
The power word problem1

Markus Lohrey2

Universität Siegen, Germany3

Armin Weiß4

Universität Stuttgart, Germany5

Abstract6

In this work we introduce a new succinct variant of the word problem in a finitely generated group7

G, which we call the power word problem: the input word may contain powers px, where p is a8

finite word over generators of G and x is a binary encoded integer. The power word problem is a9

restriction of the compressed word problem, where the input word is represented by a straight-line10

program (i.e., an algebraic circuit over G). The main result of the paper states that the power word11

problem for a finitely generated free group F is AC0-Turing-reducible to the word problem for F .12

Moreover, the following hardness result is shown: For a wreath product G o Z, where G is either13

free of rank at least two or finite non-solvable, the power word problem is complete for coNP. This14

contrasts with the situation where G is abelian: then the power word problem is shown to be in TC0.15

2012 ACM Subject Classification CCS→ Theory of computation→ computational complexity and16

cryptography → problems, reductions and completeness17

Keywords and phrases word problem, compressed word problem, free groups18

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2319

Related Version A full version [27] of the paper is available on arXiv https://arxiv.org/abs/1904.20

08343.21

Funding Markus Lohrey: Funded by DFG project LO 748/12-1.22

Armin Weiß: Funded by DFG project DI 435/7-1.23

Acknowledgements We thank Laurent Bartholdi for pointing out the result [5, Theorem 6.6] on the24

bound of the order of elements in the Grigorchuk group, which allowed us to establish Theorem 10.25

1 Introduction26

Algorithmic problems in group theory have a long tradition, going back to the work of Dehn27

from 1911 [9]. One of the fundamental group theoretic decision problems introduced by28

Dehn is the word problem for a finitely generated group G (with a fixed finite generating set29

Σ): does a given word w ∈ Σ∗ evaluate to the group identity? Novikov [35] and Boone [8]30

independently proved in the 1950’s the existence of finitely presented groups with undecidable31

word problem. On the positive side, in many important classes of groups the word problem32

is decidable, and in many cases also the computational complexity is quite low. Famous33

examples are finitely generated linear groups, where the word problem belongs to deterministic34

logarithmic space (L for short) [22] and hyperbolic groups where the word problem can be35

solved in linear time [17] as well as in LOGCFL [23].36

In recent years, also compressed versions of group theoretical decision problems, where37

input words are represented in a succinct form, have attracted attention. One such succinct38

representation are so-called straight-line programs, which are context-free grammars that39

produce exactly one word. The size of such a grammar can be much smaller than the40

word it produces. For instance, the word an can be produced by a straight-line program41

of size O(logn). For the compressed word problem for the group G the input consists of42

a straight-line program that produces a word w over the generators of G and it is asked43

© Markus Lohrey and Armin Weiß;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://arxiv.org/abs/1904.08343
https://arxiv.org/abs/1904.08343
https://arxiv.org/abs/1904.08343
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 The power word problem

whether w evaluates to the identity element of G. This problem is a reformulation of the44

circuit evaluation problem for G. The compressed word problem naturally appears when45

one tries to solve the word problem in automorphism groups or semidirect products [25,46

Section 4.2]. For the following classes of groups, the compressed word problem is known to47

be solvable in polynomial time: finite groups (where the compressed word problem is either48

P-complete or in NC2 [6]), finitely generated nilpotent groups [20] (where the complexity is49

even in NC2), hyperbolic groups [18] (in particular, free groups), and virtually special groups50

(i.e, finite extensions of subgroups of right-angled Artin groups) [25]. The latter class covers51

for instance Coxeter groups, one-relator groups with torsion, fully residually free groups and52

fundamental groups of hyperbolic 3-manifolds. For finitely generated linear groups there53

is still a randomized polynomial time algorithm for the compressed word problem [26, 25].54

Simple examples of groups where the compressed word problem is intractable are wreath55

products G o Z with G a non-abelian group: for every such group the compressed word56

problem is coNP-hard [25] (this includes for instance Thompson’s group F); on the other57

hand, if, in addition, G is finite, then the (ordinary) word problem for G o Z is in NC1 [38].58

In this paper, we study a natural variant of the compressed word problem, called59

the power word problem. An input for the power word problem for the group G is a60

tuple (p1, x1, p2, x2, . . . , pn, xn) where every pi is a word over the group generators and61

every xi is a binary encoded integer (such a tuple is called a power word); the ques-62

tion is whether px1
1 px2

2 · · · pxn
n evaluates to the group identity of G. From a power word63

(p1, x1, p2, x2, . . . , pn, xn) one can easily (e.g. by an AC0-reduction) compute a straight-line64

program for the word px1
1 px2

2 · · · pxn
n . In this sense, the power word problem is at most65

as difficult as the compressed word problem. On the other hand, both power words and66

straight-line programs achieve exponential compression in the best case; so the additional67

difficulty of the the compressed word problem does not come from a higher compression rate68

but rather because straight-line programs can generate more “complex” words.69

Our main results for the power word problem are the following; in each case we compare70

our results with the corresponding results for the compressed word problem:71

The power word problem for every finitely generated nilpotent group is in DLOGTIME-72

uniform TC0 and hence has the same complexity as the word problem (or the problem of73

multiplying binary encoded integers). The proof is a straightforward adaption of a proof74

from [34]. There, the special case, where all words pi in the input power word are single75

generators, was shown to be in DLOGTIME-uniform TC0. The compressed word problem76

for every finitely generated nilpotent group belongs to the class DET ⊆ NC2 and is hard77

for the counting class C=L in case of a torsion-free nilpotent group [20].78

The power word problem for a finitely generated group G is NC1-many-one-reducible to79

the power word problem for any finite index subgroup of G. An analogous result holds80

for the compressed word problem as well [20].81

The power word problem for a finitely generated free group is AC0-Turing-reducible to82

the word problem for F2 (the free group of rank two) and therefore belongs to L. In83

contrast, it was shown in [24] that the compressed word problem for a finitely generated84

free group of rank at least two is P-complete.85

The power word problem for a wreath product G o Z with G finitely generated abelian86

belongs to DLOGTIME-uniform TC0. For the compressed word problem for G o Z with G87

finitely generated abelian only the existence of a randomized polynomial time algorithm88

for the complement is known [21].89

The power word problem for the wreath products F2 o Z and every wreath product G o Z,90

where G is finite and non-solvable, is coNP-complete. For these groups this sharpens the91

M. Lohrey and A. Weiß 23:3

class of groups PowerWP CompressedWP WP
nilpotent groups TC0 DET, C=L-hard [20] TC0 [36]
Grigorchuk group G La) PSPACE L [13, 30]
non-abelian f.g. free Lb) P-complete [24] L [22]
G o Z for G f.g. abelian TC0 coRP [21] TC0 [31]
G o Z for G finite non-solvable coNP-complete PSPACE, coNP-hard [25] NC1 [38]
F2 o Z coNP-complete PSPACE, coNP-hard [25] Lb) [38]
finite extension of a f.g. group H NC1-many-one-reducible to PowerWP(H)

(resp. CompressedWP(H) [20], resp. WP(H) [38])

a) AC0-many-one-reducible to the word problem of G.
b) AC0-Turing-reducible to the word problem of F2.

Table 1 Our results on the power word problem compared to previous results on the (compressed)
word problem. Here WP stands for “word problem”.

corresponding coNP-hardness result for the compressed word problem [25].92

The power word problem for the Grigorchuk group is uAC0-many-one-reducible to the93

word problem. The word problem for the Grigorchuk group is in L [13, 30], which implies94

that the compressed word problem is in PSPACE.95

Table 1 summarizes the above results. Due to space constraints we present only short proof96

skteches for our main theorems; proofs of all lemmas can be found in the full version [27].97

Related work. Implicitly, (variants of) the power word problem have been studied before.98

In the commutative setting, Ge [14] has shown that one can verify in polynomial time an99

identity αx1
1 αx2

2 · · ·αxn
n = 1, where the αi are elements of an algebraic number field and the100

xi are binary encoded integers.101

Another problem related to the power word problem is the knapsack problem [12, 28, 32]102

for a finitely generated group G (with generating set Σ): for a given sequence of words103

w,w1, . . . , wn ∈ Σ∗, the question is whether there exist x1, . . . , xn ∈ N such that w =104

wx1
1 · · ·wxn

n holds in G. For many groups G one can show that if such x1, . . . , xn ∈ N exist,105

then there exist such numbers of size 2poly(N), where N = |w|+ |w1|+ · · ·+ |wn| is the input106

length. This holds for instance for right-angled Artin groups (also known as graph groups).107

In this case, one nondeterministically guesses the binary encodings of numbers x1, . . . , xn and108

then verifies, using an algorithm for the power word problem, whether wx1
1 · · ·wxn

n w−1 = 1109

holds. In this way, it was shown in [28] that for every right-angled Artin group the knapsack110

problem belongs to NP (using the fact that the compressed word problem and hence the111

power word problem for a right-angled Artin group belongs to P).112

In [16], Gurevich and Schupp present a polynomial time algorithm for a compressed113

form of the subgroup membership problem for a free group F , where group elements are114

represented in the form ax1
1 ax2

2 · · · axn
n with binary encoded integers xi. The ai must be115

standard generators of the free group F . This is the same input representation as in [34]116

and is more restrictive then our setting, where we allow powers of the form wx for w an117

arbitrary word over the group generators (on the other hand, Gurevich and Schupp consider118

the subgroup membership problem, which is more general than the word problem).119

CVIT 2016

23:4 The power word problem

2 Preliminaries120

Words. An alphabet is a (finite or infinite) set Σ; an element a ∈ Σ is called a letter. The121

free monoid over Σ is denoted by Σ∗, its elements are called words. The multiplication of the122

monoid is concatenation of words. The identity element is the empty word 1. The length123

of a word w is denoted by |w|. If w, p, x, q are words such that w = pxq, then we call x a124

factor of w, p a prefix of w, and q a suffix of w. We write v ≤pref w (resp. v <pref w) if v is125

a (strict) prefix of w and v ≤suff w (resp. v <suff w) if v is a (strict) suffix of w.126

String rewriting systems. Let Σ be an alphabet and S ⊆ Σ∗ × Σ∗ be a set of pairs, called127

a string rewriting system. We write ` → r if (`, r) ∈ S. The corresponding rewriting128

relation =⇒
S

over Σ∗ is defined by: u =⇒
S

v if and only if there exist `→ r ∈ S and words129

s, t ∈ Σ∗ such that u = s`t and v = srt. We also say that u can be rewritten to v in130

one step. We write u k=⇒
S

v if u can be rewritten to v in exactly k steps, i.e., if there131

are u0, . . . , uk with u = u0, v = uk and ui =⇒
S

ui+1 for 0 ≤ i ≤ k − 1. We denote the132

transitive closure of =⇒
S

by +=⇒
S

=
⋃
k≥1

k=⇒
S

and the reflexive and transitive closure by133

∗=⇒
S

=
⋃
k≥0

k=⇒
S

. Moreover ∗⇐⇒
S

is the reflexive, transitive, and symmetric closure of =⇒
S

;134

it is the smallest congruence containing S. The set of irreducible word with respect to S is135

IRR(S) = {w ∈ Σ∗ | there is no v with w =⇒
S

v}.136

Free groups. LetX be a set andX−1 =
{
a−1

∣∣ a ∈ X }
be a disjoint copy ofX. We extend137

the mapping a 7→ a−1 to an involution without fixed points on Σ = X ∪X−1 by (a−1)−1 = a138

and finally to an involution without fixed points on Σ∗ by (a1a2 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 .139

For an integer z < 0 and w ∈ Σ∗ we write wz for (w−1)−z. The string rewriting system140

S =
{
aa−1 → 1

∣∣ a ∈ Σ
}
is strongly confluent and terminating meaning that for every141

word w ∈ Σ∗ there exists a unique word red(w) ∈ IRR(S) with w ∗=⇒
S

red(w) (for precise142

definitions see e.g. [7, 19]). Words from IRR(S) are called freely reduced. The system S defines143

the free group FX = Σ∗/S with basis X. More concretely, elements of FX can be identified144

with freely reduced words, and the group product of u, v ∈ IRR(S) is defined by red(uv).145

With this definition red : Σ∗ → FX becomes a monoid homomorphism that commutes with146

the involution ·−1: red(w)−1 = red(w−1) for all words w ∈ Σ∗. If |X| = 2 then we write F2147

for FX . It is known that for every countable set X, F2 contains an isomorphic copy of FX .148

Finitely generated groups and the power word problem. A group G is called finitely149

generated if there exist a finite a finite set X and a surjective group homomorphism h : FX →150

G. In this situation, the set Σ = X ∪X−1 is called a finite (symmetric) generating set for G.151

For words u, v ∈ Σ∗ we usually say that u = v in G or u =G v in case h(red(u)) = h(red(v)).152

The word problem for the finitely generated group G, WP(G) for short, is defined as follows:153

input: a word w ∈ Σ∗.154

question: does w =G 1 hold?155

A power word (over Σ) is a tuple (p1, x1, p2, x2, . . . , pn, xn) where p1, . . . , pn ∈ Σ∗ are words156

over the group generators (called the periods of the power word) and x1, . . . , xn ∈ Z157

are integers that are given in binary notation. Such a power word represents the word158

px1
1 px2

2 · · · pxn
n . Quite often, we will identify the power word (p1, x1, p2, x2, . . . , pn, xn) with159

the word px1
1 px2

2 · · · pxn
n . Moreover, if xi = 1, then we usually omit the exponent 1 in a power160

M. Lohrey and A. Weiß 23:5

word. The power word problem for the finitely generated group G, PowerWP(G) for short,161

is defined as follows:162

input: a power word (p1, x1, p2, x2, . . . , pn, xn).163

question: does px1
1 px2

2 · · · pxn
n =G 1 hold?164

Due to the binary encoded exponents, a power word can be seen as a succinct description165

of an ordinary word. Hence, a priori, the power word problem for a group G could be166

computationally more difficult than the word problem. We will see examples of groups G,167

where PowerWP(G) is indeed more difficult than WP(G) (under standard assumptions168

from complexity theory), as well as examples of groups G, where PowerWP(G) and WP(G)169

are equally difficult.170

Wreath products. Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh,171

where Gh is a copy of G. We view K as the set G(H) of all mappings f : H → G such that172

supp(f) := {h ∈ H | f(h) 6= 1} is finite, together with pointwise multiplication as the group173

operation. The set supp(f) ⊆ H is called the support of f . The group H has a natural left174

action on G(H) given by hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding175

semidirect product G(H) oH is the (restricted) wreath product G oH. In other words:176

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).177

The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then178

(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1
1 a).179

Complexity. We assume that the reader is familiar with the complexity classes P, NP, and180

coNP and many-one reductions; see e.g. [2] for details. We use circuit complexity for classes181

below deterministic logspace (L for short).182

A language L ⊆ {0, 1}∗ is AC0-Turing-reducible to K ⊆ {0, 1}∗ if there is a family of183

constant-depth, polynomial-size Boolean circuits with oracle gates for K deciding L. More184

precisely, L ⊆ {0, 1}∗ belongs to AC0(K) if there exists a family (Cn)n≥0 of circuits which,185

apart from the input gates x1, . . . , xn are built up from not, and, or, and oracle gates for K186

(which output 1 if and only if their input is in K). All gates may have unbounded fan-in,187

but there is a polynomial bound on the number of gates and wires and a constant bound188

on the depth (length of a longest path from an input gate xi to the output gate o). Finally,189

Cn accepts exactly the words from L ∩ {0, 1}n, i.e., if each input gate xi receives the input190

ai ∈ {0, 1}, then a distinguished output gate evaluates to 1 if and only if a1a2 · · · an ∈ L.191

In the following, we only consider DLOGTIME-uniform AC0(K) for which we write192

uAC0(K). DLOGTIME-uniform means that there is a deterministic Turing machine which193

decides in time O(logn) on input of two gate numbers (given in binary) and the string 1n194

whether there is a wire between the two gates in the n-input circuit and also computes the195

type of a given gate. For more details on these definitions we refer to [37]. If the languages196

K and L in the above definition of uAC0(K) are defined over a non-binary alphabet Σ, then197

one first has to fix a binary encoding of words over Σ.198

The class uTC0 is defined as uAC0(Majority) where Majority is the problem to199

determine whether the input contains more 1s than 0s. The class NC1 is the class of languages200

accepted by Boolean circuits of bounded fan-in and logarithmic depth. When talking about201

hardness for uTC0 or NC1 we use uAC0-Turing reductions unless stated otherwise. As a202

consequence of Barrington’s theorem [3], we have NC1 = uAC0(WP(A5)) where A5 is the203

alternating group over 5 elements [37, Corollary 4.54]. Moreover, the word problem for any204

finite group G is in NC1. Robinson proved that the word problem for the free group F2 is205

NC1-hard [36], i.e., NC1 ⊆ uAC0(WP(F2)).206

CVIT 2016

23:6 The power word problem

3 Results207

In this section we state our (and prove the easy) results on the power word problem. Outlines208

of the proofs of Theorems 2, 8 and 9 can be found in Sections 4 and 5, respectively.209

I Theorem 1. If G is a finitely generated nilpotent group, then PowerWP(G) is in uTC0.210

Proof. In [34], the so-called word problem with binary exponents was shown to be in uTC0
211

for finitely generated nilpotent groups. We can apply the same techniques as in [34]: we212

compute Mal’cev normal forms of all pi [34, Theorem 5], then use the power polynomials213

from [34, Lemma 2] to compute Mal’cev normal forms with binary exponents of all pxi
i .214

Finally, we compute the Mal’cev normal form of px1
1 · · · pxn

n again using [34]. J215

I Theorem 2. The power word problem for a finitely generated free group is AC0-Turing-216

reducible to the word problem for the free group F2.217

Notice that if the free group has rank one, then the power word problem is in uTC0 because218

iterated addition is in uTC0.219

I Remark 3. If the input is of the form (p1, x1, p2, x2, . . . , pn, xn) where all pi are freely220

reduced, then the reduction in Theorem 2 is a uTC0-many-one reduction.221

I Remark 4. One can consider variants of the power word problem, where the exponents are222

not given in binary representation but in even more compact forms. Power circuits as defined223

in [33] are such a representation that allow non-elementary compression for some integers.224

The proof of Theorem 2 involves iterated addition and comparison of exponents. For power225

circuits iterated addition is in uAC0 (just putting the power circuits next to each other), but226

comparison (even for equality) is P-complete [39]. Hence, the variant of the power word227

problem, where exponents are encoded with power circuits is P-complete for free groups.228

I Remark 5. The proof of Theorem 2 can be easily generalized to free products. However, in229

order to have a simpler presentation we only state and prove the result for free groups and230

postpone the free product case to a future full version.231

It is easy to see that the power word problem for every finite group belongs to NC1. The232

following result generalizes this fact:233

I Theorem 6. Let G be finitely generated and let H ≤ G have finite index. Then234

PowerWP(G) is NC1-many-one-reducible to PowerWP(H).235

Proof sketch. W.l.o.g. we can assume that H is a finitely generated normal subgroup and236

R is a finite set of representatives of Q := G/H with 1 ∈ R. As a first step we replace in237

the input power word every pxi
i by hyi

i p
zi
i where xi = yi |Q|+ zi, 0 ≤ zi < |Q| and hi is a238

word over the generators of H with p|Q|i =G hi. Moreover, we write pzi
i as a word without239

exponents. Using the conjugate collection process from [36, Theorem 5.2], the result can be240

rewritten in the form hr where h is a power word in the subgroup H and r ∈ R. J241

As an immediate consequence of Theorem 2, Theorem 6 and the NC1-hardness of the242

word problem for F2 [36, Theorem 6.3] we obtain:243

I Corollary 7. The power word problem for every finitely generated virtually free group is244

AC0-Turing-reducible to the word problem for the free group F2.245

I Theorem 8. For every finitely generated abelian group G, PowerWP(G o Z) is in uTC0.246

M. Lohrey and A. Weiß 23:7

I Theorem 9. Let G be either a finite non-solvable group or a finitely generated free group247

of rank at least two. Then PowerWP(G o Z) is coNP-complete.248

I Theorem 10. The power word problem for the Grigorchuk group (as defined in [15] and249

also known as first Grigorchuk group) is uAC0-many-one-reducible to its word problem.250

Theorem 10 applies only if the generating set contains a neutral letter. Otherwise, the251

reduction is in uTC0. It is well-know that the word problem for the Grigorchuk group is in L252

(see e.g. [13, 30]). Thus, also the power word problem is in L.253

Proof sketch of Theorem 10. By [5, Theorem 6.6], every element of length N in the Grig-254

orchuk group has order at most CN3/2 for some constant C. Since the order of every element255

is a power of two, we can reduce all exponents modulo the smallest power of two ≥ CN3/2
256

where N is the length of the longest period pi. After that the words are short and can be257

written without exponents. J258

4 Proof of Theorem 2259

The proof of Theorem 2 consists of two main steps: first we do some preprocessing leading to260

a particularly nice instance of the power word problem. While this preprocessing is simple261

from a theoretical point of view, it is where the main part of the workload is performed262

during the execution of the algorithm. Then, in the second step, all exponents are reduced263

to polynomial size. After this shortening process, the power word problem can be solved by264

the ordinary word problem. The most difficult part is to prove correctness of the shortening265

process. For this, we introduce a rewriting system over an extended alphabet of words with266

exponents. We outline the proof in a sequence of lemmas which all follow rather easily from267

the previous ones and we give some small hints how to prove the lemmas.268

Preprocessing. We use the notations from the paragraph on free groups in Section 2. In269

particular, recall that S =
{
aa−1 → 1

∣∣ a ∈ Σ
}
. Fix an arbitrary order on the input270

alphabet Σ. This gives us the lexicographic order on Σ∗, which is denoted by �. Let271

Ω ⊆ IRR(S) ⊆ Σ∗ denote the set of words w such that272

w is non-empty,273

w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Σ),274

w is primitive (i.e, w cannot be written as un for n ≥ 2),275

w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e., w � uv276

for all u, v ∈ Σ∗ with vu = w or vu = w−1).277

Notice that Ω consists of Lyndon words [29, Chapter 5.1] with the stronger requirement of278

being freely reduced, cyclically reduced and also minimal among the conjugacy class of the279

inverse. The first aim is to rewrite the input power word in the form280

w = s0p
x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S). (1)281
282

The reason for this lies in the following crucial lemma which essentially says that, if a long283

factor of pxi
i cancels with some pxj

j , then already pi = pj . Thus, only the same pi can cancel284

implying that we can make the exponents of the different pi independently smaller.285

I Lemma 11. Let p, q ∈ Ω, x, y ∈ Z and let v be a factor of px and w a factor of qy. If286

vw
∗=⇒
S

1 and |v| = |w| ≥ |p|+ |q| − 1, then p = q.287

CVIT 2016

23:8 The power word problem

Proof. Since p and q are cyclically reduced, v and w are freely reduced, i.e., v = w−1 as words.288

Thus, v has two periods |p| and |q|. Since v is long enough, by the theorem of Fine and Wilf289

[10] it has also a period of gcd(|p| , |q|). This means that also p and q have period gcd(|p| , |q|)290

(since cyclic permutations of p and q are factors of v). Assuming gcd(|p| , |q|) < |p|, would291

mean that p is a proper power contradicting the fact that p is primitive. Hence, |p| = |q|.292

Since |v| ≥ |p|+ |q| − 1 = 2 |p| − 1, p is a factor of v, which itself is a factor of q−y. Thus, p293

is a cyclic permutation of q or of q−1. By the last condition on Ω, this implies p = q. J294

I Lemma 12. The following is in uAC0(WP(F2)): given a power word v, compute a power295

word w of the form (1) such that v =FX
w.296

The proof of this lemma is straightforward using [40, Proposition 20] in order to compute297

freely reduced words. We call these steps the preprocessing steps. Henceforth, we will assume298

that the inputs for the power word problem are given in the form (1).299

The symbolic reduction system. We define the infinite alphabet ∆ = ∆′ ∪ ∆′′ with300

∆′ = Ω× (Z \ {0}) and ∆′′ = IRR(S) \ {1}. We write px for (p, x) ∈ ∆′. A word over ∆ can301

be read as a word over Σ in the natural way. Formally, we can define a canonical projection302

π : ∆∗ → Σ∗ that maps a symbol a ∈ ∆ to the corresponding word over Σ, but most of the303

times we will not write π explicitly.304

Whenever there is the risk of confusion, we write |v|Σ to denote the length of v ∈ ∆∗305

read over Σ (i.e., |v|Σ = |π(v)|) whereas |v|∆ is the length over ∆. Moreover, we denote306

the number of occurrences of letters from ∆′ in w with |w|∆′ . Finally, for a symbol s ∈ ∆′′307

define λ(s) = |s|Σ and for px ∈ ∆′ set λ(px) = |p|Σ. For u = a1 · · · am ∈ ∆∗ with ai ∈ ∆ for308

1 ≤ i ≤ m we define λ(u) =
∑m
i=1 λ(ai). Thus, λ(u) is the number of letters from Σ required309

to write down u ignoring the binary exponents.310

A word w as in (1), which has been preprocessed as in the previous section, can be viewed311

as word over ∆ with w ∈ ((∆′′ ∪ {1})∆′)∗(∆′′ ∪ {1}), |w|∆′ = n and |w|∆ ≤ 2n+ 1 (we only312

have ≤ because some si might be empty).313

We define the infinite string rewriting system T over ∆∗ by the following rewrite rules,314

where px, py, qy ∈ ∆′, s, t ∈ ∆′′, r ∈ ∆′′ ∪ {1}, and d, e ∈ Z. Here, p0 is identified with the315

empty word. Note that the strings in the rewrite rules are over the alphabet ∆, whereas the316

strings in the if-conditions are over the alphabet Σ.317

pxpy → px+y (2)318

pxqy → px−drqy−e if p 6= q, pxqy
+=⇒
S

px−drqy−e ∈ IRR(S) for (3)319

r = p′q′ with p′ <pref p
sign(x) and q′ <suff q

sign(y)
320

st→ r if st +=⇒
S

r ∈ IRR(S) (4)321

pxs→ px−dr if pxs +=⇒
S

px−dr ∈ IRR(S) for (5)322

r = p′s′ with p′ <pref p
sign(x) and s′ <suff s323

spx → rpx−d if spx +=⇒
S

rpx−d ∈ IRR(S) for (6)324

r = s′p′ with s′ <pref s and p′ <suff p
sign(x)

325
326

I Lemma 13. The following length bounds hold in the above rules:327

in rule (3): 0 < |r|Σ ≤ |p|Σ + |q|Σ, |d| ≤ |q|Σ, and |e| ≤ |p|Σ328

in rules (5) and (6): |d| ≤ |s|Σ.329

M. Lohrey and A. Weiß 23:9

The inequalities |d| ≤ |q|Σ and |e| ≤ |p|Σ follow from Lemma 11. The other inequalities are330

obvious. The next lemma is also straightforward from the definition.331

I Lemma 14. For u ∈ ∆∗ we have u =FX
1 if and only if u ∗=⇒

T
1.332

I Lemma 15. Let u ∈ ∆∗. If u ∗=⇒
T

v, then u ≤k=⇒
T

v for k = 2 |u|∆ + 4 |u|∆′ ≤ 6 |u|∆.333

Proof sketch. The proof is based on the fact that at most 2|u|∆′ − 3 applications of rules of334

the form (3) can occur. These are the only length increasing rules. All other rules either335

decrease the number of non-reduced two-letter factors of u (this can happen at most |u|∆ − 1336

times) or decrease the length of u (this can happen at most |u|∆ + 2|u|∆′ − 3 times). J337

Consider a word u ∈ ∆∗ and p ∈ Ω. Let ∆p = {px | x ∈ Z \ {0}}. We can write u338

uniquely as u = u0p
y1u1 · · · pymum with ui ∈ (∆ \∆p)∗. We define ηip(u) =

∑i
j=1 yj and339

ηp(u) = ηmp (u). By Lemma 13 we know that all rules of T change ηp(·) by at most λ(u). We340

can use this observation in order to show the next lemma by induction on k.341

I Lemma 16. Let u k=⇒
T

v. Then for all v′ ≤pref v with v′ ∈ ∆∗ there is some u′ ∈ ∆∗ with342

u′ ≤pref u and |ηp(u′)− ηp(v′)| ≤ (k + 1)2 λ(u).343

The shortened version of a word. Take a word u ∈ ∆∗ and p ∈ Ω and write u as344

u = u0p
y1u1 · · · pymum with ui ∈ (∆ \ ∆p)∗ (we are only interested in the case that px345

appears as a letter in u for some x ∈ Z). Let C be a finite set of finite, non-empty, non-346

overlapping intervals of integers, i.e., we can write C = { [`j , rj] | 1 ≤ j ≤ k } for k = |C| and347

`j ≤ rj for all j. We can assume that the intervals are ordered increasingly, i.e., we have348

rj < `j+1. We set dj = rj − `j + 1 > 0. We say that u is compatible with C if ηip(u) 6∈ [`j , rj]349

for any i, j. If w is compatible with C, we define the shortened version SC(u) of u: for350

i ∈ {1, . . . ,m} we set351

Ci = Ci(u) =
{{

j
∣∣ 1 ≤ j ≤ k, ηi−1

p (u) < `j ≤ rj < ηip(u)
}

if yi > 0{
j
∣∣ 1 ≤ j ≤ k, ηip(u) < `j ≤ rj < ηi−1

p (u)
}

if yi < 0,
352

i.e., Ci collects all intervals between ηi−1
p (u) and ηip(u). Then SC(u) is defined by353

SC(u) = u0p
z1u1 · · · pzmum where354

zi = yi − sign(yi) ·
∑
j∈Ci

dj =
{
yi −

∑
j∈Ci

dj if yi > 0,
yi +

∑
j∈Ci

dj if yi < 0.
355

356

A straightforward computation yields the next lemma:357

I Lemma 17. For all i we have zi 6= 0 and sign(zi) = sign(yi). In particular, if u ∈ IRR(T),358

then also SC(u) ∈ IRR(T).359

Furthermore, we define distp(u, C) = min
{ ∣∣ηip(u)− x

∣∣ ∣∣ 0 ≤ i ≤ m,x ∈ [`, r] ∈ C
}
. Note360

that distp(u, C) > 0 if and only if u is compatible with C. Moreover, if distp(u, C) = a,361

v = v0p
z1v1 · · · pzmvm, and

∣∣ηip(u)− ηip(v)
∣∣ ≤ b for all i ≤ m, then distp(v, C) ≥ a− b.362

I Lemma 18. If distp(u, C) > (k + 1)2 λ(u) and u k=⇒
T

v, then SC(u) k=⇒
T

SC(v).363

CVIT 2016

23:10 The power word problem

c5

c6

c2

c3

c9

c7

c8

c1

c4

d1

d3

d4

d7

Figure 1 The red shaded parts represent the intervals from the set CK
u,p in (7). The differences

c3 − c2, c6 − c5, c7 − c6 and c9 − c8 are strictly smaller than 2K.

Proof sketch. The first step for proving this lemma is to show that if distp(u, C) > λ(u) and364

u =⇒
T

v, then SC(u) =⇒
T

SC(v). To see this this, we distinguish between the rules applied:365

When applying one of the rules (3)–(6), we have Ci(u) = Ci(v) for all i since the exponents366

are only changed slightly. Thus, the shortening process does the same on v as on u. When367

applying a rule (2), the exponents are added, which is compatible with the shortening process.368

Now we obtain the lemma by induction on k. In order to see that distp(u, C) > λ(u) is369

satisfied in the inductive step, we use Lemma 16. J370

We define a set of intervals which should be “cut out” from u as follows: We write371

{ c1, . . . , cl } =
{
ηip(u)

∣∣ 0 ≤ i ≤ m
}
with c1 < · · · < cl and we set372

CKu,p = { [cj +K, cj+1 −K] | 1 ≤ j ≤ l − 1, cj+1 − cj ≥ 2K } . (7)373

Notice that distp(u, CKu,p) = K (given that CKu,p 6= ∅). The situation is shown in Figure 1.374

I Proposition 19. Let p ∈ Ω, u = u0p
y1u1 · · · pymum ∈ ∆∗ with ui ∈ (∆ \ ∆p)∗, and375

K = (6 |u|∆ + 1)2 λ(u) + 1. Then u =FX
1 if and only if SC(u) =FX

1 for C = CKu,p.376

Proof. By Lemma 14 we have u =FX
1 if and only if u ∗=⇒

T
1. Let k = 6 |u|∆. By Lemma 15,377

for all u ∗=⇒
T

v we have u ≤k=⇒
T

v. By the choice of C, we have distp(u, C) > (k + 1)2 λ(u).378

Hence, we can apply Lemma 18, which implies that SC(u) ∗=⇒
T

SC(v) where v is a T -reduced379

(thus freely reduced) word for u. Clearly, if v is the empty word, then SC(v) will be the380

empty word. On the other hand, if v is non-empty, then SC(v) is non-empty and T -reduced381

by Lemma 17. Hence, we have u =FX
1 if and only if SC(u) =FX

1. J382

I Lemma 20. Let p, u, K, and C be as in Proposition 19 and SC(u) = u0p
z1u1 · · · pzmum.383

Then |zi| ≤ m · (2 · (6 |u|∆ + 1)2 · λ(u) + 1) for all 1 ≤ i ≤ m.384

M. Lohrey and A. Weiß 23:11

Proof of Theorem 2. We start with the preprocessing as described in Lemma 12 leading to385

a word w = s0p
x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S) as in (1). After that we apply386

the shortening procedure for all p ∈ { pi | 1 ≤ i ≤ n }. This can be done in parallel for all p,387

as the outcome of the shortening only depends on the p-exponents. By Lemma 20 this leads388

to a word ŵ of polynomial length. Finally, we can test whether ŵ =FX
1 using one oracle389

gate for WP(F2) (recall that F2 contains a copy of FX). The computations for shortening390

only involve iterated addition (and comparisons of integers), which is in uTC0 and, thus, can391

be solved in uAC0 with oracle gates for WP(F2). J392

5 The power word problem in wreath products393

The goal of this section is to prove Theorems 8 and 9. We first fix some notation. Let G394

be a finitely generated group with the finite symmetric generating set Σ. For Z we fix the395

generator a. Hence Σ ∪ {a, a−1} is a symmetric generating set for the wreath product G o Z.396

For a word w = v0a
e1v1 · · · aenvn with ei ∈ {−1, 1} and vi ∈ Σ∗ let σ(w) = e1 + · · · + en.397

With I(w) we denote the interval [b, c] ⊆ Z, where b (resp., c) is the minimal (resp., maximal)398

integer of the form e1 + · · ·+ ei for 0 ≤ i ≤ n. Note that if w represents (f, d) ∈ G o Z, then399

d = σ(w), supp(f) ⊆ I(w) and 0, d ∈ I(w).400

Periodic words over groups. We recall a construction from [12]. With G+ we denote401

the set of all tuples (g0, . . . , gq−1) over G of arbitrary length q ≥ 1. With Gω we denote402

the set of all mappings f : N → G. Elements of Gω can be seen as infinite sequences (or403

words) over the set G. We define the binary operation ⊗ on Gω by pointwise multiplication:404

(f ⊗ g)(n) = f(n)g(n). The identity element is the mapping id with id(n) = 1 for all n ∈ N.405

For f1, f2, . . . , fn ∈ Gω we write
⊗n

i=1 fi for f1 ⊗ f2 ⊗ · · · ⊗ fn. If G is abelian, we write406 ∑n
i=1 fi for

⊗n
i=1 fi. A function f ∈ Gω is periodic with period q ≥ 1 if f(k) = f(k + q) for407

all k ≥ 0. In this case, f can specified by the tuple (f(0), . . . , f(q − 1)). Vice versa, a tuple408

u = (g0, . . . , gq−1) ∈ G+ defines the periodic function fu ∈ Gω with fu(n · q + r) = gr for409

n ≥ 0 and 0 ≤ r < q. One can view this mapping as the sequence uω obtained by taking410

infinitely many repetitions of u. Let Gρ be the set of all periodic functions from Gω. If f1411

is periodic with period q1 and f2 is periodic with period q2, then f1 ⊗ f2 is periodic with412

period q1q2 (in fact, lcm(q1, q2)). Hence, Gρ forms a countable subgroup of Gω. Note that413

Gρ is not finitely generated: The subgroup generated by elements fi ∈ Gρ with period qi414

(1 ≤ i ≤ n) contains only functions with period lcm(q1, . . . , qn). For n ≥ 0 we define the415

subgroup Gρn of all f ∈ Gρ with f(k) = 1 for all 0 ≤ k ≤ n − 1. We consider the uniform416

membership problem for subgroups Gρn, Membership(Gρ∗) for short:417

input: tuples u1, . . . , un ∈ G+ (elements of G are represented by finite words over Σ) and418

a binary encoded number m.419

question: does
⊗n

i=1 fui
belong to Gρm?420

The following result was shown in [12]:421

I Theorem 21. For every finitely generated abelian group G, Membership(Gρ∗) is in uTC0.422

I Lemma 22. Let w ∈ (Σ ∪ {a, a−1})∗ with σ(w) 6= 0, n ≥ 1, and I(wn) = [b, c]. Moreover,423

let s = c − b + 1 be the size of the interval I(w) and let (g, n · σ(w)) ∈ G o Z be the group424

element represented by wn. Then g is periodic on the interval [b+ s, c− s] with period |σ(w)|.425

I Example 23. Let us consider the wreath product Z o Z and let the left copy of Z in the426

wreath product be generated by b. Consider the word w = ba−1babab3ab3ab5a−1b and let427

n = 8. We have σ(w) = 2 and I(w) = [−1, 3]. Moreover, w represents the group element428

CVIT 2016

23:12 The power word problem

(f, 2) with f(−1) = 1, f(0) = 2, f(1) = 3, f(2) = 4, and f(3) = 5. Let us now consider the429

word w8. The following diagram shows how to obtain the corresponding element of Z o Z:430

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 4 6 9 6 9 6 9 6 9 6 9 6 9 6 8 4 5

431

We have I(w8) = [−1, 17] and σ(w8) = 8σ(w) = 16. If (g, 16) is the group element represented432

by w8, then the function g is periodic on the interval [2, 14] (which includes the interval433

[−1 + s, 17− s], where s = |I(w)| = 5) with period 2.434

Proofs of Theorem 8 and 9. A conjunctive truth-table reduction is a Turing reduction435

where the output is the conjunction over the outputs of all oracle gates.436

I Proposition 24. For every finitely generated group G, PowerWP(G o Z) is conjunctive437

truth-table uTC0-reducible to Membership(Gρ∗) and PowerWP(G).438

Proof sketch. Let w = ux1
1 ux2

2 · · ·u
xk

k be the input power word and let (f, d) ∈ G o Z be the439

element represented by w. We can check in uTC0 whether d = 0. The difficult part is to440

check whether f is the zero-mapping. For this we compute an interval I (of exponential size)441

that contains the support of f . We then partition I into two sets C and I \C. The set C has442

polynomial size and we can check whether f is the zero-mapping on C using polynomially443

many oracle calls to PowerWP(G). The complement I \ C can be written as a union of444

polynomially many intervals. The crucial property of C is that on each of these intervals f445

can be written as a sum of periodic sequences; for this we use Lemma 22. Using oracle calls446

to Membership(Gρ∗) allows us to check whether f is the zero mapping on I \ C. J447

Since for a finitely generated abelian group G, one can solve PowerWP(G) in uTC0,448

Theorem 8 is a consequence of Proposition 24 and Theorem 21.449

We split the proof of Theorem 9 into three propositions: one for the upper bound and450

two for the lower bounds. It is straightforward to show that if the word problem for the451

finitely generated group G belongs to coNP, then also Membership(Gρ∗) belongs to coNP.452

Since coNP is closed under conjunctive truth-table uTC0-reducibility, Proposition 24 yields:453

I Proposition 25. Let G be a finitely generated group such that PowerWP(G) belongs to454

coNP. Then also PowerWP(G o Z) belongs to coNP.455

I Proposition 26. If G is a finite, non-solvable group, PowerWP(G o Z) is coNP-hard.456

Proof sketch. Barrington [4] proved the following result: Let C be a fan-in two boolean457

circuit of depth d with n input gates x1, . . . , xn. From C one can compute a sequence of458

triples (a so-called G-program) PC = (k1, g1, h1)(k2, g2, h2) · · · (k`, g`, h`) ∈ ([1, n]×G×G)∗459

of length ` ≤ (4|G|)d such that for every input valuation v : {x1, . . . , xn} → {0, 1} the460

following two statements are equivalent:461

(a) C evaluates to 0 under the input valuation v.462

M. Lohrey and A. Weiß 23:13

(b) c1c2 · · · c` = 1 in G, where ci = gi if v(xki
) = 0 and ci = hi if v(xki

) = 1.463

This G-program is constructed as a sequence of iterated commutators, based on the observa-464

tion that [g, h] = 1 if and only if g = 1 or h = 1 (given some reasonable assumptions on g465

and h). Every formula C in conjunctive normal form can be written as a circuit of depth466

O(log |C|). Hence the G-program PC has length polynomial in |C|. From [4] it is easy to see467

that on input of the formula C, the G-program PC can be computed in logspace.468

Let PC = (k1, g1, h1) · · · (k`, g`, h`) and x1, . . . , xn be the variables in C. We compute469

in logspace the n first primes p1, . . . , pn and M =
∏n
i=1 pi (the latter in binary notation).470

Let a denote the generator of Z in the wreath product G o Z. We now compute for every471

1 ≤ i ≤ ` the power word wi = (hi(agi)pki
−1a)M/pkia−M and set wC = w1w2 · · ·w`. The472

group element of G o Z represented by wC is of the form (f, 0).473

We claim that wC = 1 in G oZ if and only if C is unsatisfiable: For a number z ∈ [0,M−1]474

we define the valuation vz : {x1, . . . , xn} → {0, 1} by vz(xi) = 1 if z ≡ 0 mod pi and vz(xi) =475

0 otherwise. By the Chinese remainder theorem, for every valuation v : {x1, . . . , xn} → {0, 1}476

there exists z ∈ [0,M − 1] with v = vz. Based on the above statements (a) and (b), the final477

step of the proof checks that f(z) = 1 if and only if C evaluates to 0 under vz. J478

I Proposition 27. Let F be a finitely generated free group of rank at least two. Then479

PowerWP(F o Z) is coNP-hard.480

The proof is almost the same as for Proposition 26. The difference is that we mimic Robinson’s481

proof that the word problem for F2 is NC1-hard [36] instead of Barrington’s result.482

6 Further Research483

We conjecture that the method of Section 4 can be generalized to right-angled Artin groups484

(RAAGs – also known as graph groups) and hyperbolic groups, and hence that the power word485

problem for a RAAG (resp., hyperbolic group) G is AC0-Turing-reducible to the word problem486

for G. One may also try to prove transfer results for the power word problem with respect487

to group theoretical constructions, e.g., graph products, HNN extensions and amalgamated488

products over finite subgroups. For finitely generated linear groups, the power word problem489

leads to the problem of computing matrix powers with binary encoded exponents. The490

complexity of this problem is open; variants of this problem have been studied in [1, 11].491

Another open question is what happens if we allow nested exponents. We conjecture492

that in the free group for any nesting depth bounded by a constant the problem is still in493

uAC0(WP(F2)). However, for unbounded nesting depth it is not clear what happens: we494

only know that it is in P since it is a special case of the compressed word problem; but it495

still could be in uAC0(WP(F2)) or it could be P-complete or somewhere in between.496

References497

1 Eric Allender, Nikhil Balaji, and Samir Datta. Low-depth uniform threshold circuits and the498

bit-complexity of straight line programs. In Proceedings of the 39th International Symposium499

on Mathematical Foundations of Computer Science, MFCS 2014, Part II, volume 8635 of500

Lecture Notes in Computer Science, pages 13–24. Springer-Verlag, 2014. URL: https://doi.501

org/10.1007/978-3-662-44465-8_2, doi:10.1007/978-3-662-44465-8_2.502

2 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge503

University Press, 2009.504

3 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize505

exactly those languages in NC1. In Juris Hartmanis, editor, Proceedings of the 18th Annual506

CVIT 2016

https://doi.org/10.1007/978-3-662-44465-8_2
https://doi.org/10.1007/978-3-662-44465-8_2
https://doi.org/10.1007/978-3-662-44465-8_2
http://dx.doi.org/10.1007/978-3-662-44465-8_2

23:14 The power word problem

ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,507

pages 1–5. ACM, 1986. URL: http://doi.acm.org/10.1145/12130.12131, doi:10.1145/508

12130.12131.509

4 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize ex-510

actly those languages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.511

URL: http://dx.doi.org/10.1016/0022-0000(89)90037-8, doi:10.1016/0022-0000(89)512

90037-8.513

5 Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ. Branch groups. In Handbook514

of algebra, Vol. 3, pages 989–1112. Elsevier/North-Holland, Amsterdam, 2003. URL: https:515

//doi.org/10.1016/S1570-7954(03)80078-5, doi:10.1016/S1570-7954(03)80078-5.516

6 Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. Finite monoids: From517

word to circuit evaluation. SIAM Journal on Computing, 26(1):138–152, 1997.518

7 Ron Book and Friedrich Otto. String-Rewriting Systems. Springer-Verlag, 1993.519

8 William W. Boone. The word problem. Annals of Mathematics, 70(2):207–265, 1959.520

9 Max Dehn. Ueber unendliche diskontinuierliche Gruppen. Mathematische Annalen, 71:116–144,521

1911.522

10 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings523

of the American Mathematical Society, 16:109–114, 1965.524

11 Esther Galby, Joël Ouaknine, and James Worrell. On matrix powering in low dimensions. In525

Proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science,526

STACS 2015, volume 30 of LIPIcs, pages 329–340. Schloss Dagstuhl–Leibniz-Zentrum für527

Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.STACS.2015.329, doi:10.4230/528

LIPIcs.STACS.2015.329.529

12 Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack problems for530

wreath products. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer531

Science, STACS 2018, volume 96 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl–Leibniz-532

Zentrum für Informatik, 2018. URL: http://www.dagstuhl.de/dagpub/978-3-95977-062-0.533

13 Max Garzon and Yechezkel Zalcstein. The complexity of Grigorchuk groups with application534

to cryptography. Theoretical Computer Science, 88(1):83–98, 1991.535

14 Guoqiang Ge. Testing equalities of multiplicative representations in polynomial time (extended536

abstract). In Proceedings of the 34th Annual Symposium on Foundations of Computer Science,537

FOCS 1993, pages 422–426. IEEE Computer Society, 1993.538

15 Rostislaw I. Grigorchuk. Burnside’s problem on periodic groups. Functional Analysis and Its539

Applications, 14:41–43, 1980.540

16 Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM Journal541

on Computing, 37:425–459, 2007.542

17 Derek Holt. Word-hyperbolic groups have real-time word problem. International Journal of543

Algebra and Computation, 10:221–227, 200.544

18 Derek Holt, Markus Lohrey, and Saul Schleimer. Compressed Decision Problems in Hyperbolic545

Groups. In Proceedings of the 36th International Symposium on Theoretical Aspects of546

Computer Science, STACS 2019, volume 126 of LIPIcs, pages 37:1–37:16. Schloss Dagstuhl–547

Leibniz-Zentrum für Informatik, 2019. URL: http://drops.dagstuhl.de/opus/volltexte/548

2019/10276, doi:10.4230/LIPIcs.STACS.2019.37.549

19 Matthias Jantzen. Confluent String Rewriting, volume 14 of EATCS Monographs on Theoretical550

Computer Science. Springer-Verlag, 1988.551

20 Daniel König and Markus Lohrey. Evaluation of circuits over nilpotent and polycyclic groups.552

Algorithmica, 80(5):1459–1492, 2018. URL: https://doi.org/10.1007/s00453-017-0343-z,553

doi:10.1007/s00453-017-0343-z.554

21 Daniel König and Markus Lohrey. Parallel identity testing for skew circuits with big powers555

and applications. International Journal of Algebra and Computation, 28(6):979–1004, 2018.556

URL: https://doi.org/10.1142/S0218196718500431, doi:10.1142/S0218196718500431.557

http://doi.acm.org/10.1145/12130.12131
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
http://dx.doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/S1570-7954(03)80078-5
https://doi.org/10.1016/S1570-7954(03)80078-5
https://doi.org/10.1016/S1570-7954(03)80078-5
http://dx.doi.org/10.1016/S1570-7954(03)80078-5
https://doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.329
http://www.dagstuhl.de/dagpub/978-3-95977-062-0
http://drops.dagstuhl.de/opus/volltexte/2019/10276
http://drops.dagstuhl.de/opus/volltexte/2019/10276
http://drops.dagstuhl.de/opus/volltexte/2019/10276
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.37
https://doi.org/10.1007/s00453-017-0343-z
http://dx.doi.org/10.1007/s00453-017-0343-z
https://doi.org/10.1142/S0218196718500431
http://dx.doi.org/10.1142/S0218196718500431

M. Lohrey and A. Weiß 23:15

22 Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace. Journal of558

the ACM, 24:522–526, 1977.559

23 Markus Lohrey. Decidability and complexity in automatic monoids. International Journal of560

Foundations of Computer Science, 16(4):707–722, 2005.561

24 Markus Lohrey. Word problems and membership problems on compressed words. SIAM562

Journal on Computing, 35(5):1210–1240, 2006. doi:10.1137/S0097539704445950.563

25 Markus Lohrey. The Compressed Word Problem for Groups. Springer Briefs in Mathematics.564

Springer-Verlag, 2014. URL: https://doi.org/10.1007/978-1-4939-0748-9, doi:10.1007/565

978-1-4939-0748-9.566

26 Markus Lohrey and Saul Schleimer. Efficient computation in groups via compression. In567

Proceedings of the 2nd International Symposium on Computer Science in Russia, CSR 2007,568

volume 4649 of Lecture Notes in Computer Science, pages 249–258. Springer-Verlag, 2007.569

27 Markus Lohrey and Armin Weiß. The power word problem. CoRR, abs/1904.08343, 2019.570

URL: https://arxiv.org/abs/1904.08343.571

28 Markus Lohrey and Georg Zetzsche. Knapsack in graph groups. Theory of Computing572

Systems, 62(1):192–246, 2018. URL: https://doi.org/10.1007/s00224-017-9808-3, doi:573

10.1007/s00224-017-9808-3.574

29 M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and Its575

Applications. Addison-Wesley, 1983. Reprinted by Cambridge University Press, 1997.576

30 Alexei Miasnikov and Svetla Vassileva. Log-space conjugacy problem in the Grigorchuk group.577

Groups Complexity Cryptology, 9(1):77, 2017.578

31 Alexei Miasnikov, Svetla Vassileva, and Armin Weiß. The conjugacy problem in free solvable579

groups and wreath products of abelian groups is in TC0. Theory of Computing Systems,580

63(4):809–832, 2018. URL: https://doi.org/10.1007/s00224-018-9849-2, doi:10.1007/581

s00224-018-9849-2.582

32 Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups.583

Mathematics of Computation, 84(292):987–1016, 2015.584

33 Alexei Myasnikov, Alexander Ushakov, and Won Dong-Wook. Power circuits, exponential585

algebra, and time complexity. International Journal of Algebra and Computation, 22(6):3–53,586

2012.587

34 Alexei Myasnikov and Armin Weiß. TC0 circuits for algorithmic problems in nilpotent groups.588

In Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer589

Science, MFCS 2017, volume 83 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl–Leibniz-590

Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.23, doi:591

10.4230/LIPIcs.MFCS.2017.23.592

35 Pyotr S. Novikov. On the algorithmic unsolvability of the word problem in group theory.593

Trudy Mat. Inst. Steklov, pages 1–143, 1955. In Russian.594

36 David Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of595

California, San Diego, 1993.596

37 Heribert Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.597

38 Stephan Waack. The parallel complexity of some constructions in combinatorial group theory.598

Journal of Information Processing and Cybernetics, 26(5-6):265–281, 1990.599

39 Armin Weiß. On the Complexity of Conjugacy in Amalgamated Products and HNN Extensions.600

Dissertation, Institut für Formale Methoden der Informatik, Universität Stuttgart, 2015.601

40 Armin Weiß. A logspace solution to the word and conjugacy problem of generalized Baumslag-602

Solitar groups. In Algebra and Computer Science, volume 677 of Contemporary Mathematics,603

pages 185–212. American Mathematical Society, 2016.604

CVIT 2016

http://dx.doi.org/10.1137/S0097539704445950
https://doi.org/10.1007/978-1-4939-0748-9
http://dx.doi.org/10.1007/978-1-4939-0748-9
http://dx.doi.org/10.1007/978-1-4939-0748-9
http://dx.doi.org/10.1007/978-1-4939-0748-9
https://arxiv.org/abs/1904.08343
https://doi.org/10.1007/s00224-017-9808-3
http://dx.doi.org/10.1007/s00224-017-9808-3
http://dx.doi.org/10.1007/s00224-017-9808-3
http://dx.doi.org/10.1007/s00224-017-9808-3
https://doi.org/10.1007/s00224-018-9849-2
http://dx.doi.org/10.1007/s00224-018-9849-2
http://dx.doi.org/10.1007/s00224-018-9849-2
http://dx.doi.org/10.1007/s00224-018-9849-2
https://doi.org/10.4230/LIPIcs.MFCS.2017.23
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.23
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.23
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.23

	Introduction
	Preliminaries
	Results
	Proof of Theorem 2
	The power word problem in wreath products
	Further Research

