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Abstract—Online fault-diagnosis is applied to various systems
to enable an automatic monitoring and, if applicable, the recovery
from faults to prevent the system from failing. For a sound
decision on occurred faults, typically a large amount of sensor
measurements and state variables has to be gathered, analyzed
and evaluated in real-time. Due to the complexity and the nature
of distributed systems all this data needs to be communicated
among the network, which is an expensive affair in terms of
communication resources and time. In this paper we present
compression strategies that utilize the fact that many of these
data streams are highly correlated and can be compressed
simultaneously. Experimental results show that this can lead to
better compression ratios compared to an individual compression
of the data streams. Moreover, the algorithms support real-time
constraints for time-triggered architectures and enable the data
to be transmitted by means of shorter messages, leading to a
reduced communication time and improved scheduling results.

Keywords—Online-Diagnosis; Real-Time; Data Compression;
Scheduling

I. INTRODUCTION

It is the goal of online fault-diagnosis to detect, diagnose
and, especially in safety-critical application domains, over-
come system faults at run time, e.g., through reconfigurations,
in order to provide the required services with a very high
reliability. Typical faults are faults in the design of a compo-
nent or a system, transient or permanent hardware faults or
erroneous user operations amongst others. As faults cannot
be prevented at all times it is of uttermost importance to
equip the system with powerful diagnostic algorithms able to
process, analyze and store the often huge amount of raw data
of a variety of sensors as well as system input and output
parameters necessary for correct and fast decisions on fault
detection and identification [3], [5].

The quality of diagnostic decisions highly depends on the
available amount of data. Especially in distributed systems
where the diagnostic inference process is temporally and
spatially decomposed to multiple processing units, a limited
storage capacity of local real-time databases may narrow
the performance of diagnostic decisions, e.g., of long term
trend analyses. Likewise, limited communication resources or
bottlenecks may require data to be discarded or may lead to
communication delays, which are also disadvantageous with
respect to the time needed to conclude a specific fault from a
first symptom. This, however, is a quality characteristic of a
diagnostic architecture.

Since a distributed diagnostic process requires both, the
storage and the fast exchange of a huge amount of data within

a network, the DAKODIS1 project deploys data compression
for online fault-diagnosis in a time-triggered architecture.
In [4] it is shown that data compression is a feasible instrument
to save bandwidth and consequently provide stronger real-
time guarantees or save communication resources (see [9]
for an introduction into the wide area of data compression).
Especially systems with limited resources may require data
compression to actually make fault-diagnosis possible or keep
a diagnosis system alive if more and more traffic is scheduled
to the existing communication channels.

The majority of compression algorithms such as entropy-
based compressors or dictionary-based compressors (see
e.g., [9]) are not suitable for time-triggered systems, as they
do not guarantee a fixed compression ratio; see also Section II.
This was overcome in [4], where a simple cache-based com-
pression algorithm was presented that allows the loss of a
small ratio of the input data values. It works especially well
if the input data stream shows a temporal locality in the sense
that consecutive data values are close with high probability.
Physical sensor signals typically show this behavior.

In [4], only the compression of a single data stream
is addressed. On the other hand, diagnostic data streams
within distributed networks are often highly correlated. For
instance, multiple redundant sensors measure the same physi-
cal quantities, or measurements of interdependent components
or subsystems show other kinds of characteristic dependencies.
These correlations yield the potential for further compression.
In time-triggered architectures all routes for the messages
are predetermined. In [7] it is demonstrated that if messages
of multiple data streams that take the same routes can be
compressed to one combined sample, scheduling results can
be improved. However, no real-time compression algorithms
for such a scenario have been introduced so far. In this
paper we close this gap and extend the work from [4] to
the simultaneous compression of multiple data streams. We
evaluate the resulting compressor with voltage and current
measurement signals from a DCDC converter and demonstrate
that the simultaneous compression of multiple correlated data
streams leads to a better compression ratio without increas-
ing the overall number of lost data values. The proposed
compressors support real-time constraints for time-triggered

1DAKODIS – Data compression for online-diagnosis systems. The primary
objective of this research project is an increased efficiency and the reduction
of overhead for online-diagnosis in open embedded systems using data
compression. (see https://networked-embedded.de/es/index.php/dakodis.html)



architectures by maintaining a constant compression ratio.
For the identification of potential candidates for a combined
compression, a pre-analysis of the available data streams of the
system is conducted. The results of the compression algorithm
provide a scheduler with meaningful information to plan the
most beneficial task allocations and message combinations.

II. MODEL

An architecture for time-triggered real-time systems is de-
fined in [4]. The three core aspects of the model are (1)
logical modeling of diagnostic processing tasks, (2) intertask
communication procedure modeling supporting data compres-
sion and (3) task scheduling to map the processing tasks to
computation nodes of a physical network infrastructure, and
thus, establishing a time-triggered architecture (see [2] for an
introduction to timing-predictable embedded systems). Within
this environment, specific requirements for the compression
algorithm arise:
• Compression and decompression underlie hard real time

constraints.
• Only online (one-pass) compression algorithms can be

used that compress every arriving data value before the
next data value arrives.

• No statistical information concerning the probability dis-
tribution of the data values is available.

• In order to utilize compression for the scheduling process,
the compressor should guarantee a certain worst-case
compression ratio below one.

• Compression should be lossless (after an initial quan-
tization phase for sensor data), with the exception that
occasionally data values can be completely lost. This
means that every data value is either transformed by
the sender into a compressed representation that can be
exactly recovered by the receiver, or it is transformed
into a default value that tells the receiver that the original
data value is lost. Losing some data values is unavoidable
if we want to guarantee a worst-case compression ratio
below one. A small probability for loosing data values is
tolerable in our context, since diagnosis is typically not
dependent on single data values.

These requirement rule out most of the classical compressors,
e.g., lossy compressors based on transform coding, as they
are inherently lossy and do not allow to recover data values
without error and also lossless compressors (e.g., entropy-
based coders, or arithmetic coding) as they cannot guarantee
a fixed compression ratio. For a detailed overview on classical
compression techniques see [9].

For our scenario we assume the data communication to be
error free, i.e., a data value is received exactly as it was sent.
Under challenging conditions, forward error correction is a
feasible instrument to ensure this.

III. COMPRESSION

The compression schemes proposed in this paper are based
on the work of [4], where the overall system architecture
as well as the compression model is addressed in detail.

Therefore, Section III-A briefly summarizes the working prin-
ciples of the cache-based online data compression algorithm
before the subsequent sections deal with the extension to the
compression of multiple correlated data streams.

A. Compression of Individual Data Streams

The goal is to compress a sequence of n-bit data values
(for a fixed n), which are produced by a sensor measuring a
physical quantity. It is assumed that the data values exhibit
some locality. For the compression every n-bit data value is
split into a block of s high-order bits (called the head) and the
remaining t = n−s low-order bits (called the tail). Due to the
locality of consecutive data values, the heads of consecutive
data values are expected to only show a small variation over
time. The n = s + t bits in a data value are compressed to
r + t bits (for some r < s). For this, the algorithm transmits
the t bits from the tail uncompressed and compresses the s
bits from the head to r bits. To achieve the latter, a dictionary
D stores the 2r − 1 most recently seen heads at dictionary
entries D[p], where the dictionary index p is an r-bit code
different from the reserved sequence 0r (r 0-bits). Let the
next n-bit data value be x = uv, where u ∈ {0, 1}s is the
head and v ∈ {0, 1}t is the tail. If the head u is in the
dictionary and stored at entry D[p] then the (r + t)-bit code
pv is transmitted. Otherwise, a so called miss occurs which is
indicated to the receiver by the bit sequence 0r. The sender
then transmits the bit sequence 0ru (recall that s ≤ t so 0ru
fits into r+ t bits). Moreover, sender and receiver update their
dictionaries by computing a dictionary index p = fresh(D)
and setting D[p] := u. Here fresh(D) is the index of a free
dictionary entry, or, if the dictionary is completely filled, an
index that is computed by some replacement strategy (we use
the least-recently-used strategy, LRU for short). The remaining
t − s bits following 0ru can be used to transmit the t − s
most significant bits (MSBs) of the tail v to achieve a higher
accuracy. Due to locality in the data values we expect a small
number of misses over time. Note that sender and receiver can
keep their dictionaries synchronized. The main features of the
compression algorithm are:
• A fixed compression ratio of (r + t)/(s + t) < 1 is

achieved for every data value. This is contrary to clas-
sical lossless compression, where only statements about
the average compression ratio are possible. However, a
fixed compression ratio is important for time-triggered
architectures.

• To make a fixed compression ratio < 1 possible, we
have to accept occasional losses of data values. A small
number of lost data values is acceptable for many online-
diagnosis applications. Moreover, even in the case of a
miss, an approximation in form of the t MSBs of the data
value is transmitted.

• Those data values that are not lost are transmitted without
any loss in accuracy, which is in contrast to classical lossy
compression.

Related work from data compression. The idea of using
locality in the data values for compression can be found in



many works. One of the simplest ways of exploiting locality
is delta-coding, where differences between consecutive data
values are transmitted. These differences are typically small
and can be further compressed with an entropy encoder. In the
context of wireless sensor networks this idea is implemented
in the LEC-compressor from [8], [10]. In contrast to our
method, the LEC-compressor is a lossless entropy-based en-
coder, which does not show a fixed compression rate. In lossy
compression, differential encoding [9, Chapter 11] exploits
correlation between successive data values by transmitting the
differences between a prediction of the next data value and
the actual data value. In the area of information theory the
problem of compressing correlated data streams is known as
distributed source coding, see [1].

B. Simultaneous Compression of Multiple Data Streams

The cache-based compression algorithm introduced in Sec-
tion III-A handles each data stream individually. For the
compression it utilizes the fact that measurements of physical
quantities can be often covered by just a part of the overall
code word space for certain time intervals. With a view
to the overall system architecture, many data streams for
monitoring and diagnostic purposes (e.g., voltage, current or
vibration measurements) of complex mechatronic systems are
gathered and processed at different locations and need to be
exchanged via a distributed network. Often, many of these
data streams are highly correlated due to redundant mea-
surements or physical relations of the measured signals. The
enhanced compression scheme presented in the following takes
advantage of both facts, the neighborhood assumption and
the signal correlations. Since the overall data traffic needs to
be scheduled in time-triggered architectures, the transmission
routes are predetermined. Especially when the source and the
destination nodes of two or more data streams are located close
to each other or are the same, the overall message size for
transmitting the data can be reduced, leading to advantageous
scheduling results (e.g., a shorter makespan).

To exploit correlations of data streams we adapt the cache-
based encoding scheme to encode multiple data streams at
once. Assume that we have d data streams. Let xi (1 ≤ i ≤ d)
be the current data value of the i-th stream. We further assume
that xi is an ni-bit data value. For every i ∈ [1, d] we fix a
partition ni = si+ti and split xi into xi = uivi with |ui| = si
and |vi| = ti. The bit sequence ui (resp., vi) is the current head
(resp., tail) of the i-th stream. We do not assume si = sj or
ti = tj for i 6= j. Let s =

∑d
i=1 si and t =

∑d
i=1 ti for the

rest of the section. One could apply the compression scheme
from Section III-A to each of the d data streams separately
by choosing numbers ri < si and maintaining a dictionary
of size 2ri − 1 for every 1 ≤ i ≤ d. This leads to an overall
compression ratio of (

∑d
i=1 ri+t)/(s+t). On the other hand,

due to correlations between the data streams, the tuples of data
values (x1, . . . , xd) will be scattered around a low dimensional
subspace of the d-dimensional product space. If, for instance,
d = 2 and x2 = f(x1) for a function f then all tuples belong
to a one-dimensional curve in the two-dimensional plane. In

Algorithm 1 Cache-based algorithm for d streams
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: initialize dictionary D as empty hash table of size 2r − 1
4: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d
5: if there is p with D[p] = (u1, . . . , ud) then
6: send pv1v2 · · · vd to the receiver
7: else
8: send 0ru1u2 · · ·ud to the receiver
9: p := fresh(D)

10: D[p] := (u1, . . . , ud)
11: end if

such a case we can obtain a better compression ratio of (r +
t)/(s+ t) by using a single dictionary of size 2r−1 for some
r <

∑d
i=1 ri that stores tuples of heads u = (u1, . . . , ud),

which need s bits. The compressed data value then consists
of the dictionary index p ∈ {0, 1}r, where u is stored and
the concatenation v1v2 · · · vd of the current tails. In case of a
miss we transmit 0r followed by u. This leaves t− s unused
bits. Likewise to the original approach we use them to transmit
parts of the tails. In the multidimensional case there are several
possibilities:
• Transmit as many tails as possible completely and fill the

remaining bits with the MSBs of the next tail,
• transmit equally many MSBs for each tail,
• transmit MSBs for each tail; the number of MSBs is

weighted by the complete tail length.
Note that in this approach all d data values from (x1, . . . , xd)
are lost in case of a miss. In consequence, this method is a
trade-off between a better (i.e., lower) compression ratio and
a higher number of lost data values. Its implementation with
a variable number d of streams can be found on our project
website.

C. Dynamic Simultaneous Compression of Multiple Data
Streams

It turns out that one can reduce the number of misses by
adding some flexibility using offsets in the dictionary entries.
Consider a sequence of values S = a1, a2, . . . , ak on a single
stream such that for all 1 ≤ i < k, |ai − ai+1| < 2t−1 but
bai/2tc 6= bai+1/2

tc (s and t are the size of the head and
tail, respectively). If one compresses S using the cache-based
compression algorithm from Section III-A with a dictionary of
size 1 (i.e., r = 2), then this results in k misses, since there are
no consecutive values in S with the same head. To handle this
case, Jo et al. proposed a dynamic cache-based algorithm [4].
In this algorithm, every dictionary entry D[p] is a pair (u, δ)
of a head u ∈ {0, 1}s and an offset δ ∈ [−2t−1, 2t−1−1]. We
define a corresponding interval I[p] = [u2t+ δ, u2t+ δ+2t−
1]. Here and in the following we identify heads (resp., tails)
with numbers from the interval [0, 2s − 1] (resp., [0, 2t − 1])
using their binary representation. We say that p covers the
data values in the interval I[p]. The cache-based compression
algorithm from Section III-A can be considered as the special
case where δ is always 0. Let us write (u[p], δ[p]) for D[p].



When the sender transmits a code word x = uv where u
(resp. v) is the head (resp., tail) of x, the sender first checks
whether there is a dictionary index p that covers x. Since
δ[p] ∈ [−2t−1, 2t−1−1], we must have u[p] ∈ {u−1, u, u+1}.
Now suppose that the dictionary contains an index p which
covers x (otherwise, the sender transmits 0ru and adds the pair
(u, 0) to the dictionary). The sender takes the smallest such p
and transmits pv to the receiver. Then it updates the dictionary
in such a way that x becomes the center of an interval I[q] for
some dictionary index q. For this, it first ensures that u[q] = u
holds for a unique index q. Then, it sets the offset δ[q] to v−
2t−1. In this way, x becomes the center of the interval I[q]. The
receiver reconstructs x from p and v and updates its dictionary
analogously. One easily observes that in the above example
only a1 is lost with this dynamic cache-based compression
algorithm while maintaining a dictionary of size 1.

To compress highly-correlated multiple streams efficiently
when each stream has consecutive data values with small gaps,
we make Algorithm 1 dynamic: Each dictionary entry D[p]
stores a d-tuple (u1, . . . , ud) of heads (ui ∈ {0, 1}si ) and an
offset vector (δ1, . . . , δd) with δi ∈ [−2ti−1, 2ti−1 − 1]. Let
us define u[p, i] = ui, δ[p, i] = δi and the interval

I[p, i] = [ui2
ti + δi, ui2

ti + δi + 2ti − 1].

We say that p covers the data values in the d-dimensional
hypercube

H[p] :=

d∏
i=1

I[p, i].

We call this hypercube an active hypercube and the union of
all active hypercubes is called the set of active data tuples.
Now consider the case that the sender transmits a tuple x =
(x1, . . . , xd) of data values from d data streams to the receiver.
Let xi = uivi as in Section III-B. Then the sender first checks
whether there is a dictionary index p that covers x (otherwise,
the sender transmits 0ru1 · · ·ud, and adds (u1, . . . , ud) with
the offset vector (0, . . . , 0) to the dictionary). For every 1 ≤
i ≤ d we must have u[p, i] ∈ {ui − 1, ui, ui + 1}. The sender
again takes the first such p and transmits pv1v2 · · · vd to the
receiver. Then it makes the same updates that were described
above for the case d = 1 in every dimension, see Algorithm 2.

In the following two subsections we explain the improve-
ments of Algorithm 2 that further reduces the number of lost
data values considerably.

D. Partial Misses

When compressing d data streams simultaneously, a miss
occurs if there is no p covering x. Consider an example with
d = 2 streams where s1 = s2 = 4, t1 = t2 = 8, and r = 2,
i.e., the dictionary D is of size 2r − 1 = 3. Table I shows an
example for a dictionary; all offsets are assumed to be zero.
The dictionary index 00 is reserved for the indication of the
miss case. If the heads of the current data values x1 and x2 are
u1 = 1001 and u2 = 1101, respectively, there is a miss as the
required concatenation of heads is not in the dictionary. Hence,
the tail bits are used to send the new head combination u1u2

Algorithm 2 Dynamic cache-based algorithm
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: miss : variable for indicating the event of a miss
4: initialize dictionary D as empty hash table of size 2r − 1
5: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d.
6: if there is p ∈ {0, 1}r \ {0r} covering (x1, . . . , xd) then
7: let p be the smallest index covering (x1, . . . , xd)
8: send pv1 · · · vd to receiver
9: miss := 0

10: else
11: send 0ru1u2 · · ·ud to receiver
12: miss := 1
13: end if
14: if there is no q with u[q] = (u1, . . . , ud) then
15: q := fresh(D)
16: u[q] := (u1, . . . , ud)
17: δ[q] := (0, . . . , 0)
18: end if
19: if miss = 0 then
20: let q be the unique index with u[q] = (u1, . . . , ud)
21: δ[q] := (v1 − 2t1−1, . . . , vd − 2td−1)
22: end if

to the receiver. Figure 1 illustrates the active hypercubes (here
squares) as blue squares with the missed data value marked
as a red cross.

In the above situation, both data values x1 and x2 are
lost. The strategy presented in the following overcomes this
disadvantage of the algorithm in many cases and allows to
communicate the current data values corresponding to some
of the streams successfully. This is realized by reserving an
additional dictionary index (the bit sequence 0r−11) to indicate
a so called partial miss (in contrast to a full miss which
is indicated by 0r). Hence, the dictionary size is reduced
to 2r − 2. The number of bits transmitted per time step is
r + t (the length of the dictionary index plus the length of
all tails) as before. In the case of a partial miss, the bit
sequence following 0r−11 is interpreted in a way different to
our previous algorithm. Given the example of Table I, D[01]
is removed and p = 01 is used to indicate a partial miss.

If there is no dictionary index p that covers the whole tuple
of data values (x1, . . . , xd), the algorithm seeks for a p that
covers at least some of the data values. For this, we define

TABLE I
CODEBOOK FOR TWO-DIMENSIONAL STREAM COMPRESSION

dictionary index p u[p, 1] u[p, 2]

01 0110 1010

10 0111 1011

11 1001 1100
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1011

1100

1101

stream 1

stream 2

0110 0111

+

1000 1001 1010

Fig. 1. Simultaneous compression of two data streams

the set M [p] = {i ∈ [1, d] | xi /∈ I[p, i]} of those dimensions
where p does not cover the corresponding data value. In our
example (u1 = 1001 and u2 = 1101) we have M [10] = {1, 2}
and M [11] = {2}.

Our algorithm tries to encode as many entries from the input
tuple (x1, . . . , xd) as possible by looping over all dictionary
indices p ∈ {0, 1}r \ {0r, 0r−11}. Consider a specific index
p. Assume that we tell the receiver p and the set M [p]. This
leaves t− r− d bits from the initial r+ t bits (we need r bits
for the partial miss indicator 0r−11, r bits for p and d bits for
M [p]). We can use these t − r − d bits in order to send the
following data to the receiver:

1) All tails vi for i ∈ [1, d] \ M [p]. Note that for i ∈
[1, d] \M [p], the receiver can obtain the head ui of xi
(and consequently the data value xi) from the dictionary
entry D[p] as in Section III-C. Note that

∑
i∈[1,d]\M [p] ti

bits are needed for these tails.
2) All differences ui−u[p, i] for every dimension i ∈M [p].

Note that for each difference we need one bit to encode
the sign of the difference. Also note that the differences
ui − u[p, i] (i ∈ M [p]) together with the index p allow
to reconstruct the missed heads ui (i ∈ M [p]) at the
receiver side, which is necessary in order to update the
dictionary.

In our example, if p = 11 then M [11] = {2} and the only
needed difference is u2 − u[11, 2] = 1. For the differences in
point 2 we have

h =
∑

i∈M [p]
ti − r − d

bits available. If all the differences from point 2 fit into these
h bits, then p is a valid choice for the algorithm and all data
values xi with i ∈ [1, d]\M [p] will be correctly transmitted. If
it turns out that there is more than one valid choice for p, then
one could choose that p that allows to transmit the maximal
number of data values. There might also be scenarios where
some of the data streams are more important; then one would
give priority to these streams. If no valid index p is found then
a full miss will be indicated via the bit sequence 0r.

Especially for large dictionary sizes, where r is large, h
becomes small. However, for a large dictionary (e.g., r > 6)
one has the option to use more than one dictionary index to
indicate a partial miss without increasing the number misses
significantly. If we decide to reserve 2k dictionary indices (for
some k < r) to indicate partial misses (which results in the
dictionary size 2r−1−2k), k bits can be additionally assigned
to h as each of the 2k reserved indices now refers to a certain
part of the dictionary which can be encoded with less bits.

E. Grouping of Active Hypercubes

For the cache-based compression algorithm from Sec-
tion III-B (where all offsets are zero) each active hypercube
is maintained individually in terms of its corresponding head
tuple in the dictionary, i.e., only in a miss case, the sender and
the receiver synchronously update the dictionary by replacing
the least-recently-used head tuple by the missed head tuple.
The dynamic version of the algorithm from Section III-C uses
an offset parameter to center an active hypercube around the
transmitted sample to provide a better coverage of the sample’s
neighborhood.

The results of [4] show, that at the same compression
ratio smaller dictionaries with larger hypercubes outperform
larger dictionaries with smaller hypercubes, although the latter
constellation manages more active values than the former, e.g.,
in the paper compare the constellation d = 1, r = 3, and t = 8
((23 − 1) · 28 = 1792 active values) against r = 1 and t = 10
(1024 active values). In many cases a newly inserted small
active hypercube is not able to cover the next data value,
especially if t is small compared to n (e.g., t = n/2). We
overcome this disadvantage with new strategies for combining
multiple adjacent active hypercubes to larger active regions
that cover more values around the last transmitted sample. This
can be applied to the individual stream compression and to
the simultaneous compression of multiple data streams. In the
latter case, various possibilities exist how to form a so called
region of active hypercubes. Such a region is characterized by
a subset of active hypercubes H[p], one of which is defined
as the center hypercube. An active region has to be connected
in the following sense: Take the graph, whose vertices are
the (d-dimensional) hypercubes from the region, and where
two hypercubes are connected by an edge iff they intersect
in a d′-dimensional sub-hypercube for some 0 ≤ d′ < d.
Then this graph has to be connected. We specify a group of
active hypercubes by a set P ⊆ {0, 1}r \ {0r} of (usually
consecutive) dictionary indices, all having the same offset
vector (which we call the offset of the region): δ[p] = δ[p′] for
all p, p ∈ P with p 6= p′. This means that if one hypercube is
moved (by changing the corresponding offset vector) then all
other hypercubes from the region are moved in the same way.
Moreover, there is a distinguished pc ∈ P such that H[pc]
is the center hypercube of the region, and we call u[pc] the
center head of the region. The active region corresponding to
P is

R[P ] =
⋃
p∈P

H[p].



We impose the same restriction on the offset vectors as
in Section III-C, i.e., offset vectors have to belong to∏d

i=1[−2ti−1, 2ti−1−1]). After every successful transmission
(successful in the sense that no miss occurs) we update the
heads and the common offset for the region R[P ] that covers
the current tuple of data values x = (x1, . . . , xd) in such
a way that x becomes the center of the center hypercube.
Let xi = uivi where ui is the head of xi and vi is the
tail of xi. Assume that x belongs to the region R[P ], i.e.,
no miss occurs. We then update every head u[p] and offset
λ[p] for p ∈ P by u[p] := u[p] + (u1, . . . , ud) − u[pc] and
λ[p] := (v1−2t1−1, . . . , vd−2td−1). Some care has to be taken
in case a head u[p] is out the allowed range (e.g., contains a
negative entry).

One may use only one active region (i.e., all dictionary
indices contribute to the region) or several regions that can
be moved independently from each other. If the data values
are clustered around several areas than one ideally uses one
active region per cluster. In a miss case, the least-recently-used
region is moved to cover the current tuple of data values.

In the one-dimensional case a region is formed from a
certain number (say k) of adjacent intervals which yields a
single interval I = [u2t+δ, u′2t+δ−1] where u, u′ ∈ {0, 1}s,
k = u′ − u and δ is the common offset for the region. The
size of this interval is k2t ≥ 2t. This large interval provides
a better coverage of the current data value and (under the
locality assumption) leads to a higher probability that the next
date value is also covered by I .

The grouping technique shows its full potential for the
compression of several correlated data streams. Multiple cor-
related signals often show a characteristic behavior in the d-
dimensional product space in the sense that they are con-
centrated around a low-dimensional subspace of the overall
product space. This fact is utilized in multi-stream compres-
sion with grouping and enables us to significantly reduce the
number of lost data values. For instance, data values of two
physically related signals might rise and fall in a similar way.
They will be predominantly covered by regions that cover
imaginary slopes in the two-dimensional product space. In
the current stage, our algorithm supports predefined fixed d-
dimensional regions with a different number of hypercubes
for different dictionary sizes (see Section V). We defined
symmetric regions based on one center hypercube, e.g., a
square or rectangle in the two-dimensional case, or a cuboid
in the three-dimensional case.

Table II shows an example for a dictionary that defines a
single active two-dimensional region consisting of 7 squares.
This region corresponds to the 7 squares in Figure 2 with the
black perimeter. Darker plotted squares indicate a higher hit
rate with respect to the center of the region. We see that the
marked region is a good choice to cover the majority of all
values with a rather small dictionary.

Comparing the covered region of values with single-stream
compression, one would need to concatenate 3 intervals in
each stream to cover a square that encloses the defined region
for the two-dimensional stream space. For this, the single-

TABLE II
HEAD COMBINATIONS FOR A TWO-DIMENSIONAL REGION OF 7 SQUARES

dictionary index p u[p, 1] u[p, 2]

001 u1 − 1 u2 − 1

010 u1 − 1 u2

011 u1 u2 − 1

100 u1 u2

101 u1 u2 + 1

110 u1 + 1 u2

111 u1 + 1 u2 + 1

stream compression requires more bits (e.g., r1 = r2 = 2,
r = r1 + r2 = 4 compared to r = 3 for the combined com-
pression). This effect scales for larger regions, making multi-
stream compression outperforming single-stream compression
due to its ability to save bits by limiting the value coverage
to the special region of interest.

Let us remark that the grouping technique from this sec-
tion can be combined with the partial miss technique from
Section III-D. In fact, this combination leads to the smallest
number of lost data values in our experimental evaluation that
will be discussed in the next section.

IV. EXAMPLES AND EVALUATION

The recent developments in the fields of automotive and
industrial applications demand highly reliable systems, which
are able to monitor and diagnose themselves from a large
number of sensor data or state variables. In order to guarantee
the real-time requirements of these systems, time-triggered
architectures are utilized, where the complete communication
of data streams is predetermined and scheduled. Fixed com-
pression ratios are needed for this.

Up-to-date fault-diagnosis techniques are based on machine
learning, neural networks and artificial intelligence and require
the constant processing of large amounts of input data [6].
The complexity of these systems arises, amongst others, due
to the spatial decomposition, where sensor data are gathered,
merged, and processed at different locations, e.g., processing
units or cloud services. It is our goal to show that a combined
compression of multiple data streams is able to reduce the size
of messages compared to an individual stream compression.
This enables a scheduling algorithm to optimize the task
allocation and consequently the makespan.

Typical sensor data used for fault-diagnosis are voltage
and current measurements at electric components which need
to be communicated from their origin at the sensors to the
relevant processing units through a distributed network. For
the analyses and evaluation of our compression algorithms
we simulated data with the hybrid-electric vehicle (HEV)



Simulink model2. It allows to realistically simulate sensor
measurements and state variables at the various included
electrical and mechanical components according to a driving
cycle input. A detailed introduction to the model can be found
in [4].

The experimental results for the simultaneous two-
dimensional data stream compression are based on the voltage
and current measurements at the DCDC converter of the
Simulink model output of a WLTP3-Class 3 driving cycle
simulation. The signals are suitable for the evaluation as
they offer a challenging signal behavior and can be seen as
representatives of signals often to be analyzed in diagnosis
systems. They include a broad coverage of quantization levels,
slowly varying as well as rapidly varying signal sequences.
Each data set contains 180100 samples, quantized with 16 bits
with a sampling frequency of 100Hz. Moreover, they show a
correlation based on their physical relation, i.e., the two signals
rise and drop in a similar fashion, often with different offsets.
The implementations can be found on our project website4.

The definition of a suitable shape of an active region in the
sense of Section III-E significantly influences the compression
ratio for the simultaneous compression of several data streams.
The heat map in Figure 2 shows a region with 7 × 7 = 49
squares and the relative center u1 = u2 = 0. For the analysis
we set r = 6 and used only 49 out of the available 63
dictionary entries. According to Section III-C, the region is
always centered around the last transmitted sample. From
darker to lighter colors we see that consecutive samples are
covered by squares lying on a diagonal of the region. This
is expected if two signals rise and fall in a similar fashion.
Based on this analysis, a subset of the shown squares can be
used for smaller dictionary sizes (see Table II), or more squares
can form larger regions. A white square indicates that no input
sample was covered by that square, meaning that this square
is dispensable and can be removed from the region without
increasing the number of lost data values.

Figure 3 shows the relationship between the loss rate (the
total number of lost data values divided by the total number
of data values in all streams) and the compression ratio
for the combined compression of the two correlated signals
with different settings for the parameters r and t. All results
are calculated according to the static cache-based algorithm
(Section III-B) extended by the grouping technique from
Section III-E. Moreover, we highlight the partial miss strategy
(Section III-D), which reduces the loss rate for all compression
ratios, e.g., compare the blue line with the square markers with
the red line with the diamond markers.

Figure 4 demonstrates the improvements of the simultane-
ous compression of two data streams when the hypercubes
in the dictionary are maintained as one region according to

2Hybrid-Electric Vehicle Model in Simulink; http://www.mathworks.com/
matlabcentral/fileexchange/28441-hybrid-electric-vehicle-model-in-simulink

3Worldwide Harmonized Light-Duty Vehicles Test Procedure; https://
www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/ECE-TRANS-WP29-
2014-027e.pdf

4https://networked-embedded.de/es/index.php/dakodis.html

Fig. 2. Heat map (logarithmic scale) of the hitting squares around the center.
The active region consists of 49 hypercubes (here squares).
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written to the data points. Lines between data points are shown for illustration
only.

Section III-E. For the tail lengths t1 = t2 = 8 (compare
the blue line with square markers with the red line with
diamond markers) the loss rate drops from 2.2% to 0.34%
at a compression ratio of 0.625. Moreover, we see that larger
dictionaries with smaller hypercubes (here squares) enable to
better adjust them to the signal, e.g., at a compression ratio of
0.625, the red line lies below the purple line.

In Figure 5 we compare the combined compression of the
two data streams (according to the dynamic cache-based algo-
rithm with the improvements from Sections III-D and III-E)
with the two streams compressed individually (dynamic cache-
based algorithm with d = 1 and grouping according to
Section III-E), where the loss rate is calculated from the
overall number of lost samples in both streams divided by the
overall number of transmitted samples. To have comparisons
for all compression ratios we performed two simulations for
the individual stream compressions, one where the tail sizes
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are t1 = t2 = 8 (red line with diamond markers) and another
one with t1 = 8, t2 = 9 (orange line with circles). The
results show, that the simultaneous compression of the two
data streams outperforms the individual stream compression up
to compression ratios of about 0.75, as the blue line with the
square markers is the lowest. It is to be expected that this effect
advantageously scales with the combination of more correlated
streams. The fact that combined compression enables shorter
message sizes without increasing the loss rate is especially
important in the context of scheduling. This allows to reduce
the makespan (and therefore leads to a better overall system
performance) by computing a different job allocation as was
demonstrated in [7]. Due to the selection of our example
signals we expect similar results for many other signals and
applications.

V. FUTURE WORK

The performance of the combined compression with group-
ing greatly relies on the defined active region to be able to

beneficially capture the signal characteristics in the product
space. As one cannot expect to always have this knowledge,
or that a defined region works well at all times, further im-
provements to the algorithms include an automatic generation
of suitable regions, which are also able to dynamically adapt
to the signal characteristics over time, e.g., through a short
time history analysis of the signal behaviors.

Moreover, new challenges arise when the achieved results
are combined with the scheduling algorithms for the time-
triggered DAKODIS architecture. Especially with respect to
the makespan we want to focus on the possibilities to auto-
matically determine when it is beneficial to combine some
data streams and when they are better to be compressed
individually.

VI. CONCLUSION

In this paper we firstly motivate the usage of data compres-
sion in distributed online-diagnosis systems. We highlight the
fact that diagnostic data streams (e.g., sensor measurements
of physical quantities) are often highly correlated and present
compression algorithms that allow a simultaneous compression
of such data streams utilizing the special signal characteristics.
The introduced algorithms support real-time architectures by
guaranteeing a fixed compression ratio. With an example we
show that, depending on the parameters, more than one third
of the bits (34.3%) can be saved while still not losing more
than 0.2% of the values (see the fourth data point on the
blue curve in Figure 5). In turn, this means that 99.8% of the
values are delivered correctly and without any losses but with
a significant reduction of bandwith demands.
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