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Abstract—We show that a context-free grammar of size m
that produces a single string w of length n (such a grammar is
also called a string straight-line program) can be transformed
in linear time into a context-free grammar for w of size O(m),
whose unique derivation tree has depth O(logn). This solves
an open problem in the area of grammar-based compression,
improves many results in this area and greatly simplifies
many existing constructions. Similar results are stated for two
formalisms for grammar-based tree compression: top dags and
forest straight-line programs. These balancing results can be
all deduced from a single meta theorem stating that the depth
of an algebraic circuit over an algebra with a certain finite
base property can be reduced to O(logn) with the cost of
a constant multiplicative size increase. Here, n refers to the size
of the unfolding (or unravelling) of the circuit. In particular,
this results applies to standard arithmetic circuits over (non-
commutative) semirings. A long version of the paper can be
found in [1].
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I. INTRODUCTION

Grammar-based string compression: In grammar-
based compression a combinatorial object is compactly
represented using a grammar of an appropriate type. In many
grammar-based compression formalisms such a grammar
can be exponentially smaller than the object itself. A well-
studied example of this general idea is grammar-based string
compression using context-free grammars that produce only
one string, which are also known as straight-line programs.
Since the term “straight-line programs” is used in the liter-
ature for different kinds of objects (e.g. arithmetic straight-
line programs) and we will also deal with different types
of straight-line programs, we use the term string straight-
line program, SSLP for short. Grammar-based string com-
pression is tightly related to dictionary based compression:
the famous LZ78 algorithm can be viewed as a particular
grammar-based compressor, the number of phrases in the
LZ77-factorization is a lower bound for the smallest SSLP
for a string [2], and an LZ77-factorization of length m can
be converted to an SSLP of size O(m · log n) where n is
the length of the string [2]–[5]. For various other aspects of
grammar-based string compression see [3], [6].

Balancing string straight-line programs: The two im-
portant measures for an SSLP are size and depth. To define

these measures, it is convenient to assume that all right-
hand sides of the grammar have length two (as in Chomsky
normal form). Then, the size |G| of an SSLP G is the
number of variables (nonterminals) of G and the depth of G
(depth(G) for short) is the depth of the unique derivation tree
of G. It is straightforward to show that any string s of length
n can be produced by an SSLP of size O(n) and depth
O(log n). A more difficult problem is to balance a given
SSLP: assume that the SSLP G produces a string of length
n. Several authors have shown that one can restructure G
in time O(|G| · log n) into an equivalent SSLP H of size
O(|G| · log n) and depth O(log n) [2], [3], [5].

Finding SSLPs of small size and small depth is important
in many algorithmic applications. A prominent example
is the random access problem for grammar-compressed
strings: For a given SSLP G that produces the string s
of length n and a given position p ∈ [1, n] one wants
to access the p-th symbol in s. As observed in [7] one
can solve this problem in time O(depth(G)) (assuming
arithmetic operations on numbers from the interval [0, n]
use constant time). Using sophisticated data structures, the
authors of [7] computed from G a data structure of size
O(|G|) (measured in words of bit length log n) which allows
to access every position in time O(log n). Alternatively, one
can obtain O(log n) access time using one of the known
SSLP balancing procedures [2], [3], but this increases the
size to O(|G| · log n) [7].

Our main result for string straight-line programs states
that SSLP balancing is in fact possible with a constant blow-
up in size.

Theorem I.1. Given an SSLP G producing a string of length
n one can construct in linear time an equivalent SSLP H of
size O(|G|) and depth O(log n).

As a corollary we obtain a very simple and clean al-
gorithm for the random access problem with access time
O(log n) that uses a data structure of size O(m) (in words of
bit length log n). We can also obtain an algorithm for the ran-
dom access problem with running time O(log n/ log log n)
using O(m · logε n) words; previously this bound was only
shown for balanced SSLPs [8]. Section V contains a list
of further applications of Theorem I.1, which include the
following problems on SSLP-compressed strings: rank and



select queries [8], subsequence matching [9], computing
Karp-Rabin fingerprints [10], computing runs, squares, and
palindromes [11], real-time traversal [12], [13] and range-
minimum queries [14]. In all these applications we either
improve existing results or significantly simplify existing
proofs by replacing depth(G) by O(log n) in time/space
bounds.

Computational model: Our balancing procedure in-
volves (simple) arithmetic on lengths, i.e., numbers of order
n. Thus the linear running time can be achieved assum-
ing that machine words have Ω(log n) bits. Otherwise the
running time increases by a multiplicative log n factor. Note
that such an assumption is realistic and standard in the field:
machine words of bit length Ω(log n) are needed, say, for
indexing positions in the represented string. On the other
hand, our procedure works in the pointer model regime.

Balancing forest straight-line programs and top dags:
Grammar-based compression has been generalized from
strings to ordered ranked node-labelled trees. In fact, the
representation of a tree t by its smallest directed acyclic
graph (DAG) is a form of grammar-based tree compres-
sion. This DAG is obtained by merging nodes where the
same subtree of t is rooted. It can be seen as a regular
tree grammar that produces only t. A drawback of DAG-
compression is that the size of the DAG is lower-bounded
by the height of the tree t. Hence, for deep narrow trees
(like for instance caterpillar trees), the DAG-representation
cannot achieve good compression. This can be overcome by
representing a tree t by a linear context-free tree grammar
that produces only t. Such grammars are also known as tree
straight-line programs in the case of ranked trees [16]–[18]
and forest straight-line programs in the case of unranked
trees [19]. The latter are tightly related to top dags [19]–
[23], which are another tree compression formalism, also
akin to grammars. Our balancing technique works similarly
for those types of compression:

Theorem I.2. Given a top dag / forest straight-line pro-
gram / tree straight-line program G producing the tree t one
can compute in time O(|G|) a top dag / forest straight-line
program / tree straight-line program H for t of size O(|G|)
and depth O(log |t|).

For top dags, this solves an open problem from [20],
where it was proved that from a tree t of size n, whose
minimal DAG has size m (measured in number of edges
in the DAG), one can construct in linear time a top dag
for t of size O(m · log n) and depth O(log n). It remained
open whether one can get rid of the additional factor log n
in the size bound. For the specific top dag constructed in
[20], it was shown in [21] that the factor log n in the size
bound O(m · log n) cannot be avoided. On the other hand,
our results yield another top dag of size O(m) and depth
O(log n). To see this note that one can easily convert the
minimal DAG of t into a top dag of roughly the same size,

which can then be balanced. This also gives an alternative
proof of a result from [22], according to which one can
construct in linear time a top dag of size O(n/ logσ n) and
depth O(log n) for a given tree of size n containing σ many
different node labels.

Balancing circuits over algebras: Our balancing results
for SSLPs, top-dags, forests straight-line programs and tree
straight-line programs are all instances of a general bal-
ancing result that applies to a large class of circuits over
algebraic structures. To see the connection between circuits
and straight-line programs, consider SSLPs as an example.
An SSLP is the same thing as a bounded fan-in circuit over
a free monoid. The circuit gates compute the concatenation
of their inputs and correspond to the variables of the SSLP.
In general, for any algebra one can define straight-line
programs, which coincide with the classic notion of a circuit.

The definition of a class of algebras, to which our
general balancing technique applies, uses unary linear term
functions, which were also used for instance in the context
of efficient parallel evaluation of expression trees [24]. Fix
an algebra A (a set together with finitely many operations of
possibly different arities). For some of our applications we
have to allow multi-sorted algebras that have several carrier
sets (think for instance of a vector space, where the two
carrier sets are an abelian group and a field of scalars).
A unary linear term function is a unary function on A that is
computed by a term (or algebraic expression) that contains
a single variable x (which stands for the function argument)
and, moreover, x occurs exactly once in the term. For
instance, a unary linear term function over a commutative
ring is of the form x 7→ ax + b for ring elements a, b.
A subsumption base for an algebra A is, roughly speaking,
a finite set C(A) of unary linear term functions that are
described by terms with parameters such that every unary
linear term function can be obtained from one of the terms in
C(A) by instantiating the parameters. In the above example
for a commutative ring the set C(A) consists of the single
term ax+ b, where a and b are the parameters.

Our general balancing result needs one more concept,
namely the unfolded size of a circuit G. It can be conve-
niently defined as follows: we replace in G every input gate
by the number 1, and we replace every internal gate by
an addition gate. The unfolded size of G is the number to
which this additive circuit evaluates too. In other words, this
is the size of the tree obtained by unravelling G into a tree.
Note that the size of this unfolding can be exponential in the
circuit size. Now we can state the general balancing result:

Theorem I.3 (Informal statement). Let A be a multi-sorted
algebra with a finite number of operations (of arbitrary
arity) such that A has a finite subsumption base. Given
a circuit G overA whose unfolded size is n, one can compute
in time O(|G|) a circuit H evaluating to the same element
of A such that |H| ∈ O(|G|) and depth(H) ∈ O(log n).



Theorems I.1 and I.2 are immediate corollaries of Theo-
rem I.3. Theorem I.3 can be also applied to not necessarily
commutative semirings, as every semiring has a finite sub-
sumption base. Hence, for every semiring circuit one can
reduce with a linear size blow-up the depth to O(log n),
where n is the size of the circuit unfolding.

Note that in the depth bound O(log n) in our balanc-
ing result for string straight-line programs (Theorem I.1),
n refers to the length of the produced string. A string
straight-line program can be viewed as a circuit for a non-
commutative semiring circuit that produces a single mono-
mial (the symbols in the string correspond to the non-
commuting variables). If one considers arbitrary circuits
over non-commutative semirings (that produce a sum of
more than one monomial), depth reduction is not possi-
ble in general by a result of Kosaraju [25]. For circuits
over commutative semirings depth reduction is possible by
a seminal result of Valiant, Skyum, Berkowitz and Rackoff
[26]: for any commutative semiring, every circuit of size m
and formal degree d can be transformed into an equivalent
circuit of depth O(logm log d) and size polynomial in m
and d. This result led to many further investigations on depth
reduction for bounded degree circuits over various classes
of commutative as well as non-commutative semirings [27].
If one drops the restriction to bounded degree circuits,
then depth reduction gets even harder. For general Boolean
circuits, the best known result states that every Boolean
circuit of size m is equivalent to a Boolean circuit of depth
O(m/ logm) [28].

Proof strategy: The proof of Theorem I.1 consists of
two main steps (the general result Theorem I.3 is shown
similarly). Take an SSLP G for the string s of length n and
let m be the size of G. We consider the derivation tree t for
G; it has size O(n). The SSLP G can be viewed as a DAG
for t of size m. We decompose this DAG into node-disjoint
paths such that each path from the root to a leaf intersects
O(log n) paths from the decomposition (Section II). Each
path from the decomposition is then viewed as a string of
integer-weighted symbols, where the weights are the lengths
of the strings derived from nodes that branch off from the
path. For this weighted string we construct an SSLP of
linear size that produces all suffixes of the path in a weight-
balanced way (Section III). Plugging these SSLPs together
yields the final balanced SSLP.

Some of the concepts of our construction can be traced
back to the area of parallel algorithms: the path decomposi-
tion for DAGs from Section II is related to the centroid path
decomposition of trees [15], where it is the key technique
in several parallel algorithms on trees. Moreover, the SSLP
of linear size that produces all suffixes of a weighted string
with (Section III) can be seen as a weight-balanced version
of the optimal prefix sum algorithm.

For the general result Theorem I.3 we need another
ingredient: when the above construction is used for circuits

over algebras, the corresponding procedure produces a tree
straight-line program for the unfolding of the circuit. We
show that if the underlying algebra A has a finite subsump-
tion base, then one can compute from a tree straight-line
program an equivalent circuit over A. Moreover, the size
and depth of this circuit are linearly bounded in the size and
depth of the tree straight-line program. This construction was
used before for the special cases of semirings and regular
expressions [29], [30].

II. THE SYMMETRIC CENTROID DECOMPOSITION OF
A DAG

We start with a new decomposition of a DAG (directed
acyclic graph) into disjoint paths. We believe that this
decomposition might have further applications. For trees,
several decompositions into disjoint paths with the additional
property that every path from the root to a leaf only intersects
a logarithmic number of paths from the decomposition
exist. Examples are the heavy path decomposition [31] and
centroid decomposition [15]. These decompositions can be
also defined for DAGs but a technical problem is that the
resulting paths are no longer disjoint and form, in general,
a subforest of the DAG, see e.g. [7].

Our new path decomposition can be seen as a symmetric
form of the centroid decomposition of [15]. Consider a DAG
D = (V,E) with node set V and the set of multi-edges
E, i.e., E is a finite subset of V × N × V such that
(u, d, v) ∈ E implies that for ever 1 ≤ i < d there
exists v′ with (u, i, v′) ∈ E. Intuitively, (u, d, v) is the d-
th outgoing edge of u. We assume that there is a single
root node r ∈ V , i.e., r is the unique node with no
incoming edges. Hence, all nodes are reachable from r.
A path from u ∈ V to v ∈ V is a sequence of edges
(v0, d1, v1), (v1, d2, v2), . . . , (vp−1, dp, vp) where u = v0

and v = vp. We also allow the empty path from u to u.
With π(u, v) we denote the number of paths from u to
v, and for V ′ ⊆ V let π(u, V ′) =

∑
v∈V ′ π(u, v). Let

W ⊆ V be the set of sink nodes of D, i.e., those nodes
without outgoing edges, and let n(D) = π(r,W ). This is
the number of leaves in the tree obtained by unfolding D
into a tree. With a node v ∈ V we assign the pair λD(v) =
(blog2 π(r, v)c, blog2 π(v,W )c). If λD(v) = (k, `), then
k, ` ≤ blog2 n(D)c because π(r, v) and π(v,W ) are both
bounded by n(D). Let us now define the edge set Escd(D)
(“scd” stands for symmetric centroid decomposition) as

Escd(D) = {(u, i, v) ∈ E : λD(u) = λD(v)}.

Example II.1. Figure 1(left) shows the symmetric centroid
path decomposition of a DAG. The numbers in a node v
are the values π(r, v) and π(v,W ) where r is the root
and W consists of the two sink nodes. Edges that belong
to a symmetric centroid path are drawn in red. Note that
the 9 topmost nodes form a symmetric centroid path since
blog2 π(r, v)c = 0 and blog2 π(v,W )c = 5 for each of
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Figure 1. The DAG for an SSLP and its symmetric centroid path decomposition.

these nodes. In this example the symmetric centroid path
decomposition consists of one path of length 8 (number of
edges); all other nodes form symmetric centroid paths of
length zero.

Lemma II.2. Let D = (V,E) be a DAG with n = n(D).
Then every node has at most one outgoing and at most one
incoming edge from Escd(D). Furthermore, every path from
the root r to a sink node contains at most 2 log2 n edges
that do not belong to Escd(D).

Proof: Consider a node v ∈ V and assume that v has
two different outgoing edges (u, i, v), (u, j, w) ∈ Escd(D).
Hence, λD(u) = λD(v) = λD(w). Let λD(u) = (k, `). If
W is the set of sinks, we get π(u,W ) ≥ π(v,W )+π(w,W )
(since we consider paths of multi-edges, this inequality also
holds for v = w). W.l.o.g. assume that π(w,W ) ≥ π(v,W )
and thus π(u,W ) ≥ 2π(v,W ). We get

blog2 π(u,W )c ≥ 1+blog2 π(v,W )c = 1+blog2 π(u,W )c,

where the last equality follows from λD(u) = λD(v). This

is a contradiction and proves the claim for outgoing edges.
Incoming edges are treated similarly, this time using π(r, v).

For the second claim of the lemma, consider a path
(v0, d1, v1), (v1, d2, v2), . . . , (vp−1, dp, vp), where v0 is the
root and vp is a sink. Let λD(vi) = (ki, `i). We must have
ki ≤ ki+1 and `i ≥ `i+1 for all 0 ≤ i ≤ p − 1. Moreover,
k0 = `p = 0 and `0, kp ≤ blog2 nc. Consider now an edge
(vi, di, vi+1) ∈ E \Escd(D). Since λD(vi) 6= λD(vi+1), we
have ki < ki+1 or `i > `i+1. Hence, there can be at most
2blog2 nc ≤ 2 log2 n edges from E \ Escd(D) on the path.

Lemma II.2 implies that the subgraph (V,Escd(D)) is
a disjoint union of possibly empty paths, called symmetric
centroid paths of D. It is straight-forward to compute the
edge set Escd(D) in time O(|D|), where |D| is defined as
the number of edges of the DAG: By traversing D in both
directions (from the root to the sinks and from the sinks to
the root) one can compute all pairs λD(v) for v ∈ V in linear
time. For this, we need the ability to add numbers of size at
most n = n(D) in constant time. This is in accordance with



our machine model (see the introduction). When we apply
Lemma II.2 to string straight-line programs then n(D) will
be exactly the length of the string produced by the string
straight-line program.

One can use Lemma II.2 in order to simplify the original
proof of [7, Corollary V.1] (random access for grammar-
compressed strings): in [7], the authors use the heavy-path
decomposition of the derivation tree of an SSLP. In the
SSLP (viewed as a DAG that defines the derivation tree),
these heavy paths lead to a forest, called the heavy path
forest [7]. The important property used in [7] is the fact
that any path from the root of the DAG to a sink node
contains only O(log n) edges that do not belong to a heavy
path, where n is the length of string produced by the SSLP.
Using Lemma II.2, one can replace this heavy path forest by
the decomposition into symmetric centroid paths. The fact
that the latter is a disjoint union of paths in the DAG
simplifies the technical details in [7] a lot. On the other
hand, [7, Corollary V.1] follows directly from Theorem I.1,
see Section IV.

III. STRING STRAIGHT-LINE PROGRAMS AND SUFFIXES
OF WEIGHTED STRINGS

In the following, we define string straight-line programs
formally. Given an alphabet of symbols Σ, Σ∗ denotes the
set of all finite strings over the alphabet Σ, including the
empty string ε. The set of non-empty strings is denoted by
Σ+ = Σ∗ \ {ε}. The length of a string w is denoted with
|w|.

Let Σ be a finite alphabet of terminal symbols. A string
straight-line program (SSLP for short) over the alphabet Σ
is a triple G = (V, ρ, S), where V is a finite set of variables,
S ∈ V is the start variable, and ρ : V → (Σ∪V)∗ (the right-
hand side mapping) has the property that the binary relation
E(G) = {(X,Y ) ∈ V × V : Y occurs in ρ(X)} is acyclic.
This allows to define for every string w ∈ (Σ∪V)∗ a string
JwKG ∈ Σ∗. For this we extend ρ to a morphism by setting
ρ(a) = a for a ∈ Σ and ρ(α1 · · ·αn) = ρ(α1) · · · ρ(αn)
for α1, . . . , αn ∈ Σ ∪ V . The acyclicity of E(G) implies
that the m-fold application ρm(w) of ρ to w ∈ (Σ ∪ V)∗,
where m = |V| (any larger value for m would be also fine),
is a string over the terminal alphabet Σ. We set JwKG =
ρm(w) ∈ Σ∗. We omit the subscript G if G is clear from
the context. Finally, we define JGK = JSK (the string derived
from G).

An SSLP G can be seen as a context-free grammar that
produces the single string JGK. Quite often, one assumes that
every right-hand sides ρ(X) is of the form a ∈ Σ or Y Z
with Y,Z ∈ V . This corresponds to the Chomsky normal
form. For every SSLP G with JGK 6= ε one can construct in
linear time an equivalent SSLP in Chomsky normal form
by replacing every right-hand side by a balanced binary
derivation tree.

Fix an SSLP G = (V, ρ, S). We define the size |G| of
G as

∑
X∈V |ρ(X)|. Let d be the length of a longest path

in the DAG (V, E(G)) and r = max{|ρ(X)| : X ∈ V}.
We define the depth of G as depth(G) = d · dlog2 re.
These definitions ensure that depth and size only increase by
fixed constants when an SSLP is transformed into Chomsky
normal form. Note that for an SSLP in Chomsky normal
form, the definition of the depth simplifies to depth(G) = d.

A weighted string is a string s ∈ Σ∗ additionally equipped
with a weight function ‖·‖ : Σ→ N\{0}, which is extended
to a homomorphism ‖ · ‖ : Σ∗ → N by ‖a1a2 · · · an‖ =∑n
i=1 ‖ai‖. If X is a variable in an SSLP G, we also write

‖X‖ for the weight of the string JXKG derived from X .
Moreover, when we speak of suffixes of a string, we always
mean non-empty suffixes.

Lemma III.1. For every non-empty weighted string s of
length n one can construct in linear time an SSLP G with
the following properties:
• G contains at most 3n variables,
• all right-hand sides of G have length at most 4,
• G contains suffix variables S1, . . . , Sn producing all

suffixes of s, and
• every path from Si to a terminal symbol a in the deriva-

tion tree of G has length ≤ 3+2(log2 ‖Si‖− log2 ‖a‖).

Proof: First, the presented algorithm never uses the
fact that some letters of s may be equal. Thus it is more
convenient to assume that letters in s are pairwise different—
in this way the path from a variable Si to a terminal symbol
a in the last condition is defined uniquely.

For the sake of the inductive proof, the constructed
SSLP will satisfy a slightly stronger and more technical
variant of the last condition: every path from Si to some
terminal symbol a in the derivation tree of G has length at
most 1 + 2(dlog2 ‖Si‖e − log2 ‖a‖). The trivial estimation
dlog2 ‖Si‖e ≤ 1 + log2 ‖Si‖ then yields the last condition
of the lemma.

We first show how to construct G with the desired
properties and then prove that the construction can be done
in linear time.

The case n = 1 is trivial. Now assume that n ≥ 2 and let

s = a1 · · · ak c b1 · · · bm

where c b1 · · · bm is the shortest suffix of s such that
dlog2 ‖c b1 · · · bm‖e = dlog2 ‖s‖e. Clearly such a suffix
exists (in the extreme cases it is the whole s or the last
letter of s). Note that

dlog2 ‖c b1 · · · bm‖e = dlog2 ‖ai · · · ak c b1 · · · bm‖e (1)

for 1 ≤ i ≤ k+1. Moreover, the following inequalities hold:

dlog2 ‖c b1 · · · bm‖e ≥ dlog2 ‖b1 · · · bm‖e+ 1 (2)
dlog2 ‖c b1 · · · bm‖e ≥ dlog2 ‖a1 · · · ak‖e+ 1 (3)



(here, we define log2(0) = −∞). Inequality (2) is clear
from the definition of c b1 · · · bm, as b1 · · · bm satisfies
dlog2 ‖b1 · · · bm‖e < dlog2 ‖s‖e = dlog2 ‖c b1 · · · bm‖e. If
(3) does not hold then both a1 · · · ak and c b1 · · · bm have
weights strictly more than 2dlog2 ‖s‖e−1 and so their con-
catenation s has weight strictly more than 2dlog2 ‖s‖e ≥ ‖s‖,
which is a contradiction.

Recall that the symbols a1, . . . , ak, c, b1, . . . , bm are pair-
wise different by the convention from the first paragraph of
the proof.

For the suffix b1 · · · bm we make a recursive call (if m = 0
we do nothing at this step) and include the produced SSLP
in the output SSLP G. Let V1, V2, . . . , Vm be the variables
such that

JViKG = bi · · · bm.

By the inductive assumption, every path Vi
∗→ bj in the

derivation tree has length at most

1 + 2dlog2 ‖Vi‖e − 2 log2 ‖bj‖.

Add a variable V0 with right-hand side cV1 (or c if m = 0),
which derives the suffix c b1 · · · bm. The path from V0 to c
in the derivation tree has length 1, which is fine, and the
path V0

∗→ bj is one larger than the path V1
∗→ bj and hence

has length at most

1 + 1 + 2dlog2 ‖V1‖e − 2 log2 ‖bj‖
≤ 2dlog2 ‖V0‖e − 2 log2 ‖bj‖,

as 1 + dlog2 ‖V1‖e ≤ dlog2 ‖V0‖e by (2).
Next we decompose the prefix a1 · · · ak into bk/2c many

blocks of length two and, when k is odd, one block of
length 1. We add to the output SSLP G new variables
X1, . . . , Xbk/2c and define their right-hand sides by

ρ(Xi) = a2i−1a2i.

The number of variables in G is bk2 c. For ease of presenta-
tion, when k is odd, define Xdk/2e = ak; this is not a new
variable, rather just a notational convention to streamline the
presentation. Note that for k even dk/2e = bk/2c and in
this case Xdk/2e is already defined. Viewing X1 · · ·Xdk/2e
as a weighted string of length dk/2e over the alphabet
{X1, . . . , Xdk/2e}, we obtain inductively an SSLP GX with
at most 3dk/2e variables and right-hand sides of length at
most 4 (if k = 0 we do nothing at this step). Moreover, GX
contains variables U1, U2, . . . , Udk/2e with

JUiKGX = XiXi+1 · · ·Xdk/2e

such that any path of the form Ui
∗→ Xj in the derivation

tree of GX has length at most

1 + 2dlog2 ‖Ui‖e − 2 log2 ‖Xj‖.

By adding all variables and right-hand side definitions from
GX to G (where all symbols Xi are variables, except Xdk/2e
when k is odd, in which case Xdk/2e = ak) we obtain

JUiKG = a2i−1a2i · · · ak
for all 1 ≤ i ≤ dk/2e. Any path Ui

∗→ aj in the derivation
tree of G has length at most

2 + 2dlog2 ‖Ui‖e − 2 log2 ‖aj‖. (4)

Now, every suffix of s that includes some letter of a1 · · · ak
(note that we already have variables for all other suffixes)
can be defined by a right-hand side of the form UicV1 or
a2i−2UicV1 (Uic or a2i−2Uic if m = 0). As in the statement
of the lemma, denote those variables by S1, . . . , Sk. Let us
next verify the condition on the path lengths for derivations
from those variables. All paths Si

∗→ c have length one.
Now consider a path Si

∗→ aj . If the path has length one
then we are done. Otherwise, the path must be of the form
Si → Ul

∗→ aj . Therefore, by (4) the path length is at most

3 + 2dlog2 ‖Ul‖e − 2 log2 ‖aj‖
≤ 3 + 2dlog2 ‖U1‖e − 2 log2 ‖aj‖
= 3 + 2dlog2 ‖a1 · · · ak‖e − 2 log2 ‖aj‖
≤ 1 + 2dlog2 ‖c b1 · · · bm‖e − 2 log2 ‖aj‖
= 1 + 2dlog2 ‖Si‖e − 2 log2 ‖aj‖,

where the second inequality follows from (3) and the equal-
ity at the end follows from (1).

Paths of the form Si
∗→ bj can be treated similarly: they

are of the form Si → V1
∗→ bj , where the path V1

∗→ bj
is of length at most 1 + 2dlog2 ‖V1‖e − 2 log2 ‖bj‖ by the
inductive assumption. Thus, the whole path is of length at
most

2 + 2dlog2 ‖V1‖e − 2 log2 ‖bj‖
= 2 + 2dlog2 ‖b1 · · · bm‖e − 2 log2 ‖bj‖
≤ 2dlog2 ‖c b1 · · · bm‖e − 2 log2 ‖bj‖
= 2dlog2 ‖Si‖e − 2 log2 ‖bj‖,

which follows from (2) and (1).
Let us now bound the number of variables of the SSLP

G. There are
• bk/2c variables Xi,
• at most 3(dk/2e) variables from the recursive call for
X1 · · ·Xdk/2e,

• at most 3m = 3(n−k−1) variables from the recursive
call for b1 · · · bm, and

• 1 + k new suffix variables for suffixes beginning at
a1 · · · akc (note that those beginning at b1 · · · bm are
taken care of by the recursive call).

Therefore G contains at most

bk/2c+ 3dk/2e+ 3(n− k − 1) + 1 + k

= 3n+ 2dk/2e − k − 2 < 3n



variables. Also note that all right-hand sides of G have length
at most four.

It remains to show that the construction works in linear
time. To this end we need a small trick: we assume that when
the algorithm is called on s, we supply the algorithm with
the value ‖s‖. More formally, the main algorithm applied to
a string s computes ‖s‖ in linear time by going through s and
adding weights. Then it calls a subprocedure main′(s, ‖s‖),
which performs the actions described above. To find the
appropriate symbol c, main′ computes the weights of con-
secutive prefixes s1s2 · · · si, until it finds the first such that
dlog2 ‖s‖e > dlog2(‖s‖− ‖s1 · · · si‖)e. Then k = i− 1 and
so a1 · · · ak = s1 · · · si−1, c = si, b1 · · · bm = si+1 · · · sn.
Moreover, we can compute ‖a1 · · · ak‖ and ‖b1 · · · bm‖ for
the recursive calls of main′ in constant time.

Let T (n) be the running time of main′ on a string of
length n. Then all operations of main′, except the recursive
calls, take at most α(k + 1) time for some constant α ≥ 1,
where s is represented as a1 · · · ak c b1 · · · bm. Thus T (n)
satisfies T (1) = 1 and

T (n) = T (dk/2e) + T (n− k − 1) + α(k + 1).

We claim that T (n) ≤ 2αn. This is true for n = 1 and
inductively for n ≥ 2 we get

T (n) ≤ 2α(dk/2e) + 2α(n− k − 1) + α(k + 1)

≤ 2α
k + 1

2
+ 2αn− α(k + 1)

= 2αn.

This concludes the proof of the lemma.

IV. BALANCING OF STRING STRAIGHT-LINE PROGRAMS

We now prove Theorem I.1. Let G = (V, ρG , S) be
an SSLP. W.l.o.g. we can assume that G is in Chomsky
normal form (the case that JGK = ε is trivial). Note that
the graph (V, E(G)) is a directed acyclic graph (DAG). We
can assume that every variable is reachable from the start
variable S. Consider a variable X with ρG(X) = Y Z.
Then X has the two outgoing edges (X,Y ) and (X,Z)
in (V, E(G)). We replace these two edges by the triples
(X, 1, Y ) and (X, 2, Z). Hence, D := (V, E(G)) becomes
a DAG with multi-edges (triples from V × {1, 2} × V) as
considered in Section II. Figure 1(right) shows the DAG D
for an example SSLP; it is the same DAG as in Example II.1.
The right-hand sides for the two sink variables X13 and X14

are terminal symbols. The start variable S is X0.
We define for every X ∈ V the weight ‖X‖ as the length

of the string JXKG . Moreover, for a string w = X1X2 · · ·Xn

we define the weight ‖w‖ =
∑n
i=1 ‖Xi‖. Note that ‖S‖ = n

is the length of the derived string JGK and that this also the
value n(D) defined in Section II.

We compute in linear time the edges from the symmetric
centroid decomposition of the DAG D, see Lemma II.2. In
Figure 1 these are the red edges. The second components

of the node labels in Figure 1(left) are the weights of the
corresponding variables from the right part of the figure.
Hence, we have ‖X0‖ = 62, ‖X1‖ = 61, ‖X2‖ = 60,
‖X3‖ = 58, etc.

Every variable X of G will be also a variable of H and
we will have JXKG = JXKH. In addition, H will contain
auxiliary variables.

Consider a symmetric centroid path

(X0, d0, X1), (X1, d1, X2), . . . , (Xp−1, dp−1, Xp) (5)

in D, where all Xi belong to V and di ∈ {1, 2}. Thus, for all
0 ≤ i ≤ p− 1, the right-hand side of Xi in G has the form
ρG(Xi) = Xi+1X

′
i+1 (if di = 1) or ρG(Xi) = X ′i+1Xi+1

(if di = 2) for some X ′i+1 ∈ V . Note that we can have
X ′i = X ′j for i 6= j. The right-hand side ρG(Xp) can be
a terminal symbol or the concatenation of two variables.
Note that the variables X ′i (1 ≤ i ≤ p) and the variables in
ρG(Xp) (if they exist) belong to other symmetric centroid
paths. We will introduce O(p) many variables in the SSLP
H to be constructed. Moreover, all right-hand sides of H
have length at most four. By summing over all symmetric
centroid paths, this yields the size bound O(|G|) for H.

We now define the right-hand sides of the variables
X0, . . . , Xp in H. We write ρH for the right-hand side
mapping of H. For Xp we set ρH(Xp) = ρG(Xp). For
the variables X0, . . . , Xp−1 we have to “accelerate” the
derivation somehow in order to get the depth boundO(log n)
at the end. For this, we apply Proposition III.1. Let L1 · · ·Ls
be the subsequence obtained from X ′1X

′
2 · · ·X ′p by keeping

only those X ′i with di = 2 and let R1 · · ·Rt be the subse-
quence obtained from the reversed sequence X ′pX

′
p−1 · · ·X ′1

by keeping only those X ′i with di = 1. Take for instance
the red symmetric centroid path consisting of the nodes
X0, X2, . . . , X8 (hence, p = 8) from our running example in
Figure 1. We have L1 · · ·Ls = X13X12X11X10 (the target
nodes of the blue edges) and R1 · · ·Rt = X10X11X12X14

(the target nodes of the green edges).
Note that every string JXiK (0 ≤ i ≤ p − 1) can be

derived in G from a string w`Xpwr, where w` is a suffix of
JL1 · · ·LsK and wr is a prefix of JR1 · · ·RtK. For instance,
JX2K can be derived from (X12X11X10)X8(X10X11X12)
in our running example. We now apply Lemma III.1 to
the sequence L1 · · ·Ls in order to get an SSLP G` of size
O(s) ≤ O(p) that contains variables S1 . . . , Ss for the
non-empty suffixes of L1 · · ·Ls. Moreover, every path from
a variable Si to some Lj in the derivation tree has length
at most 3 + 2 log2 ‖Si‖ − 2 log2 ‖Lj‖, where ‖Si‖ is the
weight of JSiKG` . Analogously, we obtain an SSLP Gr of
size O(t) ≤ O(p) that contains variables P1 . . . , Pt for the
non-empty prefixes of R1 · · ·Rt. Moreover, every path from
a variable Pi to some Rj in the derivation tree has length
at most 3 + 2 log2 ‖Pi‖ − 2 log2 ‖Rj‖. We can then define
every right-hand side ρH(Xi) (0 ≤ i ≤ p− 1) as SjXpPk,



XpPk, or SjXp for suitable j and k. Moreover, we add all
variables and right-hand side definitions of G` and Gr to H.

We make the above construction for all symmetric cen-
troid paths of the DAG D. This concludes the construction
of H. In our running example we set ρH(Xi) = ρG(Xi)
for 8 ≤ i ≤ 14. Since we introduce O(p) many variables
for every symmetric centroid path of length p and all right-
hand sides of H have length at most four, we obtain the size
bound O(|G|) for H.

It remains to show that the depth of H is O(log n). Let
us first consider the symmetric centroid path (5) and a path
in the derivation tree of H from a variable Xi (0 ≤ i ≤ p)
to a variable Y , where Y is
(a) a variable in ρG(Xp) = ρH(Xp) or
(b) a variable X ′j for some i < j ≤ p.

In case (a), the path Xi
∗→ Y has length at most two. In case

(b) the path Xi
∗→ Y is of the form Xi → Sk

∗→ X ′j = Y

or Xi → Pk
∗→ X ′j = Y . Here, Sk

∗→ X ′j (resp., Pk
∗→

X ′j) is a path in G` (resp., Gr) and therefore has length at
most 3 + 2 log2 ‖Sk‖− 2 log2 ‖Y ‖ (resp., 3 + 2 log2 ‖Pk‖−
2 log2 ‖Y ‖). In both cases, we can bound the length of the
path Xi

∗→ Y by 4 + 2 log2 ‖Xi‖ − 2 log2 ‖Y ‖.
Consider now a maximal path in the derivation tree of H

that starts in the root S and ends in a leaf. We can factorize
this path as

S = X0
∗→ X1

∗→ X2
∗→ · · · ∗→ Xk (6)

where all variables Xi belong to the original SSLP and every
subpath Xi

∗→ Xi+1 is of the form Xi
∗→ Y considered in

the previous paragraph. The right-hand side of Xk is a single
symbol from Σ. In the DAG D we have a corresponding
path Xi

∗→ Xi+1, which is contained in a single symmetric
centroid path except for the last edge leading to Xi+1. By
the above consideration, the length of the path (6) is bounded
by

k−1∑
i=0

(4 + 2 log2 ‖Xi‖ − 2 log2 ‖Xi+1‖)

≤ 4k + 2 log2 ‖S‖ = 4k + 2 log2 n.

By the second claim of Lemma II.2 we have k ≤ 2 log2 n
which shows that the length of the path (6) is bounded by
6 log2 n.

V. APPLICATIONS

There are several algorithmic applications of Theorem I.1
with a common underlying idea: let G be an SSLP of
size m for a string s of length n. In many algorithms
for SSLP-compressed strings the running time or space
consumption depends on depth(G), which can be m in
the worst case. Theorem I.1 shows that we can replace
depth(G) by O(log n). This is the best we can hope for since
depth(G) ≥ Ω(log n) for every SSLP G. Moreover, SSLPs

that are produced by practical grammar-based compressors
(e.g., LZ78 or RePair) are in general unbalanced in the sense
that depth(G) ≥ ω(log n).

The time bounds in the following results refer to the RAM
model, where arithmetic operations on numbers from the
interval [0, n] need time O(1). The size of a data structure
is measured in the number of words of bit length log2 n.

A random access query for a string s takes a position 1 ≤
i ≤ |s| and returns the letter at position i in s. The following
result was shown in [7] using several quite sophisticated
data structures. It becomes a straightforward corollary of
Theorem I.1 using the fact that random access queries for
JGK can be answered in time O(depth(G)).

Corollary V.1 (random access to grammar-compressed
strings, cf. [7]). From a given SSLP G of size m such that
the string s = JGK has length n, one can construct in time
O(m) a data structure of size O(m) that allows to answer
random access queries in time O(log n).

Proof: Using Theorem I.1 we compute in time O(m) an
equivalent SSLP H for s of size O(m) and depth O(log n).
By a single pass over H we compute for every variable X
of H the length of the string JXK. Using these lengths one
can descend in the derivation tree JHK from the root to the
i-th leaf node (which is labelled with the i-th symbol of s)
in time O(depth(H)) ≤ O(log n).

Remark V.2. It is easy to see that the balancing algorithm
from Theorem I.1 can be implemented on a pointer machine,
see [32] for a discussion of the pointer machine model. Thus,
also the random access data structure from Corollary V.1
can be implemented on a pointer machine. In contrast, the
random access data structure from [7] needs the RAM model
(for the pointer machine model only preprocessing time and
size O(m · αk(m)) for any fixed k, where αk is the k-th
inverse Ackermann function, is shown in [7]). On the other
hand, recently, in [33], the O(m)-space data structure from
[7] has been modified so that it can be implemented on
a pointer machine as well.

Using fusion trees [34] one can improve the time bound
in Corollary V.1 to O(log n/ log log n) at the cost of an ad-
ditional factor of O(logε n) in the size bound. The following
result has been shown in [8, Theorem 2] under the assump-
tion that the input SSLP has depth O(log n). We can enforce
this bound with Theorem I.1.

Corollary V.3. Fix an arbitrary constant ε > 0. From
a given SSLP G of size m such that the string s = JGK has
length n, one can construct in time O(m · logε n) a data
structure of size O(m · logε n) that allows to answer random
access queries in time O(log n/ log logn).

Proof: The proof is exactly the same as for [8, Theo-
rem 2]. There, the author have to assume that the input SSLP
has depth O(log n), which we can enforce by Theorem I.1.



Roughly speaking, the idea in [8] is to reduce the depth
of the SSLP to O(log n/ log log n) by expanding right-
hand sides to length O(logε n). Then for each right-hand
side a fusion tree is constructed, which allows to spend
constant time at each variable during the navigation to the
i-th symbol.

Let us also remark that the size bound for the computed
data structure in [8] is given in bits, which yields O(m ·
log1+ε n) bits since numbers from [0, n] have to be encoded
with log2 n bits.

Given a string s ∈ Σ∗, a rank query gets a position 1 ≤
i ≤ |s| and a symbol a ∈ Σ and returns the number of a’s
in the prefix of s of length i. A select query gets a symbol
a ∈ Σ and a number 1 ≤ i ≤ |s| and returns the position of
the i-th a in s (if it exists).

Corollary V.4. Fix an arbitrary constant ε > 0. From
a given SSLP G of size m such that the string s = JGK
has length n, one can construct in time O(m · |Σ| · logε n)
a data structure of size O(m · |Σ| · logε n) that allows to
answer rank and select queries in time O(log n/ log log n).

Proof: Again we follow the proof [8, Theorem 2] but
first apply Theorem I.1 in order to reduce the depth of the
SSLP to O(log n).

Corollary V.4 improves [8, Theorem 2], where the query
time is O(log n) and the space is O(m · |Σ| · log n).

Our balancing result also yields an improvement for the
compressed subsequence problem [9]. Bille et al. [9] present
an algorithm based on a labelled successor data structure.
Given a string s = a1 · · · an ∈ Σ∗, a labelled successor
query gets a position 1 ≤ i ≤ n and a symbol a ∈ Σ and
returns the minimal position j > i with ai = a (or rejects
if it does not exist). The following result is an improvement
over [9], where the authors present two algorithms for
the compressed subsequence problem: one with O(m +
m · |Σ|/w) preprocessing time and O(log n · logw) query
time, and another algorithm with O(m+m · |Σ| · logw/w)
preprocessing time and O(log n) query time, where n, m,
and w are as below.

Corollary V.5. There is a data structure supporting labelled
successor (and predecessor) queries on a string s ∈ Σ∗ of
length n compressed by an SSLP of size m in the word RAM
model with word size w ≥ log2 n using O(m+m · |Σ|/w)
space, O(m+m · |Σ|/w) preprocessing time, and O(log n)
query time.

Proof: In the preprocessing phase we first reduce the
depth of the given SSLP to O(log n) using Theorem I.1. We
compute for every variable X the length of JXK in time and
space O(m) as in the proof of Corollary V.1. Additionally
for every variable X we compute a bitvector of length |Σ|
which encodes the set of symbols a ∈ Σ that occur in JXK.
Notice that this information takes O(m · |Σ|) bits and fits
into O(m · |Σ|/w) memory words. If ρ(X) = Y Z then the

bitvector of X can be computed from the bitvectors of Y
and Z by O(|Σ|/w) many bitwise OR operations. Hence in
total all bitvectors can be computed in time O(m · |Σ|/w).

A labelled successor query (for position i and symbol a)
can now be answered in O(log n) time in a straightforward
way: First we compute the path (X0, X1, . . . , X`) in the
derivation tree from the root X0 to the symbol at the i-
th position. Then we follow the path starting from the leaf
upwards to find the maximal k such that ρ(Xk) = Xk+1Y
and JY K contains the symbol a, or reject if no such k exists.
Finally, starting from Y we navigate in time O(log n) to
the leftmost leaf in the derivation tree rooted at Y which
produces the symbol a. Thereby, the position of that leaf in
the whole derivation tree can be computed using O(log n)
many additions.

A minimal subsequence occurrence of a string p =
a1a2 · · · ak in a string s = b1b2 · · · bl is given by two
positions i, j with 1 ≤ i ≤ j ≤ l such that p is a subsequence
of bibi+1 · · · bj (i.e., bibi+1 · · · bj belongs to the language
Σ∗a1Σ∗a2 · · ·Σ∗akΣ∗) but p is neither a subsequence of
bi+1 · · · bj nor of bi · · · bj−1. Following the proof of [9,
Theorem 1] we obtain:

Corollary V.6. Given an SSLP G of size m producing
a string s ∈ Σ∗ of length n and a pattern p ∈ Σ∗ one
can compute all minimal subsequence occurrences of p in s
in space O(m+m · |Σ|/w) and time O(m+m · |Σ|/w +
|p| · log n · occ) where w ≥ log n is the word size and occ is
the number of minimal subsequence occurrences of p in s.

Corollary V.6 improves [9, Theorem 1], which states the
existence of two algorithms for the computation of all min-
imal subsequence occurrences with the following running
times (the space bounds are the same as in Corollary V.6):
• O(m+m · |Σ|/w + |p| · log n · logw · occ),
• O(m+m · |Σ| · logw/w + |p| · log n · occ).
Let us list further applications of Theorem I.1 (recall that

G is an SSLP of size m for a string s of length n):
Computing fingerprints of SSLP-compressed strings:

Given two positions i ≤ j in s one wants to compute
the Karp-Rabin fingerprint of the factor of s that starts at
position i and ends at position j. In [10] it was shown that
one can compute from G a data structure of size O(m)
that allows to compute fingerprints in time O(log n). First,
the authors of [10] present a very simple data structure
of size O(m) that allows to compute fingerprints in time
O(depth(G)). With Theorem I.1, we can use this data
structure to obtain an O(log n)-time solution. This simplifies
the proof in [10] considerably.

Computing runs, squares, and palindromes in SSLP-
compressed strings: It is shown in [11] that certain com-
pact representations of the set of all runs, squares and
palindromes in s (see [11] for precise definitions) can be
computed in time O(m3 · depth(G)). We can improve the
time bound to O(m3 · log n).



Real time traversal for SSLP-compressed strings: One
wants to output the symbols of s from left to right and
thereby spend constant time per symbol. A solution can be
found in [12]; a two-way version (where one can navigate
in each step to the left or right neighboring position in s)
can be found in [13]. The drawback of these solutions is
that they need space O(depth(G)). With Theorem I.1 we
can reduce this to space O(log n).

Compressed range minimum queries: Range minimum
data structure preprocesses a given string s of integers so
that the following queries can be efficiently answered: given
i ≤ j, what is the minimum element in si, . . . , sj (the
substring of s from position i to j). We are interested in
the variant of the problem, in which the input is given as
an SSLP G. It is known, that after a preprocessing taking
O(|G|) time, one can answer range minimum queries in time
O(log n) [14, Theorem 1.1]. This implementation extends
the data structure for random access for SSLPs [7] with some
additional information, which includes in particular adding
standard range minimum data structures for subtrees leaving
the heavy path and extending the original analysis. Using
the balanced SSLP the same running time can be easily
obtained, without the need of hacking into the construction
of the balanced SSLP. To this end for each variable X we
store the length `X of the derived string JXK as well the
minimum value in JXK. In the following, let RMQ(X, i, j)
be the range minimum query called on JXK for the interval
[i, j]. Given RMQ(X, i, j), with the right-hand side for X
being X → Y Z we proceed as follows:

• If the query asks about the minimum in the whole JXK,
i.e., i = 1 and j = `X , then we return the minimum of
JXK; we call this case trivial in the following.

• If the whole range is within JY K, i.e., j ≤ `Y , then we
call RMQ(Y, i, j).

• If the whole range is within JZK, i.e., i > `Y , then we
call RMQ(Z, i− `Y , j − `Y ).

• Otherwise, i.e., when i ≤ `Y and j > `Y and (i, j) 6=
(1, `X), the range spans over the substrings generated
by both nonterminals. Then we compute the queries for
two substrings and take their minimum, i.e., we return
the minimum of RMQ(Y, i, `Y ) and RMQ(Z, 1, j −
`Y ).

To see that the running time is O(depth(G)) = O(log n)
observe first that the cost of trivial cases can be charged to
the function that called them. Thus it is enough to estimate
the number of nontrivial recursive calls. In the second and
third case there is only one recursive call for a variable that
is deeper in the derivation tree of the SSLP. In the fourth
case there are two calls, but two nontrivial calls are made at
most once during the whole computation: if two nontrivial
calls are made in the fourth case then one of them asks for
the RMQ of a suffix of JY K and the other call asks for the
RMQ of a prefix of JZK. Moreover, every recursive call on

a prefix of some string JX ′K leads to at most one nontrivial
call, which is again on a prefix of some string JX ′′K; and
analogously for suffixes.

Lifshits’ algorithm for compressed pattern match-
ing [35]: The input consists of an SSLP P for a pattern
p and an SSLP T for a text t and the question is whether
p occurs in t. Lifshits’ algorithm has a running time of
O(|P|·|T |2). It was conjectured by Lifshits that the running
time could be improved to O(|P| · |T | · log |t|). This follows
easily from Theorem I.1: the algorithm fills a table of size
|P| · |T | and on each entry it calls a recursive subprocedure,
whose running time is at most depth(T ). By Theorem I.1
we can bound the running time by O(log |t|), which proves
Lifshits’ conjecture. Note, that in the meantime a faster
algorithm for compressed pattern matching with running
time O(|T | · log |p|) was found [36].

Remark V.7 (smallest grammar problem). In the “smallest
grammar problem” (for strings) for a given string w we
want to construct a smallest SSLP defining w. The deci-
sion variant of this problem is NP-hard, the best known
approximation lower bound is 8569

8568 [3], and the best known
approximation algorithms have an approximation ratio of
O(log n), where n is the length of the input string [2]–[5].
Except for [4], all these algorithms produce SSLPs of depth
O(log n). It was discussed in [4] that the reason for the
lack of constant-factor approximation algorithms might be
the fact that smallest SSLPs can have larger than logarithmic
depth. Theorem I.1 refutes this approach.

VI. BALANCING CIRCUITS OVER ALGEBRAS

This section gives additional details on our general bal-
ancing Theorem I.3 for certain multi-sorted algebras. We
first introduce the general framework.

Let us fix a finite set S of so-called sorts. In a moment, we
will assign to each sort i ∈ S a set Ai (of elements of sort i).
An S-sorted signature is a set of symbols Γ and a mapping
type : Γ → S+ that assigns to each symbol from Γ a non-
empty string over the alphabet S. The number |type(f)| −
1 ≥ 0 is also called the rank of f . If type(f) = p ∈ S
then f is called a constant of sort p. In order to exclude
pathological cases, we assume that Γ contains for every sort
p ∈ S at least one constant of sort p.

A Γ-algebra is a tuple A = ((Ap)p∈S , (f
A)f∈Γ) where

every Ap is a non-empty set (the universe of sort p or the set
of elements of sort p) and for every f ∈ Γ with type(f) =
p1p2 · · · pnq, fA :

∏
1≤j≤nApj → Aq is an n-ary function.

We also say that Γ is the signature of A.

Example VI.1. A well known example of a multi-sorted al-
gebra is a vector space. More precisely, it can be formalized
as a two-sorted algebra where S = {v, s}. Here v stands for
“vectors” and s stands for “scalars”. The S-sorted signature
would be Γ = {0, 0, 1,⊕,�,+, ·}, where
• type(0) = v (the zero vector),



• type(0) = s (the 0-element of the scalar field),
• type(1) = s (the 1-element of the scalar field),
• type(⊕) = vvv (vector addition),
• type(�) = svv (multiplication of a scalar by a vector),
• type(+) = sss (addition in the field of scalars),
• type(·) = sss (multiplication in the field of scalars).

Let us fix S, the S-sorted signature Γ, and the Γ-algebra
A for the further discussion. A circuit over A is basically
a DAG G = (V,E) as in Section II. The nodes of G are
called gates in the following, the root node r ∈ V is called
the output gate, and gates without outgoing edges are called
input gates. In addition to Section II we assume that every
gate v ∈ V is labelled with a symbol fv ∈ Γ. In order
to evaluate G in the algebra A, it has to be well-typed
(with respect to A) in the following sense: one can assign
to every gate v ∈ V a sort sv such that for every gate
v the following holds: if v is labelled with the symbol fv
and (v, 1, v1), . . . , (v, d, vd) are the outgoing edges of v in
the circuit, then we must have type(fv) = sv1 · · · svdsv .
Clearly, if these sorts sv exist then they are uniquely defined
and it is straightforward to check whether a given circuit is
well-typed. A well-typed circuit G over the Γ-sorted algebra
A can be evaluated in the natural way. Thereby we assign
to each gate v an element av ∈ Asv . If v, v1, . . . , vd are
as above and the values av1 , . . . , avd have been already
computed then we set av = fAv (av1 , . . . , avd). In particular,
we start the evaluation process at the input gates of the
circuit. The value computed by the circuit is then ar. We
define the size of a circuit as its number of edges and the
depth of a circuit as the length of a longest path from the
output gate r to an input gate. Also recall the definition of the
unfolded size of a circuit, which was defined in the paragraph
before Theorem I.3. In the worst-case, the unfolded circuit
size is exponentially larger than the size of a circuit. In the
following we implicitly assume that all circuits are well-
typed with respect to the underlying algebra.

Example VI.2. Figure 2 shows a circuit over the vector
space A := R2 which is viewed as a Γ-sorted algebra
as explained in Example VI.1. In order to get a circuit
that evaluates to a non-trivial vector, we have to include
additional constants of sort v (i.e, vectors) in the algebra.
These constants are the symbols e1 (for the unit vector
(1, 0)T) and e2 (for the unit vector (0, 1)T). Next to each
gate, we write in Figure 2 the scalar/vector to which the gate
evaluates to.

The only missing notion in order to understand Theo-
rem I.3 is the notion of a subsumption base. Let us explain
this notion in more detail. We start with tree-like expressions
that are built from the symbols in Γ and so-called auxiliary
variables. For this let us fix a finite set Y of auxiliary
variables, where Y ∩ Γ = ∅. To every auxiliary variable
y ∈ Y we assign a sort s(y). We then define for every

⊕(34, 18)T

⊕(34, 17)T

�(32, 16)T

⊕ (2, 1)T·16

+4

+2

1

⊕(2, 0)T

e1

e2

Figure 2. A circuit over the vector space R2, which evaluates to the
vector (34, 18)T.

sort p ∈ S the set Tp(Y) (expression trees of sort p
with auxiliary variables from Y) inductively as follows:
(i) y ∈ Ts(y)(Y) for every y ∈ Y and (ii) if f ∈ Γ,
type(f) = p1 · · · pnp and t1 ∈ Tp1(Y), . . . , tn ∈ Tpn(Y)
then f(t1, . . . , tn) ∈ Tp(Y). Note that every constant of sort
p belongs to Tp(Y) (formally, we have to identify a() with
a for a constant a). We also write Tp for Tp(∅). Note that
expressions from Tp can be identified with tree-like circuits,
where every gate except of the output gate has a unique
incoming edge. In particular, an expression t ∈ Tp evaluates
to an element from Ap in the obvious way.

Next, we consider for every sort p ∈ S a special symbol
xp /∈ Γ ∪ Y which we call the main variable of sort p.
We then consider for all sorts p, q ∈ S the set Cp,q(Y)
(parameterized contexts with input sort p and output sort
q) of all expressions that are obtained from an expression
t ∈ Tq(Y) by replacing in t a unique occurrence of
a constant of sort p by xp. Let us emphasize that every
expression from Cp,q(Y) contains a unique occurrence of
the main variable xp and contains no occurrence of a main
variable xp′ for p′ 6= p. We write Cp,q for Cp,q(∅) (contexts
with input sort p and output sort q).

Consider t ∈ Cp,q . We define a unary function tA : Ap →
Aq as follows: for a ∈ Ap, tA(a) is the result of evaluating
the expression obtained from t by replacing the unique
occurrence of xp by a. We call tA a unary linear term
function (ULTF for short) over A. The adjective “linear”
is justified by the fact that xp has a unique occurrence in t.

Example VI.3. Consider again the example with the vector
space R2 and let t = e1⊕((1+1)�(xv⊕e2)) ∈ Cv,v (recall
that v is the sort of vectors). The corresponding ULTF is the
affine mapping x 7→ 2x⊕ (1, 2)T on R2.

As another example note that a ULTF, where the under-
lying algebra is a ring R (this is a one-sorted algebra), is



nothing else than a linear polynomial over R in a single
variable x.

We would like to describe the set of all ULTFs by
finitely many parameterized contexts. For this, consider
two finite sets Y and Z of auxiliary variables (they can
have a non-empty intersection). A (Y,Z)-substitution is
a mapping σ that assigns to every auxiliary variable y ∈ Y
an expression σ(y) ∈ Ts(y)(Z). Such a substitution can be
applied to a parameterized context t ∈ Cp,q(Y) and naturally
yields a parameterized context σ(t) ∈ Cp,q(Z) obtained
by replacing in t every occurrence of an auxiliary variable
y ∈ Y by the expression σ(y). A (Y, ∅)-substitution is also
called a Y-substitution. In this case, we have σ(t) ∈ Cp,q
and we can consider the ULTF σ(t)A : Ap → Aq . In this
sense we can view a parameterized context from Cp,q(Y)
as a parameterized ULTF. We say that s, t ∈ Cp,q(Y) are
equivalent (in A) if they yield the same ULTF under every
Y-substitution.

Consider now s ∈ Cp,q(Y) and t ∈ Cp,q(Z) (Y and Z
can be different sets of auxiliary variables). We say that s
is subsumed by t if there is a (Z,Y)-substitution σ such
that σ(t) and s are equivalent. Intuitively, this means that t
is more general than s. A finite subsumption base for A is
a finite set C of parameterized contexts (i.e., C is a finite
subset of

⋃
p,q∈S Cp,q(Z) for some sufficiently large set Z

of auxiliary variables) such that every parameterized context
s ∈ Cp,q(Y) (for p, q,Y arbitrary) is subsumed by some
parameterized context from C. If a multi-sorted algebra has
a finite subsumption base than the set of all ULFTs can be
described by a finite set of parameterized contexts.

Example VI.4. Every (not necessarily commutative) semir-
ing with a 0 and 1 has a finite subsumption base, consisting
of the single expression y0 + y1xy2 (y0, y1, y2 are the
auxiliary variables). If the semiring is commutative then
y0 + y1x forms a finite subsumption base. If we do not
assume that the noncommutative semiring has a 0 and 1 then
the eight expressions obtained from y0 + y1xy2 by omitting
some of the parameters y0, y1, y2 form a finite subsumption
base.

Example VI.5. The free term algebra T over Γ is defined
by T = ((Tp)p∈S , (f)f∈Γ), where every expression t ∈ Tp
evaluates to itself. If Γ contains a symbol of rank at least one,
then T has no finite subsumption base: If C were a finite
subsumption base of T , then every context could be obtained
from some t ∈ C by replacing the auxiliary parameters in t
by expressions trees. But this replacement does not change
the length of the path from the root of the context to its main
variable. Hence, we would obtain a bound for the length of
the path from the root to the main variable in a context,
which clearly does not exist.

We now have introduced all necessary notions in order to
understand Theorem I.3 according to which a circuit over

a multi-sorted algebra that has a finite subsumption base
can be balanced. Thereby the size of the circuits blows up
only by a constant factor. Note again, that “balanced” in
this context means that the depth of the constructed circuit is
bounded by O(log n) where n is the size of tree obtained by
completely unfolding the circuit. The proof of Theorem I.3
follows to a large extent the arguments from the proof of
Theorem I.1. In fact, the main tools from Sections II and III
are also used in the proof of Theorem I.3. The two main
steps in the proof of Theorem I.3 are the following:
• We start with a circuit G over a Γ-sorted algebra A. By

unfolding G into a tree we obtain an expression tree t
over the sorted signature Γ. Let n be the size of t. In
the first step we construct for the tree t a so-called tree
straight-line program of size |G| and depth O(log n).
The proof follows the arguments for Theorem I.1. Let
us emphasize that this first step is purely syntactic in
the sense that the underlying algebra A is not relevant.
Tree straight-line programs are an extension of string
straight-line programs and produce expression trees
over a sorted signature (in the next section we will
introduce an extension of tree straight-line programs to
so called unranked trees), see [17].

• Only in the second step we need the fact that A has
a finite subsumption base. This allows to transform the
tree straight-line program for t that we have constructed
in the first step back into a circuit of the same size
and depth (up to constant factors) as the tree straight-
line program. Moreover, this circuit evaluates to the
same element of A as the expression tree t (or the
initial circuit G). The arguments from this second step
appeared implicitly also in [29], [30] (these papers do
not define the concept of a finite subsumption base in
full generality).

Since every free monoid has a singleton subsumption base,
consisting of the expression y1xy2, we can deduce Theo-
rem I.1 from Theorem I.3 (note that an SSLP is the same
thing as a circuit over a free monoid). A minor technical
detail is that one first has to convert the SSLP into Chomsky
normal form. This ensures that the derivation tree of the
SSLP (which corresponds to the tree t in the above proof
outline) has (up to a factor of size two) the same size as the
string produced by the SSLP.

VII. BALANCING FOREST-STRAIGHT-LINE PROGRAMS

In this section we present a further application of the
general balancing theorem (Theorem I.3). This application
deals with unranked trees and forest-straight-line programs,
see Theorem I.2. We start with the definition of so-called
forest algebras.

A. Forest algebra

Let us fix a finite set Σ of node labels. In this section, we
consider Σ-labelled rooted ordered trees, where “ordered”



means that the children of a node are totally ordered. Every
node has a label from Σ. In contrast to the trees (expressions)
from the previous section we make no rank assumption:
the number of children of a node (also called its degree)
is not determined by its node label. A forest is a (possibly
empty) sequence of such trees. The size |v| of a forest is the
total number of nodes in v. The set of all Σ-labelled forests
is denoted by F0(Σ). Formally, F0(Σ) can be inductively
defined as the smallest set of strings over the alphabet
Σ ∪ {(, )} such that
• ε ∈ F0(Σ) (the empty forest),
• if u, v ∈ F0(Σ) then uv ∈ F0(Σ), and
• if u ∈ F0(Σ) then a(u) ∈ F0(Σ) (this is a forest

consisting of a single tree whose root is labelled with
a).

Let us fix a distinguished symbol ∗ 6∈ Σ. The set of forests
u ∈ F0(Σ ∪ {∗}) such that ∗ has a unique occurrence in u
and this occurrence is at a leaf node is denoted by F1(Σ).
Elements of F1(Σ) are called forest contexts. The symbol
∗ should be viewed as a placeholder for an arbitrary forest.
Following [37], we define the forest algebra F(Σ) as the
2-sorted algebra

(F0(Σ),F1(Σ),�00,�01,�10,�0,�1, (a(∗))a∈Σ, ε, ∗)

with the following operations:
• �ij : Fi(Σ) × Fj(Σ) → Fi+j(Σ) (i, j ∈ {0, 1},
i + j ≤ 1) is a horizontal concatenation operator: for
u ∈ Fi(Σ), v ∈ Fj(Σ) we set u �ij v = uv (i.e., we
concatenate the corresponding sequences of trees).

• �i : F1(Σ) × Fi(Σ) → Fi(Σ) is a vertical concatena-
tion operator: for u ∈ F1(Σ) and v ∈ Fi(Σ), u�i v is
obtained by replacing in u the unique occurrence of ∗
by v.

• ε ∈ F0(Σ) and ∗, a(∗) ∈ F1(Σ) (a ∈ Σ) are constants
of the forest algebra.

Note that (F0(Σ),�00, ε) and (F1(Σ),�1, ∗) are monoids.
In the following we will omit the subscripts i, j in �ij and
�i, since they will be always clear from the context. Most of
the time, we simply write uv instead of u� v, a(u) instead
of a(∗)�u, and a instead of a(ε). With these abbreviations,
a forest u ∈ F(Σ) can be also viewed as an algebraic
expression over the algebra F(Σ), which evaluates to itself.

Lemma VII.1. Every forest algebra F(Σ) has a finite
subsumption base.

Proof sketch: We denote by x0 and x1 the main
variables of sorts F0(Σ) and F1(Σ), respectively, and by
σ1, σ2, . . . (resp., τ1, τ2, . . . ) auxiliary variables of sorts
F0(Σ) (resp., F1(Σ)). Let C be the finite set consisting of
the following parameterized contexts:
• τ1 � x0,
• τ1 � x1 � σ1,
• τ1 � x1 � τ2,

a

� aa

� aaaa

� aaaa ∗ aaaa

∗

� b(aaaa ∗ aaaa)

b(∗)

� b(aaaab(aaaa ∗ aaaa)aaaa)

�

�

c

Figure 3. An FSLP.

b

a a a a b

a a a a b

a a a a b

a a a a c a a a a

a a a a

a a a a

a a a a

Figure 4. The forest to which the FSLP from Figure 3 evaluates to.

• τ1 � (τ2 � (τ3 � x0)),
• τ1 � ((τ2 � x0)� τ3),
• τ1 � (τ2 � (τ3 � x1 � σ1)),
• τ1 � ((τ2 � x1 � σ1)� τ3).

One can then show that C is a finite subsumption base for
F(Σ); see [1] for details.

B. Forest straight-line programs

A forest straight-line program over Σ, FSLP for short,
is a circuit over the forest algebra F(Σ) that evaluates
to an element of F0(Σ). Iterated vertical and horizontal
concatenations allow to generate forests, whose depth and
width is exponential in the size of the FSLP.

Example VII.2. Consider the circuit shown in Figure 3. It
evaluates to the forest shown in Figure 4. Note that we use
a 	-gate with three incoming edges. Since 	 is associative,
this does not lead to problems.

Our main result for FSLPs is:



Theorem VII.3. Given an FSLP G producing the forest u
one can compute in time O(|G|) an FSLP H for u of size
O(|G|) and depth O(log |u|).

Proof sketch: The case u = ε is trivial. Let us now
assume that u 6= ε. In a first step, one has to eliminate
gates that are labelled with the constants ε and ∗. This is
possible in linear time and increases the size of G only by
a constant factor. Basically, its the same as bringing an SSLP
into Chomsky normal form. After this preprocessing, G has
the property that its unfolded size is linearly bounded in |u|.
By Lemma VII.1 we can apply Theorem I.3 in order to get
the FSLP H with the desired properties. Strictly speaking
this proof only works for the case that the alphabet Σ of
node labels is fixed, which ensures that we are working
with a fixed forest algebra (note that Theorem I.3 deals with
a fixed algebra A). But with a little effort one can also allow
the alphabet Σ to be part of the input, see the full version [1]
for details (the crucial detail is that the finite subsumption
base from the proof of Lemma VII.1 does not depend on
the alphabet Σ).

The analogous statements for tree straight-line programs
and top dags from Theorem I.2 are shown in a similar
way. Top dags are basically a minor syntactic variant of
forest straight-line programs, but embedding top dags into
our general algebraic framework is slightly more technical
than for forest straight-line programs.

VIII. OPEN PROBLEMS

For SSLPs one may require a strong notion of balancing.
Let us say that an SSLP G is c-balanced if (i) the length of
every right-hand side is at most c and (ii) if a variable Y
occurs in ρ(X) then |JY KG | ≤ |JXKG |/2. It is open, whether
there is a constant c such that for every SSLP of size m there
exists an equivalent c-balanced SSLP of size O(m).

Another important open problem is whether the query
time bound in Corollary V.1 (random access to grammar-
compressed strings) can be improved from O(log n) to
O(log n/ log log n). If we allow space O(m · logε n) (for
any small ε > 0) then such an improvement is possi-
ble by Corollary V.3, but it is open whether query time
O(log n/ log log n) can be achieved with space O(m). By
the lower bound from [38] this would be an optimal random-
access data structure for grammar-compressed strings.
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[23] L. Hübschle-Schneider and R. Raman, “Tree compression
with top trees revisited,” in Proceedings of the 14th Inter-
national Symposium on Experimental Algorithms, SEA 2015,
ser. Lecture Notes in Computer Science, vol. 9125. Springer,
2015, pp. 15–27.

[24] G. L. Miller and S. Teng, “Tree-based parallel algorithm
design,” Algorithmica, vol. 19, no. 4, pp. 369–389, 1997.

[25] S. R. Kosaraju, “On parallel evaluation of classes of cir-
cuits,” in Proceedings of the 10th Conference on Foundations
of Software Technology and Theoretical Computer Science,
FSTTCS 1990, ser. Lecture Notes in Computer Science, vol.
472. Springer, 1990, pp. 232–237.

[26] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, “Fast
parallel computation of polynomials using few processors,”
SIAM Journal on Computing, vol. 12, no. 4, pp. 641–644,
1983.

[27] E. Allender, J. Jiao, M. Mahajan, and V. Vinay, “Non-
commutative arithmetic circuits: Depth reduction and size
lower bounds,” Theoretical Computer Science, vol. 209, no.
1-2, pp. 47–86, 1998.

[28] M. Paterson and L. G. Valiant, “Circuit size is nonlinear in
depth,” Theoretical Computer Science, vol. 2, no. 3, pp. 397–
400, 1976.

[29] M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth,
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