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Abstract. Recently knapsack problems have been generalized from the in-
tegers to arbitrary finitely generated groups. The knapsack problem for a

finitely generated group G is the following decision problem: given a tuple

(g, g1, . . . , gk) of elements of G, are there natural numbers n1, . . . , nk ∈ N such
that g = gn1

1 · · · g
nk
k holds in G? Myasnikov, Nikolaev, and Ushakov proved

that for every (Gromov-)hyperbolic group, the knapsack problem can be solved
in polynomial time. In this paper, the precise complexity of the knapsack
problem for hyperbolic group is determined: for every hyperbolic group G, the

knapsack problem belongs to the complexity class LogCFL, and it is LogCFL-
complete if G contains a free group of rank two. Moreover, it is shown that

for every hyperbolic group G and every tuple (g, g1, . . . , gk) of elements of G
the set of all (n1, . . . , nk) ∈ Nk such that g = gn1

1 · · · g
nk
k in G is semilinear

and a semilinear representation where all integers are of size polynomial in

the total geodesic length of the g, g1, . . . , gk can be computed. Groups with
this property are also called knapsack-tame. This enables us to show that
knapsack can be solved in LogCFL for every group that belongs to the closure

of hyperbolic groups under free products and direct products with Z.

1. Introduction

In [22], Myasnikov, Nikolaev, and Ushakov initiated the investigation of discrete
optimization problems, which are usually formulated over the integers, for arbitrary
(possibly non-commutative) groups. One of these problems is the knapsack prob-
lem for a finitely generated group G: The input is a sequence of group elements
g1, . . . , gk, g ∈ G (specified by finite words over the generators of G) and it is asked
whether there exists a tuple (n1, . . . , nk) ∈ Nk such that gn1

1 · · · g
nk

k = g in G. For
the particular case G = Z (where the additive notation n1 · g1 + · · ·+ nk · gk = g is
usually preferred) this problem is NP-complete (resp., TC0-complete) if the numbers
g1, . . . , gk, g ∈ Z are encoded in binary representation [12, 9] (resp., unary notation
[2]).

In [22], Myasnikov et al. encode elements of the finitely generated group G by
words over the group generators and their inverses, which corresponds to the unary
encoding of integers. There is also an encoding of words that corresponds to the
binary encoding of integers, so called straight-line programs, and knapsack problems
under this encoding have been studied in [18]. In this paper, we only consider the
case where input words are explicitly represented. Here is a list of known results
concerning the knapsack problem:

• Knapsack can be solved in polynomial time for every hyperbolic group [22].
In [4] this result was extended to free products of any finite number of
hyperbolic groups and finitely generated abelian groups.
• There are nilpotent groups of class 2 for which knapsack is undecidable.

Examples are direct products of sufficiently many copies of the discrete
Heisenberg group H3(Z) [13], and free nilpotent groups of class 2 and
sufficiently high rank [20].

This work has been supported by the DFG research project LO 748/13-1.
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• Knapsack for H3(Z) is decidable [13]. In particular, together with the
previous point it follows that decidability of knapsack is not preserved under
direct products.
• Knapsack is decidable for every co-context-free group [13], i.e., groups where

the set of all words over the generators that do not represent the identity is
a context-free language. Lehnert and Schweitzer [15] have shown that the
Higman-Thompson groups are co-context-free.
• Knapsack belongs to NP for all virtually special groups (finite extensions of

subgroups of graph groups) [19]. The class of virtually special groups is very
rich. It contains all Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds.
For graph groups (also known as right-angled Artin groups) a complete
classification of the complexity of knapsack was obtained in [19]: If the
underlying graph contains an induced path or cycle on 4 nodes, then knapsack
is NP-complete; in all other cases knapsack can be solved in polynomial
time (even in LogCFL).
• Decidability of knapsack is preserved under finite extensions, HNN-extensions

over finite associated subgroups and amalgamated free products over finite
subgroups [18].

In this paper we further investigate the knapsack problem in hyperbolic groups. The
definition of hyperbolic groups requires that all geodesic triangles in the Cayley-graph
are δ-slim for a constant δ; see Section 3 for details. The class of hyperbolic groups
has several alternative characterizations (e.g., it is the class of finitely generated
groups with a linear Dehn function), which gives hyperbolic groups a prominent
role in geometric group theory. Moreover, in a certain probabilistic sense, almost all
finitely presented groups are hyperbolic [8, 23]. Also from a computational viewpoint,
hyperbolic groups have nice properties: it is known that the word problem and
the conjugacy problem can be solved in linear time [3, 10]. As mentioned above,
knapsack can be solved in polynomial time for every hyperbolic group [22]. Our
first main result of this paper provides a precise characterization of the complexity
of knapsack for hyperbolic groups: for every hyperbolic group, knapsack belongs to
LogCFL, which is the class of all problems that are logspace-reducible to a context-
free language. LogCFL has several alternative characterizations, see Section 4 for
details. The LogCFL upper bound for knapsack in hyperbolic groups improves the
polynomial upper bound shown in [22], and also generalizes a result from [16], stating
that the word problem for a hyperbolic group is in LogCFL. For hyperbolic groups
that contain a copy of a non-abelian free group (such hyperbolic groups are called
non-elementary) it follows from [19] that knapsack is LogCFL-complete. Hyperbolic
groups that contain no copy of a non-abelian free group (so called elementary
hyperbolic groups) are known to be virtually cyclic, in which case knapsack belongs
to nondeterministic logspace (NL), which is contained in LogCFL.

In Section 8 we prove our second main result: for every hyperbolic group G and
every tuple (g, g1, . . . , gk) of elements of G the set of all (n1, . . . , nk) ∈ Nk such
that g = gn1

1 · · · g
nk

k in G is effectively semilinear. In other words: the set of all
solutions of a knapsack instance in G is semilinear. Groups with this property are
also called knapsack-semilinear. For the special case G = Z this is well-known (the
set of solutions of a linear equation is Presburger definable and hence semilinear).
Clearly, knapsack is decidable for every knapsack-semilinear group (due to the
effectiveness assumption). In a series of recent papers it turned out that the class
of knapsack-semilinear groups is surprisingly rich. It contains all virtually special
groups [17] and all co-context-free group [13] and is closed under the following
constructions:
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• going to a finitely generated subgroup (this is trivial) and going to a finite
group extension [18],
• HNN-extensions over finite associated subgroups and amalgamated free

products over finite subgroups [18],
• direct products (in contrast, the class of groups with a decidable knapsack

problem is not closed under direct products),
• restricted wreath products [5].

Our proof of the knapsack-semilinearity of a hyperbolic group shows an addi-
tional quantitative statement: If the group elements g, g1, . . . , gk are represented
by words over the generators and the total length of these words is N , then the set
{(n1, . . . , nk) ∈ Nk | g = gn1

1 · · · g
nk

k in G} has a semilinear representation, where all
vectors only contain integers of size at most p(N). Here, p(x) is a fixed polynomial
that only depends on G. Groups with this property are called knapsack-tame in
[19]. In [19], it is shown that the class of knapsack-tame groups is closed under free
products and direct products with Z. Using this, we can show in Section 9 that
knapsack can be solved in LogCFL for every group that belongs to the closure of
hyperbolic groups under free products and direct products with Z.

Recently, it was shown that the compressed version of the knapsack problem,
where input words are encoded by straight-line programs, is NP-complete for every
infinite hyperbolic group [11].

2. General notations

We assume that the reader is familiar with basic concepts from group theory and
formal languages. The empty word is denoted with ε. For a word w = a1a2 · · · an let
|w| = n be the length of w, and for 1 ≤ i ≤ j ≤ n let w[i] = ai, w[i : j] = ai · · · aj ,
w[: i] = w[1 : i] and w[i :] = w[i : n]. Moreover, let w[i : j] = ε for i > j.

A set of vectors A ⊆ Nk is linear if there exist vectors v0, . . . , vn ∈ Nk such that
A = {v0 + λ1 · v1 + · · ·+ λn · vn | λ1, . . . , λn ∈ N}. The tuple of vectors (v0, . . . , vn)
is a linear represention of A. Its magnitude is the largest number appearing in one
the vectors v0, . . . , vn. A set A ⊆ Nk is semilinear if it is a finite union of linear sets
A1, . . . , Am. A semilinear representation of A is a list of linear representations for
the linear sets A1, . . . , Am. Its magnitude is the maximal magnitude of the linear
representations for the sets A1, . . . , Am. The magnitude of a semilinear set A is the
smallest magnitude among all semilinear representations of A.

In the context of knapsack problems, we will consider semilinear sets as sets of
mappings f : {x1, . . . , xk} → N for a finite set of variables X = {x1, . . . , xk}. Such
a mapping f can be identified with the vector (f(x1), . . . , f(xk)). This allows to
use all vector operations (e.g. addition and scalar multiplication) on the set NX of
all mappings from X to N. The pointwise product f · g of two mappings f, g ∈ NX
is defined by (f · g)(x) = f(x) · g(x) for all x ∈ X. Moreover, for mappings f ∈ NX ,
g ∈ NY with X ∩ Y = ∅ we define f ⊕ g : X ∪ Y → N by (f ⊕ g)(x) = f(x) for
x ∈ X and (f ⊕ g)(y) = g(y) for y ∈ Y . All operations on NX will be extended to
subsets of NX in the standard pointwise way.

It is well-known that the semilinear subsets of Nk are exactly the sets definable
in Presburger arithmetic. These are those sets that can be defined with a first-order
formula ϕ(x1, . . . , xk) over the structure (N, 0,+,≤) [7]. Moreover, the transforma-
tions between such a first-order formula and an equivalent semilinear representation
are effective. In particular, the semilinear sets are effectively closed under Boolean
operations.
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Figure 1. The shape of a geodesic triangle in a hyperbolic group

3. Hyperbolic groups

Let G be a finitely generated group with the finite symmetric generating set Σ,
i.e., a ∈ Σ implies that a−1 ∈ Σ. The Cayley-graph of G (with respect to Σ) is the
undirected graph Γ = Γ(G) with node set G and all edges (g, ga) for g ∈ G and
a ∈ Σ. We view Γ as a geodesic metric space, where every edge (g, ga) is identified
with a unit-length interval. It is convenient to label the directed edge from g to ga
with the generator a. The distance between two points p, q is denoted with dΓ(p, q).
For g ∈ G let |g| = dΓ(1, g). For r ≥ 0, let Br(1) = {g ∈ G | dΓ(1, g) ≤ r}.

Paths can be defined in a very general way for metric spaces, but we only need
paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length n, one
obtains a unique path P [w] : [0, n]→ Γ, which is a continuous mapping from the
real interval [0, n] to Γ. It maps the subinterval [i, i+ 1] ⊆ [0, n] isometrically onto
the edge (gi, gi+1) of Γ, where gi (resp., gi+1) is the group element represented
by the word w[: i] (resp., w[: i + 1]). The path P [w] starts in 1 = g0 and ends
in gn (the group element represented by w). We also say that P [w] is the unique
path that starts in 1 and is labelled with the word w. More generally, for g ∈ G
we denote with g · P [w] the path that starts in g and is labelled with w. When
writing u · P [w] for a word u ∈ Σ∗, we mean the path g · P [w], where g is the group
element represented by u. A path P : [0, n] → Γ of the above form is geodesic
if dΓ(P (0), P (n)) = n; it is a (λ, ε)-quasigeodesic if for all points p = P (a) and
q = P (b) we have |a− b| ≤ λ · dΓ(p, q) + ε; and it is ζ-local (λ, ε)-quasigeodesic if for
all points p = P (a) and q = P (b) with |a− b| ≤ ζ we have |a− b| ≤ λ · dΓ(p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that there
is no shorter word representing the same group element from G. Similarly, we define
the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is shortlex reduced
if it is the length-lexicographically smallest word that represents the same group
element as w. For this, we have to fix an arbitrary linear order on Σ. Note that
if u = xy is shortlex reduced then x and y are shortlex reduced too. For a word
u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced word that represents
the same group element as u.

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths P1 =
Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y is a
geodesic path from x to y. We call a geodesic triangle δ-slim for δ ≥ 0, if for
all i ∈ {1, 2, 3}, every point on Pi has distance at most δ from a point on Pj ∪ Pk,
where {j, k} = {1, 2, 3} \ {i}. The group G is called δ-hyperbolic, if every geodesic
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Figure 2. Paths that asynchronously K-fellow travel

triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0.
Figure 1 shows the shape of a geodesic triangle in a hyperbolic group. Finitely
generated free groups are for instance 0-hyperbolic. The property of being hyperbolic
is independent of the chosen generating set Σ. The word problem for every hyperbolic
group can be decided in real time [10].

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ for
the rest of the section, and let Γ be the corresponding geodesic metric space. We
will apply a couple of well-known results for hyperbolic groups.

Lemma 3.1 (c.f. [6, 8.21]). Let g ∈ G be of infinite order and let n ≥ 0. Let u
be a geodesic word representing g. Then the word un is (λ, ε)-quasigeodesic, where
λ = N |g|, ε = 2N2|g|2 + 2N |g| and N = |B2δ(1)|.

Consider two paths P1 : [0, n1]→ Γ, P2 : [0, n2]→ Γ and let K be a positive real
number. We say that P1 and P2 asynchronously K-fellow travel if there exist two
continuous non-decreasing mappings ϕ1 : [0, 1] → [0, n1] and ϕ2 : [0, 1] → [0, n2]
such that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ(P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any time
instant the current points have distance at most K. By slightly increasing K one
obtains a ladder graph of the form shown in Figure 2, where the edges connecting
the horizontal P1- and P2-labelled paths represent paths of length at most K that
connect elements from G.

Lemma 3.2 (c.f. [21]). Let P1 and P2 be (λ, ε)-quasigeodesic paths in ΓG and
assume that Pi starts in gi and ends in hi. Assume that dΓ(g1, g2), dΓ(h1, h2) ≤ h.
Then there exists a computable bound K = K(δ, λ, ε, h) ≥ h such that P1 and P2

asynchronously K-fellow travel.

Finally we need the following lemma for splitting quasigeodesic rectangles:

Lemma 3.3. Fix constants λ, ε and let κ = K(δ, λ, ε, 0) be taken from Lemma 3.2.
Let v1, v2 ∈ Σ∗ be geodesic words and u1, u2 ∈ Σ∗ (λ, ε)-quasigeodesic words such that
v1u1 = u2v2 in G. Consider a factorization u1 = x1y1 with |x1| ≥ λ(|v1|+2δ+κ)+ε
and |y1| ≥ λ(|v2| + 2δ + κ) + ε Then there exists a factorization u2 = x2y2 and
c ∈ B2δ+2κ(1) such that v1x1 = x2c and cy1 = y2v2 in G.

Proof. The construction is shown in Figure 3.3. Let t1, t2, x
′
1, y
′
1 be geodesic words

with t1 = u1, t2 = u2, x1 = x′1 and y1 = y′1 in G. Since u1 is (λ, ε)-quasigeodesic,
we get |x′1| ≥ (|x1| − ε)/λ ≥ |v1| + 2δ + κ and |y′1| ≥ (|y1| − ε)/λ ≥ |v2| + 2δ + κ.
By Lemma 3.2 the paths P [t1] and P [u1] asynchronously κ-fellow travel. Hence,
there exists a factorization t1 = r1s1 and c1 ∈ Bκ(1) such that r1c1 = x1 = x′1 and
c1y
′
1 = c1y1 = s1 in G. This implies |r1| ≥ |x′1| − κ ≥ |v1|+ 2δ and |s1| ≥ |y′1| − κ ≥

|v2|+ 2δ. Consider the geodesic rectangle with the paths Q1 = P [v1], P1 = v1 ·P [t1],
P2 = P [t2], and Q2 = u2 · P [v2]. Since geodesic rectangles are 2δ-slim, there exists
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Figure 3. Splitting a quasigeodesic rectangle according to Lemma 3.3.

a point p2 ∈ P2 ∪ Q1 ∪ Q2 that has distance at most 2δ from p1 = P1(|r1|). By
the triangle inequality we must have p2 ∈ P2. This yields a factorization t2 = r2s2

(where p2 = P2(|r2|)) and c′ ∈ B2δ(1) such that v1r1 = r2c
′ and c′s1 = s2v2

in G. Finally, since P [t2] and P [u2] asynchronously κ-fellow travel, we obtain a
factorization u2 = x2y2 and c2 ∈ Bκ(1) such that x2c2 = r2 and c2s2 = y2 in G.
Let c = c2c

′c1 ∈ B2δ+2κ(1). We get x2c = x2c2c
′c1 = r2c

′c1 = v1r1c1 = v1x1 and
cy1 = c2c

′c1y1 = c2c
′s1 = c2s2v2 = y2v2. �

4. The complexity class LogCFL

The complexity class LogCFL consists of all computational problems that are
logspace reducible to a context-free language. The class LogCFL is included in the
parallel complexity class NC2 and has several alternative characterizations (see e.g.
[24, 26]):

• logspace bounded alternating Turing-machines with polynomial tree size,
• semi-unbounded Boolean circuits of polynomial size and logarithmic depth,

and
• logspace bounded auxiliary pushdown automata with polynomial running

time.

For our purposes, the last characterization is most suitable. An AuxPDA (for
auxiliary pushdown automaton) is a nondeterministic pushdown automaton with a
two-way input tape and an additional work tape. Here we only consider AuxPDAs
with the following two restrictions:

• The length of the work tape is restricted to O(log n) for an input of length
n (logspace bounded).

• There is a polynomial p(n), such that every computation path of the
AuxPDA on an input of length n has length at most p(n) (polynomially
time bounded).

Whenever we speak of an AuxPDA in the following, we implicitly assume that
the AuxPDA is logspace bounded and polynomially time bounded. The class
of languages that are accepted by AuxPDAs is exactly LogCFL [24]. A one-way
AuxPDA is an AuxPDA that never moves the input head to the left. Hence, in
every step, the input head either does not move, or moves to the right.

For a finitely generated group G with the symmetric generating set Σ we define
the word problem for G (with respect to Σ) as the set of all words w ∈ Σ∗ such
that w = 1 in G. Let us say that a finitely generated group G belongs to the class
OW-AuxPDA if the word problem for G is recognized by a one-way AuxPDA. It is
easy to see that the latter property is independent of the generating set of G (this
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holds, since the class of languages recognized by one-way AuxPDAs is closed under
inverse homomorphisms).

Theorem 4.1. Every hyperbolic group belongs to the class OW-AuxPDA.

Proof. Let G be a hyperbolic group. In [16] it is shown that the word problem for
G is a growing context-sensitive language, i.e., it can be generated by a grammar
where all productions are strictly length-increasing (except for the start production
S → ε). In [1] it was shown that every growing context-sensitive language can be
recognized by a one-way AuxPDA in logarithmic space and polynomial time. The
result follows. �

Theorem 4.2. If the groups G and H belong to OW-AuxPDA then also G ∗H and
G× Z belong to OW-AuxPDA.

Proof. The proof is essentially the same as in [19, Lemma 4.8], but is presented
for completeness. Let us first consider the group G × Z. Let P(G) be a one-way
AuxPDA for the word problem of G. The one-way AuxPDA P(G×Z) for the word
problem of G simulates P(G) on the generators of G. Moreover, it stores the current
value of the Z-component in binary notation on the work tape. If the input word
has length n, then O(log n) bits are sufficient for this. At the end, P(G×Z) accepts
if and only if P(G) accepts and the Z-component on the work tape is zero.

Next, we consider the group G ∗H. We have one-way AuxPDAs P(G) and P(H)
for the word problems of G and H, respectively. We can assume that P(G) (resp.,
P(H)) accepts an input word w if after reading w the stack is empty and P(G)
(resp., P(H)) is in the unique final state qG (resp., qH). This can be achieved by
doing ε-transitions at the end of the computation. In the following, we call qG (resp.,
qH) the 1-state of P(G) (resp., P(H)).

Let Σ (resp., Γ) be the input alphabet of P(G) (resp., P(H)), which is a symmetric
generating set for G (resp., H). We assume that Σ ∩ Γ = ∅. Consider now an input
word w ∈ (Σ ∪ Γ)∗. Let us assume that w = u1v1u2v2 · · ·ukvk with ui ∈ Σ+ and
vi ∈ Γ+ (other cases can be treated analogously). The AuxPDA P(G ∗H) starts
with empty stack and simulates the AuxPDA P(G) on the prefix u1. If it turns out
that u1 = 1 in G (which means that P(G) is in its 1-state and the stack is empty)
then the AuxPDA P(G ∗H) continues with simulating P(H) on v1. On the other
hand, if u1 6= 1 in G, then P(G ∗H) pushes the state together with the work tape
content of P(G) reached after reading u1 on the stack (on top of the final stack
content of P(G)). This allows P(G ∗H) to resume the computation of P(G) later.
Then P(G ∗H) continues with simulating P(H) on v1.

The computation of P(G ∗H) will continue in this way. More precisely, if after
reading ui (resp. vi with i < k) the AuxPDA P(G) (resp. P(H)) is in its 1-state
then either

(i) the stack is empty or
(ii) the top part of the stack is of the form sqt (t is the top), where s is a stack

content of P(H) (resp. P(G)), q is a state of P(H) (resp. P(G)) and t is a
work tape content of P(H) (resp. P(G)).

In case (i), P(G ∗H) continues with the simulation of P(H) (resp. P(G)) on the
word vi (resp. ui+1) in the initial configuration. In case (ii), P(G ∗H) continues
with the simulation of P(H) (resp. P(G)) on the word vi (resp. ui+1), where the
simulation is started with stack content s, state q, and work tape content t. On the
other hand, if after reading ui (resp. vi with i < k) the AuxPDA P(G) (resp. P(H))
is not in its 1-state then P(G ∗H) pushes on the stack the state and work tape
content of P(G) reached after its simulation on ui. This concludes the description
of the AuxPDA P(G ∗H). It is a one-way AuxPDA that accepts the word problem
of G ∗H. �
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5. Knapsack problems

Let G be a finitely generated group with the finite symmetric generating set
Σ. Moreover, let X be a set of formal variables that take values from N. For
a subset U ⊆ X, we use NU to denote the set of maps ν : U → N, which we
call valuations. An exponent expression over G is a formal expression of the
form E = ux1

1 v1u
x2
2 v2 · · ·uxk

k vk with k ≥ 1 and words ui, vi ∈ Σ∗. Here, the
variables do not have to be pairwise distinct. If every variable in an exponent
expression occurs at most once, it is called a knapsack expression. Let XE =
{x1, . . . , xk} be the set of variables that occur in E. For a valuation ν ∈ NU
such that XE ⊆ U (in which case we also say that ν is a valuation for E), we

define ν(E) = u
ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xk)

k vk ∈ Σ∗. We say that ν is a solution of the
equation E = 1 if ν(E) evaluates to the identity element 1 of G. With sol(E) we
denote the set of all solutions ν ∈ NXE of E. We can view sol(E) as a subset of

Nk. The length of E is defined as |E| =
∑k
i=1 |ui|+ |vi|, whereas k is its depth. We

define solvability of exponent equations over G as the following decision problem:

Input: A finite list of exponent expressions E1, . . . , En over G.
Question: Is

⋂n
i=1 sol(Ei) non-empty?

The knapsack problem for G is the following decision problem:

Input: A single knapsack expression E over G.
Question: Is sol(E) non-empty?

It is easy to observe that the concrete choice of the generating set Σ has no influence
on the decidability and complexity status of these problems. Later, we will also allow
exponent expressions of the form v0u

x1
1 v1u

x2
2 v2 · · ·uxk

k vk, which do not start with a
power ux1

1 . Such an exponent expression can be replaced by ux1
1 v1u

x2
2 v2 · · ·uxk

k vkv0

without changing the set of solutions.
The group G is called knapsack-semilinear if for every knapsack expression E over

G, the set sol(E) is a semilinear set of vectors and a semilinear representation can be
effectively computed from E. Since the emptiness of the intersection of finitely many
semilinear sets is decidable, solvability of exponent equations is decidable for every
knapsack-semilinear group. As mentioned in the introduction, the class of knapsack-
semilinear groups is very rich. An example of a group G, where knapsack is decidable
but solvability of exponent equations is undecidable is the Heisenberg group H3(Z)
(which consists of all upper triangular (3× 3)-matrices over the integers, where all
diagonal entries are 1), see [13]. In particular, H3(Z) is not knapsack-semilinear.

The group G is called polynomially knapsack-bounded if there is a fixed polynomial
p(n) such that for a given a knapsack expression E over G, one has sol(E) 6= ∅ if
and only if there exists ν ∈ sol(E) with ν(x) ≤ p(|E|) for all variables x in E.

The group G is called knapsack-tame if there is a fixed polynomial p(n) such
that for a given a knapsack expression E over G one can compute a semilinear
representation for sol(E) of magnitude at most p(|E|). Thus, every knapsack-
tame group is knapsack-semilinear as well as polynomially knapsack-bounded. The
following result was shown in [19]:

Proposition 5.1 ([19, Proposition 4.11 and 4.17]). If G and H are knapsack-tame
groups then also the free product G ∗H and the direct product G× Z are knapsack-
tame.

6. Membership for acyclic automata

An acyclic NFA is a nondeterministic finite automaton A = (Q,Σ,∆, q0, F ) (Q is
a finite set of states, Σ is the input alphabet, ∆ ⊆ Q×Σ∗×Q is the set of transition
triples, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states) such that the
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relation {(p, q) ∈ Q × Q | ∃w ∈ Σ∗ : (p, w, q) ∈ ∆} is acyclic. Note that we allow
transitions labelled with words, which will be convenient in the following.

Let G be a finitely generated group with the finite symmetric generating set Σ.
The membership problem for acyclic NFAs over G is the following computational
problem:

Input: an acyclic NFA A with input alphabet Σ.
Question: does A accept a word w ∈ Σ∗ such that w = 1 in G?

Again, the concrete choice of the generating set Σ has no influence on the decidability
and complexity status of this problem.

Theorem 6.1. If the group G belongs to the class OW-AuxPDA, then membership
for acyclic NFAs over G belongs to LogCFL.

Proof. Let P be a one-way AuxPDA for the word problem of G. An AuxPDA for
the membership problem for acyclic NFAs over G guesses a path in the acyclic input
NFA A and thereby simulates the AuxPDA P on the word spelled by the guessed
path. If the final state of the input NFA A is reached and the AuxPDA P accepts at
the same time, then the overall AuxPDA accepts. It is important that the AuxPDA
P works one-way since the guessed path in A cannot be stored in logspace. This
implies that the AuxPDA cannot re-access the input symbols that have already
been processed. Also note that the AuxPDA is logspace bounded and polynomially
time bounded since A is acyclic. �

Theorem 6.2. Let G be a polynomially knapsack-bounded group. Then there is a
logspace reduction from the knapsack problem for G to membership for acyclic NFAs
over G.

Proof. Let G be a polynomially knapsack-bounded group with the symmetric
generating set Σ. We present a logspace reduction from knapsack for G to the
membership problem for acyclic NFAs. Consider a knapsack expression E =
ux1

1 v1u
x2
2 v2 · · ·uxk

k vk over G. Since G is polynomially knapsack-bounded, there
exists a polynomial p(x) such that sol(E) 6= ∅ if and only if there exists a solution
ν ∈ sol(E) such that ν(xi) ≤ p(|E|) for all 1 ≤ i ≤ k. We now construct an NFA A
as follows: It has the state set Q = [1, k+ 1]× [0, p(n)] and the following transitions.
For each i ∈ [1, k] and j ∈ [0, p(n) − 1], there are two transitions from (i, j) to
(i, j + 1); one labeled by ui and one labeled by ε. Furthermore, there is a transition
from (i, p(n)) to (i+ 1, 0) labeled vi for each i ∈ [1, k]. The initial state is (1, 0) and
the unique final state is (k + 1, 0).

It is clear that A accepts a word that represents 1 if and only if sol(E) 6= ∅.
Finally, the NFA can be clearly computed in logarithmic space from E. �

7. Complexity of knapsack in hyperbolic groups

In this section we consider the complexity of the knapsack problem for a hyperbolic
group. In [22] it was shown that for every hyperbolic group, knapsack can be solved
in polynomial time. Here, we improve the complexity to LogCFL. We need one more
result from [22]:

Theorem 7.1 (c.f. [22]). Every hyperbolic group is polynomially knapsack-bounded.

This result is also a direct corollary of Theorem 8.1 from the next section, stating
that every hyperbolic group is knapsack-tame.

We can now easily derive the following two results:

Corollary 7.2. Membership for acyclic NFAs over a hyperbolic group belongs to
LogCFL.

9



Proof. This follows from Theorem 4.1 and 6.1. �

Corollary 7.3. For every hyperbolic groups G, knapsack can be solved in LogCFL.
Moreover, if G contains a copy of F2 (the free group of rank 2) then knapsack for G
is LogCFL-complete.

Proof. The first statement follows from Theorems 6.2 and 7.1 and Corollary 7.2.
The second statement follows from [19, Proposition 4.26], where it was shown that
knapsack for F2 is LogCFL-complete. �

8. Hyperbolic groups are knapsack-semilinear

In this section, we prove the following strengthening of Theorem 7.1:

Theorem 8.1. Every hyperbolic group is knapsack-tame.

Let us remark that the total number of vectors in a semilinear representation
can be exponential, even for the simplest case G = Z. Take the (additively written)
knapsack expression E = x1 + x2 + · · ·+ xn − n. Then sol(E) is finite and consists
of
(

2n−1
n

)
≥ 2n vectors.

Let us fix a δ-hyperbolic group G for the rest of Section 8 and let Σ be a finite
symmetric generating set for G.

8.1. Knapsack expressions of depth two. We first consider knapsack expres-
sions of depth 2 where all powers are quasigeodesic. It is well known that the
semilinear sets are exactly the Parikh images of the regular languages. We need a
quantitative version of this result that was independently discovered by Kopczynski
and Lin:

Theorem 8.2 (c.f. [25, Theorem 4.1], see also [14]). Let k be a fixed constant.
Given an NFA A over an alphabet of size k with n states, one can compute in
polynomial time a semilinear representation of the Parikh image of L(A). Moreover,
all numbers appearing in the semilinear representation are polynomially bounded
in n (in other words: one can compute the semilinear representation with unary
encoded numbers).

Lemma 8.3. Let λ and ε be fixed constants. For all geodesic words u1, v1, u2, v2 ∈
Σ∗ such that u1 6= ε 6= u2 and un1 , un2 are (λ, ε)-quasigeodesic for all n ≥ 0, the set
{(x1, x2) ∈ N× N | v1u

x1
1 = ux2

2 v2 in G} is semilinear. Moreover, one can compute
a semi-linear representation whose magnitude is bounded by p(|u1|+ |v1|+ |u2|+ |v2|)
for a fixed polynomial p(n).

Proof. Let S := {(x1, x2) ∈ N×N | v1u
x1
1 = ux2

2 v2 in G}. We will define an NFA A
over the alphabet {a1, a2} such that the Parikh image of L(A) is S. Moreover, the
number of states of A is polynomial in |u1|+ |u2|+ |v1|+ |v2|. This allows us to
apply Theorem 8.2. We will allow transitions that are labelled with words (having
length polynomial in |u1|+ |u2|+ |v1|+ |v2|). Moreover, instead of writing in the
transitions these words, we write their Parikh images (so, for instance, a transition

p
a21a

3
2−−−→ q is written as p

(2,3)−−−→ q.
Let `i = |ui| and mi = |vi|. Take the constant κ from Lemma 3.3 and define

N1 = λ(m1 + 2δ + κ) + ε and N2 = λ(m2 + 2δ + κ) + ε. We split the set S into two
parts:

• S1 = S ∩ {(n1, n2) ∈ N× N | n1 < (N1 +N2)/`1}
• S2 = S ∩ {(n1, n2) ∈ N× N | n1 ≥ (N1 +N2)/`1}

For all (n1, n2) ∈ S1 we have |un1
1 | = n1`1 < N1 + N2. Hence, |shlex(un2

2 )| =
|shlex(v1u

n1
1 v−1

2 )| < N1 + N2 + m1 + m2. Since un2
2 is (λ, ε)-quasigeodesic we get

|un2
2 | = n2`2 < λ(N1 +N2 +m1 +m2) + ε, i.e., n2 < (λ(N1 +N2 +m1 +m2) + ε)/`2.
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c = c0 d = c24

Figure 4. Example for the construction from the proof of Lemma 8.3.

Hence, the set S1 is finite and has a semilinear representation where all numbers
are bounded by O(m1 +m2).

We now deal with pairs (n1, n2) ∈ S2, where v1u
n1
1 = un2

2 v2 in G and n1 ≥ (N1 +
N2)/`1, i.e., |un1

1 | ≥ N1 +N2. Consider such a pair (n1, n2) and the quasigeodesic
rectangle consisting of the four paths Q1 = P [v1], P1 = v1 · P [un1

1 ], P2 = P [un2
2 ],

and Q2 = un2
2 · P [v2]. We factorize the word un1

1 as un1
1 = xyz with |x| = N1 and

|z| = N2. By Lemma 3.3 we can factorize un2
2 as un2

2 = x′y′z′ such that there exist
c, d ∈ B2δ+2κ(1) with v1x = x′c and dz = z′v2 in G, see Figure 4 (where n1 = 20,
n2 = 10, `1 = 2 and `2 = 4). Since un2

2 is (λ, ε)-quasigeodesic, we have

|x′| ≤ λ(m1 + |x|+ 2δ + 2κ) + ε = λ(m1 +N1 + 2δ + 2κ) + ε,(1)

|z′| ≤ λ(m2 + |z|+ 2δ + 2κ) + ε = λ(m2 +N2 + 2δ + 2κ) + ε.(2)

Consider now the subpath P ′1 of P1 from P1(|x|) to P1(n1`1 − |z|) and the subpath
P ′2 of P2 from P2(|x′|) to P2(n2`2 − |z′|). These are the paths labelled with y and
y′, respectively, in Figure 4. By Lemma 3.2 these paths asynchronously γ-fellow
travel, where γ := K(δ, λ, ε, 2δ + 2κ) is a constant. In Figure 4 this is visualized by
the part between the c-labelled edge and the d-labelled edge. W.l.o.g. we assume
that γ ≥ 2δ + 2κ.

We now define the NFA A over the alphabet {a1, a2} (recall the we replace edge
labels from {a1, a2}∗ by their Parikh images). The state set of A is

Q = {q0, qf} ∪ {(i, b, j) | 0 ≤ i < `1, 0 ≤ j < `2, b ∈ Bγ(1)}.

The unique initial state is q0 and the unique final state is qf . To define the
transitions of A set p = bN1/`1c = b|x|/|u1|c, r = N1 mod `1 = |x| mod |u1|,
s = dN2/`1e = d|z|/|u1|e, t = −N2 mod `1 = −|z| mod |u1|. Thus, we have
x = up1u1[: r] and z = us1[t + 1 :]. There are the following types of transitions
(transitions without a label are implicitly labelled by the zero vector (0, 0)), where
0 ≤ i < `1, 0 ≤ j < `2, b, b′ ∈ Bγ(1).

(1) q0
(p,p′)−−−→ (r, c, r′) if there exists a number 0 ≤ k ≤ λ(m1 +N1 + 2δ+ 2κ) + ε

(this is the possible range for the length of x′ in (1)) such that p′ = bk/`2c,
r′ = k mod `2, and v1u

p
1u1[: r] = up

′

2 u2[: r′]c in G.
(2) (i, b, j) −→ (i+ 1, b′, j) if i+ 1 < `1 and bu1[i+ 1] = b′ in G.

(3) (`1 − 1, b, j)
(1,0)−−−→ (0, b′, j) if bu1[`1] = b′ in G.

(4) (i, b, j) −→ (i, b′, j + 1) if j + 1 < `2 and b = u2[j + 1]b′ in G.

(5) (i, b, `2 − 1)
(0,1)−−−→ (i, b′, 0) if b = u2[`2]b′ in G.

(6) (t, d, t′)
(s,s′)−−−→ qf if there exists a number 0 ≤ k ≤ λ(m2 +N2 + 2δ+ 2κ) + ε

(this is the possible range for the length of z′ in (2)) such that s′ = dk/`2e,
t′ = −k mod `2, and du1[t+ 1 :]us1 = u2[t′ + 1 :]us

′

2 v2 in G.
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The construction is best explained using the example in Figure 4. As mentioned
above, the vertical lines between c = c0 and d = c24 represent the asynchro-
nous γ-fellow travelling. The vertical lines are labelled with group elements
c0, c1, . . . , c23, c24 ∈ Bγ(1) from left to right. In order to not overload the fig-
ure we only show c0 and c24. Note that x = u6

1u1[1], x′ = u3
2u2[1], z = u8

1[2 :],
z′ = u4

2[2 :]. Basically, the NFA A moves the vertical edges from left to right and
thereby stores (i) the label ci of the vertical edge, (ii) the position in the current
u2-factor where the vertical edge starts (position 0 means that we have just com-
pleted a u2-factor), and (iii) the position in the current u1-factor where the vertical
edge ends. If a u1-factor (resp., u2-factor) is completed then the automaton makes
a (1, 0)-labelled (resp., (0, 1)-labelled) transition. The automaton run corresponding
to Figure 4 is:

q0
(6,3)−−−→(1, c0, 1)

(1,0)−−−→ (0, c1, 1)→ (1, c2, 1)→ (1, c3, 2)→ (1, c4, 3)
(0,1)−−−→

(1, c5, 0)
(1,0)−−−→ (0, c6, 0)→ (0, c7, 1)→ (1, c8, 1)

(1,0)−−−→ (0, c9, 1)→

(1, c10, 1)→ (1, c11, 2)→ (1, c12, 3)
(0,1)−−−→ (1, c13, 0)

(1,0)−−−→ (0, c14, 0)→

(0, c15, 1)→ (1, c16, 1)
(1,0)−−−→ (0, c17, 1)→ (1, c18, 1)→ (1, c19, 2)→

(1, c20, 3)
(1,0)−−−→ (0, c21, 3)

(0,1)−−−→ (0, c22, 0)→ (0, c23, 1)→ (1, c24, 1)
(8,4)−−−→ qf

With the above intuition it is straightforward to show that the Parikh image of
L(A) is indeed S2. Also note that the number of states of A is bounded by O(`1`2).
The statement of the lemma then follows directly from Theorem 8.2. �

8.2. Reduction to quasi-geodesic knapsack expressions. Let us call a knap-
sack expression E = ux1

1 v1u
x2
2 v2 · · ·uxk

k vk over G (λ, ε)-quasigeodesic if all words
u1, . . . , uk, v1, . . . , vk are geodesic and for all 1 ≤ i ≤ k and all n ≥ 0 the word uni
is (λ, ε)-quasigeodesic. We say that E has infinite order, if all ui represent group
elements of infinite order. The goal of this section is to reduce a knapsack expression
to a finite number (in fact, exponentially many) of (λ, ε)-quasigeodesic knapsack
expressions of infinite order for certain constants λ, ε:

Proposition 8.4. There exist fixed constants λ, ε such that from a given knapsack
expression E over G one can compute a finite list of knapsack expressions Ei (i ∈ I)
over G such that

sol(E) =
⋃
i∈I

(
(mi · sol(Ei) + di)⊕Fi

)
,

where the following additional properties hold:

• every Fi is a semilinear subset of NY for a subset Y ⊆ XE,
• the magnitude of every Fi is bounded by a constant that only depends on G,
• every Ei is a (λ, ε)-quasigeodesic knapsack expression of infinite order with

variables from Z := XE \ Y ,
• the size of every Ei is bounded by O(|E|), and
• all mi and di are vectors from NZ where all entries are bounded by a constant

that only depends on G (here, mi · sol(Ei) = {mi · z | z ∈ sol(E)} and mi · z
is the pointwise multiplication of the vectors mi and z).

Once Proposition 8.4 is shown, we can conclude the proof of Theorem 8.1 by
showing that all sets sol(Ei) are semilinear and that their magnitudes are bounded
by p(|Ei|) for a fixed polynomial p(n). This will be achieved in the next section.

For the proof of Proposition 8.4 we mainly build on results from [3]. We fix the
constants L = 34δ + 2 and K = |B4δ(1)|2.
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Lemma 8.5 (c.f. [3, Lemma 3.1]). Let u = u1u2 be shortlex reduced, where |u1| ≤
|u2| ≤ |u1|+ 1. Let ũ = shlex(u2u1). If |ũ| ≥ 2L+ 1 then for every n ≥ 0, the word
ũn is L-local (1, 2δ)-quasigeodesic.

The following lemma is not stated explicitly in [3] but is shown in Section 3.2
(where the main argument is attributed to Delzant).

Lemma 8.6 (c.f. [3]). Let u be geodesic such that |u| ≥ 2L+ 1 and for every n ≥ 0,
the word un is L-local (1, 2δ)-quasigeodesic. Then one can compute c ∈ B4δ(1) and
an integer 1 ≤ m ≤ K such that (shlex(c−1umc))n is geodesic for all n ≥ 0.

Proof of Proposition 8.4. We set λ = N(2L+ 1) and ε = 2N2(2L+ 1)2 + 2N(2L+ 1),
where N = |B2δ(1)|. Consider a knapsack expression E = ux1

1 v1u
x2
2 v2 · · ·uxk

k vk. We
can assume that every ui is shortlex reduced. Let gi ∈ G be the group element
represented by the word ui.

Step 1. In this first step we show how to reduce to the case where all gi have infinite
order. In a hyperbolic group G the order of torsion elements is bounded by a fixed
constant that only depends on G, see also the proof of [22, Theorem 6.7]). This
allows to check for each gi whether it has finite order, and to compute the order
in the positive case. Let Y ⊆ {x1, . . . , xk} be those variables xi such that gi has
finite order. For xi ∈ Y let oi <∞ be the order of gi. Let F be the set of mappings
f : Y → N such that 0 ≤ f(xi) < oi for all xi ∈ Y . For every such mapping f ∈ F
let Ef be the knapsack expression that is obtained from E by replacing for every

xi ∈ Y the power uxi
i by u

f(xi)
i (which is merged with the word vi). Moreover, let

Ff be the set of all mappings g : Y → N such that g(xi) ≡ f(xi) mod oi for every
xi ∈ Y . Then the set sol(E) can be written as

sol(E) =
⋃
f∈F

sol(Ef )⊕Ff .

Note that Ff is a semilinar set of magnitude O(1).

Step 2. We now consider a knapsack expression from Ff . To simplify notation,
we denote this expression again with E = ux1

1 v1u
x2
2 v2 · · ·uxk

k vk. For every i, the
group element gi represented by ui has infinite order. We factorize ui uniquely as
ui = ui,1ui,2 where |ui,1| ≤ |ui,2| ≤ |ui,1|+ 1, and let ũi = shlex(ui,2ui,1). Note that
|ũi| ≤ |ui|. Let g̃i be the group element represented by ũi. Since g̃i is conjugated
to gi, also g̃i has infinite order. By Lemma 3.1, for every n ≥ 0, the word ũni
is (λi, εi)-quasigeodesic for λi = N |ũi|, εi = 2N2|ũi|2 + 2N |ũi|. If |ũi| < 2L + 1
then ũni is (λ, ε)-quasigeodesic for the constants λ and ε defined at the beginning
of the proof. We then replace uxi

i by ui,1ũ
xi
i u
−1
i,1 . Note that for every n ≥ 0,

ui,1ũ
n
i u
−1
i,1 = ui,1(ui,2ui,1)nu−1

i,1 = (ui,1ui,2)n = uni in G.

Now assume that |ũi| ≥ 2L + 1. By Lemma 8.5, ũni is L-local (1, 2δ)-quasi-
geodesic for every n ≥ 0. By Lemma 8.6, one can compute ci ∈ B4δ(1) and an
integer 1 ≤ mi ≤ K such that (shlex(c−1

i ũmi
i ci))

n is geodesic (and hence (1, 0)-
quasigeodesic) for all n ≥ 0. We then produce for every number 0 ≤ di ≤ mi − 1

a new knapsack instance by replacing uxi
i by ui,1ũ

di
i ci(shlex(c

−1
i ũmi

i ci))
xic−1

i u−1
i,1 .

To make the description of the resulting knapsack expression more uniform we
set mi = 1 and ci = 1 in case |ũi| < 2L + 1. Then, the replacement of uxi

i by

ui,1ũ
xi
i u
−1
i,1 in case |ũi| < 2L+ 1 is the same as the one for the case |ũi| ≥ 2L+ 1.

Let m : {x1, . . . , xk} → N be the mapping with m(xi) = mi.
From the above discussion, we obtain a finite set of (λ, ε)-quasigeodesic knapsack

expressions Ed that are parameterized by a mapping d : {x1, . . . , xk} → N with
13
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Figure 5. The 2k-gon for k = 3 from the proof of Theorem 8.1

0 ≤ d(xi) < mi for all 1 ≤ i ≤ k. Let D be the set of all such mappings. We then
have

sol(E) =
⋃
d∈D

(m · sol(Ed) + d).

Note that the magnitude of every Ed is bounded linearly in the magnitude of E.
Finally, the statement of the proposition is directly obtained by combining the

above steps 1 and 2. �

8.3. Proof of Theorem 8.1. We now come to the proof of Theorem 8.1. Consider
a knapsack expression E = ux1

1 v1u
x2
2 v2 · · ·uxk

k vk. We can assume that all ui, vi are
geodesic. By Proposition 8.4 we can moreover assume that for all 1 ≤ i ≤ k, ui
represents a group element of infinite order and that uni is (λ, ε)-quasigeodesic for
all n ≥ 0, where λ, ε are fixed constants. We want to show that sol(E) is semilinear
and has a magnitude that is polynomially bounded by |E|.

For the case k = 1 we have to consider all natural numbers n with un1 = v−1
1 in

G. Since u1 represents a group element of infinite order there is at most one such n.
Moreover, since uni is (λ, ε)-quasigeodesic, such an n has to satisfy |u1| ·n ≤ λ|v1|+ ε,
which yields a linear bound on n.

For the case k = 2 we can directly use Proposition 8.3. Now assume that k ≥ 3.
We want to show that the set sol(E) is a semilinear subset of Nk (later we will
consider the magnitude of sol(E)). For this we construct a Presburger formula with
free variables x1, . . . , xk that is equivalent to E = 1. We do this by induction on the
depth k. Therefore, we can use in our Presburger formula also knapsack equations
of the form F = 1, where F has depth at most k − 1.

It suffices to construct a Presburger formula for sol(E) ∩ (N \ {0})k. Note that
E = 1 is equivalent to

∨
I⊆{1,...,k}(EI = 1∧

∧
i∈I xi > 0), where EI is obtained from

E by removing for every i 6∈ I the power uxi
i .

Consider a tuple (n1, . . . , nk) ∈ sol(E)∩ (N \ {0})k and the corresponding 2k-gon
that is defined by the (λ, ε)-quasigeodesic paths Pi = (un1

1 v1 · · ·uni−1

i−1 vi−1) · P [uni
i ]

and the geodesic paths Qi = (un1
1 v1 · · ·uni

i ) · P [vi], see Figure 5 for the case k = 3.
Since all paths Pi and Qi are (λ, ε)-quasigeodesic, we can apply [22, Lemma 6.4]:
Every side of the 2k-gon is contained in the h-neighborhoods of the other sides,
where h = ξ + ξ log(2k) for a constant ξ that only depends on the constants δ, λ, ε.

Let us now consider the side P2 of the quasigeodesic (2k)-gon. It is labelled
with ux2

2 . Its neighboring sides are Q1 and Q2, which are labelled with v1 and v3,
respectively. We distinguish several cases. In each case we cut the 2k-gon into
smaller pieces along paths of length ≤ 2h+ 1 (length h in some cases), and these
smaller pieces will correspond to knapsack expressions of depth < k. This is done
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Figure 6. Case 1.1 from the proof of Theorem 8.1

until all knapsack expressions have depth at most two. When we speak of a point
on the 2k-gon, we mean a node of the Cayley graph (i.e., an element of the group G)
and not a point in the interior of an edge. Moreover, when we speak of the successor
point of a point p, we refer to the clockwise order on the 2k-gon, where the sides are
traversed in the order P1, Q1, . . . , Pk, Qk. We now distinguish the following cases:

Case 1: There is a point p ∈ P2 that has distance at most h from a point q that
does not belong to P1 ∪ Q1 ∪ Q2 ∪ P3. Thus q must belong to one of the paths
Q3, P4, . . . Qk−1, Pk, Qk. Let w be a geodesic word of length at most h that labels a
path from p to q. There are two subcases:

Case 1.1: q belongs to the paths Qi, where 3 ≤ i ≤ k. The situation is shown
in Figure 6. We construct two new knapsack expressions Ft and Gt for all tuples
t = (w, u2,1, u2,2, vi,1, vi,2) such that w ∈ Σ∗ is of length at most h, u2 = u2,1u2,2

and vi = vi,1vi,2:

Ft = ux1
1 v1u

y2
2 (u2,1wvi,2)u

xi+1

i+1 vi+1 · · ·uxk

k vk and

Gt = u2,2u
z2
2 v2u

x3
3 v3 · · ·uxi

i (vi,1w
−1)

Here y2 and z2 are new variables. Note that Ft and Gt have depth at most k − 1.
Moreover, let A1.1 be the following formula, where t ranges over all tuples of the
above form:

A1.1 =
∨
t

∃y2, z2 : x2 = y2 + 1 + z2 ∧ Ft = 1 ∧Gt = 1

Case 1.2: q belongs to the path Pi, where 4 ≤ i ≤ k (this case can only occur if k ≥ 4).
This case is analogous to Case 1.1. We only have to split uxi

i as uyii (ui,1ui,2)uzii (as
we do for ux2

2 ). We construct two new knapsack expressions Ft and Gt for all tuples
t = (w, u2,1, u2,2, ui,1, ui,2) such that w ∈ Σ∗ is of length at most h, u2 = u2,1u2,2

and ui = ui,1ui,2:

Ft = ux1
1 v1u

y2
2 (u2,1wui,2)uzii viu

xi+1

i+1 vi+1 · · ·uxk

k vk and

Gt = u2,2u
z2
2 v2u

x3
3 v3 · · ·uxi−1

i−1 vi−1u
yi
i (ui,1w

−1)

Here y2, z2, yi, zi are new variables. Note that Ft and Gt have depth at most k − 1.
Moreover, let A1.2 be the following formula, where t ranges over all tuples of the
above form:

A1.2 =
∨
t

∃y2, z2, yi, zi : x2 = y2 + 1 + z2 ∧ xi = yi + 1 + zi ∧ Ft = 1 ∧Gt = 1

Case 2: Every point on P2 that has distance at most h from a point on P1 ∪Q1 ∪
Q2 ∪ P3.
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Figure 7. Case 2.1 from the proof of Theorem 8.1
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ux3
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w

Figure 8. Case 2.2 from the proof of Theorem 8.1

Case 2.1: The end point of P2 (i.e., the point connecting P2 with Q2) has distance
at most h from a point on Q1, see Figure 7. For all tuples t = (w, v1,1, v1,2) such
that w ∈ Σ∗ is of length at most h and v1 = v1,1v1,2 we construct two new knapsack
expressions

Ft = ux2
2 (wv1,2) and Gt = ux1

1 (v1,1w
−1v2)ux3

3 v3 · · ·uxk

k vk

and the formula

A2.1 =
∨
t

Ft = 1 ∧Gt = 1,

where t ranges over all tuples of the above form. Note that Ft has depth one and
Gt has depth k − 1.

Case 2.2: The end point of P2 (i.e., the point connecting P2 with Q2) has distance at
most h from a point on P1, see Figure 8. For all tuples t = (w, u1,1, u1,2) such that
w ∈ Σ∗ is of length at most h and u1 = u1,1u1,2, we construct two new knapsack
expressions

Ft = uz11 v1u
x2
2 (wu1,2) and Gt = uy11 (u1,1w

−1v2)ux3
3 v3 · · ·uxk

k vk

and the formula

A2.2 =
∨
t

∃y1, z1 : x1 = y1 + 1 + z1 ∧ Ft = 1 ∧Gt = 1,

where t ranges over all tuples of the above form. Note that Ft has depth two and
Gt has depth k − 1.
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Figure 9. Case 2.3 from the proof of Theorem 8.1

If on the other hand the end point of P2 has distance > h from all points on P1∪Q1,
then there must be two points p1, p2 on P2 such that p2 is the successor point of p1

when travelling along P2 (i.e., d(p1, p2) = 1), and p1 has distance at most h from a
point q1 ∈ P1 ∪Q1, while p2 has distance at most h from a point on q2 ∈ Q2 ∪ P3.
Thus, the distance between q1 and q2 is at most 2h+ 1. Let w be a word that labels
a geodesic path from q1 to q2 (thus, |w| ≤ 2h+ 1). This leads to the following four
subcases.

Case 2.3: q1 ∈ Q1 and q2 ∈ Q2, see Figure 9. This case is very similar to Case 2.1.
For every tuple t = (w, v1,1, v1,2, v2,1, v2,2) with |w| ≤ 2h + 1, v1 = v1,1v1,2 and
v2 = v2,1v2,2 we obtain two new knapsack expressions

Ft = Ft = v1,2u
x2
2 (v2,1w) and Gt = ux1

1 (v1,1w
−1v2,2)ux3

3 v3 · · ·uxk

k vk

and the formula

A2.3 =
∨
t

Ft = 1 ∧Gt = 1,

where t ranges over all tuples of the above form.

Case 2.4: q1 ∈ P1 and q2 ∈ Q2, see Figure 10. This case is very similar to Case 2.2.
For every tuple t = (w, u1,1, u1,2, v2,1, v2,2) such that |w| ≤ 2h + 1, u1 = u1,1u1,2,
and v2 = v2,1v2,2 we obtain two new knapsack expressions

Ft = u1,2u
z1
1 v1u

x2
2 (v2,1w) and Gt = uy11 (u1,1w

−1v2,2)ux3
3 v3 · · ·uxk

k vk

and the formula

A2.4 =
∨
t

∃y1, z1 : x1 = y1 + 1 + z1 ∧ Ft = 1 ∧Gt = 1,

where t ranges over all tuples of the above form.

Case 2.5: q1 ∈ Q1 and q2 ∈ P3. This case is analogous to Case 2.4.

Case 2.6: q1 ∈ P1 and q2 ∈ P3, see Figure 11. For every tuple

(w1, w2, w, u1,1, u1,2, u2,1, u2,2, u3,1, u3,2)

such that |w| ≤ 2k + 1, |w1| ≤ h, |w2| ≤ h + 1, w = w−1
1 w2 in G, u1 = u1,1u1,2,

u2 = u2,1u2,2, and u3 = u3,1u3,2 we obtain three new knapsack expressions

Ft = uz11 v1u
y2
2 (u2,1w1u1,2),

Gt = uz22 v2u
y3
3 (u3,1w

−1
2 u2,2) and

Ht = uz33 v3u
x4
4 v4 · · ·uxk

k vku
y1
1 (u1,1wu3,2).
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Figure 10. Case 2.4 from the proof of Theorem 8.1
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Figure 11. Case 2.6 from the proof of Theorem 8.1

and the formula

A2.6 =
∧
t

∃y1, z1, y2, z2, y3, z3 :

3∧
i=1

xi = yi + 1 + zi ∧ Ft = 1 ∧Gt = 1 ∧Ht = 1,

where t ranges over all tuples of the above form. Note that Ft and Gt have depth 2
and that Ht has depth k − 1.

This concludes the construction of a Presburger formula for the set sol(E) and shows
the semilinearity of sol(E). It remains to argue that the magnitude of sol(E) is
bounded polynomially in |E|. Iterating the above splitting procedure results in an
exponentially large disjunction of conjunctive formulas of the form

(3) ∃y1, . . . , ym
∧
i∈I

Ei = 1
∧
j∈J

zj = z′j + z′′j + 1

where every Ei is a knapsack expression of depth at most two. Moreover, for i 6= j, Ei
and Ej have no common variables. The existentially quantified variables y1, . . . , ym
are the new variables that were introduced when splitting factors uxi

i (e.g., y2, z2 in
the formula A1.1). The variables zj , z

′
j , z
′′
j in (3) are from {x1, . . . , xk, y1, . . . , ym}.

The equations zj = z′j + z′′j + 1 in (3) result from the splitting of factors uxi
i . For

instance, x2 = y2 + 1 + z2 in A1.1 is one such equation.
In order to bound the magnitude of sol(E) it suffices to consider a single conjunc-

tive formula of the form (3), since disjunction corresponds to union of semilinear
sets, which does not increase the magnitude. We can also ignore the existential
quantifiers in (3), because existential quantification corresponds to projection onto
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some of the coordinates, which cannot increase the magnitude. Hence, we have to
consider the magnitude of the semilinear set A defined by

(4)
∧
i∈I

Ei = 1
∧
j∈J

zj = z′j + z′′j + 1.

The splitting process that finally produces formula (4) can be seen as a tree T , where
every node v is labelled with a knapsack expression E(v), the root is labelled with
E, the leaves are labelled with the expressions Ei (i ∈ I) from (3) and the children
of a node v are labelled with the expressions into which E(v) is decomposed. The
number of children of every node is at most three (three children are only produced
in Case 2.6).

Let us first show that the size of this tree T is bounded by O(k2). We assign
to each node v of T the number d(v) := depth of the knapsack expression E(v).
Note that d(v) ≤ 2 if and only if v is a leaf. If E(v) is split according to one of
the Cases 2.1–2.6 then v has j ≤ 3 children v1, . . . , vj , where v1, . . . , vj−1 are leaves
(their d-value is one or two) and d(vj) = d(v) − 1. If E(v) is split according to
Case 1.1 or 1.2 then v has two children v1 and v2 such that (i) d(v1), d(v2) < d(v),
(ii) d(v1), d(v2) ≥ 2 and d(v1)+d(v2) = d(v)+1 in Case 1.1, and (iii) d(v1), d(v2) ≥ 3
and d(v1) + d(v2) = d(v) + 2 in Case 1.2. Let T ′ be the tree that is obtained by
removing all leaves with d-value at most 2. It suffices to show that the size of T ′ is
bounded by O(k2). All leaves of T ′ have the d-value 3. Moreover, every non-leaf
v of T ′ has either exactly one child v′ with d(v) > d(v′) or two children v1 and v2

such that d(v) ≥ d(v1) + d(v2)− 2. Let n0 be the number of leaves of T ′ and n2 be
the number of nodes of T ′ with exactly two children. From the above equations, it
follows that the root r of T ′ satisfies k = d(r) ≥ 3n0 − 2n2. Moreover, n2 = n0 − 1.
We get k ≥ n0 +2, i.e., n0 ≤ k−2 and n2 ≤ k−3. Since every path from the root to
a leaf can contain at most k nodes having a single child, we must have n1 ≤ (k−2)k.
This shows that the size of T ′ and hence of T is bounded by O(k2). Thus, we also
have |I| ≤ O(k2) in (4).

Next, we show that for every i ∈ I, |Ei| is bounded polynomially in |E|. To
see this, consider a single splitting step. In each of the above Cases 1.1–2.6 the
argument is similar. Consider for instance Case 2.6, where the knapsack expression
E is replaced by three knapsack expressions Ft, Gt, Ht. We can bound the sizes
of these expressions by |Ft| ≤ |E| + |u1,2| + |u2,1| + |w1| ≤ |E| + |u1| + |u2| + h,
|Gt| ≤ |E|+ |u2,2|+ |u3,1|+ |w2| ≤ |E|+ |u2|+ |u3|+ h+ 1, and Ht| ≤ |E|+ |u1,1|+
|u3,2|+ |w| ≤ |E|+ |u1|+ |u3|+ 2h+ 1. The number of splitting steps that finally
leads to an Ei is bounded by k (since the depth of the knapsack expressions is
reduced in each step). Hence, the size of each knapsack expression Ei in (4) is
bounded by |E|+ 2k|E|+k(2h+ 1) = (2k+ 1)|E|+k(2ξ+ 2ξ log(2k) + 1) ≤ O(|E|2).
Since every Ei has depth at most two, there is a fixed polynomial p(n) such that the
magnitude of every set sol(Ei) is bounded by p(|E|). Hence, also

⊕
i∈I sol(Ei) is a

semilinear set of magnitude at most p(|E|) (the ⊕-operator on semilinear sets does
not increase the magnitude). Note that

⊕
i∈I sol(Ei) is the semilinear set defined

by the conjunction
∧
i∈I Ei = 1.

To bound the magnitude of the semilinear set A defined by (4), one has to
consider also the additional equations zj = z′j + z′′j + 1 for j ∈ J . Let U be the
set of variables that appear in the knapsack expressions Ei (i ∈ I). Note that
the dimension of

⊕
i∈I sol(Ei) is |U |. Since every knapsack expression Ei (i ∈ I)

contains at most two variables, we can bound the dimension of
⊕

i∈I sol(Ei) by

2|I| ≤ O(k2). Note that for each equation zj = z′j + z′′j + 1 there exists a node v in
the tree T with children v′, v′′ such that zj is a variable from E(v), z′j is a variable
from E(v′), and z′′j is a variable from E(v′′). This implies that every variable zj
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is a sum of pairwise different variables from U plus a constant that is bounded by
|T | ≤ O(k2). Therefore the magnitude of A is bounded by O(k2 · p(|E|)), which is
polynomial in |E|. This concludes the proof. �

9. More groups with knapsack in LogCFL

Let C be the smallest class of groups such that (i) every hyperbolic group belongs
to C, (ii) if G ∈ C then also G × Z ∈ C, and (iii) if G,H ∈ C then also G ∗H ∈ C
(where G ∗H is the free product of G and H). The class C contains groups that are
not hyperbolic (e.g., Z× Z). From Theorem 8.1 and Proposition 5.1 we get:

Proposition 9.1. Every group from the class C is knapsack-tame and hence poly-
nomially knapsack-bounded.

From Theorem 4.1 and 4.2 we get:

Proposition 9.2. Every group from the class C belongs to OW-AuxPDA.

Proposition 9.1 and 9.2 together with Theorem 6.1 and 6.2 yield:

Corollary 9.3. For every group G from the class C, membership for acyclic NFAs
over G and knapsack for G both belong to LogCFL.

Corollary 9.3 generalizes Corollaries 7.2 and 7.3 as well as [4, Corollary 22], where
it was shown that knapsack can be solved in polynomial time for a free product of
hyperbolic groups and finitely generated abelian groups.

10. Conclusion

In this paper, it is shown that every hyperbolic group is knapsack-tame and that
the knapsack problem can be solved in LogCFL. Here is a list of open problems that
one might consider for future work.

• For the following important groups, it is not known whether the knapsack
problem is decidable: braid groups Bn (with n ≥ 3), solvable Baumslag-
Solitar groups BS1,p = 〈a, t | t−1at = ap〉 (with p ≥ 2), and automatic
groups which are not in any of the known classes with a decidable knapsack
problem.
• In [13], it was shown that knapsack is decidable for every co-context-free

group. The algorithm from [13] has an exponential running time. Is there a
more efficient solution?
• Is there a polynomially knapsack-bounded group which is not knapsack-

tame?
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