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Abstract
We study the problem of recognizing regular languages in a variant of the streaming model of
computation, called the sliding window model. In this model, we are given a size of the sliding
window n and a stream of symbols. At each time instant, we must decide whether the suffix of
length n of the current stream (“the active window”) belongs to a given regular language.

Recent works [14, 15] showed that the space complexity of an optimal deterministic sliding window
algorithm for this problem is either constant, logarithmic or linear in the window size n and provided
natural language theoretic characterizations of the space complexity classes. Subsequently, [16]
extended this result to randomized algorithms to show that any such algorithm admits either
constant, double logarithmic, logarithmic or linear space complexity.

In this work, we make an important step forward and combine the sliding window model with
the property testing setting, which results in ultra-efficient algorithms for all regular languages.
Informally, a sliding window property tester must accept the active window if it belongs to the
language and reject it if it is far from the language. We show that for every regular language, there
is a deterministic sliding window property tester that uses logarithmic space and a randomized
sliding window property tester with two-sided error that uses constant space.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms
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1 Introduction

Regular expression search constitutes an important part of many search engines for biological
data or code, such as, for example, Elasticsearch Service1. In this paper, we consider the
following formalization of this problem. We assume to be given an integer n, a regular
language L, and a stream of symbols that we receive one symbol at a time. At each time
instant, we have direct access only to the last arrived symbol, and must decide whether the
suffix of length n of the current stream (“the active window”) belongs to L.

The model described above is a variant of the streaming model and was introduced by
Datar et al. [10], where the authors proved that the number of 1’s in a 0/1-sliding window of

1 https://www.elastic.co
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size n can be maintained in space O( 1
ε · log2 n) if one allows a multiplicative error of 1± ε.

The motivation for this model of computation is that in many streaming applications, data
items are outdated after a certain time, and the sliding window setting is a simple way to
model this. In general, we aim to avoid storing the window content explicitly, and, instead,
to work in considerably smaller space, e.g. polylogarithmic space with respect to the window
length. For more details on the sliding window model see [1, Chapter 8].

The study of recognizing regular languages in the sliding window model was commenced
in [14, 15]. In [15], Ganardi et al. showed that for every regular language L the optimal
space bound for a deterministic sliding window algorithm is either constant, logarithmic or
linear in the window size n. In [14], Ganardi et al. gave characterizations for these space
classes. More formally, they showed that a regular language has a deterministic sliding
window algorithm with space O(logn) (resp., O(1)) if and only if it is a Boolean combination
of so-called regular left-ideals and regular length languages (resp., suffix-testable languages
and regular length languages). A subsequent work [16] studied the space complexity of
randomized sliding window algorithms for regular languages. It was shown that for every
regular language L the optimal space bound of randomized sliding window algorithm is O(1),
O(log logn), O(logn), or O(n). Moreover, complete characterizations of these space classes
were provided.

1.1 Our results
Previous study implies that even simple languages require linear space in the sliding window
model, which gives the motivation to seek for novel approaches in order to achieve efficient
algorithms for all regular languages. We take our inspiration from the property testing model
introduced by Goldreich et. al [21]. In this model, the task is to decide whether the input has
a particular property P , or is “far” from any input satisfying it. For a function γ : N→ R≥0,
we say that a word w of length n is γ-far from satisfying P , if the Hamming distance between
w and any word w′ satisfying P is at least γ(n). We will call the function γ(n) the Hamming
gap of the tester. We must make the decision by inspecting as few symbols of the input as
possible, and the time complexity of the algorithm is defined to be equal to the number of
inspected symbols. The motivation is that when working with large-scale data, accessing
a data item is a very time-expensive operation. The membership problem for a regular
language in the property testing model was studied by Alon et al. [2] who showed that for
every regular language L and every constant ε > 0, there is a property tester with Hamming
gap γ(n) = εn for deciding membership in L that can make the decision by inspecting a
random constant-size sample of symbols of the input word.

In this work, we introduce a class of algorithms called sliding window property testers.
Informally, at each time moment, a sliding window property tester must accept if the active
window has the property P and reject if it is far from satisfying P . The space complexity of a
sliding window property tester is defined to be all the space used, including the space we need
to store information about the input. We consider deterministic sliding window property
testers and randomized sliding window property testers with one-sided and two-sided errors
(for a formal definition, see Section 2). A similar but simpler model of streaming property
testers, where the whole stream is considered, was introduced by Feigenbaum et al. [11].
François et al. [12] continued the study of this model in the context of language membership
problems and came up with a streaming property tester for visibly pushdown languages that
uses polylogarithmic space. Note that deciding membership in a regular languages becomes
trivial in this model (where the active window is the whole stream): one can simply simulate
a deterministic finite automaton on the stream. What makes the sliding window model more
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difficult is the fact that the oldest symbol in the active window expires in the next step.
While at first sight the only connection between property testers and sliding window

property testers is that we must accept the input if it satisfies P and reject if it is far from
satisfying P , there is, in fact, a deeper link. In particular, the above mentioned result of Alon
et al. [2] combined with an optimal sampling algorithm for sliding windows [4], immediately
yields a O(logn)-space, two-sided error sliding window property tester with Hamming gap
γ(n) = εn for every regular language. We will improve on this observation. Our main
contribution are tight complexity bounds for each of the following classes of sliding window
property testers for regular languages: deterministic sliding window property testers and
randomized sliding window property testers with one-sided and two-sided error.
Deterministic sliding window property testers. We call a language L trivial, if for
some constant c > 0 the following holds: For every word w ∈ Σ∗ such that L contains a word
of length |w|, the Hamming distance from w to L is at most c. Every trivial regular language
has a constant-space deterministic sliding window property tester with constant Hamming
gap (Theorem 2.4). For generic regular languages, we show a deterministic sliding window
property tester with constant Hamming gap that uses O(logn) space. This is particularly
surprising, because for Hamming gap zero (i.e., the exact case) [16] showed a space lower
bound of Ω(n) for generic regular languages. In other words, a constant Hamming gap allows
an exponential space improvement. We also show that for non-trivial regular languages,
O(logn) space is the best one can hope to achieve, even for Hamming gap γ(n) = εn

(Theorem 3.2).
Randomized sliding window property testers with two-sided error. Next, we show
that for every regular language, there is a randomized sliding window property tester with
Hamming gap γ(n) = εn and two-sided error that uses constant space (Theorem 3.3). This
is an optimal bound and a considerable improvement compared to the tester that can
be obtained by combining the property tester of Alon et al. [2] and an optimal sampling
algorithm for sliding windows [4].
Randomized sliding window property testers with one-sided error. While our
randomized sliding window property tester with two-sided error is optimal, we believe that a
two-sided error is a very strong relaxation and to be avoided in some applications. To this
end, we study the one-sided error randomized setting. The general landscape for this setting
is the most complex: In Theorems 3.4 and 3.5, we show that for every regular language L,
the space complexity of an optimal randomized sliding window property tester with one-sided
error is either O(1), O(log logn), or O(logn), and we provide characterizations of these
complexity classes.

In order to show our upper bound results, we demonstrate novel combinatorial properties of
automata and regular languages and develop new streaming techniques, such as probabilistic
counters, which can be of interest on their own. To show the lower bound results, we
introduce a new methodology, which could potentially simplify further establishments of
lower bounds in string processing tasks in the streaming setting: Namely, we view the testers
as nondeterministic automata, and study their behaviour.

1.2 Related work
The results above assume that the regular language admits a constant-space description
and we will follow the same assumption in this work. Currently, there are few studies
on the dependency of the complexity of sliding window algorithms on the size of the
language description. On the negative side, Ganardi et al. [14] showed that there are



4 Sliding window property testing for regular languages

regular languages such that any sliding window algorithm that achieves logarithmic space
(in the window size) depends exponentially on the automata size. On the positive side,
there is an extensive study of the pattern matching problem and its variants that gives
sub-exponential upper bounds for a class of (very simple) regular languages. In this problem,
we are given a pattern and a streaming text T , and at each moment we must decide if the
active window is equal to the pattern. This problem and its generalisations have been studied
in [5, 6, 7, 8, 9, 18, 19, 20, 29, 31].

Similar to regular languages, we can ask whether the current active window belongs to a
given context-free language. This question was studied in [3, 23, 24, 26] for the model where
the active window is the complete stream and in [13, 17] for the sliding-window model.

2 Sliding window property tester

We fix a finite alphabet Σ for the rest of the paper. We denote by Σ∗ the set of all words
over Σ and by Σn the set of words over Σ of length n. The empty word is denoted by λ. Let
w be a word. We say that v is a prefix (suffix) of w if w = xv (w = vx) for some word x. We
say that v is a factor of w if w = xvy for some words x, y. The Hamming distance between
two words u = a1 · · · an and v = b1 · · · bn of equal length is the number of positions where
u and v differ, i.e. dist(u, v) = |{i : ai 6= bi}|. The distance of a word u to a language L is
defined as dist(u, L) = inf{dist(u, v) : v ∈ L} ∈ N ∪ {∞}.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, q0, δ, F ) where Q is a finite
set of states, Σ is the input alphabet, q0 is the initial state, δ : Q× Σ→ Q is the transition
mapping and F ⊆ Q is the set of final states. We extend δ to a mapping δ : Q× Σ∗ → Q

inductively in the usual way: δ(q, λ) = q and δ(q, aw) = δ(δ(q, a), w). The language accepted
by A is L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F}. A language is regular if it is accepted by a DFA.
For more background in automata theory see [22].

A stream is a word a1a2 · · · am over Σ. A sliding window algorithm is a family A = (An)n≥0
of streaming algorithms. Given a window size n ∈ N and an input stream a1a2 · · · am ∈ Σ∗
the algorithm An reads the stream symbol by symbol from left to right and thereby updates
its memory content. After reading a prefix a1 · · · at (0 ≤ t ≤ m) the algorithm is required to
compute an output value that depends on the active window lastn(a1 · · · at) = at−n+1 · · · at
at time t. For convenience, for i < 0 we define ai = � where � ∈ Σ is an arbitrary fixed
symbol. In other words, we assume an initial window �n that is active at time t = 0. We
consider deterministic sliding window algorithms (where every An can be viewed as a DFA)
and randomized sliding window algorithms (where every An can be viewed as a probabilistic
finite automaton in the sense of Rabin [30]). In the latter case, An updates in each step its
memory content according to a probability distribution that depends on the current memory
content and the current input symbol. Let γ : N→ R≥0 be a function such that γ(n) ≤ n
for all n ∈ N, let α, β be probabilities, and let L ⊆ Σ∗ be a language.

I Definition 2.1. A deterministic sliding window (property) tester for L with Hamming
gap γ(n) is a deterministic sliding window algorithm A = (An)n≥0 such that for every input
stream w ∈ Σ∗ and every window size n the following properties hold:

if lastn(w) ∈ L, then An accepts;
if dist(lastn(w), L) > γ(n), then An rejects.

I Definition 2.2. A randomized sliding window (property) tester for L with Hamming gap
γ(n) and error (α, β) is a randomized sliding window algorithm A = (An)n≥0 such that for
every input stream w ∈ Σ∗ and every window size n the following properties hold:
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if lastn(w) ∈ L, then An accepts with probability at least 1− α;
if dist(lastn(w), L) > γ(n), then An rejects with probability at least 1− β.

We say that A has one-sided error if A has error (0, 1/2) and two-sided error if A has error
(1/3, 1/3).

Notice that our definition is non-uniform since we allow an arbitrary algorithm An for each
window size n. If the window size is not specified, then it is implicitly universally quantified.
The space consumption of A is the mapping s(n), where s(n) is the space consumption of
An, i.e., the maximal number of bits stored by An while reading any input stream. We can
assume that s(n) ∈ O(n) since An can store the active window in O(n) bits. The goal is
to devise algorithms which only use o(n) space. Using probability amplification (similar to
[16]) one can replace the error probability 1/3 in the two-sided error setting (resp. 1/2 in
the one-sided error setting) by any probability p < 1/2 (resp. p < 1). This influences the
space complexity only by a constant factor. The case of Hamming gap γ(n) = 0 corresponds
to exact membership testing to L which was studied in [14, 15, 16]. In this paper, we focus
on the two cases γ(n) = c for some constant c > 0 and γ(n) = εn for some ε > 0.

Before we come to the main results of the paper we state two simple facts about the
sliding window testers.

I Lemma 2.3. Assume that L =
⋃k
i=1 Li and that for every 1 ≤ i ≤ k there exists a

randomized sliding window tester for Li with Hamming gap γ(n) and error (α, β) that uses
space si(n). Then there exists a sliding window tester for L with Hamming gap γ(n) and
error (α, β) that uses space O(

∑k
i=1 si(n)).

The second fact concerns so-called trivial languages. Let γ : N→ R≥0 be a mapping with
γ(n) ≤ n for all n ≥ 0. A language is L ⊆ Σ∗ is γ-trivial if there exists n0 ∈ N such that for
all n ≥ n0 with L ∩ Σn 6= ∅ and all w ∈ Σn we have dist(w,L) ≤ γ(n). If γ(n) ∈ O(1), we
say that L is trivial. Note that Alon et al. [2] call a language L trivial if L is (εn)-trivial for
all ε > 0 according to our definition. In the appendix we show that both definitions coincide
for regular languages (see Corollary B.5), but we will not make use of this fact.

I Theorem 2.4. For every trivial (but not necessarily regular) language there is a determin-
istic sliding window tester with constant Hamming gap that uses constant space. The converse
is also true: If for a language L there is a deterministic constant-space sliding window tester
with Hamming gap γ(n), then there exists a constant c such that L is (γ + c)-trivial.

3 Main results

Our first main contribution is a deterministic logspace sliding window tester for every regular
language, together with a matching lower bound for so-called nontrivial regular languages
(defined above).

I Theorem 3.1 (deterministic setting, upper bound). For every regular language L, there
exists a deterministic sliding window tester for L with constant Hamming gap which uses
O(logn) space.

I Theorem 3.2 (deterministic setting, lower bound). For every non-trivial regular language
L, there exist ε > 0 and infinitely many window sizes n ∈ N on which every deterministic
sliding window tester for L with Hamming gap εn uses space Ω(logn).

Our second main contribution is a constant-space randomized sliding window property
tester with two-sided error for any regular language:
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I Theorem 3.3 (two-sided error randomized setting, upper bound). For every regular language
L and every ε > 0, there exists a randomized sliding window tester for L with two-sided error
and Hamming gap γ(n) = εn that uses space O(1/ε).

While the randomized setting with two-sided error allows ultra-efficient testers, we find
that allowing a two-sided error is a very strong relaxation. To this end, we study the
randomized setting with one-sided error. In this setting, only a small class of regular
languages admits sliding window testers working in space o(logn). A language L ⊆ Σ∗ is
suffix-free if xy ∈ L and x 6= λ imply y /∈ L.

I Theorem 3.4 (one-sided error randomized setting, upper bound). If L is a finite union of
trivial regular languages and suffix-free regular languages, then there exists a randomized
sliding window tester for L with one-sided error and constant Hamming gap which uses
O(log logn) space.

I Theorem 3.5 (one-sided error randomized setting, lower bound). Let L be a regular language.
If L is not a finite union of trivial regular languages and suffix-free regular languages,
there exist ε > 0 and infinitely many window sizes n on which every randomized sliding
window tester for L with one-sided error and Hamming gap εn uses space Ω(logn).
If L is non-trivial, then there exist ε > 0 and infinitely many window sizes n on which
every sliding window tester for L with one-sided error and Hamming gap εn uses space
Ω(log logn).

We sketch the proofs of Theorem 3.1, 3.3, and 3.4 in Sections 4.1, 4.2, and 4.3, respectively.
The proofs of the lower bounds (Theorems 3.2 and 3.5) can be found in Appendix B. We would
like to emphasize that the lower bounds shown in the appendix are stronger than those stated
in Theorems 3.2 and 3.5. More precisely, we show space lower bounds for nondeterministic
and co-nondeterministic sliding window testers; see Appendix B for definitions.

4 Proofs of the upper bounds

In this section we sketch proofs of Theorems 3.1, 3.3, and 3.4 that give upper bounds
for deterministic and (one-sided and two-sided error) randomized sliding window test-
ers. All algorithms in this section satisfy the stronger property that words with large
prefix distance are rejected by the algorithm with high probability (probability one in
the deterministic setting). The prefix distance between words u = a1 · · · an and v =
b1 · · · bn is pdist(u, v) = min{i ∈ {0, . . . , n} : ai+1 · · · an = bi+1 · · · bn}. Clearly, we have
dist(u, v) ≤ pdist(u, v). We extend the definition to languages: for a language L, let
pdist(u, L) = min{pdist(u, v) : v ∈ L}. The prefix distance between two runs π =
(q0, a1, . . . , qn−1, , an, qn) and ρ = (p0, b1, . . . , pn−1, bn, pn) is defined as pdist(π, ρ) = min{i ∈
{0, . . . , n} : (qi, ai+1, . . . , qn−1, an, qn) = (pi, bi+1, . . . , pn−1, bn, pn)}.

For our upper bound proofs it is convenient to work with DFAs which read the input
word from right to left. A right-deterministic finite automaton (rDFA) is a tuple B =
(Q,Σ, F, δ, q0), where Q, Σ, q0 and F are as in a DFA, and δ : Σ×Q→ Q is the transition
function. We extend δ to a mapping δ : Q × Σ∗ → Q analogously to DFAs: δ(q, λ) = q

and δ(q, wa) = δ(δ(q, a), w). The regular language recognized by the rDFA B is L(B) =
{w ∈ Σ∗ : δ(w, q0) ∈ F}. A run from p0 ∈ Q to pn ∈ Q on a word x = an · · · a2a1 ∈ Σ∗ is a
sequence π = (pn, an, pn−1, . . . , p2, a2, p1, a1, p0) such that pi = δ(ai, pi−1) for all 1 ≤ i ≤ n.
The length of π is |π| = n. We visualize π in the form

π : pn
an←−− pn−1

an−1←−−− · · · a2←− p1
a1←− p0.
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If pn ∈ F , then π is an accepting run. A run of length 1 is a transition. If π is a run from p

to q on a word v, and ρ is a run from q to r on a word u, then ρπ denotes the unique run
from p to r on uv. We denote by πw,q the unique run on w from q.

Strongly connected graphs. With a DFA A = (Q,Σ, q0, δ, F ) we associate the directed
graph (Q,E) with edge set E = {(p, δ(p, a)) | p ∈ Q, a ∈ Σ}. Similarly, with an rDFA
A = (Q,Σ, F, δ, q0) we associate the directed graph (Q,E) with edge set E = {(p, δ(a, p)) |
p ∈ Q, a ∈ Σ}. Let A be a DFA or an rDFA. Two states p, q in A are strongly connected if
there exists a path in (Q,E) from p to q, and vice versa. The strongly connected components
(SCCs) of A with state set Q are the maximal subsets C ⊆ Q in which all states p, q ∈ C are
strongly connected. A state q ∈ Q is transient if there exists no nonempty path from q to q.
An SCC C is transient if it only contains a single transient state. There is a natural partial
order on the SCCs, called the SCC-ordering, where the SCC C1 is smaller than the SCC C2
if there exists a path in (Q,E) from a state in C1 to a state in C2.

The following combinatorial result from [2] will be used in this paper. Consider a directed
graph G = (V,E). The period of G is the greatest common divisor of all cycle lengths in G.
If G is acyclic we define the period to be ∞.

I Lemma 4.1 (c.f.[2]). Let G = (V,E) be a strongly connected directed graph with E 6= ∅
and finite period g. Then there exist a partition V =

⋃g−1
i=0 Vi and a constant m(G) ≤ 3|V |2

with the following properties:
For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj the length of every directed path
from u to v in G is congruent to j − i modulo g.
For every 0 ≤ i, j ≤ g − 1, for every u ∈ Vi, v ∈ Vj and every integer r ≥ m(G), if r is
congruent to j− i modulo g, then there exists a directed path from u to v in G of length r.

If G = (V,E) is strongly connected with E 6= ∅ and finite period g, and V0, . . . , Vg−1
satisfy the properties from Lemma 4.1, then we define the shift from u ∈ Vi to v ∈ Vj by

shift(u, v) = j − i (mod g) ∈ {0, . . . , g − 1}. (1)

Notice that this definition is independent of the partition
⋃g−1
i=0 Vi since any path from u to v

has length ` ≡ shift(u, v) (mod g) by Lemma 4.1. Also note that shift(u, v) + shift(v, u) ≡ 0
(mod g). In the following let g(C) denote the period of the SCC C.

I Lemma 4.2 (Uniform period). For every regular language L there exists an rDFA A for L
and a number g such that every non-transient SCC C in A has period g(C) = g.

Path summaries. We start by recalling the notion of a path summary from [14], where it
was used in order to prove a logspace upper bound for regular left-ideals (in the exact setting
where the Hamming gap is zero). For the rest of Section 4 we fix a regular language L ⊆ Σ∗
and an rDFA B = (Q,Σ, F, δ, q0) which recognizes L. By Lemma 4.2, we can assume that
every non-transient SCC C of B has period g(C) = g. Consider a run π = (pn, an, . . . , a1, p0)
on x = an · · · a1. If all states pn, . . . , p0 are contained in a single SCC we call π internal.
We can decompose π = πmτm−1πm−1 · · · τ1π1, where each πi is a possibly empty internal
run and each τi is a single transition connecting two distinct SCCs. We call this unique
factorization the SCC-factorization of π, which is illustrated in Figure 1. The path summary
of π is

ps(π) = (|πm|, qm)(|τm−1πm−1|, qm−1) · · · (|τ2π2|, q2)(|τ1π1|, q1),

where qi is the first state in πi (1 ≤ i ≤ m). Note that m is bounded by the constant number
of states of B. Hence, a path summary can be stored with O(log |π|) bits.
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q1q2q3qm

π1τ1π2τ2τm−1πm

Figure 1 The SCC-factorization of a run

Periodic acceptance sets. For a ∈ N and X ⊆ N we use the standard notation X + a =
{a+ x : x ∈ X}. For a state q ∈ Q we define Acc(q) = {n ∈ N : ∃w ∈ Σn : δ(w, q) ∈ F}. A
set X ⊆ N is eventually d-periodic, where d ≥ 1 is an integer, if there exists a threshold t ∈ N
such that for all x ≥ t we have x ∈ X if and only if x+ d ∈ X. If X is eventually d-periodic
for some d ≥ 1, then X is eventually periodic.

I Lemma 4.3. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Two sets X,Y ⊆ N are equal up to a threshold t ∈ N, in symbol X =t Y , if for all x ≥ t:
x ∈ X iff x ∈ Y . Sets X,Y ⊆ N are almost equal if X =t Y for some threshold t ∈ N.

I Lemma 4.4. Let C be a non-transient SCC in B, p, q ∈ C and s = shift(p, q). Then
Acc(p) and Acc(q) + s are almost equal.

I Corollary 4.5. There exists a threshold t ∈ N such that
1. Acc(q) =t Acc(q) + g for all q ∈ Q, and
2. Acc(p) =t Acc(q) + shift(p, q) for all non-transient SCCs C and all p, q ∈ C.

We fix the threshold t from Corollary 4.5 for the rest of Section 4. The following lemma is
the main tool to prove the correctness of our sliding window testers. It states that if a word
of length n is accepted from p and ρ is any internal run from p of length at most n, then, up
to a bounded length prefix, ρ can be extended to an accepting run of length n. Formally, a
run π k-simulates a run ρ if one can factorize ρ = ρ1ρ2 and π = π′ρ2 where |ρ1| ≤ k.

I Lemma 4.6. If ρ is an internal run starting from p of length at most n and n ∈ Acc(p),
then there exists an accepting run π from p of length n which t-simulates ρ.

4.1 Deterministic logspace tester
Proof of Theorem 3.1. Let n ∈ N such that n ≥ |Q| (for n < |Q| we use a trivial streaming
algorithm which stores the window explicitly). The algorithm maintains the set {ps(πw,q) |
q ∈ Q} where w ∈ Σn is the active window. Initially this set is {ps(πw,q) | q ∈ Q} for
w = �n. Now suppose w = av for some a ∈ Σ and the next symbol of the stream is b ∈ Σ,
i.e. the new active window is vb. For each transition q b←− p in B we can compute ps(πvb,p)
from ps(πav,q) as follows. Suppose that ps(πav,q) = (`m, qm) · · · (`1, q1) where q = q1.

If p and q belong to the same SCC, then we increment `1 by one, else we append a new
pair (1, p).
If `m > 0 we decrement `m by one. If `m = 0 we remove the pair (`m, qm) and we
decrement `m−1 by one (in this case we must have m > 1 and `m−1 > 0).

The obtained path summary is ps(πvb,p). This data structure can be stored with O(logn)
bits since it contains |Q| path summaries, each of which can be stored in O(logn) bits.

It remains to define a proper acceptance condition. Consider the run π = πw,q0 , its
SCC-factorization πmτm−1πm−1 · · · τ1π1 and its path summary (`m, qm) · · · (`1, q1). The
algorithm accepts if and only if `m = |πm| ∈ Acc(qm). If w ∈ L, then clearly |πm| ∈ Acc(qm).
If |πm| ∈ Acc(qm), then the internal run πm can be t-simulated by an accepting run π′m of
equal length by Lemma 4.6. The run π′mτm−1πm−1 · · · τ1π1 is accepting and witnesses that
pdist(w,L) ≤ t. J
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qi−1qiqi+1 q1qm

πi−1τi−1πiτi

ci and ri (mod g)

Figure 2 A compact summary of a run π.

4.2 Randomized constant-space tester with two-sided error
Let us first define a probabilistic counter, similar to the approximate counter by Morris [28],
which uses O(log logn) bits. For our purposes it suffices to distinguish high and low counters
states. Consider a probabilistic data structure Z representing a counter. Its operations are
incrementing the counter (using random coins) and querying whether the state of the counter
is low or high. Initially Z is in a low state. The random state reached after k increments is
denoted by Z(k). Given numbers 0 ≤ ` < h (they will depend on our window size n) we say
that Z is an (h, `)-counter with error probability δ < 1

2 if for all k ∈ N we have:
If k ≤ `, then Prob[Z(k) is high] ≤ δ.
If k ≥ h, then Prob[Z(k) is low] ≤ δ.

I Lemma 4.7. For all h, `, ξ > 0 with ` ≤ (1− ε)h+O(1) there exists an (h, `)-counter Z
with error probability 1/3|Q| which internally stores O(log(1/ε)) bits.

Fix a parameter 0 < ε < 1 and a window length n ∈ N. Based on the previous concepts,
we are now able to describe a randomized sliding window tester for a regular language L
with Hamming gap εn that uses O(log(1/ε)) bits. Let Z be the (h, `)-counter with error
probability 1/(3|Q|) from Lemma 4.7 where h = n− t and ` = (1− ε)n+ t+ 1. The counter
is used to define so-called compact summaries of runs.

I Definition 4.8. A compact summary cs = (qm, rm, cm) · · · (q2, r2, c2)(q1, r1, c1) is a se-
quence of triples, where each triple (qi, ri, ci) consists of a state qi ∈ Q, a remainder
0 ≤ ri ≤ g − 1, and a state ci of the (h, `)-counter Z. The state c1 must be low and r1 = 0.

A compact summary (qm, rm, cm) · · · (q1, r1, c1) represents a run π if the SCC-factorization
of π has the form πmτm−1πm−1 · · · τ1π1, and the following properties hold:
1. for all 1 ≤ i ≤ m, πi starts in qi;
2. for all 2 ≤ i ≤ m, if |τi−1πi−1 · · · τ1π1| ≤ (1− ε)n+ t+ 1, then ci is the low state; and if
|τi−1πi−1 · · · τ1π1| ≥ n− t, then ci is the high state;

3. for all 2 ≤ i ≤ m, ri = |τi−1πi−1 · · · τ1π1| (mod g).

The idea of a compact summary is visualized in Figure 2. If m > |Q| then the above
compact summary cannot represent a run. Therefore, we can assume that m ≤ |Q|. For
every triple (qi, ri, ci), the entries qi and ri only depend on the rDFA B, and hence can be
stored with O(1) bits. Every state ci of the probabilistic counter needs O(log(1/ε)) bits.
Hence, a compact summary can be stored in O(log(1/ε)) bits. In contrast to Theorem 3.1, we
maintain a set of compact summaries which represent all runs of B on the complete stream
read so far (not only on the active window) with high probability.

I Proposition 4.9. For a given input stream w ∈ Σ∗, we can maintain a set of compact
summaries S containing for each q ∈ Q a compact summary csq ∈ S starting in q such that
csq represents the unique run πw,q with probability at least 2/3.

It remains to define an acceptance condition on compact summaries. For every q ∈ Q
we define Accmod(q) = {` (mod g) : ` ∈ Acc(q) and ` ≥ t}, which is intuitively speaking
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the set of accepting remainders. Let cs = (qm, rm, cm) · · · (q1, r1, c1) be a compact summary.
Since c1 is the low initial state of the probabilistic counter, there exists a maximal index
i ∈ {1, . . . ,m} such that ci is low. We say that cs is accepting if n− ri (mod g) ∈ Accmod(qi).

I Proposition 4.10. Assume that εn ≥ t. Let w ∈ Σ∗ with |w| ≥ n and let cs be a compact
summary which represents πw,q0 .
1. If lastn(w) ∈ L, then cs is accepting.
2. If cs is accepting, then pdist(lastn(w), L) ≤ εn.

Proof of Theorem 3.3. Assume that εn ≥ t, otherwise we use a trivial streaming algorithm
that stores the window explicitly with O(1/ε) bits. We use the algorithm from Proposition 4.9
for each incoming symbol from the stream. To initialize, we run the algorithm on �n. The
algorithm accepts if the computed compact summary starting in q0 is accepting. From
Proposition 4.9 and 4.10 we get:

If pdist(lastn(w), L) > εn, then the algorithm rejects with probability at least 2/3.
If lastn(w) ∈ L, then the algorithm accepts with probability at least 2/3.

This concludes the proof of the theorem. J

Comparing Theorems 3.1 and 3.3 leads to the question whether one can replace the Hamming
gap γ(n) = εn in Theorem 3.3 by γ(n) = o(n) while retaining constant space at the same
time. We show that this is not the case:

I Lemma 4.11. Every randomized sliding window tester with two-sided error for a∗ ⊆ {a, b}∗
with Hamming gap γ(n) needs space Ω(logn− log γ(n)) for infinitely many n.

4.3 Randomized loglogspace tester with one-sided error
Let L be a finite union of trivial regular languages and suffix-free regular languages. In
this section, we present a randomized sliding window tester for L with one-sided error and
Hamming gap γ(n) = εn that uses space O(log logn). By Lemma 2.3 and Theorem 2.4, it
suffices to consider the case when L is a suffix-free regular language. As in Section 4 we fix an
rDFA B = (Q,Σ, F, δ, q0) for L such that g(C) = g for all SCCs of A. Since L is suffix-free,
B has the property that no final state can be reached from a final state by a non-empty run.
We decompose B into a finite union of partial automata, similar to [14].

I Definition 4.12. A sequence (qk, ak, pk−1), Ck−1, . . . , (q2, a2, p1), C1, (q1, a1, p0), C0, q0 is
a path description if Ck−1, . . . , C0 is a chain (read from right to left) in the SCC-ordering of
B, pi, qi ∈ Ci, qi+1

ai+1←−−− pi is a transition in B for all 0 ≤ i ≤ k − 1, and qk ∈ F .

Each path description defines a partial rDFA BP = (QP ,Σ, {qk}, δP , q0) by restricting B
to the state set QP =

⋃k−1
i=0 Ci ∪ {qk}, restricting the transitions of B to internal transitions

from the SCCs Ci and the transitions qi+1
ai+1←−−− pi, and declaring qk to be the only final state.

The rDFA is partial since for every state pi and every symbol a ∈ Σ there exists at most one
transition q a←− pi. Since the number of path descriptions P is finite and L(B) =

⋃
P L(BP ),

it suffices to provide a sliding window tester for L(BP ) (we again use Lemma 2.3 here).
From now on, we fix a path description P from Definition 4.12 and the partial automaton

BP = (QP ,Σ, {qk}, δP , q0) corresponding to it. The acceptance sets Acc(q) are defined
with respect to BP . If all Ci are transient, then L(BP ) is a singleton and we can use a
trivial sliding window tester with space complexity O(1). Now assume the contrary and let
0 ≤ e ≤ k − 1 be maximal such that Ce is nontransient.

I Lemma 4.13. There exist r0, . . . , rk−1, s0, . . . , se ∈ N such that the following holds:
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1. For all e+ 1 ≤ i ≤ k, the set Acc(qi) is a singleton.
2. Every run from qi to qi+1 has length ri (mod g).
3. For all 0 ≤ i ≤ e, Acc(qi) =si

∑k−1
j=i rj + gN.

Let s = max{k,
∑k−1
j=0 rj , s0, . . . , se} and for a word w ∈ Σ∗ define the function `w : Q→

N ∪ {∞} where `w(q) = inf{` ∈ N | δP (last`(w), q) = qk} (we set inf ∅ =∞).
Let p be a random prime with Θ(log logn) bits. We now define an acceptance condition

on `w(q). If n /∈ Acc(q0), we always reject. Otherwise, we accept w iff `w(q0) ≡ n modulo
our randomly chosen prime p.

I Lemma 4.14. Let n ∈ Acc(q0) be a window size with n ≥ s + |QP | and w ∈ Σ∗ with
|w| ≥ n. There exists a constant c > 0 such that:
1. if lastn(w) ∈ L(BP ), then w is accepted with probability 1;
2. if pdist(lastn(w), L(BP )) > c, then w is rejected with probability at least 2/3.

Proof of Theorem 3.4. Let n ∈ N be the window size. From the discussion above, it suffices
to show a tester for a fixed partial automaton BP . Assume n ≥ s+ |Q|, otherwise a trivial
tester can be used. If n /∈ Acc(q0), the tester always rejects. Otherwise, the tester picks a
random prime p with Θ(log logn) bits and maintains `w(q) (mod p) for all q ∈ QP , where w
is the stream read so far, which requires O(log logn) bits. When a symbol a ∈ Σ is read,
we can update `wa using `w: If q = qk, then `wa(q) = 0, otherwise `wa(q) = 1 + `w(δP (a, q))
(mod p) where 1+∞ =∞. The tester accepts if `w(q0) ≡ n (mod p). Lemma 4.14 guarantees
correctness of the tester in the one-sided error setting. J
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A Appendix

A.1 Additional proof for Section 2
I Lemma 2.3. Assume that L =

⋃k
i=1 Li and that for every 1 ≤ i ≤ k there exists a

randomized sliding window tester for Li with Hamming gap γ(n) and error (α, β) that uses
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space si(n). Then there exists a sliding window tester for L with Hamming gap γ(n) and
error (α, β) that uses space O(

∑k
i=1 si(n)).

Proof. We can combine these testers for the languages Li into a tester for L as follows: First,
using probability amplification, we reduce the error of each given sliding window tester to
(α/k, β/k). Then we run the sliding window testers for Li in parallel and accept if and only
if one of them accepts. J

I Theorem 2.4. For every trivial (but not necessarily regular) language there is a determin-
istic sliding window tester with constant Hamming gap that uses constant space. The converse
is also true: If for a language L there is a deterministic constant-space sliding window tester
with Hamming gap γ(n), then there exists a constant c such that L is (γ + c)-trivial.

Proof. Assume first that L is trivial. Let n ∈ N be a window size. If L ∩ Σn = ∅, then the
algorithm always rejects, which is obviously correct since any active window of length n

has infinite Hamming distance to L. Otherwise, the algorithm always accepts. In this case,
we use the fact that L is trivial, i.e., there is a constant c such that the Hamming distance
between an arbitrary active window of length n and L is at most c.

We now show the converse statement. Let A = (An) be a deterministic sliding window
tester for L with Hamming gap γ(n) which uses constant space. Assume that every An works
on at most s bits for a constant s. Let N ⊆ N be the set of all n such that L∩Σn 6= ∅. Note
that every An with n ∈ N can be viewed as a DFA with at most 2s+1 states that accepts
a non-empty language. The number of DFAs of size at most 2s+1 over the input alphabet
Σ is bounded by a fixed constant d (up to isomorphism). Hence, at most d different DFAs
can appear in the list (An)n∈N . We therefore can choose numbers n1 < n2 < · · · < ne from
N with e ≤ d such that for every n ∈ N there exists a unique ni ≤ n with An = Ani

(here
and in the following we do not distinguish between isomorphic DFAs). Let us choose for
every 1 ≤ i ≤ e a word ui ∈ L of length ni. Now take any n ∈ N . Assume that An = Ani

where ni ≤ n. Consider any word u ∈ Σ∗ui. Since lastni
(u) = ui ∈ L, Ani

has to accept u.
Hence, An accepts all words from Σ∗ui. In particular, for every word x of length n − ni,
An accepts xui. This implies that dist(xui, L) ≤ γ(n) for all x ∈ Σn−ni . Recall that this
holds for all n ∈ N and that N is the set of all lengths realized by L. Hence, if we define
c := max{n1, . . . , ne} (which is a constant that only depends on our deterministic sliding
window tester), then every word w of length n ∈ N has Hamming distance at most γ(n) + c

from a word in L. Therefore L is (γ + c)-trivial. J

A.2 Additional proofs for Section 4
I Lemma 4.2 (Uniform period). For every regular language L there exists an rDFA A for L
and a number g such that every non-transient SCC C in A has period g(C) = g.

Proof. Let B = (Q,Σ, F, δ, q0) be an rDFA for L. Let g be the product of all periods g(C)
over all non-transient SCCs C. As usual, we consider Zg = {0, . . . , g − 1} with arithmetic
operations modulo g. Then A = B × Zg = (Q × Zg,Σ, F × Zg, δ′, (q0, 0)), where for all
(p, i) ∈ Q× Zg and a ∈ Σ we set

δ′(a, (p, i)) =
{

(δ(a, p), i+ 1), if p and δ(a, p) are strongly connected,
(δ(a, p), 0), otherwise.

Clearly, A is equivalent to B. We show that every non-transient SCC of A has period g. The
non-transient SCCs of A are the sets C×Zg, where C is a non-transient SCC of B. Let C be
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a non-transient SCC of B. Clearly, every cycle length in C ×Zg is a multiple of g. Moreover,
by Lemma 4.1 the SCC C contains a cycle of length k · g(C) for every sufficiently large k ∈ N
(k ≥ m(C) suffices). Since g is a multiple of g(C), C also contains a cycle of length k · g for
every sufficiently large k. But every such cycle induces a cycle of the same length k · g in
C × Zg. Hence, there exist primes p1 6= p2 such that p1 and p2 are not divisors of g and
C ×Zg contains cycles of length p1 · g and p2 · g. It follows that the period of C ×Zg divides
gcd(p1 · g, p2 · g) = g. This proves that the period of C × Zg is exactly g. J

I Lemma 4.3. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Proof. It suffices to show that for all 0 ≤ r ≤ g − 1 the set Sr = {i ∈ N : r + i · g ∈ Acc(q)}
is either finite or co-finite. Consider a remainder 0 ≤ r ≤ g − 1 where Sr is infinite. We need
to show that Sr is indeed co-finite. Let i ∈ Sr with i ≥ |Q|, i.e. there exists an accepting
run π from q of length r + i · g. Since π has length at least |Q| is must traverse a state q in
a non-transient SCC C. Choose j0 such that j0 · g ≥ m(C) where m(C) is the reachability
constant from Lemma 4.1. By Lemma 4.1 for all j ≥ j0 there exists a cycle from q to q of
length j · g. Therefore we can prolong π to a longer accepting run by j · g symbols for any
j ≥ j0. This proves that x ∈ Sr for every x ≥ i+ j0 and that Sr is co-finite. J

I Lemma A.1. A set X ⊆ N is eventually d-periodic iff X and X + d are almost equal.

Proof. Let t ∈ N be such that for all x ≥ t we have x ∈ X if and only if x+ d ∈ X. Then X
and X + d are equal up to threshold t+ d. Conversely, if X =t X + d, then for all x ≥ t we
have x+ d ∈ X if and only if x+ d ∈ X + d, which is true if and only if x ∈ X. J

I Lemma 4.4. Let C be a non-transient SCC in B, p, q ∈ C and s = shift(p, q). Then
Acc(p) and Acc(q) + s are almost equal.

Proof. Let k ∈ N such that k · g ≥ m(C) where m(C) is the large enough constant from
Lemma 4.1. By Lemma 4.1 there exists a run from p to q of length s+ k · g, and a run from
q to p of length (k + 1) · g − s (the latter number is congruent to shift(q, p) modulo g). By
prolonging accepting runs we obtain

Acc(q) + s+ k · g ⊆ Acc(p) and Acc(p) + (k + 1) · g − s ⊆ Acc(q).

Adding s+ k · g to both sides of the last inclusion yields

Acc(p) + (2k + 1) · g ⊆ Acc(q) + s+ k · g ⊆ Acc(p).

By Lemmas 4.3 and A.1 the three sets above are almost equal. Also Acc(q) + s + k · g is
almost equal to Acc(q) + s by Lemmas 4.3 and A.1. Since almost equality is a transitive
relation, this proves the statement. J

I Lemma 4.6. If ρ is an internal run starting from p of length at most n and n ∈ Acc(p),
then there exists an accepting run π from p of length n which t-simulates ρ.

Proof. If |ρ| ≤ t, then we choose any accepting run π from p of length n ∈ Acc(p). Otherwise,
if |ρ| > t, then the SCC C containing p is non-transient and we can factor ρ = ρ1ρ2 such
that |ρ1| = t where ρ2 leads from p to q. Set s := shift(q, p), which satisfies s + |ρ2| ≡ 0
(mod g) by the properties in Lemma 4.1. Since Acc(q) =t Acc(p) + s by Corollary 4.5,
n > t and n ∈ Acc(p), we have n+ s ∈ Acc(q). Finally since n+ s ≡ n− |ρ2| (mod g) and
n− |ρ2| = n− |ρ|+ t ≥ t we know n− |ρ2| ∈ Acc(q). This yields an accepting run π′ from q

of length n− |ρ2|. Then ρ is t-simulated by π = π′ρ2. J
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A.3 Additional proofs for Section 4.2
I Lemma 4.7. For all h, `, ξ > 0 with ` ≤ (1− ε)h+O(1) there exists an (h, `)-counter Z
with error probability 1/3|Q| which internally stores O(log(1/ε)) bits.

Proof. Since ` ≤ (1− ε)h+O(1), we can choose ξ = ε−O(1) such that ` ≤ (1− ξ)h.
We use the following probabilistic data structure from [16]: A Bernoulli counter Zp is

parameterized by a probability 0 < p < 1 and stores a single bit x. Initially we set x = 0,
representing the low state. On every increment the bit x is set to 1 (representing the high
state) with probability p, and is unchanged with probability 1− p. After i increments the
bit has value 0 with probability (1− p)i, and value 1 with probability 1− (1− p)i. Let us
first show the following claim:

B Claim 1. For all h, `, ξ > 0 with ξ < 1 and ` ≤ (1− ξ)h there exists 0 < p < 1 such that
Zp is an (h, `)-counter with error probability 1/2− ξ/8.

We need to choose p such that (i) 1− (1− p)(1−ξ)h ≤ 1/2− ξ/8, or equivalently, 1/2 + ξ/8 ≤
(1− p)(1−ξ)h, and (ii) (1− p)h ≤ 1/2− ξ/8, or equivalently, (1− p)(1−ξ)h ≤ (1/2− ξ/8)1−ξ.
It suffices to show

1
2 + ξ

8 ≤
(

1
2 −

ξ

8

)1−ξ
, (2)

then one can pick p = 1−(1/2−ξ/8)1/h. Note that (ii) holds automatically for this value of p.
Taking logarithms shows that (2) is equivalent to ln(4 + ξ)− ln 8 ≤ (1− ξ) · (ln(4− ξ)− ln 8),
and by rearranging we obtain ln(4+ξ) ≤ ln(4−ξ)+ξ(ln 8− ln(4−ξ)). Since ln 8− ln(4−ξ) ≥
ln 8− ln 4 = ln 2, it suffices to prove

ln(4 + ξ) ≤ ln(4− ξ) + ξ ln 2. (3)

One can verify 3 ln 2 ≈ 2.0794 ≥ 2. We have:

4 + ξ ≤ 4 + (3 ln 2− 1)ξ = 4 + (4 ln 2− 1)ξ − ξ ln 2 ≤
≤ 4 + (4 ln 2− 1)ξ − ξ2 ln 2 = (4− ξ)(ξ ln 2 + 1)

By taking logarithms and plugging in ln x ≤ x− 1 for all x > 0, we obtain

ln(4 + ξ) ≤ ln(4− ξ) + ln(ξ ln 2 + 1) ≤ ln(4− ξ) + ξ ln 2

This proves (3) and hence (2), and hence Claim 1.

We now show the main claim of the lemma by probability amplification. Let Z be the
counter which uses m copies of Zp in parallel with independent random bits and returns the
majority vote of the m outputs. Notice that it suffices to store the sum of all bits, which
takes O(logm) bits of space.

Let us now estimate the error probability and choose m suitably. Let X1, . . . , Xm be
independent Bernoulli variables with Prob[Xi = 1] = 1/2− ξ/8. By Claim 1, Prob[Xi = 1]
is an upper bound on the error probability of the i-th copy of Zp. Let X =

∑m
i=1 Xi. Then

Prob[X ≥ m/2] is an upper bound on the error probability of the probabilistic counter Z.
We have µ = E[X] = m(1/2−ξ/8) = m(4−ξ)

8 . Choosing δ = ξ
4−ξ ≥

ξ
4 we have (1+δ)µ = m/2

and µδ2 = ξmδ/8 ≥ ξ2m/32. The Chernoff bound [27, Theorem 4.4] states that

Prob[X ≥ m/2] = Prob [X ≥ (1 + δ)µ] ≤ exp(−µδ2/3) ≤ exp(−ξ2m/96).

To enforce Prob[X ≥ m/2] ≤ 1/(3|Q|) we choose m =
⌈
96 ln(3|Q|)/ξ2⌉. Hence the algorithm

has space complexity O(logm) = O(log(1/ξ)) = O(log(1/ε)). J
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I Proposition 4.9. For a given input stream w ∈ Σ∗, we can maintain a set of compact
summaries S containing for each q ∈ Q a compact summary csq ∈ S starting in q such that
csq represents the unique run πw,q with probability at least 2/3.

Proof. For each state in Q, we initialize the compact summary so that it represents
the run πλ,q (recall that λ is the empty word). Consider a compact summary cs =
(qm, rm, cm) · · · (q1, r1, c1), which represents a run πx,q1 . We prolong cs by a transition
q1

a←− p in B as follows:
if p and q are not in the same SCC, then we increment all counter states ci, increment all
remainders ri mod g, and append a new triple (p, 0, c1);
if p and q belong to the same SCC, then we increment all counter states ci for 2 ≤ i ≤ m,
increment the remainder ri mod g for 2 ≤ i ≤ m, and replace q1 by p.

If a ∈ Σ is the next input symbol of the stream, then S is updated to the new set S′ of
compact summaries by iterating over all transition q a←− p in B and prolonging the compact
summary starting in q by the transition.

To verify correctness, consider a compact summary cs = (qm, rm, cm) · · · (q1, r1, c1) com-
puted by the algorithm. Properties (1) and (3) from Definition 4.8 are satisfied by construction.
Furthermore, since m ≤ |Q| the probability that Property (2) or (4) is violated is at most
m/(3|Q|) ≤ 1/3 by the union bound. J

I Proposition 4.10. Assume that εn ≥ t. Let w ∈ Σ∗ with |w| ≥ n and let cs be a compact
summary which represents πw,q0 .
1. If lastn(w) ∈ L, then cs is accepting.
2. If cs is accepting, then pdist(lastn(w), L) ≤ εn.

Proof. Consider the SCC-factorization of π = πw,q0 = πmτm−1 · · · τ1π1. Let

cs = (qm, cm, rm) · · · (q1, c1, r1)

be a compact summary representing π. Thus, q1 = q0. Consider the maximal index
1 ≤ i ≤ m where ci is low, which means that |τi−1πi−1 · · · τ1π1| < n− t by Definition 4.8(4).
The run of B on lastn(w) has the form π′kτk−1πk−1 · · · τ1π1 for some suffix π′k of πk. We
have |π′kτk−1 · · ·πi| = n− |τi−1πi−1 · · · τ1π1| > t. By Definition 4.8(2) we know that

ri = |τi−1πi−1 · · · τ1π1| (mod g) = n− |π′kτk−1 · · ·πi| (mod g).

For point 1 assume that lastn(w) ∈ L. Thus, π′kτk−1πk−1 · · · τ1π1 is an accepting run starting
in q0. By Definition 4.8(1), the run π′kτk−1 · · ·πi starts in qi. Hence, π′kτk−1 · · ·πi is an
accepting run from qi of length at least t. By definition of Accmod(qi) we have |π′kτk−1 · · ·πi|
(mod g) = n− ri (mod g) ∈ Accmod(qi), and therefore cs is accepting.

For point 2 assume that cs is accepting, i.e.

n− ri (mod g) = |π′kτk−1 · · ·πi| (mod g) ∈ Accmod(qi).

Recall that |π′kτk−1 · · ·πi| > t. By definition of Accmod(qi) there exists an accepting run
from qi whose length is congruent to |π′kτk−1 · · ·πi| mod g and at least t. By Corollary 4.5(1)
we derive that |π′kτk−1 · · ·πi| ∈ Acc(qi). We claim that |πiτi−1πi−1 · · · τ1π1| ≥ (1 − ε)n + t

by a case distinction. If i = m, then clearly |πiτi−1πi−1 · · · τ1π1| ≥ n ≥ (1 − ε)n + t. If
i < m, then ci+1 is high by maximality of i, which implies |τiπi · · · τ1π1| > (1− ε)n+ t+ 1
by Definition 4.8(3). Since τi has length one, we have |πiτi−1πi−1 · · · τ1π1| > (1− ε)n+ t.
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Since |π′kτk−1 · · ·πi| ∈ Acc(qi), we can apply Lemma 4.6 and obtain an accepting run ρ
of length |π′kτk−1 · · ·πi| ∈ Acc(qi) starting in qi which t-simulates the internal run πi. The
prefix distance from ρ to π′kτk−1 · · ·πi is at most

|π′kτk−1 · · · τi|+ t = n− |πiτi−1πi−1 · · · τ1π1|+ t ≤ n− (1− ε)n = εn.

Therefore the prefix distance from the accepting run ρτi−1πi−1 · · · τ1π1 to π′kτk−1πk−1 · · · τ1π1
is also at most εn. This implies pdist(lastn(w), L) ≤ εn. J

I Lemma 4.11. Every randomized sliding window tester with two-sided error for a∗ ⊆ {a, b}∗
with Hamming gap γ(n) needs space Ω(logn− log γ(n)) for infinitely many n.

Proof. We prove the lemma by a reduction from the randomized one-way communication
complexity of the greater-than-function.2 The setting is the following: Alice (resp. Bob)
holds a number i ∈ {1, . . . ,m} (resp., j ∈ {1, . . . ,m}). Moreover, both parties receive a
random string. Then Alice sends a message to Bob (depending on her input i and her random
string), and Bob has to decide whether i > j or i ≤ j holds. It is known that in every such
one-way protocol, where Bob gives a correct answer with probability at least 2/3, Alice has
to send Ω(logm) bits to Bob [25, Theorem 3.8].

Consider a randomized sliding window tester for a∗ with Hamming gap γ(n) that uses
space s(n). Fix a window size n, which is divisible by k := γ(n) + 1. Let m = n/k. We
divide the window into m blocks of length k. We then obtain a randomized one-way protocol
for the greater-than-function on the interval {1, . . . ,m}: Alice produces from her input
i ∈ {1, . . . ,m} the word wi = a(i−1)kbka(m−i)k. She then runs the randomized sliding
window tester on wi (using her random bits) and sends the final memory content (s(n) bits)
to Bob. Bob continues the run of the randomized sliding window tester (starting from the
transferred memory content) with the input stream ajk. He obtains the memory content
reached after the input a(i−1)kbka(m−i+j)k. Finally, Bob outputs the answer given by the
randomized sliding window tester. If i ≤ j, then the window content at the end is an and
hence belongs to a∗. On the other hand, if i > j, then the window content at the end
contains the block bk, hence, the Hamming distance between the window content and a∗ is
at least γ(n) + 1. This implies that Bob will give a correct answer with probability at least
2/3. It follows that s(n) ∈ Ω(logm) = Ω(logn− log γ(n)). Note that for the case γ(n) ≤ nε
for a constant ε > 0 we obtain s(n) ∈ Ω(logn). J

A.4 Additional proofs for Section 4.3
I Lemma 4.13. There exist r0, . . . , rk−1, s0, . . . , se ∈ N such that the following holds:
1. For all e+ 1 ≤ i ≤ k, the set Acc(qi) is a singleton.
2. Every run from qi to qi+1 has length ri (mod g).
3. For all 0 ≤ i ≤ e, Acc(qi) =si

∑k−1
j=i rj + gN.

Proof. Point 1 follows immediately from the definition of transient SCCs. Let us now show
the second part of the claim.

Let 0 ≤ i ≤ k − 1 and let Ni be the set of lengths of runs of the form qi+1
ai+1←−−− pi

w←− qi
in BP . If Ci is transient, then Ni = {1}. Otherwise, by Lemma 4.1 there exist a number
ri ∈ N and a cofinite set Di ⊆ N such that Ni = ri + gDi. We can summarize both cases by

2 A similar reduction was used in [16].
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saying that there exist a number ri ∈ N and a set Di ⊆ N which is either cofinite or Di = {0}
such that Ni = ri + gDi. This implies Point 2. Then the acceptance sets in BP satisfy

Acc(qi) =
k−1∑
j=i

Nj =
k−1∑
j=i

(rj + gDj) =
k−1∑
j=i

rj + g

k−1∑
j=i

Dj .

For all 0 ≤ i ≤ e we get Acc(qi) =si

∑k−1
j=i rj + gN for some threshold si ∈ N (note that a

nonempty sum of cofinite subsets of N is again cofinite). J

I Lemma 4.14. Let n ∈ Acc(q0) be a window size with n ≥ s + |QP | and w ∈ Σ∗ with
|w| ≥ n. There exists a constant c > 0 such that:
1. if lastn(w) ∈ L(BP ), then w is accepted with probability 1;
2. if pdist(lastn(w), L(BP )) > c, then w is rejected with probability at least 2/3.

Proof. Assume first that lastn(w) ∈ L(BP ). Since L(BP ) ⊆ L is suffix-free, `w(q0) = n

(mod p) and w is accepted with probability 1.
Consider now the case when lastn(w) /∈ L(BP ). By definition, in this case `w(q0) 6= n. In

other words, only two cases are possible: either `w(q0) < n, or `w(q0) > n. If `w(q0) < n,
then by the choice of p `w(q0) 6≡ n (mod p) with probability at least 2/3.

We finally consider the case `w(q0) > n. We will show that in this case the prefix distance
between lastn(w) and L(BP ) is bounded by a constant c, which means that we can either
accept or reject. Let π be the run of BP on lastn(w) starting from the initial state q0, and
let π = πmτm−1πm−1 · · · τ0π0 be its SCC-factorization. We have |π| = n. Since `w(q0) > n,
the run π can be strictly prolonged to a run to qk and hence we must have m < k. For all
0 ≤ i ≤ m, the run πi is an internal run in the SCC Ci from qi to pi. For all 0 ≤ i ≤ m− 1
we have τi = (qi+1

ai+1←−−− pi) and |τiπi| ≡ ri (mod g), by Point 2 from Lemma 4.13. We claim
that there exists an index 0 ≤ i0 ≤ m such that the following three properties hold:

1. qi0 is nontransient,
2. |πmτm−1πm−1 · · · τi0πi0 | ≥ s,
3. |πmτm−1πm−1 · · · τi0+1πi0+1| ≤ s+ |QP |.

Indeed, let 0 ≤ i ≤ m be the smallest integer such that qi is nontransient (recall that
n ≥ |QP | and hence π must traverse a nontransient SCC). Then τi−1πi−1 · · · τ0π0 only passes
transient states and hence its length is bounded by |QP |. Therefore, |πmτm−1πm−1 · · · τiπi| =
n− |τi−1πi−1 · · · τ0π0| ≥ n− |QP | ≥ s. Now let 0 ≤ i0 ≤ m be the largest integer satisfying
Properties 1 and 2. If πmτm−1πm−1 · · · τi0+1πi0+1 only passes transient states, then its
length is bounded by m − i0 ≤ s + m, and we are done. Otherwise, let i0 + 1 ≤ j ≤ m

be the smallest integer such that qj is nontransient. The run τj−1πj−1 · · · τi0+1πi0+1 only
passes transient states and therefore it has length j − i0 − 1. By maximality of i0, we have
|πmτm−1πm−1 · · · τjπj | < s and hence Property 3 holds:

|πmτm−1πm−1 · · · τi0+1πi0+1| = |πm · · · τjπj |+ |τj−1πj−1 · · · τi0+1πi0+1| < s+j−i0 ≤ s+m.

Let 0 ≤ i0 ≤ m be the index satisfying Properties 1-3. Since qi0 is nontransient, we have
i0 ≤ e and therefore Acc(qi0) =s

∑k−1
j=i0 rj +gN. We have |πmτm−1πm−1 · · · τi0πi0 | ∈ Acc(qi0)

because it is larger than s (by Property 2) and

|πmτm−1πm−1 · · · τi0πi0 | = n− |τi0−1πi0−1 · · · τ0π0| ≡ n−
i0−1∑
j=0

rj ≡
k−1∑
j=i0

rj (mod g),
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where the last congruence follows from the fact that n ∈ Acc(q0) =s

∑k−1
j=0 rj + gN. By

Lemma 4.6 there exists an accepting run π′ of length |πmτm−1πm−1 · · · τi0πi0 | which t-
simulates πi0 . The prefix distance between π′τi−1πi0−1 · · · τ0π0 and π = πmτm−1πm−1 · · · τ0π0
is at most

|πmτm−1πm−1 · · · τi0 |+ t = |πmτm−1πm−1 · · · τi0+1πi0+1|+ 1 + t ≤ 1 + s+m+ t

by Property 3. J

B Proofs of the lower bounds (Theorems 3.2 and 3.5)

A sliding window algorithm can be naturally seen as a family of finite automata (see [14, 16]).
We make use of this viewpoint in order to prove the lower bounds of Theorem 3.2 and
Theorem 3.5. To get the strongest possible statements, we prove those lower bounds for
so-called nondeterministic and co-nondeterministic sliding window testers.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, I, δ, F ) consisting of a
finite set of states Q, a finite alphabet Σ, a set of initial states I ⊆ Q, a transition relation
δ ⊆ Q× Σ×Q and a set of final states F ⊆ Q. Runs in NFAs are defined similarly to DFAs
and rDFAs. Formally, a run in the NFA A is a sequence (q0, a1, q1, a2, q2, . . . , an, qn) such
that (qi−1, ai, qi) ∈ δ for all 1 ≤ i ≤ n. A word w is accepted by A (w ∈ L(A) for short) if it
labels a run from an initial state to a final state.

I Definition B.1. A nondeterministic sliding window tester A = (An)n≥0 for the language
L with Hamming gap γ(n) is a family of NFAs An such that for each window size n ≥ 0 and
each stream w ∈ Σ∗ the following holds:
1. if lastn(w) ∈ L, then w ∈ L(An);
2. if dist(lastn(w), L) > γ(n), then w /∈ L(An).
One can view every An as a nondeterministic streaming algorithm that updates its memory
state nondeterministically depending on the current input symbol. Note that in order to
have lastn(w) ∈ L, it is enough to have at least one run of An on w ∈ Σ∗ from an initial
state to an accepting state. This is equivalent to require that the active window is accepted
by the algorithm with some probability greater than 0 (if we assign to every state q and
every symbol a a probability distribution on the outgoing a-transitions of q). On the other
hand, if dist(lastn(w), L) > γ(n), then all runs of An on w ∈ Σ∗ from an initial state end in
non-accepting states, i.e. the active window is rejected with probability 1.

A second concept we use in this section are coNFAs. The only difference to NFAs is that
a word w is accepted by a coNFA A if all runs on w that begin in an initial state have to
end in an accepting state. In other words, a word w is rejected by A if and only if there is
at least one run on w from an initial state to a non-accepting state. A co-nondeterministic
sliding window tester A = (An)n≥0 for L with Hamming gap γ(n) is a family of coNFAs An
such that for each window size n ≥ 0 and each stream w ∈ Σ∗ the properties 1 and 2 in
Definition B.1 hold. So if lastn(w) ∈ L, then all runs of An on w ∈ Σ∗ that start in an initial
state end in an accepting state. In other words, the algorithm accepts with probability 1. If
dist(lastn(w), L) > γ(n), then there is at least one run of An on w ∈ Σ∗ that starts in an
initial state and ends in a non-accepting state, i.e. the algorithm rejects with probability
strictly greater than 0.

Let A = (An)n≥0 be a (co-)nondeterministic sliding window tester and let Qn be the
state set of An. Then the space consumption of A is defined as sA(n) = dlog |Qn|e. This
reflects the fact that states from Qn can be encoded with sA(n) many bits.
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In order to prove the Theorem 3.2 we will show a logarithmic space lower bound for every
nondeterministic sliding window tester for a regular nontrivial language (see Theorem B.6
below). To do this, we will use so-called cut languages.

Given i, j ≥ 0 and a word w of length at least i + j we define cuti,j(w) = y such that
w = xyz, |x| = i and |z| = j. If |w| < i+ j, then cuti,j(w) is undefined. For a language L
we define the cut-language cuti,j(L) = {cuti,j(w) | w ∈ L}.

I Lemma B.2. If L is regular, then there are finitely many languages cuti,j(L).

Proof. Let A = (Q,Σ, q0, δ, F ) be a DFA for L. Given i, j ≥ 0, let I be the set of states
reachable from q0 via i symbols and let F ′ be the set of states from which F can be reached
via j symbols. Then the nondeterministic finite automaton (Q,Σ, I, δ, F ′) recognizes cuti,j(L)
(see Section B for the definition of nondeterministic finite automata). Since there are at
most 22|Q| such choices for I and F ′, the number of languages of the form cuti,j(L) must be
finite. J

A language L is a length language if for all n ∈ N either Σn ⊆ L or Σn ∩ L = ∅.

I Lemma B.3. If cuti,j(L) is a length language for some i, j ≥ 0, then L is trivial.

Proof. Assume that cuti,j(L) is a length language. Let n ∈ N such that L ∩ Σn 6= ∅ and
n ≥ i + j. We claim that dist(w,L) ≤ i + j for all w ∈ Σn. Let w ∈ Σn and w′ ∈ L ∩ Σn.
Then cuti,j(w′) ∈ cuti,j(L) and hence also cuti,j(w) ∈ cuti,j(L). Therefore there exist x ∈ Σi
and z ∈ Σj such that x cuti,j(w) z ∈ L satisfying dist(w, x cuti,j(w) z) ≤ i+ j. J

The restriction of a language L to a set of lengths N ⊆ N is L|N = {w ∈ L : |w| ∈ N}. A
language L excludes a word w as a factor if w is not a factor of any word in L. A simple but
important observation is that if L excludes w as a factor and v contains k disjoint occurrences
of w, then dist(v, L) ≥ k: If we change at most k − 1 many symbols in v, then the resulting
word v′ must still contain w as a factor and hence v′ /∈ L.

I Proposition B.4. Let L be regular. If cuti,j(L) is not a length language for all i, j ≥ 0,
then L has an infinite restriction L|N to an arithmetic progression N = {a + bn | n ∈ N}
which excludes a factor.

Proof. First notice that cuti,j(L) determines cuti+1,j(L) and cuti,j+1(L): we have cuti+1,j(L) =
{w | ∃a ∈ Σ : aw ∈ cuti,j(L)} and similarly for cuti,j+1(L). Since the number of cut-languages
cuti,j(L) is finite there exist numbers i ≥ 0 and d > 0 such that cuti,0(L) = cuti+d,0(L).
Hence, we have cuti,j(L) = cuti+d,j(L) for all j ≥ 0. By the same argument, there exist
numbers j ≥ 0 and e > 0 such that cuti,j(L) = cuti,j+e(L) = cuti+d,j(L) = cuti+d,j+e(L),
which implies cuti,j(L) = cuti,j+h(L) = cuti+h,j(L) = cuti+h,j+h(L) for some h > 0 (we can
take h = ed). This implies that cuti,j(L) is closed under removing prefixes and suffixes of
length h.

By assumption cuti,j(L) is not a length language, i.e. there exist words y′ ∈ cuti,j(L)
and y /∈ cuti,j(L) of the same length k. Let N = {k+ i+ j+hn | n ∈ N}. For any n ∈ N the
restriction L|N contains a word of length k+ i+ j+hn because y′ ∈ cuti,j(L) = cuti+hn,j(L).
This proves that L|N is infinite.

Let u be an arbitrary word which contains for every remainder 0 ≤ r ≤ h−1 an occurrence
of y as a factor starting at a position which is congruent to r mod h. We claim that L|N
excludes aiuaj as a factor where a is an arbitrary symbol. Assume that there exists a word
w ∈ L|N which contains aiuaj as a factor. Then cuti,j(w) contains u as a factor, has length
k + hn for some n ≥ 0, and belongs to cuti,j(L). Therefore cuti,j(w) also contains h many
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occurrences of y, one per remainder 0 ≤ r ≤ h− 1. Consider the occurrence of y in cuti,j(w)
which starts at a position which is divisible by h, i.e. we can factorize cuti,j(w) = xyz such
that |x| is a multiple of h. Since cuti,j(w) has length k + hn also |z| is a multiple of h.
Therefore y ∈ cuti+|x|,j+|z|(L) = cuti,j(L), which is a contradiction. J

Before we continue with our lower bound proof, let us prove the following result for nontrivial
regular languages that is of independent interest:

I Corollary B.5. If L is a nontrivial regular language, then there exists ε > 0 such that L is
not εn-trivial.

Proof. Let L be nontrivial and regular. By Lemma B.3 and Proposition B.4 there exists
an infinite restriction L|N of L which excludes a factor w. Hence if n ∈ N and v is any
word of length n, which contains at least bn/|w|c many disjoint occurrences of w, then
dist(v, L) ≥ bn/|w|c, which proves the claim. J

We can now state and prove our general lower bounds.

I Theorem B.6. Let L be regular and nontrivial. Then there is a constant ε0, 0 < ε0 ≤ 1,
such that for every 0 ≤ ε < ε0, every nondeterministic sliding window tester for L with
Hamming gap εn uses space at least log2 n + log2(1 − ε/ε0) − O(1) on an infinite set of
window sizes n (that only depends on L).

Proof. By Lemma B.3, cuti,j(L) is not a length language for all i, j ≥ 0. Let N be the set
of lengths from Proposition B.4 such that L|N is infinite and excludes some factor wf . Let
c = |wf | > 0 and ε0 = 1/c. Since N is an arithmetic progression, L|N is regular. Recall that
every word v that contains k disjoint occurrences of wf has Hamming distance at least k
from any word in L|N . Let A = (Q,Σ, q0, δ, F ) be a DFA for L|N . Since L(A) is infinite,
there must exist words x, y, z such that y 6= λ and for δ(q0, x) = q we have δ(q, y) = q and
δ(q, z) ∈ F . Let d = |xz| and e = |y| > 0.

Consider a nondeterministic sliding window tester A = (An)n≥0 for L with Hamming
gap εn for some ε < ε0. Fix a window length n ∈ N and define for k ≥ 0 the input streams
uk = wnf xy

k and vk = ukz = wnf xy
kz. Let α = cε < 1. If 0 ≤ k ≤ b (1−α)n−c−d

e c, then the
suffix of vk of length n contains at least⌊

n− d− ek
c

⌋
≥
⌊
n− d− (1− α)n+ c+ d

c

⌋
=
⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf . Hence, after reading any of the input streams vk for
0 ≤ k ≤ b (1−α)n−c−d

e c, the NFA An has to reject with probability one, i.e., every run of An
on vk that starts in an initial state has to end in a rejecting state.

Assume now that the window size n satisfies n ≥ d and n ≡ d (mod e). Write n = d+ le

for some l ≥ 0. Note that each n with this property satisfies n ∈ N since xylz ∈ L|N . We
have l > b (1−α)n−c−d

e c. The suffix of vl = wnf xy
lz of length n is xylz ∈ L|N . Therefore An

accepts vl, i.e., there exists a run π of An on vl that starts in an initial state and ends in an
accepting state. Let m be the number of states of An. For 0 ≤ i ≤ l let pi be the state on
the run π that is reached after the prefix wnf xyi of vl.

Assume now that m ≤ b (1−α)n−c−d
e c. Then there must exist numbers i and j with

0 ≤ i < j ≤ b (1−α)n−c−d
e c such that pi = pj =: p. By cutting off cycles at p from the run

π and repeating this, we finally obtain a run of An on an input stream vk = wnf xy
kz with

k ≤ b (1−α)n−c−d
e c. This run still goes from an initial state to an accepting state. Hence, An



22 Sliding window property testing for regular languages

accepts with probability > 0 an input stream vk with k ≤ b (1−α)n−c−d
e c. This contradicts

our previous observation. Hence, for every n ≥ d with n ≡ d (mod e), An must have more
than b (1−α)n−c−d

e c states. This implies

sA(n) ≥ log2

(
(1− α)n− c− d

e

)
≥ log2 n+ log2(1− α)−O(1),

which proves the theorem. J

Theorem 3.2 is a direct corollary of Theorem B.6 since every deterministic sliding window
tester is also a nondeterministic sliding window tester.

I Example B.7. For the lower bound log2 n + log2(1 − ε/ε0) − O(1) in Theorem B.6 the
Hamming gap has to be strictly below ε0n, where ε0 is a constant that depends on L. This
is in general not avoidable. Consider for instance the language Lc = ({a, b}c−1a)∗. It is
nontrivial, since for any k, the word wk = bc·k has Hamming distance dist(wk, Lc) = k from
Lc. On the other hand this is also the worst-case, i.e., any word w of length n = ck has
Hamming distance dist(w,Lc) ≤ k = n/c from Lc. Hence, with constant space one can
achieve a Hamming gap of n/c using the algorithm that always accepts.

We next want to transfer the lower bound from Theorem B.6 to co-nondeterministic sliding
window testers. For this, we make use of a power set construction.

I Lemma B.8. If there is a co-nondeterministic sliding window tester A = (An)n≥0 for L
with Hamming gap γ(n) that uses space s(n), then there is a deterministic sliding window
tester for L with Hamming gap γ(n) that uses space 2s(n).

Proof. Let An = (Qn,Σ, In, δ, Fn). We apply the powerset construction and transform every
coNFA An into a DFA A′n with state set P(Qn) (the power set of Qn). The only difference
to the powerset construction for NFAs is the following: a state Q ⊆ Qn of A′n is final if and
only if Q ⊆ Fn (for NFAs it is only required that Q ∩ Fn 6= ∅). It is straightforward to see
that L(An) = L(A′n). Moreover, A′n has 2|Qn| many states. J

Lemma B.8 and Theorem B.6 immediately yield the following result:

I Theorem B.9. For every non-trivial regular language L there is a constant ε0, 0 < ε0 ≤ 1,
such that for every 0 ≤ ε < ε0, every co-nondeterministic sliding window tester for L with
Hamming gap εn uses space at least log2 log2 n−O(1) on an infinite set of window sizes n
(that only depends on L).

Note that a randomized sliding window tester for L with one-sided error is also a co-
nondeterministic sliding window tester for L. Hence, the doubly logarithmic space lower
bound for non-trivial regular languages from Theorem 3.5 is a direct corollary of Theorem B.9.

It remains to prove the logarithmic space lower bound in Theorem 3.5. For this, we start
with two lemmas.

I Lemma B.10. Every regular suffix-free language excludes a factor.

Proof. Let B = (Q,Σ, F, δ, q0) be an rDFA for L. Since L is suffix-free, we can assume
that there is a single maximal SCC that consists of a single state qfail /∈ F (if a maximal
SCC would contain a final state, then L would not be suffix-free). We have δ(a, qfail) = qfail
for all a ∈ Σ. We construct a word wf ∈ Σ∗ such that δ(p, wf ) = qfail for all p ∈ Q. Let
p1, . . . , pm be an enumeration of all states in Q\{qfail}. We then construct inductively words
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w0, w1, . . . , wm ∈ Σ∗ such that for all 0 ≤ i ≤ m: δ(wi, p) = qfail for all p ∈ {p1, . . . , pi}.
We start with w0 = λ. Assume that wi has been constructed for some i < m. There is a
word x such that that δ(x, δ(wi, pi+1)) = qfail . We set wi+1 = xwi. Then δ(wi+1, pi+1) =
δ(xwi, pi+1) = qfail and δ(wi+1, pj) = δ(wix, pj) = δ(x, qfail) = qfail for 1 ≤ j ≤ i. We finally
define wf = wm. J

I Lemma B.11. Every regular language L satisfies one of the following properties:
L is a finite union of regular trivial languages and regular suffix-free languages.
L has a restriction L|N which excludes some factor and contains y∗z for some y, z ∈ Σ∗,
|y| > 0.

Proof. Let B = (Q,Σ, F, δ, q0) be an rDFA for L. Let Br = (Q,Σ, Fr, δ, q0) where Fr is the
set of non-transient final states and Bq = (Q,Σ, {q}, δ, q0) for q ∈ Q. We can decompose L as
a union of Lr = L(Br) and all languages L(Bq) over all transient states q ∈ F . Notice that
L(Bq) is suffix-free for all transient q ∈ F since any run to q cannot be prolonged to another
run to q. If Lr is trivial, then L satisfies the first property. If Lr is nontrivial, then by
Lemma B.3 and Proposition B.4 there exists an arithmetic progression N = {a+ bn | n ∈ N}
such that Lr|N is infinite and excludes some word w ∈ Σ∗ as a factor. Let z ∈ Lr|N be
any word. Since Br reaches some non-transient final state p on input z there exists a word
y which leads from p back to p. We can ensure that |y| is a multiple of b by replacing y
by a suitable power yi. Then y∗z ⊆ Lr|N ⊆ L|N . Furthermore since each language L(Bq)
excludes some factor wq by Lemma B.10 the language L|N ⊆ Lr|N ∪

⋃
q L(Bq) excludes any

concatenation of w and all words wq as a factor. J

I Theorem B.12. Let L be a regular language that is not a finite union of regular trivial
languages and regular suffix-free languages. Then there is a constant ε0, 0 < ε0 ≤ 1, such that
for every 0 ≤ ε < ε0, every co-nondeterministic sliding window tester for L with Hamming
gap εn uses space at least log2 n+ log2(1− ε/ε0)−O(1) on an infinite set of window sizes n
(that only depends on L).

Proof. By Lemma B.11, L has a restriction L|N which excludes some factor wf and contains
y∗z for some y, z ∈ Σ∗, |y| > 0. Let c = |wf | ≥ 1. We set ε0 = 1/c. Let d = |z| and
e = |y|. Fix a window length n ∈ N and define for k ≥ 0 the input streams uk = wnf y

k and
vk = ukz = wnf y

kz. Consider a co-nondeterministic sliding window tester A = (An)n≥0 for L
with Hamming gap εn for some ε < ε0. Let α = cε < 1 and r = b (1−α)n−c−d

e c. If 0 ≤ k ≤ r,
then the suffix of vk of length n contains at least⌊

n− d− ek
c

⌋
≥
⌊
n− d− (1− α)n+ c+ d

c

⌋
=
⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf . Hence, after reading any of the input streams vk for
0 ≤ k ≤ r, the coNFA An has to reject, i.e., there is an An-run on vk that starts in an initial
state and ends in a non-accepting state. Consider an An-run π on vr that goes from an
initial state to a non-accepting state. For 0 ≤ i ≤ r let pi be the state in π that is reached
after the prefix wnf yi of vr. Let now m be the number of states of An and assume m ≤ r.
There must exist numbers i and j with 0 ≤ i < j ≤ r such that pi = pj =: p. It follows that
there is an An-run on yj−i that starts and ends in state p. Using that cycle we can now
prolong the run π, i.e., for all t ≥ 0 there is an An-run on vr+(j−i)·t = wnf y

r+(j−i)·tz that
starts in an initial state and ends in a non-accepting state.

Assume now that the window size satisfies n ≥ d and n ≡ d (mod e). Write n = d+ le

for some l ≥ 0. Note again that each n with this property satisfies n ∈ N since the word ylz
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belongs to L|N . We have l > b (1−α)n−c−d
e c = r. For every k ≥ l, the suffix of vk = wnf y

kz of
length n is ylz ∈ L. Therefore An accepts vk, i.e., for all k ≥ l, every An-run on vk that starts
in an initial state has to end in an accepting state. This contradicts our observation that for
all t ≥ 0 there is an An-run on vr+(j−i)·t that goes from an initial state to a non-accepting
state. Hence, An has at least r + 1 ≥ (1−α)n−c−d

e states. It follows that

sA(n) ≥ log2

(
(1− α)n− c− d

e

)
≥ log2 n+ log2(1− ε/ε0)−O(1).

This proves the theorem. J

The logarithmic space lower bound from Theorem 3.5 is an immediate consequence of
Theorem B.12.
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