities in (2) for all c ∈ C.

We start with a general definition: Let ∆ be a possibly infinite alphabet together with
a total order<. Let≤ be the reflexive closure of<. Define the function sort< : ∆∗ → ∆∗

by sort<(a1 · · · an) = ai1 · · · ain with {i1, . . . , in} = {1, . . . , n} and ai1 ≤ · · · ≤ ain .

9

Lemma 17. Let G be an SSLP over ∆ and let < be some total order on ∆. We can
construct in time O(|∆| · |G|) an SSLP G′ such that JG′K = sort<(JGK).

In order to define the commutative normal form, we need a total order on F0(Σ). Recall
that elements of F0(Σ) are particular strings over the alphabet Γ := Σ ∪ {(,)}. Fix an
arbitrary total order on Γ and let <llex be the length-lexicographic order on Γ ∗ induced
by <: for x, y ∈ Γ ∗ we have x <llex y if |x| < |y| or (|x| = |y|, x = uav, y = ubv′,
and a < b for u, v, v′ ∈ Γ ∗ and a, b ∈ Γ). We now consider the restriction of <llex to
F0(Σ) ⊆ Γ ∗. For the proof of the following lemma one first constructs SSLPs for the
strings JF1K, JF2K ∈ Γ ∗ (the construction is similar to the case of TSLPs, see [6]) and
then uses [16, Lemma 3] according to which SSLP-encoded strings can be compared in
polynomial time with respect to <llex.

Lemma 18. For two FSLPs F1 and F2 we can check in polynomial time whether
JF1K = JF2K, JF1K <llex JF2K or JF2K <llex JF1K.

From the restriction of<llex to T0(Σ) ⊆ Γ ∗ we obtain the function sort<llex on T0(Σ)∗ =
F0(Σ). We define nfC : F0(Σ)→ F0(Σ) by

nfC(a(f)) =

{
a(sort<llex(nfC(f))) if a ∈ C
a(nfC(f)) otherwise,

nfC(t1 · · · tn) = nfC(t1) · · · nfC(tn).

Obviously, f1, f2 ∈ F(Σ) are equal modulo the identities in (2) for all c ∈ C if and only
if nfC(f1) = nfC(f2). Using this fact and Lemma 15 it is not hard to show:

Lemma 19. For f1, f2 ∈ F0(Σ) we have nfC(nfA(f1)) = nfC(nfA(f2)) if and only if
f1 and f2 are equal modulo the identities in (1) and (2) for all a ∈ A, c ∈ C.

For our main technical result (Theorem 21) we need a strengthening of our FSLP normal
form. Recall the notion of the spine from Section 3. We say that an FSLP F = (V, S, ρ)
is in strong normal form if it is in normal form and for everyA ∈ V ⊥0 with ρ(A) = B〈C〉
either B ∈ V ⊥1 or |JCKF | ≥ |JDKF | − 1 for every D ∈ V ⊥1 which occurs in spine(B)
(note that |JDKF | − 1 is the number of nodes in JDKF except for the parameter x).

Lemma 20. From a given FSLP F = (V, S, ρ) in normal form we can construct in
polynomial time an FSLP F ′ = (V ′, S, ρ′) in strong normal form with JF K = JF ′K.

For the proof of Lemma 20 we modify the right-hand sides of variables A ∈ V ⊥0 with
ρ(A) = B〈C〉 and |spine(B)| ≥ 2. Basically, we replace the vertical concatenations
B〈C〉 by polynomially many vertical concatenations Bi〈Ci〉 which satisfy the condition
of the strong normal form. We can now prove the main technical result of this section:

Theorem 21. From a given FSLP F we can construct in polynomial time an FSLP F ′

with JF ′K = nfC(JF K).

Proof. Let F = (V, S, ρ). By Theorem 4 and Lemma 20 we may assume that F is in
strong normal form. For every A ∈ V1 let

args(A) = {t ∈ T0(Σ) | |t| ≥ |JDKF | − 1 for each symbol D in spine(A)}

We want to construct an FSLP F ′ = (V ′, S, ρ′) with V0 ⊆ V ′0 and V1 = V ′1 such that

10

(1) JAKF ′ = nfC(JAKF) for all A ∈ V0,
(2) JAKF ′〈nfC(t)〉 = nfC(JAKF 〈t〉) for all A ∈ V1, t ∈ args(A).

From (1) we obtain JF ′K = JSKF ′ = nfC(JSKF) = nfC(JF K) which concludes the proof.
To define ρ′, let V c = V c0 ∪V c1 with V c1 = {A ∈ V1 | ρ(A) = a(BxC) with a ∈ C}

and V c0 = {A ∈ V0 | ρ(A) = a(B) with a ∈ C or ρ(A) = D〈C〉 with D ∈ V c1 } be the
set of commutative variables. We set ρ′(A) = ρ(A) for A ∈ V \ V c. For A ∈ V c we
define ρ′(A) by induction along the partial order of the dag:

1. ρ(A) = a(B): Let MA be the set of all C ∈ V ⊥0 which are below A in the
dag, and let w = hor(B) = JBKF� ∈ M∗A. By induction, ρ′ is already defined
on MA, and thus JCKF ′ is defined for every C ∈ MA. By Lemma 18, we can
compute in polynomial time a total order < on MA such that C < D implies
JCKF ′ ≤llex JDKF ′ for all C,D ∈ MA. By Lemma 17, we can construct in linear
time an SSLP Gw = (Vw, Sw, ρw) with JGwK = sort<(w), and we may assume
that all variables D ∈ Vw are new. We add these variables to V ′0 together with their
right hand sides ρ′(D) = ρw(D), and we finally set ρ′(A) = a(Sw).

2. ρ(A) = B〈C〉: Let ρ(B) = a(DxE). We define Gw = (Vw, Sw, ρw) as before, but
with w = JDCEKF� instead of w = JBKF� , and we set ρ′(A) = a(Sw).

3. ρ(A) = a(BxC): We define Gw = (Vw, Sw, ρw) as before, this time with w =
JBCKF� , and we set ρ′(B) = a(Swx).

The main idea is that the strong normal form ensures that in right-hand sides of the
form a(DxE) with a ∈ C one can move the parameter x to the last position (see point
3 above), since only trees that are larger than all trees produced from D and E are
substituted for x. ut

Proof of Theorem 13. By Proposition 6 and 9 it suffices to show Theorem 13 for the
case that t1 and t2 are given by FSLPs F1 and F2, respectively. By Lemma 19 and
Lemma 18 it suffices to compute in polynomial time FSLPs F ′1 and F ′2 for nfC(nfA(t1))
and nfC(nfA(t2)). This can be achieved using Lemma 16 and Theorem 21. ut

7 Future work

We have shown that simple algebraic manipulations (laws of associativity and commuta-
tivity) can be carried out efficiently on grammar-compressed trees. In the future, we plan
to investigate other algebraic laws. We are optimistic that our approach can be extended
by idempotent symbols (meaning that a(fttg) = a(ftg) for forests f, g and a tree t).

Another interesting open problem concerns context unification modulo associative
and commutative symbols. The decidability of (plain) context-unification was a long
standing open problem that was finally solved by Jeż [13], who showed the existence
of a polynomial space algorithm. Jeż’s algorithm uses his recompression technique
for TSLPs. One might try to extend this technique to FSLPs with the goal of proving
decidability of context unification for terms that also contain associative and commutative
symbols. For first-order unification and matching [10], context matching [10], and one-
context unification [8] there exist algorithms for TSLP-compressed trees that match
the complexity of their uncompressed counterparts. One might also try to extend these
results to the associative and commutative setting.

11

Acknowledgements. The first author was supported by the EPSRC grant EP/N510129/1
at the Alan Turing Institute and the EPSRC grant EP/J017728/2 at University of Edin-
burgh. The second author was supported by the DFG research project LO748/10-1.

References

1. S. Abiteboul, P. Bourhis, and V. Vianu. Highly expressive query languages for unordered data
trees. Theor. Comput. Syst., 57(4):927–966, 2015.

2. P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top trees.
Inf. Comput., 243:166–177, 2015.

3. A. Boiret, V. Hugot, J. Niehren, and R. Treinen. Logics for unordered trees with data
constraints on siblings. In Proc. LATA 2015, LNCS 8977, 175–187. Springer, 2015.

4. M. Bojańczyk and I. Walukiewicz. Forest algebras. In Proc. Logic and Automata: History
and Perspectives [in Honor of Wolfgang Thomas]., volume 2 of Texts in Logic and Games,
107–132. Amsterdam University Press, 2008.

5. I. Boneva, R. Ciucanu, and S. Staworko. Schemas for unordered XML on a DIME. Theor. Com-
put. Syst., 57(2):337–376, 2015.

6. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees. Information Systems, 33(4-5):456–474, 2008.

7. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available at:
http://www.grappa.univ-lille3.fr/tata, 2007.

8. C. Creus, A. Gascón, and G. Godoy. One-context unification with STG-compressed terms
is in NP. In Proc. RTA 2012, LIPIcs 15, 149–164. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2012.

9. B. Dudek and P. Gawrychowski. Slowing down top trees for better worst-case bounds
https://arxiv.org/abs/1801.01059, arXiv.org, 2018.

10. A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed
terms. ACM Transactions on Computational Logic, 12(4):26:1–26:37, 2011.

11. A. Gascón, M. Lohrey, S. Maneth, P. Reh, and K. Sieber. Grammar-based compression of
unranked trees https://arxiv.org/abs/1802.05490, arXiv.org, 2018.

12. L. Hübschle-Schneider and R. Raman. Tree compression with top trees revisited. In Proc. SEA
2015, LNCS 9125, 15–27. Springer, 2015.

13. A. Jeż. Context unification is in PSPACE. In Proc. ICALP 2014, Part II, LNCS 8573, 244–255.
Springer, 2014.

14. M. Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptol-
ogy, 4(2):241–299, 2012.

15. M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013.

16. M. Lohrey, S. Maneth, and F. Peternek. Compressed tree canonization. In Proc. ICALP 2015,
Part II, 337–349. Springer, 2015.

17. M. Lohrey, S. Maneth, and C. P. Reh. Compression of unordered XML trees. In Proc. ICDT
2017, LIPIcs 68, 18:1–18:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

18. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata evaluation
for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–1669, 2012.

19. M. Lohrey, P. Reh, and K. Sieber. Optimal top dag construction.
https://arxiv.org/abs/1712.05822, arXiv.org, 2017.

20. S. Sundaram and S. K. Madria. A change detection system for unordered XML data using a
relational model. Data & Knowledge Engineering, 72:257–284, 2012.

12

