
Entropy Bounds for Grammar-Based Tree
Compressors

Danny Hucke, Markus Lohrey, and Louisa Seelbach Benkner
Universität Siegen

Germany

Abstract—The definition of kth-order empirical entropy of
strings is extended to node-labeled binary trees. A suitable binary
encoding of tree straight-line programs (that have been used for
grammar-based tree compression before) is shown to yield binary
tree encodings of size bounded by the kth-order empirical entropy
plus some lower order terms. This generalizes recent results
for grammar-based string compression to grammar-based tree
compression. A long version of this paper can be found in [11].
Keywords. Grammar-based compression, binary trees, empirical
entropy, lossless compression

I. INTRODUCTION

a) Grammar-based string compression: The idea of
grammar-based compression is based on the fact that in many
cases a word w can be succinctly represented by a context-
free grammar that produces exactly w. Such a grammar is
called a straight-line program (SLP) for w. In the best case,
one gets an SLP of size O(log n) for a word of length n,
where the size of an SLP is the total length of all right-
hand sides of the rules of the grammar. A grammar-based
compressor is an algorithm that produces for a given word w
an SLP Gw for w, where, of course, Gw should be smaller
than w. Grammar-based compressors can be found at many
places in the literature. Probably the best known example is the
classical LZ78-compressor of Lempel and Ziv [18]. Indeed, it
is straightforward to transform the LZ78-representation of a
word w into an SLP for w. Other grammar-based compressors
can be found in [1].

Recently, several upper bounds on the compression per-
fomance of grammar-based compressors in terms of higher
order empirical entropy have been shown. For this, the choice
of a concrete binary encoding B(G) of an SLP G is cru-
cial. Kieffer and Yang [13] came up with such a binary
encoding B and proved that under certain assumptions on
the grammar-based compressor w 7→ Gw, the combined
compressor w 7→ B(Gw) yields a universal code with respect
to the family of finite-state information sources over finite
alphabets. Concretely, it is needed that the size of the SLP
Gw is bounded by O(|w|/ logσ̂ |w|) where σ is the size of the
underlying alphabet and σ̂ = max{2, σ}. This upper bound
is met by all grammar-based compressors that only produce
so-called irreducible SLPs [13]. Every SLP can be efficiently
transformed into an irreducible SLP without increasing the
size of the SLP. In their recent paper [16], Navarro and
Ochoa used the binary encoding B(Gw) in order to prove for
every word w over an alphabet of size σ the upper bound

|B(Gw)| ≤ |w|Hk(w)+o(|w| log σ̂) for every k ∈ o(logσ̂ |w|).
Here, Hk(w) is the empirical kth-order entropy of w, and the
grammar-based compressor w 7→ Gw must satisfy the upper
bound |Gw| ≤ O(|w|/ logσ̂ |w|). Similar but weaker bounds
for different binary SLP-encodings were shown in [8], [15].

b) Grammar-based tree compression: Grammar-based
compression has been generalized from strings to trees by
means of linear context-free tree grammars generating exactly
one tree. Such grammars are also known as tree straight-
line programs, TSLPs for short, see [14] for a survey. TSLPs
can be seen as a proper generalization of SLPs and DAGs
(directed acyclic graphs, which are a widely used compact
representation of trees). Whereas DAGs only have the ability
to share repeated subtrees of a tree, TSLPs can also share
repeated tree patterns with a hole (so-called contexts). In [5],
the authors presented a linear time algorithm that computes
for a given binary tree t of size n and with σ node labels a
TSLP Gt of size O(n/ logσ̂ n); an alternative algorithm with
the same asymptotic size bound can be found in [6]. The reader
should notice that the O(n/ logσ̂ n)-bound cannot be achieved
by DAGs: the smallest DAG for an unlabeled binary tree of
size n may still contain n edges.

c) Entropy bounds for grammar-based tree compres-
sors: In this paper we first consider binary node-labeled trees:
every node has a label from a finite set Σ of size σ and
every non-leaf node has a left and a right child. For binary
unlabeled trees the results of Kieffer and Yang on universal
grammar-based compressors have been extended to trees in
[10], [17]. Whereas the universal tree encoder from [17] is
based on DAGs (and needs a certain assumption on the average
DAG size with respect to the input distribution), the encoder
from [10] uses TSLPs of size O(n/ log n). For this, a binary
encoding of TSLPs similar to the one for SLPs from [13] is
proposed. In this paper we extend the binary TSLP-encoding
from [10] to node-labeled binary trees and prove an upper
bound similar to the one from [16] for strings. To do this, we
first have to come up with a reasonable higher order entropy
for binary node-labeled trees (we just speak of binary trees in
the following). Several notions of tree entropy can be found in
the literature, but all are tailored towards unranked trees and
do not yield nontrivial results for binary trees.

• The kth-order label entropy from [3] is based on the
empirical probability that a node v is labeled with a

certain symbol conditioned on the k first labels from the
parent node of v to the root of the tree.

• The tree entropy from [12] is the 0th order entropy of
the node degrees.

• Recently, two combinations of the two previous entropy
measures were proposed in [7]. The first combination is
based on the empirical probability that a node v is labeled
with a certain symbol conditioned on (i) the k first labels
from the parent node of v to the root and (ii) the node
degree of v. The second combination uses the empirical
probability that a node v has a certain degree conditioned
on (i) the k first labels from the parent node of v to the
root and (ii) the node label of v.

Tree entropy [12] is not useful in the context of binary trees,
since a binary tree with n leaves has n−1 nodes of degree 2,
which shows that the tree entropy divided by the number of
nodes (2n−1) converges to 1 when n increases. On the other
hand, the kth-order label entropy is not useful for unlabeled
trees. For the special case of unlabeled binary trees, also the
combinations of [7] do not lead to useful entropy measures.

Our first contribution is the definition of a reasonable
entropy measure for binary trees that can also be used for
the unlabeled case. For this we define the k-history of a node
v in a binary tree t by taking the last k edges on the unique
path from the root to v. For each edge (v1, v2) traversed on
this path we write down the node label of v1 and a 0 (resp.,
1) if v2 is a left (resp., right) child of v1. Thus, the k-history
of a node is a word of length 2k that alternatingly consists
of symbols from Σ and directions that are encoded by 0 or
1. For nodes at depth smaller than k we pad the history with
0’s and a default node label � ∈ Σ in order to get length
exactly k. 1 For each k-history z we then enumerate all nodes
v1, . . . , vl of t whose k-history is z and form the string w(t, z)
over the alphabet Σ×{0, 2} by writing down for each node vi
the pair consisting the label of vi (a symbol from Σ) and the
degree (either 0 or 2) of vi. We define the kth-order empirical
entropy of t, Hk(t) for short, as the sum of the (0th-order)
unnormalized empirical entropies of these strings w(t, z). This
definition is similar to the definition of the kth oder empirical
entropy of a string. Our main result states that

|B(Gt)| ≤ Hk(t) +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ,

where t is a binary tree with n leaves, the grammar-based
compressor t 7→ Gt produces TSLPs of size O(n/ log n) for
binary trees of size n, and B is the binary TSLP-encoding from
[10]. If k ≤ o(logσ n) then this bound can be simplified to
|B(Gt)| ≤ Hk(t) + o(n log σ̂). The assumption k ≤ o(logσ̂ n)
can be also found in [16]. In fact, Gagie argued in [4] that kth-
order empirical entropy for strings stops being a reasonable
complexity measure for almost all strings of length n over
alphabets of size σ when k ≥ logσ̂ n.

The kth-order empirical entropy Hk(t) is a lower bound on
the coding length of a tree encoder that encodes for each node

1This is an ad hoc decision to simplify definitions. Alternatively, one could
allow histories of length shorter than k; this would not change our results.

the relevant information (the label of the node and the binary
information whether the node is a leaf or internal) depending
on the k-history of the node. In the long version [11] of this
paper we establish a relationship between Hk(t) and a certain
class of kth-order tree processes: Hk(t) coincides with the
minimal self-information of t with respect to all kth-order
tree processes. This result is an extension of a result of Gagie
[4] according to which the kth-order empirical entropy of a
string w is the minimal self-information of w with respect to
all kth-order Markov processes.

In the final section of the paper we present a simple
extension of our entropy notion to node-labeled unranked
trees. In an unranked tree the number of children of a node is
arbitrary. Unranked trees are important in the area of XML,
where the hierarchical structure of a document is represented
by a node-labeled unranked tree. For such a tree t we define
the kth-order empirical entropy as the kth-order empirical
entropy of the first-child next-sibling (fcns for short) encoding
of t. The fcns-encoding of t is a binary tree which contains
all nodes of t. If a node v of t has the first (i.e., left-most)
child v1 and the right sibling v2 then v1 (resp., v2) is the
left (resp., right) child of v in the fcns-encoding of t. If
v has no child or no right sibling then one adds dummy
leaves to the fcns encoding in order to obtain a full binary
tree. Our choice of defining the kth-order empirical entropy
of an unranked tree via the fcns-encoding is motivated by
the fact that in XML document trees the label of a node v
usually depends on the labels of the ancestors and the labels
of the left siblings of v. This information is contained in the
history of v in the fcns-encoding. In the long version [11]
we also present experimental results for real XML document
trees. For k = 1, 2, 4, 8 we computed the quotient of the kth-
order empirical entropy and the worst case bit length (which
is (2 + log σ)n, where n is the number of nodes and σ is the
number of node labels [9]). For k = 4 the average quotient is
about 5.3% (the maximal value is about 19%).

II. PRELIMINARIES

We use the standard O-notation. If b > 0 is a constant, then
we write O(log n) for O(logb n). We make the convention
that 0 · log(0) = 0.

Let w = a1a2 · · · al ∈ Γ∗ be a word over a finite alphabet Γ,
i.e., a1, a2, . . . , al ∈ Γ. With |w| = l we denote the length of
w. The empty word is denoted by ε. For a ∈ Γ we denote with
|w|a = |{i | 1 ≤ i ≤ l, ai = a}| the number of occurrences of
a in w. The unnormalized empirical entropy of w is

H(w) = −
∑
a∈Γ

|w|a log2

(
|w|a
|w|

)
. (1)

It is a lower bound for the bit length of E(w), where E :
Γ→ {0, 1}∗ is an encoding function with a prefix-free image
in the sense that there do not exist w,w′ ∈ Γ∗ with w 6= w′

such that E(w) is a prefix of E(w′). Note that H(ε) = 0.

a

b

b

a b

a

a

b a

Fig. 1. A binary tree.

III. BINARY TREES AND THEIR ENTROPY

A. Binary trees

Let Σ denote a finite non-empty alphabet of size |Σ| = σ.
Later, we will need a fixed distinguished symbol from Σ that
we will denote with � ∈ Σ. We will also need the value σ̂ =
max{2, σ}. With T (Σ) we denote the set of labeled binary
trees over the alphabet Σ. Formally, it is inductively defined as
the smallest set of terms over Σ such that (i) Σ ⊆ T (Σ) and
(ii) if t1, t2 ∈ T (Σ) and a ∈ Σ, then a(t1, t2) ∈ T (Σ). With |t|
we denote the number of leaves of t, which can be inductively
defined by |a| = 1 and |a(t1, t2)| = |t1|+ |t2| for a ∈ Σ and
t1, t2 ∈ T (Σ). Note that 2|t|−1 is the number of occurrences
of symbols from Σ in t. Let Tn(Σ) = {t ∈ T (Σ) | |t| = n}
for n ≥ 1. Since Σ will not change in this paper, we use the
abbreviations T and Tn for T (Σ) and Tn(Σ), respectively. A
tree encoder is an injective mapping E : T → {0, 1}∗ such
that the range E(T) is a prefix-free set of bit strings.

Occasionally, we will consider a binary tree as a graph with
nodes and edges in the usual way, where each node is labeled
with a symbol from Σ. Note that t ∈ Tn has 2n − 1 nodes
in total: n leaves and n − 1 internal nodes. It is convenient
to define a node v of t ∈ T as a bit string that describes the
path from the root to the node (0 means left, 1 means right).
Formally, we define the node set V (t) ⊆ {0, 1}∗ of t ∈ T by
• V (a) = {ε} for every a ∈ Σ,
• V (a(t0, t1)) = {iw | i ∈ {0, 1}, w ∈ V (ti)} ∪ {ε} for

every a ∈ Σ.
The leaves of t are those strings in V (t) that are maximal with
respect to the prefix relation.

Example 1: Consider the tree t = a(b(b(a, b), a), a(b, a))
with Σ = {a, b} depicted in Figure 1. We have V (t) =
{ε, 0, 1, 00, 01, 10, 11, 000, 001}.

Consider a tree t ∈ T . Let λt : V (t) → Σ× {0, 2} denote
the function mapping a node v ∈ V (t) to a pair (a, i) where
a ∈ Σ is the label of v and i ∈ {0, 2} is the number of children
of v. We can define this function inductively as follows:
• λa(ε) = (a, 0),
• λt(ε) = (a, 2) for t = a(t0, t1),
• λt(iw) = λti(w) for t = a(t0, t1) and iw ∈ V (t).

B. Histories

We define the set of histories as the language L =
(Σ{0, 1})∗ consisting of all strings of the form a1i1 · · · anin,
where n ≥ 0, ak ∈ Σ, and ik ∈ {0, 1} for 1 ≤ k ≤ n.
For an integer k ≥ 1 let Lk = {w ∈ L | |w| = 2k} and
let `k : L → Lk be the partial function mapping a history

z ∈ L with |z| ≥ 2k to the suffix of z of length 2k, i.e.,
`k(a1i1 · · · anin) = an−k+1in−k+1 · · · anin.

For a tree t and a node v ∈ V (t), we inductively define its
history h(v) ∈ L by (i) h(ε) = ε and (ii) h(wi) = h(w)ai
for i ∈ {0, 1} and wi ∈ V (t). Here, a is the symbol that
labels the node w, i.e., λt(w) = (a, 2). That is, in order to
obtain h(v), while walking downwards in the tree from the
root node to the node v we alternately concatenate symbols
from Σ with binary numbers in {0, 1} such that the symbol
from Σ corresponds to the label of the current node and the
binary number 0 (resp., 1) states that we move on to the left
(resp. right) child node. Note that the symbol that labels v is
not part of the history of v. The k-history of a tree node v ∈
V (t) is hk(v) = `k((�0)kh(v)) ∈ Lk, i.e. the suffix of length
2k of the word (�0)kh(v), where � is a fixed dummy symbol
in Σ (the choice is arbitrary). This means that if |v| ≥ k then
hk(v) describes the last k directions and node labels along the
path from the root to node v. If |v| < k, we pad the history
of v with �’s and zeros such that hk(v) ∈ Lk. For z ∈ Lk
we denote with Vz(t) = {v ∈ V (t) | hk(v) = z} the set of
nodes in t with k-history z.

C. Higher-order entropy of a tree

We define the kth-order (unnormalized) empirical entropy
Hk(t) of a tree t ∈ Tn as follows: Take a k-history z ∈ Lk
and let Vz(t) = {v1, v2, . . . , vj}. Define the string w(t, z) =
λt(v1)λt(v2) · · ·λt(vj) ∈ (Σ×{0, 2})∗ (the order in which we
enumerate the nodes in Vz(t) has no influence on the following
definition). We then define Hk(t) as

Hk(t) =
∑
z∈Lk

H(w(t, z)),

where the empirical entropy H(w(t, z)) is defined according
to (1). Since Σ×{0, 2} consists of 2σ many symbols and the
lengths of the strings w(t, z) sum up to 2n−1 (the number of
nodes of t), one gets 0 ≤ Hk(t) ≤ (2n − 1)(1 + log2 σ).
This upper bound on the entropy matches the information
theoretic bound for the worst-case output length of any tree
encoder on Tn. Using well-known asymptotic bounds for the
number of binary trees with n leaves, one sees that for any
tree encoder there must exist a tree t ∈ Tn which is encoded
with 2 log2(2σ)n − o(n) = 2(log2 σ + 1)n − o(n) bits. The
kth-order empirical entropy Hk(t) is a lower bound on the
coding length of a tree encoder that encodes for each node
the relevant information (the label of the node and the binary
information whether the node is a leaf or internal) depending
on the k-history of the node.

IV. TREE STRAIGHT-LINE PROGRAMS AND COMPRESSION
OF BINARY TREES

In this section we introduce tree straight-line programs and
use them for the compression of binary trees.

A. Contexts

A context is a labeled binary tree c, where exactly one leaf is
labeled with the special symbol x /∈ Σ (called the parameter);

all other nodes are labeled with symbols from Σ. Formally, the
set of contexts C(Σ) is the smallest set of terms such that (i)
x ∈ C(Σ) and (ii) if a ∈ Σ, c ∈ C(Σ) and t ∈ T (Σ) then also
a(c, t), a(t, c) ∈ C(Σ). For a tree or context s ∈ T (Σ)∪C(Σ)
and a context c ∈ C(Σ), we denote by c[s] the tree or context
which results from c by replacing the unique occurrence of
the parameter x by s. For example c = a(b, x) and t = b(b, a)
yield c[t] = a(b, b(b, a)). We write C for C(Σ).

B. Tree straight-line programs

Let V be a finite alphabet, where each symbol A ∈ V
has an associated rank 0 or 1. The elements of V are called
nonterminals. We assume that V contains at least one element
of rank 0 and that V is disjoint from the set Σ ∪ {x}, which
are the labels used for binary trees and contexts. We use V0

(resp., V1) for the set of nonterminals of rank 0 (resp., of rank
1). The idea is that nonterminals from V0 (resp., V1) derive to
trees from T (resp., contexts from C). We denote by TV (Σ) the
set of trees over Σ ∪ V , i.e. each node in a tree t ∈ TV (Σ) is
labeled with a symbol from Σ∪V and the number of children
of a node corresponds to the rank of its label. With CV (Σ)
we denote the corresponding set of all contexts, i.e., the set of
trees over Σ∪{x}∪V , where the parameter symbol x occurs
exactly once and at a leaf position. Formally, we define TV (Σ)
and CV (Σ) as the smallest sets of terms with the following
conditions, where here and in the rest of the paper we use the
abbreviations TV for TV (Σ) and CV for CV (Σ):
• Σ ∪ V0 ⊆ TV and x ∈ CV ,
• if a ∈ Σ, A ∈ V1, t1, t2 ∈ TV then A(t1), a(t1, t2) ∈ TV ,
• if a ∈ Σ, A ∈ V1, s ∈ CV and t ∈ TV then
A(s), a(s, t), a(t, s) ∈ CV .

Note that T ⊆ TV and C ⊆ CV . A tree straight-line program
G, or TSLP for short, is a tuple (V,A0, r), where A0 ∈ V0

is the start nonterminal and r : V → (TV ∪ CV) is a
function which assigns to each nonterminal its unique right-
hand side. It is required that if A ∈ V0 (resp., A ∈ V1),
then r(A) ∈ TV (resp., r(A) ∈ CV). Furthermore, the binary
relation {(A,B) ∈ V × V | B occurs in r(A)} has to
be acyclic. These conditions ensure that exactly one tree is
derived from the start nonterminal A0 by using the rewrite
rules A → r(A) for A ∈ V . To define this formally, we
define valG(t) ∈ T for t ∈ TV and valG(t) ∈ C for t ∈ CV
inductively by the following rules:
• valG(a) = a for a ∈ Σ and valG(x) = x,
• valG(a(t1, t2)) = a(valG(t1), valG(t2)) for a ∈ Σ and
t1, t2 ∈ TV ∪ CV (and t1 ∈ TV or t2 ∈ TV since there is
at most one parameter in a(t1, t2)),

• valG(A) = valG(r(A)) for A ∈ V0,
• valG(A(s)) = valG(r(A))[valG(s)] for A ∈ V1, s ∈ TV ∪
CV (note that valG(r(A)) is a context c, so we can build
c[valG(s)]).

The tree defined by G is val(G) = valG(A0) ∈ T .
Example 2: Let Σ = {a, b} and G = ({A0, A1, A2}, A0, r)

be a TSLP with A0, A1 ∈ V0, A2 ∈ V1 and r(A0) =
a(A1, A2(b)), r(A1) = A2(A2(b)), and r(A2) = b(x, a).

We get valG(A2) = b(x, a), valG(A1) = b(b(b, a), a) and
val(G) = valG(A0) = a(b(b(b, a), a), b(b, a)).

C. Tree straight-line programs in normal form

A TSLP G = (V,A0, r) is in normal form if the following
conditions hold:
• V = {A0, A1, . . . , Am−1} for some m ≥ 1.
• For every Ai ∈ V0, the right-hand side r(Ai) is a term

of the form Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ Σ.
• For every Ai ∈ V1 the right-hand side r(Ai) is a term of

the form Aj(Ak(x)), a(α, x), or a(x, α), where Aj , Ak ∈
V1, a ∈ Σ and α ∈ V0 ∪ Σ.

• valG(Ai) 6= valG(Aj) for i 6= j
• For every Ai ∈ V define the word ρ(Ai) ∈ (V ∪ Σ)∗ as

ρ(Ai) =

Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(x))

aα if r(Ai) = a(α, x) or a(x, α).

Let ρG = ρ(A0) · · · ρ(Am−1) ∈ (Σ∪{A1, . . . , Am−1})∗.
Then we require that the word ρG can be written as
ρG = A1u1A2u2 · · ·Am−1um−1 with u1, . . . , um−1 ∈
(Σ ∪ {A1, A2, . . . , Ai})∗.

We also allow the TSLP Ga = ({A0}, A0, A0 7→ a) for every
a ∈ Σ in order to get the singleton tree a. In this case, we set
ρGa = ρ(A0) = a.

Let G = (V,A0, r) be a TSLP in normal form with
V = {A0, A1, . . . , Am−1} for the further definitions. We
define the size of G as |G| = |V | = m. Thus 2|G| is the
length of ρG . Let ωG be the word obtained from ρG by
removing for every 1 ≤ i ≤ m − 1 the first occurrence of
Ai from ρG . Thus, if ρG = A1u1A2u2 · · ·Am−1um−1 with
ui ∈ (Σ∪{A1, A2, . . . , Ai})∗, then ωG = u1u2 · · ·um−1. Note
that |ωG | = |ρG | −m+ 1 = m+ 1. The entropy H(G) of the
normal form TSLP G is defined as the empirical unnormalized
entropy (see (1)) of the word ωG : H(G) = H(ωG).

Example 3: Let Σ = {a, b} and G = (V,A0, r) be the
normal form TSLP with V0 = {A0, A2, A3}, V1 = {A1, A4},
r(A0) = A1(A2), r(A1) = a(x,A3), r(A2) = A4(A3),
r(A3) = A4(b), and r(A4) = b(x, a). We have val(G) =
a(b(b(b, a), a), b(b, a)), ρG = A1A2aA3A4A3A4bba, |G| = 10
and ωG = aA3A4bba.

A grammar-based tree compressor is an algorithm ψ that
produces for a given tree t ∈ T a TSLP Gt in normal form. It
is not hard to show that every TSLP can be transformed with
a linear size increase into a normal form TSLP that derives the
same tree. For example, the TSLP from Example 2 is trans-
formed into the normal form TSLP described in Example 3.
We will not use this fact, since all we need is the following
theorem from [5] (recall that σ̂ = max{2, σ}):

Theorem 1: There exists a grammar-based compressor ψ
(working in linear time) with maxt∈Tn |Gt| ≤ O(n/ logσ̂ n).

D. Binary coding of TSLPs in normal form

In the long version of the paper, we define a binary encoding
function E (which builds on similar encodings from [10], [13],

[17]) that maps a TSLP in normal form to a bit string such
that the following two lemmas hold:

Lemma 1: The set of code words B(G), where G ranges
over all TSLPs in normal form, is a prefix code.

Lemma 2: For the length of the binary coding B(G) we
have: |B(G)| ≤ O(|G|) + σ +H(G).

V. ENTROPY BOUNDS FOR BINARY ENCODED TSLPS

For this section we fix a grammar-based tree compressor
ψ : t 7→ Gt such that maxt∈Tn |Gt| ∈ O(n/ logσ̂ n). We allow
that the alphabet size σ grows with n, i.e., σ = σ(n) is a
function in the tree size n such that 1 ≤ σ(n) ≤ 2n − 1 (a
binary tree t ∈ Tn has 2n − 1 nodes). We consider the tree
encoder Eψ : T → {0, 1}∗ defined by Eψ(t) = B(Gt). The
main result of the paper is:

Theorem 2: For every t ∈ Tn and every k ≥ 0 we have

|Eψ(t)| ≤ Hk(t) +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

Let us give a brief outline of the proof of Theorem 2 (see [11]
for details). With Lemma 2 we get

|Eψ(t)| ≤ O(|Gt|) + σ+H(Gt) ≤ O
(

n

logσ̂ n

)
+ σ+H(Gt).

The main part of the proof is to bound H(Gt) = H(ωGt). We
follow here the proof of [16] for strings, but the arguments
get more involved. In [16], the authors use a lemma of Gagie
[4] that roughly speaking states that the kth-order empirical
entropy of a string w is equal to − log2 Prob[Pw emits w]
(the self information of w with respect to Pw) where Pw is
the empirical kth-order Markov process of w (the probability
that Pw emits a after α ∈ Σk is the probability that a follows
an occurrence of α in w). We generalize Gagie’s result to
trees. For this we define in [11] a suitable class of kth-order
tree processes. Such a process determines for each k-history z
the probability that a node with k-history z is labeled with a
symbol a ∈ Σ and has degree i ∈ {0, 2}. One can then define
for a tree t the empirical kth-order tree process P t analogously
to the string case. Our generalization of Gagie’s lemma states

Hk(t) = − log2 Prob[P t emits t]. (2)

The main technical result in [11] states that for every kth-order
tree process P , the entropy H(Gt) can be bounded by

− log2 Prob[P emits t] +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
.

Using this bound for P t together with Lemma 2 and (2) proves
Theorem 2. To prove the upper bound of H(Gt) we define a
factorization of t into subtrees and contexts that is similar to
the parsing of the string in [16, Lemma 2] (see also [13]).

VI. EXTENSION TO UNRANKED TREE

So far, we have only considered binary trees. In many
applications, Σ-labeled unranked ordered trees appear, where
“ordered” means that the children of a node are totally ordered,
and “unranked” means that the number of children of a node

(also called its degree) can be any natural number. In order
to define a kth-order empirical entropy of such a tree t one
can use the so-called first-child next-sibling encoding of t,
fcns(t). This is a binary tree with node labels from Σ] {�}
for a dummy symbol, which contains all nodes of t. If a node
v of t has the first (i.e., left-most) child v1 and the right sibling
v2 then v1 (resp., v2) is the left (resp., right) child of v in the
fcns-encoding of t. If v has no child or no right sibling then
one adds �-labeled leaves to the fcns encoding in order to
obtain a full binary tree. Details and an example can be found
in the long version [11]. We define the kth-order empirical
entropy of an unranked tree t as Hk(t) = Hk(fcns(t)).

This above definition of the kth-order empirical entropy
of an unranked tree has a practical motivation. Unranked
trees occur for instance in the context of XML, where the
hierarchical structure of a document is represented as an
unranked node-labeled tree. In this setting, the label of a node
quite often depends on (i) the labels of the ancestor nodes
and (ii) the labels of the (left) siblings. This dependence is
captured by our definition of the kth-order empirical entropy.

REFERENCES

[1] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat. The smallest grammar problem. IEEE
Trans. Inf. Theory, 51(7):2554–2576, 2005.

[2] T. M. Cover. Enumerative source encoding. IEEE Trans. Inf. Theory,
19(1):73–77, 1973.

[3] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1):4:1–4:33,
2009.

[4] T. Gagie. Large alphabets and incompressibility. Inf. Process. Lett.,
99(6):246–251, 2006.

[5] M. Ganardi, D. Hucke, A. Jez, M. Lohrey, and E. Noeth. Construct-
ing small tree grammars and small circuits for formulas. J. Com-
put. Syst. Sci., 86:136–158, 2017.

[6] M. Ganardi and M. Lohrey. A universal tree balancing theorem. ACM
Trans. Comput. Theory, 11(1):1:1–1:25, 2018.

[7] M. Ganczorz. Entropy bounds for grammar compression. CoRR,
abs/1804.08547, 2018.

[8] M. Ganczorz. Using statistical encoding to achieve tree succinctness
never seen before. CoRR, abs/1807.06359, 2018.

[9] R. F. Geary, R. Raman, and V.Raman. Succinct ordinal trees with level-
ancestor queries. ACM Trans. Algorithms, 2(4):510–534, 2006.

[10] D. Hucke and M. Lohrey. Universal tree source coding using grammar-
based compression. In Proceedings of ISIT 2017, pages 1753–1757.
IEEE Computer Society Press, 2017.

[11] D. Hucke, M. Lohrey and L. Seelbach Benkner. Entropy bounds for
grammar-based tree compressors. arXiv.org, https://arxiv.org/abs/1901.
03155, 2019.

[12] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation
of ordered trees with applications. J. Comput. Syst. Sci., 78(2):619–631,
2012.

[13] J. C.Kieffer and E. h. Yang. Grammar-based codes: A new class of
universal lossless source codes. IEEE Trans. Inf. Theory, 46(3):737–
754, 2000.

[14] M. Lohrey. Grammar-based tree compression. In Proceedings of DLT
2015, LNCS 9168, pages 46–57. Springer, 2015.

[15] G. Navarro and L. Russo. Re-pair achieves high-order entropy. In
Proceedings of DCC 2008, page 537. IEEE Computer Society, 2008.

[16] C. Ochoa and G. Navarro. RePair and all irreducible grammars are upper
bounded by high-order empirical entropy. IEEE Trans. Inf. Theory, 2018.
doi: 10.1109/TIT.2018.2871452.

[17] J. Zhang, E.-h. Yang, and J. C. Kieffer. A universal grammar-based
code for lossless compression of binary trees. IEEE Trans. Inf. Theory,
60(3):1373–1386, 2014.

[18] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

