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Abstract
We investigate the class of visibly pushdown languages in the sliding window model. A sliding
window algorithm for a language L receives a stream of symbols and has to decide at each time
step whether the suffix of length n belongs to L or not. The window size n is either a fixed number
(in the fixed-size model) or can be controlled by an adversary in a limited way (in the variable-size
model). The main result of this paper states that for every visibly pushdown language the space
complexity in the variable-size sliding window model is either constant, logarithmic or linear in the
window size. This extends previous results for regular languages.
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1 Introduction

The sliding window model. A sliding window algorithm (SWA) is an algorithm which
processes a stream of data elements a1a2a3 · · · and computes at each time instant t a certain
value that depends on the suffix at−n+1 · · · at of length n where n is a parameter called the
window size. This streaming model is motivated by the fact that in many applications data
elements are outdated or become irrelevant after a certain time. A general goal in the area of
sliding window algorithms is to avoid storing the window content explicitly (which requires
Ω(n) bits) and to design space efficient algorithms, say using polylogarithmic many bits in
the window size n.

A prototypical example of a problem considered in the sliding window model is the Basic
Counting problem. Here the input is a stream of bits and the task is to approximate
the number of 1’s in the last n bits (the active window). In [15], Datar, Gionis, Indyk
and Motwani present an approximation algorithm using O( 1

ε log2 n) bits of space with an
approximation ratio of ε. They also prove a matching lower bound of Ω( 1

ε log2 n) bits for
any deterministic (and even randomized) algorithm for Basic Counting. Other works in
the sliding window model include computing statistics [2, 3, 8], optimal sampling [9] and
various pattern matching problems [10, 12, 13, 14].

There are two variants of the sliding window model, cf. [2]. One can think of an adversary
who can either insert a new element into the window or remove the oldest element from the
window. In the fixed-size sliding window model the adversary determines the window size
n in the beginning and the initial window is set to an for some default known element a.
At every time step the adversary inserts a new symbol and then immediately removes the
oldest element from the window. In the variable-size sliding window model the window size
is initially set to n = 0. Then the adversary is allowed to perform an arbitrary sequence of
insert- and remove-operations. A remove-operation on an empty window leaves the window
empty. We also mention the timestamp-based model where every element carries a timestamp
(many elements may have the same timestamp) and the active window at time t contains
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only those elements whose timestamp is at least t− t0 for some parameter t0 [9]. Both the
fixed-size and the timestamp-based model can be simulated in the variable-size model.

Regular languages. In a recent series of works we studied the membership problem to a
fixed regular language in the sliding window model. It was shown in [20] that in both the
fixed-size and the variable-size sliding window model the space complexity of any regular
language is either constant, logarithmic or linear (a space trichotomy). In a subsequent
paper [18] a characterization of the space classes was given: A regular language has a
fixed/variable-size SWA with O(logn) bits if and only if it is a finite Boolean combination of
regular left ideals and regular length languages. A regular language has a fixed-size SWA
with O(1) bits if and only if it is a finite Boolean combination of suffix testable languages
and regular length languages. A regular language has a variable-size SWA with O(1) bits if
and only if it is empty or universal.

Context-free languages. A natural question is whether the results above can be extended
to larger language classes, say subclasses of the context-free languages. More precisely, we
pose the questions: (i) Which language classes have a “simple” hierarchy of space complexity
classes (like the space trichotomy for the regular languages), and (ii) are there natural
descriptions of the space classes? A positive answer to question (i) seems to be necessary
to answer question (ii) positively. In [21] we presented a family of context-free languages
(Lk)k≥1 which have space complexity Θ(n1/k) in the variable-size model and O(n1/k)\o(n1/k)
in the fixed-size model, showing that there exists an infinite hierarchy of space complexity
classes inside the class of context-free languages. Intuitively, this result can be explained
with the fact that a language and its complement have the same sliding window space
complexity; however, the class of context-free languages is not closed under complementation
(in contrast to the regular languages) and the analysis of co-context-free languages in this
setting seems to be very difficult. Even in the class of deterministic context-free languages,
which is closed under complementation, there are example languages which have sliding
window space complexity Θ((logn)2) [21].

Visibly pushdown languages. Motivated by these observations in this paper we will study
the class of visibly pushdown languages, introduced by Alur and Madhusudan [1]. They are
recognized by visibly pushdown automata where the alphabet is partitioned into call letters,
return letters and internal letters, which determine the behavior of the stack height. Since
visibly pushdown automata can be determinized, the class of visibly pushdown languages
turns out to be very robust (it is closed under Boolean operations and other language
operations) and to be more tractable in many algorithmic questions than the class of context-
free languages [1]. In this paper we prove a space trichotomy for the class of visibly pushdown
languages in the variable-size sliding window model, stating that the space complexity of
every visibly pushdown language is either O(1), Θ(logn) or O(n) \ o(n). The main technical
result is a growth theorem (Theorem 6) for rational transductions. A natural characterization
of the O(logn)-class as well as a study of the fixed-size model are left as open problems.

Let us mention some related work in the context of streaming algorithms for context-free
languages. Randomized streaming algorithms were studied for subclasses of context-free
languages (DLIN and LL(k)) [4] and for Dyck languages [25]. A streaming property tester
for visibly pushdown languages was presented by François et al. [17].
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2 Preliminaries

We define logn = blog2 nc for all n ≥ 1, which is the minimum number k of bits required
to encode n elements using bit strings of length at most k. If w = a1 · · · an is a word then
any word of the form ai · · · an (a1 · · · ai) is called suffix (prefix) of w. A prefix (suffix) v of w
is proper if v 6= w. A factor of w is any word of the form ai · · · aj . A factorization of w is
formally a sequence of possibly empty factors (w0, . . . , wm) with w = w0 · · ·wm. We call w0
the initial factor and w1, . . . , wm the internal factors. The reversal of w is wR = anan−1 · · · a1.
For a language L ⊆ Σ∗ we denote by Suf(L) the set of suffixes of words in L. If L = Suf(L)
then L is suffix-closed.

Automata. An automaton over a monoid M is a tuple A = (Q,M, I,∆, F ) where Q is a
finite set of states, I ⊆ Q is a set of initial states, ∆ ⊆ Q×M×Q is the transition relation and
F ⊆ Q is the set of final states. A run on m ∈M from q0 to qn is a sequence of transitions
of the form π = (q0,m1, q1)(q1,m2, q2) · · · (qn−1,mn, qn) ∈ ∆∗ such that m = m1 · · ·mn. We
usually depict π as q0

m1−−→ q1
m2−−→ q2 · · · qn−1

mn−−→ qn, or simply q0
m−→ qn. It is initial if

q0 ∈ I and accepting if qn ∈ F . The language defined by A is the set L(A) of all elements
m ∈M such that there exists an initial accepting run on m. A subset L ⊆M is rational if
L = L(A) for some automaton A. We only need the case where M is the free monoid Σ∗ over
an alphabet Σ or where M is the product Σ∗ × Ω∗ of two free monoids. In these cases we
change the format and write (Q,Σ, I,∆, F ) and (Q,Σ,Ω, I,∆, F ), respectively. Subsets of
Σ∗ are called languages and subsets of Σ∗ × Ω∗ are called transductions. Rational languages
are usually called regular languages.

In this paper we will also use right automata, which read the input from right to left.
Formally, a right automaton A = (Q,M,F,∆, I) has the same format as a (left) automaton
where the sets of initial and final states are swapped. Runs in right automata are defined
from right to left, i.e. a run on m ∈ M from qn to q0 is a sequence of transitions of the
form (q0,m1, q1)(q1,m2, q2) · · · (qn−1,mn, qn) ∈ ∆∗ such that m = m1 · · ·mn. In the graphic
notation we write the arrows from right to left. It is initial (accepting) if qn ∈ I (q0 ∈ F ).

Right congruences. For any equivalence relation ∼ on a set X we write [x]∼ for the ∼-class
containing x ∈ X and X/∼ = {[x]∼ | x ∈ X} for the set of all ∼-classes. The index of ∼ is
the cardinality of X/∼. We denote by ν∼ : X → X/∼ the function with ν∼(x) = [x]∼. A
subset L ⊆ X is saturated by ∼ if L is a union of ∼-classes. An equivalence relation ∼ on the
free monoid Σ∗ over some alphabet Σ is a right congruence if x ∼ y implies xz ∼ yz for all
x, y, z ∈ Σ∗. The Myhill-Nerode right congruence ∼L of a language L ⊆ Σ∗ is the equivalence
relation on Σ∗ defined by x ∼L y if and only if x−1L = y−1L where x−1L = {z | xz ∈ L}.
It is indeed the coarsest right congruence on Σ∗ which saturates L. We usually write νL
instead of ν∼L

. A language L ⊆ Σ∗ is regular iff ∼L has finite index.

Rational transductions. Rational transductions are accepted by automata over Σ∗ × Ω∗,
which are called finite state transducers. In this paper, we will use a slightly extended but
equivalent definition. A transducer is a tuple A = (Q,Σ,Ω, I,∆, F, o) such that (Q,Σ∗ ×
Ω∗, I,∆, F ) is an automaton over Σ∗×Ω∗ and a terminal output function o : F → Ω∗. To omit
parentheses we write runs p (x,y)−−−→ q in the form p

x|y−−→ q and depict o(q) = y by a transition
q
|y−→ without input word and target state. If π is a run p x|y−−→ q we define out(π) = y and

outF (π) = y o(q). The transduction defined by A is the set T(A) of all pairs (x, outF (π))
such that π is an initial accepting run p x|y−−→ q. Since the terminal output function can be
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eliminated by ε-transitions, a transduction is rational if and only if it is of the form T(A) for
some transducer A. In this paper we will mainly use rational functions, which are partial
functions t : Σ∗ → Ω∗ whose graph {(x, t(x)) | x ∈ dom(t)} is a rational transduction.

A transducer A is trim if every state occurs on some accepting run. If every word x ∈ Σ∗

has at most one initial accepting run p x|y−−→ q for some y ∈ Ω∗ then A is unambiguous. If
∆ ⊆ Q×Σ×Ω∗×Q then A is real-time. It is known that every rational function is defined by a
trim unambiguous real-time transducer [6, Corollary 4.3]. If A is unambiguous and trim then
for every word x ∈ Σ∗ and every pair of states (p, q) ∈ Q2 there exists at most one run from p to
q with input word x. Therefore, the state pair (p, q) and the input word x uniquely determine
the run (if it exists) and we can simply write p x−→ q. Similarly to [28], we define for a real-time
transducer A the parameter iml(A) = max ({|y| | (q, a, y, p) ∈ ∆} ∪ {|o(q)| | q ∈ Q}). For
every run π on a word x ∈ Σ∗ we have |out(π)| ≤ iml(A) · |x| and |outF (π)| ≤ iml(A) · (|x|+1).

The following closure properties for rational transductions are known [6]: The class of
rational transductions is closed under inverse, reversal and composition where the inverse of
T is T−1 = {(y, x) | (x, y) ∈ T}, the reversal of T is TR = {(xR, yR) | (x, y) ∈ T}, and the
composition of two transductions T1, T2 is T1 ◦T2 = {(x, z) | ∃y : (x, y) ∈ T1 and (y, z) ∈ T2}.
If T ⊆ Σ∗ × Ω∗ is rational and L ⊆ Σ∗ is regular then the restriction {(x, y) ∈ T | x ∈ L}
is also rational. If K ⊆ Σ∗ is regular (context-free) and T ⊆ Σ∗ × Ω∗ is rational then
TK = {y ∈ Ω∗ | (x, y) ∈ T for some x ∈ K} is also regular (context-free).

A right transducer is a tuple A = (Q,Σ,Ω, F,∆, I, o) such that (Q,Σ∗ × Ω∗, F,∆, I) is a
right automaton over Σ∗×Ω∗ and a terminal output function o : F → Ω∗. We depict o(q) = y

by a transition |y←− q. If π is a run q x|y←−− p we define out(π) = y and outF (π) = o(q) y. All
other notions on transducers are defined for right transducers in a dual way.

Growth functions. A function γ : N → N grows polynomially if γ(n) ∈ O(nk) for some
k ∈ N; we say that γ grows exponentially if there exists a number c > 1 such that γ(n) ≥ cn
for infinitely many n ∈ N. A function γ(n) grows exponentially if and only if log γ(n) /∈ o(n).

We will define a generalized notion of growth. Let t : Σ∗ → Y be a partial function and
let X ⊆ dom(t) be a language. The t-growth of X is the function γ(n) = |t(X ∩ Σ≤n)|, i.e.
it counts the number of output elements on input words from X of length at most n. The
growth of X is simply the idX -growth of X, i.e. γ(n) = |X ∩ Σ≤n|. It is known that every
context-free language has either polynomial or exponential growth [22]. Furthermore, a
context-free language L has polynomial growth if and only if it is bounded, i.e. L ⊆ w∗1 · · ·w∗k
for some words w1, . . . , wk [22]. We need the fact that if L is a bounded language and K is
a set of factors of words in L then K is bounded [23, Lemma 1.1(c)].

3 Visibly pushdown languages

A pushdown alphabet is a triple Σ̃ = (Σc,Σr,Σint) consisting of three pairwise disjoint
alphabets: a set of call letters Σc, a set of return letters Σr and a set of internal letters Σint .
We identify Σ̃ with the union Σ = Σc ∪Σr ∪Σint . The set of well-matched words W over Σ is
defined as the smallest set which contains {ε} ∪Σint , is closed under concatenation, and if w
is well-matched, a ∈ Σc, b ∈ Σr then also awb is well-matched. A word is called descending
(ascending) if it can be factorized into well-matched factors and return (call) letters. The set
of descending words is denoted by D. A visibly pushdown automaton (VPA) has the form
A = (Q, Σ̃,Γ,⊥, q0, δ, F ) where Q is a finite state set, Σ̃ is a pushdown alphabet, Γ is the
finite stack alphabet containing a special symbol ⊥ (representing the empty stack), q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states and δ = δc∪δr∪δint is the transition function
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where δc : Q× Σc → (Γ \ {⊥})×Q, δr : Q× Σr × Γ→ Q and δint : Q× Σint → Q. The set
of configurations Conf is the set of all words αq where q ∈ Q is a state and α ∈ ⊥(Γ \ {⊥})∗
is the stack content. We define δ : Conf × Σ→ Conf for each p ∈ Q and a ∈ Σ as follows:

If a ∈ Σc and δ(p, a) = (γ, q) then δ(αp, a) = αγq.
If a ∈ Σint and δ(p, a) = q then δ(αp, a) = αq.
If a ∈ Σr, δ(p, a, γ) = q and γ ∈ Γ \ {⊥} then δ(αγp, a) = αq.
If a ∈ Σr and δ(p, a,⊥) = q then δ(⊥p) = ⊥q.

As usual we inductively extend δ to a function δ : Conf × Σ∗ → Conf where δ(c, ε) = c and
δ(c, wa) = δ(δ(c, w), a) for all w ∈ Σ∗ and a ∈ Σ. The initial configuration is ⊥q0 and a
configuration c is final if c ∈ Γ∗F . A word w ∈ Σ∗ is accepted from a configuration c if δ(c, w)
is final. The VPA A accepts w if w is accepted from the initial configuration. The set of all
words accepted by A is denoted by L(A); the set of all words accepted from c is denoted by
L(c). A language L is a visibly pushdown language (VPL) if L = L(A) for some VPA A. To
exclude some pathological cases we assume that Σc 6= ∅ and Σr 6= ∅. In fact, if Σc = ∅ or
Σr = ∅ then any VPL over that pushdown alphabet would be regular.

One can also define nondeterministic visibly pushdown automata in the usual way, which
can always be converted into deterministic ones [1]. This leads to good closure properties of
the class of all VPLs, as closure under Boolean operations, concatenation and Kleene star.

The set W of well-matched words forms a submonoid of Σ∗. Notice that a VPA can
only see the top of the stack when reading return symbols. Therefore, the behavior of a
VPA on a well-matched word is determined only by the current state and independent of the
current stack content. More precisely, there exists a monoid homomorphism ϕ : W → QQ

into the finite monoid of all state transformations Q→ Q such that δ(αp,w) = αϕ(w)(p) for
all w ∈W and αp ∈ Conf.

4 Sliding window algorithms and main results

In our context a streaming algorithm is a deterministic algorithm A which reads an input
word a1 · · · am ∈ Σ∗ symbol by symbol from left to right and outputs after every prefix either
1 or 0. We view A as a deterministic (possibly infinite) automaton whose states are encoded
by bit strings and thus abstract away from the actual computation, see [18] for a formal
definition. A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming
algorithm A which reads an input word a1 · · · am over the extended alphabet Σ = Σ ∪ {↓}.
The symbol ↓ is the operation which removes the oldest symbol from the window. At time
0 ≤ t ≤ m the algorithm has to decide whether the active window wnd(a1 · · · at) belongs to
L which is defined by

wnd(ε) = ε wnd(u↓) = ε if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v if wnd(u) = av

for u ∈ Σ∗, a ∈ Σ. For example, a variable-size sliding window algorithm A for the language
La = {w ∈ {a, b}∗ | w contains a} maintains the window length n and the position i (from
the right) of the most recent a-symbol in the window (if it exists): We initialize n := 0 and
i :=∞. On input a we increment n and set i := 1, on input b we increment both n and i.
On input ↓ we decrement n, unless n = 0, and then set i :=∞ if i > n.

The space complexity of A is the function which maps n to the maximum number of
bits used when reading an input a1 · · · am where the window size never exceeds n, i.e.
|wnd(a1 · · · at)| ≤ n for all 0 ≤ t ≤ n. Notice that this function is monotonic. For every
language L there exists a space optimal variable-size sliding window algorithm [19, Lemma 3.1]
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and we write VL(n) for its space complexity. Clearly we have VL(n) ∈ O(n). For example
the example language La above satisfies VLa

(n) ∈ O(logn) because the algorithm above only
maintains two numbers using O(logn) bits. The main result of this paper states:

I Theorem 1 (Trichotomy for VPL). If L is a visibly pushdown language then VL(n) is either
O(1), Θ(logn) or O(n) \ o(n).

In the rest of this section we will give an overview of the proof of Theorem 1.

Suffix expansions. Let ∼ be an equivalence relation on Σ∗. The suffix expansion of ∼
is the equivalence relation ≈ on Σ∗ defined by a1 · · · an ≈ b1 · · · bm if and only if n = m

and ai · · · an ∼ bi · · · bn for all 1 ≤ i ≤ n. Notice that ≈ saturates each subset Σ≤n.
Furthermore, if ∼ is a right congruence then so is ≈ since |u| = |v| implies |ua| = |va| and
ai · · · an ∼ bi · · · bn implies ai · · · ana ∼ bi · · · bna. We also define suffix expansions for partial
functions t : Σ∗ → Y with suffix-closed domain dom(t). The suffix expansion of t is the total
function ~t : dom(t)→ Y ∗ defined by ~t(a1 · · · an) = t(a1 · · · an) t(a2 · · · an) · · · t(an−1an) t(an)
for all a1 · · · an ∈ Σ∗. Here the range of ~t is the free monoid (alternatively, the set of
all sequences) over Y . If ∼ is an equivalence relation on Σ∗ then its suffix expansion ≈
is the kernel of ~ν∼, i.e. x ≈ y if and only if ~ν∼(x) = ~ν∼(y). The space complexity in
the variable-size model is captured by the suffix expansion ≈L of the Myhill-Nerode right
congruence ∼L or alternatively by the suffix expansion ~νL of νL.

I Theorem 2 ([18, Theorem 4.1]). For all ∅ ( L ( Σ∗ we have VL(n) = log |Σ≤n/≈L| =
log | ~νL(Σ≤n)|. In particular, VL(n) = Ω(logn) for every non-trivial language.

If L is empty or universal, then VL(n) ∈ O(1) and otherwise VL(n) = Ω(logn). Hence to
prove Theorem 1 it suffices to show that either VL(n) ∈ O(logn) or VL(n) /∈ o(n) holds for
every VPL L. If L is a regular language and A is the minimal DFA of L with state set Q, one
can identify νL(x) with the state q ∈ Q reached on input x. Hence, ~νL(x) is represented by a
word over Q. Using the transition monoid of A one can show that ~νL : Σ∗ → Q∗ is rational
(in fact right-subsequential, see Section 6) and hence the image ~νL(Σ∗) ⊆ Q∗ is regular [19,
Lemma 4.2]. Since the growth of ~νL(Σ∗) is either polynomial or exponential this implies that
VL(n) ∈ O(logn) or VL(n) /∈ o(n).

Restriction to descending words. The approach above for regular languages can be exten-
ded to visibly pushdown languages L if we restrict ourselves to the set D of descending words.
If a VPA with state set Q reads a descending word x ∈ D from the initial configuration it
reaches some configuration ⊥q with empty stack. Notice that there may be distinct configur-
ations ⊥p 6= ⊥q with L(⊥p) = L(⊥q), in which case we need to pick a single representative.
Since every suffix of x is again descending we can represent ~νL(x) by a word σ0(x) ∈ Q∗ and
in fact we will prove that S0 = σ0(D) is a context-free language (Lemma 10). By the growth
theorem for context-free languages the growth of S0 is either polynomial or exponential. If
S0 grows exponentially we obtain an exponential lower bound on | ~νL(Σ≤n)| (Lemma 11).
Hence, the interesting case is that S0 has polynomial growth, i.e. S0 is bounded.

Representation by rational functions. In order to simulate a VPA by a finite automaton
on arbitrary words we will “flatten” the input word in the following way. The input word w
is factorized w = w0w1 · · ·wm into a descending prefix w0, and call letters and well-matched
factors w1, . . . , wm. The descending prefix w0 is replaced by σ0(w0) and each well-matched
factor wi is replaced by a similar information σ1(wi) which describes the behavior of the
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VPA on the factor wi and on each of its suffixes. The set Flat of all flattenings is a context-
free language. Furthermore, there exists a rational function νf such that, if a flattening s
represents a word w ∈ Σ∗ then νf (s) is a configuration representing the Myhill-Nerode class
νL(w) (Proposition 9). Hence, we can reduce proving the main theorem to the question
whether the ~νf -growth of Flat is always either polynomial or exponential.

This question is resolved positively as follows. We prove that for every rational function t
with suffix-closed domain X = dom(t) the ~t-growth of X is either polynomial or exponential
(Theorem 6). In the case that S0 has polynomial growth we can overapproximate Flat by a
regular superset RegFlat. If the ~νf -growth of RegFlat is polynomial then the same holds
trivially for the subset Flat. If the ~νf -growth of RegFlat is exponential then the proper
choice of RegFlat ensures that Flat also has exponential ~νf -growth (Proposition 14).

Dichotomy for rational functions. The main technical result of this paper states that for
every rational function t : Σ∗ → Ω∗ with suffix-closed domain X = dom(t) the ~t-growth of
X is either polynomial or exponential. We emphasize that the range of ~t is not Ω∗ but the
free monoid over Ω∗ (consisting of all finite sequences of words over Ω). There are in fact
two reasons for exponential ~t-growth: (i) The image t(X) has exponential growth, and (ii)
X contains a so called linear fooling set. We need these lower bounds in the more general
setting where X ⊆ dom(t) is a context-free subset, namely X = Flat.

I Proposition 3. Let t : Σ∗ → Ω∗ be rational with suffix-closed domain. If X ⊆ dom(t) is
context-free and t(X) has exponential growth then X has exponential t-growth and exponential
~t-growth.

I Example 4. Consider the transduction f : {a, b}∗ → a∗ defined by

f = {(an, an) | n ∈ N} ∪ {(anbw, an) | n ∈ N, w ∈ {a, b}∗},

which projects a word over {a, b} to its left-most (maximal) a-block and is rational. Its
image ~f({a, b}∗) can be identified with the set of all sequences of natural numbers which are
concatenations of monotonically decreasing sequences of the form (k, k− 1, . . . , 0). There are
exactly 2n of such sequences of length n and hence {a, b}∗ has exponential ~f -growth.

A linear fooling scheme for a partial function t : Σ∗ → Y is a tuple (u2, v2, u, v, Z) where
u2, v2, u, v ∈ Σ∗ and Z ⊆ Σ∗ such that u2 is a suffix of u and v2 is a suffix of v, |u2| = |v2|,
{u2, v2}{u, v}∗Z ⊆ dom(t) and for all n ∈ N there exists a word zn ∈ Z of length |zn| ≤ O(n)
such that t(u2wzn) 6= t(v2wzn) for all w ∈ {u, v}≤n. The set {u2, v2}{u, v}∗Z is called a
linear fooling set for t. Notice that the definition implies that u2 6= v2 and hence u is not a
suffix of v, and vice versa, i.e. {u, v} is a suffix code. Therefore {u, v}n contains 2n words of
length O(n) and thus {u2, v2}{u, v}∗ has exponential growth.

I Proposition 5. Let t : Σ∗ → Ω∗ be a partial function with suffix-closed domain. If
X ⊆ dom(t) contains a linear fooling set for t then the ~t-growth of X is exponential.

Proof. Let (u2, v2, u, v, Z) be a linear fooling scheme with {u2, v2}{u, v}∗Z ⊆ X. Let
n ∈ N and let zn ∈ Z with the properties from the definition. Consider two distinct words
w,w′ ∈ {u, v}n. Without loss of generality the words have the form w = w1uw2 and
w′ = w3vw2 for some w1, w2, w3 ∈ {u, v}∗. Hence w has the suffix u2w2 and w′ has the suffix
v2w2, which are suffixes of the same length. By assumption we have t(u2w2zn) 6= t(v2w2zn)
and hence also ~t(wzn) 6= ~t(w′zn). This implies that | ~t(u2{u, v}nzn)| ≥ 2n for all n ∈ N.
Since all words in u2{u, v}nzn ⊆ X have length O(n) there exists a number c > 1 such that
| ~t(X ∩ Σ≤cn)| ≥ 2n for sufficiently large n. J
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b c a b b c a b a a b c a a a b a b b a

Figure 1 The stack height function for a word (Σc = {a}, Σr = {b}, Σint = {c}) and a monotonic
factorization bcabb cab a abc a aababb a.

The following dichotomy theorem will be proved in Section 6.

I Theorem 6. Let t : Σ∗ → Ω∗ be rational and with suffix-closed domain X = dom(t). If X
contains no linear fooling set for t and t(X) is bounded then the ~t-growth of X is polynomial.
Otherwise the ~t-growth of X is exponential.

5 Reduction to transducer problem

Fix a VPA A = (Q, Σ̃,Γ,⊥, q0, δ, F ) and let ∅ ( L = L(A) ( Σ∗ for the rest of this section.

Monotonic factorization. A factorization of w = w0w1 · · ·wm ∈ Σ∗ into factors wi ∈ Σ∗ is
monotonic if w0 is descending (possibly empty) and for each 1 ≤ i ≤ m the factor wi is either
a call letter wi ∈ Σc or a non-empty well-matched factor. If w0w1 · · ·wm is a monotonic
factorization then w′iwi+1 · · ·wj is a monotonic factorization for any 0 ≤ i ≤ j ≤ m and
suffix w′i of wi. To see that every word w ∈ Σ∗ has at least one monotonic factorization
consider the set of non-empty maximal well-matched factors in w (maximal with respect
to inclusion). Observe that two distinct maximal well-matched factors in a word cannot
overlap because the union of two overlapping well-matched factors is again well-matched.
Since every internal letter is well-matched the remaining positions contain only return and
call letters. Furthermore, every remaining call letter must be to the right of every remaining
return letter, which yields a monotonic factorization of w. Figure 1 shows a monotonic
factorization w = w0w1 · · ·wm where the descending prefix w0 is colored red and call letters
wi are colored green. The stack height function for the word w increases (decreases) by one
on call (return) letters and stays constant on internal letters.

Representation of Myhill-Nerode classes. To apply Theorem 2 we need a suitable descrip-
tion of the ∼L-classes. We follow the approach in [5] of choosing length-lexicographic minimal
representative configurations. Since their definition slightly differs from ours (according to
their definition, a VPA may not read a return letter if the stack contains ⊥ only) we briefly
recall their argument (in the appendix). Let rConf = {δ(⊥q0, w) | w ∈ Σ∗} be the set of
all reachable configurations in A, which is known to be regular [7, 11]. Two configurations
c1, c2 ∈ rConf are equivalent, denoted by c1 ∼ c2, if L(c1) = L(c2). By fixing arbitrary linear
orders on Γ and Q we can consider the length-lexicographical order on rConf and define the
function rep : rConf → rConf which chooses the minimal representative from each ∼-class, i.e.
for all c ∈ rConf we have rep(c) ∼ c and for any c′ ∈ rConf with c ∼ c′ we have rep(c) ≤llex c

′.
The set of representative configurations is denoted by Rep = rep(rConf).

I Lemma 7 ([5]). The function rep is rational.
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Finally we define νA : Σ∗ → Rep by νA(w) = rep(δ(⊥q0, w)) for all w ∈ Σ∗. It represents ∼L
in the sense that L(νA(w)) = w−1L(A) for all w ∈ Σ∗ and hence νA(u) = νA(v) if and only if
u ∼L v. Therefore we have VL(n) = log | ~νA(Σ≤n)| by Theorem 2.

Flattenings. Since we cannot compute νA using a finite state transducer we choose a
different representation of the input. Define the alphabet Σf = Σc∪Q∪QQ. A flattening is a
word s0s1 · · · sm ∈ Σ∗f where s0 ∈ Q∗ and si ∈ Σc ∪QQQ∗ for all 1 ≤ i ≤ m. Notice that the
factorization s = s0s1 · · · sm is unique. The set of all flattenings is AllFlat = Q∗(Σc∪QQQ∗)∗.
We define a function tf : AllFlat→ rConf as follows. Let s = s0s1 · · · sm ∈ Σ∗f be a flattening
and we define tf (s) by induction on m:

If s0 = ε then tf (s0) = ⊥q0. If s0 = q1 · · · qn ∈ Q+ then tf (s0) = ⊥q1.
If sm ∈ Σc then tf (s0 · · · sm) = δ(tf (s0 · · · sm−1), sm).
If sm = τq2 · · · qm ∈ QQQ∗ and tf (s0 · · · sm−1) = αq then tf (s) = ατ(q).

Define the function νf : AllFlat→ Rep by νf = rep ◦ tf .

I Lemma 8. The functions tf and νf are rational.

Proof. We first define a transducer A1 which handles flattenings where the initial factor is
empty. Let A1 = (Q,Σf , Q ∪ Γ, {q0},∆′, Q, o) with the following transitions:

p
q|ε−−→ p for all p, q ∈ Q

p
a|γ−−→ q for all δ(p, a) = (γ, q) where a ∈ Σc

p
τ |ε−−→ τ(p) for all p ∈ Q, τ ∈ QQ

and o(q) = q. For each p ∈ Q let tp be the rational function defined by A1 with the only
initial state p. One can easily show that for all s ∈ AllFlat we have tf (s) = ⊥tq0(s) and
tf (q1 · · · qks) = ⊥tq1(s) for all q1 · · · qk ∈ Q+. Hence we can prove that tf is rational by
providing a transducer for tf : First it verifies whether the input word belongs to the regular
language AllFlat ⊆ Σ∗f . Simultaneously, it verifies whether the input word starts with a state
q ∈ Q. If so, it memorizes q and simulates A1 on s′ from q, and otherwise A1 is directly
simulated on s from q0. Since rep is rational by Lemma 7, νf is also rational. J

If w = a1 · · · an ∈ D is a descending word then δ(⊥q0, w) = ⊥p for some p ∈ Q. By definition
of νA there exists a state q ∈ Q with νA(w) = ⊥q. Since each suffix of w is also descending
we have ~νA(w) = ⊥q1⊥q2 · · · ⊥qn for some q1, . . . , qn ∈ Q. We define σ0(w) = q1 · · · qn ∈ Q∗,
i.e. we remove the redundant ⊥-symbols from ~νA(w). If w is non-empty and well-matched
we additionally define σ1(w) = τq2 · · · qn ∈ QQQ∗ where τ = ϕ(w). We define the sets
S0 = σ0(D) and S1 = σ1(W \ {ε}). Notice that S0 is exactly the set of proper suffixes of
words from S1 since descending words are exactly the (proper) suffixes of well-matched words.
We say that s = s0s1 · · · sm ∈ AllFlat represents a word w ∈ Σ∗ if there exists a monotonic
factorization w = w0w1 · · ·wm ∈ Σ∗ such that s0 = σ0(w0), and for all 1 ≤ i ≤ m if wi is
well-matched, then si = σ1(wi), and if wi ∈ Σc then si = wi. Since a word may have different
monotonic factorizations, it may also be represented by many flattenings. We define the
suffix-closed set Flat = S0(Σc ∪ S1)∗, containing all flattenings which represent some word.

I Proposition 9. If s ∈ AllFlat represents w ∈ Σ∗ then νf (s) = νA(w). Therefore,
νf (Flat) = Rep and VL(n) = log | ~νf (Flat ∩ Σ≤nf )|.

I Lemma 10. The languages S0 and S1 are context-free.

Proof. Since S0 is the set of all proper suffixes of words from S1 it suffices to consider
S1. We will prove that {w ⊗ σ1(w) | w ∈ W} is a VPL over the pushdown alphabet
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(Σc × Σf ,Σr × Σf ,Σint × Σf ). Since the class of context-free languages is closed under
projections it then follows that S1 is context-free. A VPA can test whether the first
component w = a1 · · · an is well-matched and whether the second component has the form
τq2 · · · qn ∈ QQQ∗. Since VPLs are closed under Boolean operations, it suffices to test
whether τ 6= ϕ(w) or there exists a state qi with νA(ai · · · an) 6= ⊥qi. To guess an incorrect
state we use a VPA whose stack alphabet contains all stack symbols of A and a special
symbol # representing the stack bottom. We guess and read a prefix of the input word and
push/pop only the special symbol # on/from the stack. Then at some point we store the
second component qi in the next symbol and simulate A on the remaining suffix. Finally, we
accept if and only if the reached state is q and rep(⊥q) 6= ⊥qi. Similarly, we can verify τ by
testing whether there exists a state p ∈ Q with ϕ(w)(p) 6= τ(p). J

I Lemma 11. The language S0 is bounded if and only if S1 is bounded. If S0 is not bounded
then the ~νA-growth of Σ∗ is exponential and therefore VL(n) /∈ o(n).

Proof. Assume that S0 ⊆ s∗1 · · · s∗k is bounded. Since S1 ⊆
⋃
{τS0 | τ ∈ QQ} we have

S1 ⊆ τ∗1 · · · τ∗ms∗1 · · · s∗k for any enumeration τ1, . . . , τm of QQ. Conversely, if S1 is bounded
then each word in S0 is a factor, namely a proper suffix, of a word from S1. Therefore S0
must be also bounded.

If the context-free language S0 = σ0(D) ⊆ Q∗ is not bounded then its growth must be
exponential. Recall that ~νA(w) and σ0(w) are equal for all w ∈ D up to the ⊥-symbol.
Hence | ~νA(Σ≤n)| ≥ | ~νA(D ∩ Σ≤n)| = |σ0(D ∩ Σ≤n)| = |S0 ∩Q≤n|, which proves the growth
bound. J

Bounded overapproximation. By Lemma 11 we can restrict ourselves to the case that
S0 and S1 are bounded languages, which will be assumed in the following. We define
Ψ(a1 · · · an) = {(a1, n), (a2, n− 1) . . . , (an, 1)} and Ψ(L) =

⋃
w∈L Ψ(w).

I Lemma 12. Let K be a bounded context-free language. Then there exists a bounded regular
superset R ⊇ K such that {|w| | w ∈ K} = {|w| | w ∈ R} and Ψ(K) = Ψ(R), called a
bounded overapproximation of K.

Proof. We use Parikh’s theorem [26], which implies that for every context-free language
K ⊆ Σ∗ the set {|w| | w ∈ K} is semilinear, i.e. a finite union of arithmetic progressions,
and hence {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} is a regular language. Assume that K ⊆ w∗1 · · ·w∗k
for some w1, . . . , wk ∈ Σ∗. We define

R = (w∗1 · · ·w∗k) ∩ {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} ∩ {w ∈ Σ∗ | Ψ(w) ⊆ Ψ(K)}.

Clearly, K is contained in R and it remains to verify that the third part is regular. It suffices
to show that for each a ∈ Σ the set Pa = {i | (a, i) ∈ Ψ(K)} is semilinear because then an
automaton can verify the property Ψ(w) ⊆ Ψ(K). Consider the transducer

Ta = {(a1 · · · an,�n−i+1) | a1 · · · an ∈ Σ∗, ai = a}.

It is easy to see that Ta is rational and TaK = {�i | i ∈ Pa}. The claim follows again from
Parikh’s theorem. J

For each τ ∈ QQ let Rτ be a bounded overapproximation of τ−1S1 and let R1 =⋃
τ∈QQ(τRτ ). Let R0 =

⋃
τ∈QQ Suf(Rτ ), which is the set of all proper suffixes of words in

R1. Both R0 and R1 are also bounded languages. Finally, set RegFlat = R0(Σc ∪ R1)∗,
which is the same as Suf((Σc ∪ R1)∗) and is suffix-closed. According to the definition
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of bounded overapproximations we can approximate a word v = τq2 · · · qk ∈ R1 in two
possible ways: Firstly, define apx`(v) to be any word of the form apx`(v) = τp2 · · · pk ∈ S1
with |v| = |apx`(v)|. Secondly, for any position 2 ≤ i ≤ k define apxi(v) to be any word
apxi(v) = τs′qipi+1 · · · pk ∈ S1 where s′, pi+1 · · · pk ∈ Q∗. If r = r0r1 · · · rm ∈ RegFlat then
we can replace any internal factor ri ∈ R1 by apx`(ri) or any apxj(ri) without changing the
value of νf (r).

I Proposition 13. νf (Flat) = νf (RegFlat) = Rep.

I Proposition 14. If RegFlat contains a linear fooling set for νf then also Flat contains a
linear fooling set for νf .

Proof of Theorem 1. If L = ∅ or L = Σ∗ then VL(n) ∈ O(1). Now assume ∅ ( L ( Σ∗, in
which case we have VL(n) = Ω(logn). Furthermore we know that VL(n) = log | ~νf (Flat∩Σ≤nf )|
by Proposition 9. If the constructed language S0 is not bounded then VL(n) /∈ o(n) by
Lemma 11. Now assume that S0 is bounded, in which case we can construct the regular
language RegFlat. By Theorem 6 the ~νf -growth of RegFlat is either polynomial or exponential
(formally, we have to restrict the domain of νf to the regular language RegFlat). If the
~νf -growth of RegFlat is polynomial then the same holds for its subset Flat, and hence
VL(n) ∈ O(logn). If the ~νf -growth of RegFlat is exponential then by Theorem 6 either
the image νf (RegFlat) is not bounded or RegFlat contains a linear fooling set for νf . By
Proposition 13 we have νf (RegFlat) = νf (Flat) = Rep. Hence, if Rep has exponential growth
then Proposition 3 implies that Flat has exponential ~νf -growth and hence VL(n) /∈ o(n). If
RegFlat contains a linear fooling set for νf then also Flat contains one by Proposition 14.
By Proposition 5 the ~νf -growth of Flat is exponential and hence VL(n) /∈ o(n). J

6 Dichotomy for rational functions

In this section we will prove Theorem 6. Let t : Σ∗ → Ω∗ be a rational function with suffix-
closed domain X = dom(t). By Proposition 3 the interesting case is where the image t(X) is
polynomial growing, i.e. a bounded language. There are two further necessary properties in
order to achieve polynomial ~t-growth. Since we apply the rational function to all suffixes, it is
natural to consider right transducers, reading the input from right to left. The first property
states that t has to resemble so called right-subsequential functions, which are defined by
deterministic finite right transducers. Here we will make use of a representation of rational
functions due to Reutenauer and Schützenberger, which decomposes the rational function t
into a right congruence Rt and a right-subsequential transducer B [27]. Secondly, we demand
that B is well-behaved, which means that, roughly speaking, the output produced during a
run inside a strongly connected component only depends on its entry state and the length of
the run. We will prove that in fact these properties are sufficient for the polynomial ~t-growth
and in all other cases X contains a linear fooling set.

The case of finite-index right congruences. Let ∼ be a finite index right congruence on
Σ∗ and ≈ its suffix expansion. We will characterize those finite index right congruences ∼
where Σ≤n/≈ is polynomially bounded, which can be viewed as a special case of Theorem 6
since ν∼ : Σ∗ → Σ∗/∼ is rational. First assume that ∼ is the Myhill-Nerode right congruence
∼L of a regular language L. Since log |Σ≤n/≈| is exactly the space complexity VL(n) by
Theorem 2, this case was characterized in [18] using so called critical tuples in the minimal
DFA for L. We slightly adapt this definition for right congruences. A critical tuple in a right
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congruence ∼ is a tuple of words (u2, v2, u, v) ∈ (Σ∗)4 such that |u2| = |v2| ≥ 1, there exist
u1, v1 ∈ Σ∗ with u = u1u2, v = v1v2, and u2w 6∼ v2w for all w ∈ {u, v}∗.

I Proposition 15. If ∼ has a critical tuple then |Σ≤n/≈| grows exponentially and there exists
a critical tuple (u2, v2, u, v) in ∼ such that u2u ∼ u2wu and v2u ∼ v2wu for all w ∈ {u, v}∗.

Proof. If (u2, v2, u, v) is critical tuple in a right congruence ∼ then we claim that |Σ≤n/≈|
grows exponentially. Let n ∈ N and let w 6= w′ ∈ {u, v}n. There exists a word z ∈ {u, v}∗
such that w and w′ have the suffixes u2z and v2z of equal length. By the definition of
critical tuples we have u2z 6∼ v2z, which implies w 6≈ w′. Therefore |Σ≤cn/≈| ≥ 2n where
c = max{|u|, |v|}.

The second part is based on the proof of [19, Lemma 7.4]. Let ≡ be the syntactic
congruence on Σ∗ defined by x ≡ y if and only if `x ∼ `y for all ` ∈ Σ∗. Since ∼ is a right
congruence ≡ is a congruence on Σ∗ of finite index satisfying ≡⊆∼. Define the monoid
M = Σ∗/≡. It is known that there exists a number ω ∈ N such that mω is idempotent
for all m ∈ M , i.e. mω · mω = mω. Now let (u2, v2, u, v) be a critical tuple and define
u′ = (vωuω)ω and v′ = (vωuω)ωvω. Since u2 is a suffix of u′, v2 is a suffix of u′ and
u′, v′ ∈ {u, v}∗ the tuple (u2, v2, u

′, v′) is again a critical tuple in ∼. Furthermore we have
u′u′ = (vωuω)ω(vωuω)ω ≡ (vωuω)ω = u′ and v′u′ = (vωuω)ωvω(vωuω)ω ≡ (vωuω)ω = u′,
and therefore u′ ≡ wu′ for all w ∈ {u′, v′}∗. Since ≡ is a congruence this implies u2u

′ ≡ u2wu
′

and v2u
′ ≡ v2wu

′ for all w ∈ {u′, v′}∗, and thus also u2u
′ ∼ u2wu

′ and v2u
′ ∼ v2wu

′, which
concludes the proof. J

I Theorem 16. Let L ⊆ Σ∗ be regular. Then VL(n) ∈ O(logn) if and only if |Σ≤n/≈L| is
polynomially bounded if and only if ∼L has no critical tuple.

Proof. The first equivalence follows from Theorem 2. By Proposition 15 the existence of a
critical tuple in ∼ implies exponential growth of |Σ≤n/≈|.

Now assume that VL(n) /∈ O(logn). By [18, Lemma 7.2] there exist words u2, v2, u, v ∈ Σ∗
such that u2 is a suffix of u, v2 is a suffix of v, |u2| = |v2| and u2w 6∼L v2w

′ for all
w,w′ ∈ {u, v}∗ (one needs the fact that x ∼L y if and only if x and y reach the same state
in the minimal DFA for L). Since in particular u2w 6∼L v2w for all w ∈ {u, v}∗ the tuple
(u2, v2, u, v) constitutes a critical tuple. J

We generalize this theorem to arbitrary finite index right congruences (Theorem 18).
Given equivalence relations ∼ and ∼′ on a set X, we say that ∼′ is coarser than ∼ if ∼⊆∼′,
i.e. each ∼′-class is a union of ∼-classes. The intersection ∼ ∩ ∼′ is again an equivalence
relation on X.

I Lemma 17. Let ∼ and ∼′ be right congruences.
(a) If ∼′ is coarser than ∼ and ∼ has no critical tuple, then ∼′ also has no critical tuple.
(b) If ∼ and ∼′ have no critical tuple then ∼ ∩ ∼′ is also a right congruence which has no

critical tuple

Proof. Closure under coarsening is clear because the property “∼ has no critical tuple” is
positive in ∼: ∀u = u1u2 ∀v = v1v2(|u2| = |v2| → ∃w ∈ {u, v}∗ : u2w ∼ v2w).

Consider two right congruences ∼, ∼′ which have no critical tuples. One can verify
that their intersection ∼ ∩ ∼′ is again a right congruence. Let u = u1u2 and v = v1v2
with |u2| = |v2|. Because ∼ has no critical tuple there exist a word w ∈ {u, v}∗ with
u2w ∼ v2w. Now consider the condition for the words u1(u2w) and v1(v2w). Because ∼′
has no critical tuple there exists a word x ∈ {uw, vw}∗ such that u2wx ∼′ v2wx. Since ∼ is
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a right congruence we also have u2wx ∼ v2wx and thus u2wx (∼ ∩ ∼′) v2wx. This proves
that ∼ ∩ ∼′ has no critical tuple. J

I Theorem 18. |Σ≤n/≈| is polynomially bounded if and only if ∼ has no critical tuple.

Proof. Let u1, . . . , um be representatives from each ∼-class. Observe that ∼=
⋂m
i=1 ∼[ui]∼

because ∼ saturates each class [ui]∼ and
⋂m
i=1 ∼[ui]∼ also saturates each class [v]∼. Let

us write ∼i instead of ∼[ui]∼ and let ≈i be its suffix expansion ≈[ui]∼ . Then we have
∼=

⋂m
i=1 ∼i and ≈=

⋂m
i=1 ≈i. This implies that

max
1≤i≤m

|Σ≤n/≈i| ≤ |Σ≤n/≈| ≤
m∏
i=1
|Σ≤n/≈i|. (1)

(⇒): If |Σ≤n/≈| is polynomially bounded then the same holds for |Σ≤n/≈i| for all 1 ≤ i ≤ k
by (1). By Theorem 16 ∼[ui]∼ has no critical tuple for all 1 ≤ i ≤ k and therefore Lemma 17(b)
implies that ∼=

⋂m
i=1 ∼[ui]∼ has no critical tuple.

(⇐): If ∼ has no critical tuple then each congruence ∼i has no critical tuple by Lemma 17(a)
because ∼i is coarser than ∼. Theorem 16 implies that |Σ≤n/≈i| is polynomially bounded
for all 1 ≤ i ≤ k. By (1) also |Σ≤n/≈| is polynomially bounded. J

Regular look-ahead. A result due to Reutenauer and Schützenberger states that every
rational function f can be factorized as f = r◦` where ` and r are left- and right-subsequential,
respectively [27]. A rational function is left- or right-subsequential if the input is read in a
deterministic fashion from left to right and right to left, respectively. In the literature the
order of the directions is usually reversed, i.e. one decomposes t as f = r ◦ `. Often this is
described by the statement that every rational function is (left-)subsequential with regular
look-ahead. Furthermore, this decomposition is canonical in a certain sense.

We follow the notation from the survey paper [16]. A right-subsequential transducer
B = (Q,Σ,Ω, F,∆, {qin}, o) is a real-time right transducer which is deterministic, i.e. qin
is the only initial state and for every p ∈ Q and a ∈ Σ there exists at most one transition
(p, a, y, q) ∈ ∆. Clearly, right-subsequential transducers define rational functions, the so
called right-subsequential functions, but not every rational function is right-subsequential.
Let R be a right congruence on Σ∗ with finite index. The look-ahead extension is the injective
function eR : Σ∗ → (Σ× Σ∗/R)∗ defined by

eR(a1 · · · an) = (a1, [ε]R)(a2, [a1]R)(a3, [a1a2]R) · · · (an, [a1 · · · an−1]R).

Let f : Σ∗ → Ω∗ be a partial function. The partial function f [R] : (Σ× Σ∗/R)∗ → Ω∗ with
dom(f [R]) = eR(dom(f)) is defined by f [R](eR(x)) = f(x). Furthermore we define a right
congruence Rf on Σ∗. For this we need the distance function ‖x, y‖ = |x|+ |y|−2|x∧y| where
x∧y is the longest common suffix of x and y. Equivalently, ‖x, y‖ is the length of the reduced
word of xy−1 in the free group generated by Σ. Notice that ‖·, ·‖ satisfies the triangle inequality.
We define u Rf v if and only if (i) u ∼dom(f) v and (ii) {‖f(uw), f(vw)‖ | uw, vw ∈ dom(f)}
is finite. One can verify that Rf is a right congruence on Σ∗. As an example, recall the
rational transduction f from Example 4. The induced right congruence Rf has two classes,
which are a∗ and a∗b{a, b}∗.

I Theorem 19 ([27]). A partial function f : Σ∗ → Ω∗ is rational if and only if Rf has finite
index and f [Rf ] is right-subsequential.
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For the rest of the section let B = (Q,Σ × Σ∗/Rt,Ω, F,∆, {qin}, o) be a trim right-
subsequential transducer for t[Rt]. One obtains an unambiguous real-time right transducer
A for t by projection to the first component, i.e. A = (Q,Σ,Ω, F,Λ, {qin}, o) where Λ =
{(q, a, y, p) | (q, (a, b), y, p) ∈ ∆}. Notice that every run q x|y←−− p in A induces a corresponding
run q

(x,z)|y←−−−− p in B for some z ∈ (Σ∗/Rt)∗ and that this correspondence is a bijection
between the sets of all runs in A and B. We need two auxiliary lemmas which concern the
right congruence Rt.

I Lemma 20 (Short distances). Let u, v, w ∈ Σ∗ with uw, vw ∈ X. If u Rt v then
‖t(uw), t(vw)‖ ≤ O(|u|+ |v|).

Two partial functions t1, t2 : Σ∗ → Ω∗ are adjacent if sup{‖t1(w), t2(w)‖ | w ∈ dom(t1) ∩
dom(t2)} < ∞ where sup ∅ = −∞. We remark that two functions are adjacent in our
definition if and only if their reversals are adjacent according to the original definition [27].
Notice that u Rt v if and only if u ∼X v and the functions w 7→ t(uw) and w 7→ t(vw) are
adjacent.

I Lemma 21 (Short witnesses). Let t1, t2 : Σ∗ → Ω∗ be rational functions which are not
adjacent. Then there are words x, y, z ∈ Σ∗ such that xy∗z ⊆ dom(t1) ∩ dom(t2) and
‖t1(xykz), t2(xykz)‖ = Ω(k). In particular, for each k ∈ N there exists a word x ∈ dom(t1)∩
dom(t2) of length |x| ≤ O(k) such that ‖t1(x), t2(x)‖ ≥ k.

I Proposition 22. If Rt has a critical tuple then X contains a linear fooling set.

Proof. Let (u2, v2, u, v) be a critical tuple in Rt with u = u1u2 and v = v1v2. By Pro-
position 15 we can assume that u2u Rt u2wu and v2u Rt v2wu for all w ∈ {u, v}∗. By
assumption we know that (u2u, v2u) /∈ Rt. Furthermore, we claim that u2u ∼X v2u: Let
z ∈ Σ∗ and assume that u2uz ∈ X. Then u2v1v2uz ∈ X because u2u ∼X u2v1v2u, and thus
v2uz ∈ X because X is suffix-closed. The other direction follows by a symmetric argument.

Let n ∈ N and define

N = max
x∈{u2,v2}

max
w∈{u,v}≤n

sup{‖t(xuz), t(xwuz)‖ | xuz, xwuz ∈ X} <∞.

By Lemma 20 we have N ≤ O(n). Since (u2u, v2u) /∈ Rt and u2u ∼X v2u, the functions
z 7→ t(u2uz) and z 7→ t(v2uz) are not adjacent. By Lemma 21 there exists a word zn ∈
(u2u)−1X with ‖t(u2uzn), t(v2uzn)‖ ≥ 2N + 1 and |zn| ≤ O(N) ≤ O(n). We claim that
t(u2wuzn) 6= t(v2wuzn) for all w ∈ {u, v}≤n: By the triangle inequality we have

2N + 1 ≤ ‖t(u2uzn), t(v2uzn)‖
≤ ‖t(u2uzn), t(u2wuzn)‖+ ‖t(u2wuzn), t(v2wuzn)‖+ ‖t(v2wuzn), t(v2uzn)‖
≤ 2N + ‖t(u2wuzn), t(v2wuzn)‖

which implies ‖t(u2wuzn), t(v2wuzn)‖ ≥ 1 and in particular t(u2wuzn) 6= t(v2wuzn). We
have proved that for each n ∈ N there exists a word zn of length O(n) such that t(u2wuzn) 6=
t(v2wuzn) for all w ∈ {u, v}≤n. If Z is the set of all constructed zn for n ∈ N then
{u2, v2}{u, v}∗uZ ⊆ X and (u2, v2, u, v, uZ) is a linear fooling scheme. J

Well-behaved transducers. Let (Q,�) be the quasi-order defined by q � p iff there exists
a run from p to q in A or equivalently in B. Its equivalence classes are the strongly connected
components (SCCs) of A and B. A word w ∈ Σ∗ is guarded by a state p ∈ Q if there exists a
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run q′ w←− p in A such that p � q′, i.e. p and q′ belong to the same SCC. Notice that the
set of all words which are guarded by a fixed state p is suffix-closed. A run q w←− p in A is
guarded if w is guarded by p. We say that A is well-behaved if for all p ∈ Q and all guarded
accepting runs π, π′ from p with |π| = |π′| we have outF (π) = outF (π′).

I Proposition 23. If A is not well-behaved then X contains a linear fooling set.

Proof. Assume there exist states p, q, r, q′, r′ ∈ Q, and accepting runs q u2←− p and r v2←− p with
|u2| = |v2| and outF (q u2←− p) 6= outF (r v2←− p). Furthermore let p u1←− q′ u2←− p, p v1←− r′ v2←− p
and p s←− qin be runs. Let u = u1u2 and v = v1v2 and consider any word w ∈ {u, v}∗. Since
t(u2ws) = outF (q u2←− p) out(p ws←−− qin) and t(v2ws) = outF (r v2←− p) out(p ws←−− qin), we have
t(u2ws) 6= t(v2ws). This shows that (u2, v2, u, v, {s}) is a linear fooling scheme. J

If π is a non-empty run p a1···an←−−−− q in A and p (a1,ρ1)···(an,ρn)←−−−−−−−−−− q is the corresponding run in
B then we call ρ1 the key of π. The following lemma justifies the name, stating that π is
determined by the state q, the word a1 · · · an and the key ρ1.

I Lemma 24. If p w←− q and p′ w←− q are non-empty runs in A with the same key then the
runs must be identical.

Proof. Assume that w = a1 · · · an and let p (a1,ρ1)···(an,ρn)←−−−−−−−−−− q and p′ (a1,ρ
′
1)···(an,ρ

′
n)←−−−−−−−−−− q be the

corresponding runs in B with ρ1 = ρ′1. We proceed by induction on n. If n = 1 then this
statement is trivial because B is deterministic. Now assume n ≥ 2 and let p a1←− r a2···an←−−−− q
and p′ a1←− r′ a2···an←−−−− q. Since B is trim there exist an accepting run on eRt

(u) from p and
an accepting run on eRt

(u′) from p′ for some words u, u′ ∈ Σ∗. By definition of t[Rt] we
have [u]Rt

= ρ1 = ρ′1 = [u′]Rt
and therefore ρ2 = [ua1]Rt

= [u′a1]Rt
= ρ′2. By induction

hypothesis we know that the runs r a2···an←−−−− q and r′ a2···an←−−−− q are identical. Since p (a1,ρ1)←−−−− r
and p′ (a1,ρ

′
1)←−−−− r′ and B is deterministic we must have p = p′. J

Let π be any run on a word y ∈ Σ∗. If π is not guarded, we can factorize π = π′π′′ such that
π′′ is the shortest suffix of π which is unguarded, and then iterate this process on π′. This
yields unique factorizations π = π0π1 · · ·πm and y = y0y1 · · · ym where πi is a run on yi from
a state qi to a state qi−1 such that yi is the shortest suffix of y0 · · · yi which is not guarded
by qi for all 1 ≤ i ≤ m and π0 is guarded. The factorization π = π0π1 · · ·πm is the guarded
factorization of π.

I Proposition 25. Assume that t(X) is bounded, A is well-behaved and Rt has no critical
tuple. Then the ~t-growth of X is polynomially bounded.

Proof. We will describe an encoding of ~t(w) for w ∈ X using O(log |w|) bits. For each word
w ∈ Σ∗ and each state q ∈ Q we define a tree Tq,w recursively, which carries information at
the nodes and edges. If w is guarded by q then Tq,w consists of a single node labelled by
the pair (q, |w|). Otherwise let w = uv such that v is the shortest suffix of w which is not
guarded by q. Then Tq,w has a root which is labelled by the tuple (q, |w|, |v|, ~νRt

(u)). For
each run p v←− q we attach Tp,u to the root as a direct subtree. The edge is labelled by the
pair (ρ, out(p v←− q)) where ρ is the key of p v←− q. By Lemma 24 distinct outgoing edges from
the root are labelled by distinct keys.

The tree Tq,w can be encoded using O(log |w|) bits: Since we have p ≺ q for every
unguarded run p

v←− q the tree Tq,w has height at most |Q| and size at most |Q||Q|. All
occurring numbers have at most magnitude |w|, and the states and keys can be encoded by
O(1) bits. The output words out(p v←− q) are factors of words from the bounded language
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t(X) and have length at most iml(A) · |v|. Thus they can be encoded using O(log |w|) bits.
The node label ~νRt

(u) can be encoded using O(log |w|) bits by Theorem 18 since Rt has no
critical tuple.

Let w = xy ∈ Σ∗, q ∈ Q and let π be an accepting run on y from q. We show that Tq,w and
|y| determine outF (π) by induction on the length of the guarded factorization π = π0π1 · · ·πm.
Since Tqin ,w determines the length |w|, the tuple ~t(w) is determined by Tqin ,w for all w ∈ X.
If m = 0 then y is guarded by q. Since A is well-behaved outF (π) is determined by q (which is
part of the label of the root of Tq,w) and |y| only. Now assume m ≥ 1 and suppose that πi is
a run qi−1

yi←− qi for all 1 ≤ i ≤ m with qm = q. Then ym is the shortest suffix of w which is
not guarded by q. The root of Tq,w is labelled by (q, |ym|, ~νRt(xy0 · · · ym−1)). Since |ym| and
|y| are known, we can also determine |y0 · · · ym−1|. From ~νRt

(xy0 · · · ym−1) and |y0 · · · ym−1|
we can then determine [y0 · · · ym−1]Rt , which is the key of πm. By Lemma 24 we can find
the unique edge which is labelled by ([y0 · · · ym−1]Rt

, out(πm)). It leads to the direct subtree
Tqm−1,xy0···ym−1 of Tq,w. By induction hypothesis Tqm−1,xy0···ym−1 and |y0 · · · ym−1| determine
outF (π0 · · ·πm−1). Finally, we can determine outF (π0 · · ·πm) = outF (π0 · · ·πm−1) out(πm),
concluding the proof. J

Now we can prove Theorem 6: If X contains no linear fooling set for t then A must be well-
behaved by Proposition 23 and Rt has no critical tuple by Proposition 22. If additionally t(X)
is bounded then the ~t-growth of X is polynomially bounded by Proposition 25. Otherwise,
if either X contains a linear fooling set or t(X) is not bounded then the ~t-growth of X is
exponential by Proposition 5 and by Proposition 3.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
pages 202–211, 2004. URL: http://doi.acm.org/10.1145/1007352.1007390, doi:10.1145/
1007352.1007390.

2 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proceedings of PODS 2004, pages 286–296. ACM, 2004.

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proceedings of PODS 2003, pages 234–243. ACM,
2003.

4 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theor. Comput. Sci., 494:13–23, 2013. URL: https:
//doi.org/10.1016/j.tcs.2012.12.028, doi:10.1016/j.tcs.2012.12.028.

5 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown
languages. In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer
Science, Marseille, France, February 23-25, 2006, Proceedings, pages 420–431, 2006. URL:
https://doi.org/10.1007/11672142_34.

6 Jean Berstel. Transductions and context-free languages, volume 38 of Teubner Studienbücher:
Informatik. Teubner, 1979.

7 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR ’97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, pages 135–150, 1997.
URL: https://doi.org/10.1007/3-540-63141-0_10, doi:10.1007/3-540-63141-0\_10.

8 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science FOCS
2007, pages 283–293. IEEE Computer Society, 2007.

http://doi.acm.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1016/j.tcs.2012.12.028
http://dx.doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1007/11672142_34
https://doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10


Moses Ganardi 27:17

9 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

10 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Algorithms,
10(4):22:1–22:12, 2014.

11 J Richard Büchi. Regular canonical systems. Archiv für mathematische Logik und Grundla-
genforschung, 6(3-4):91–111, 1964.

12 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In Proceedings of ESA 2015, volume 9294 of Lecture Notes
in Computer Science, pages 361–372. Springer, 2015.

13 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052. SIAM,
2016.

14 Raphaël Clifford and Tatiana A. Starikovskaya. Approximate hamming distance in a stream.
In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

15 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics
over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002.

16 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of
finite words. SIGLOG News, 3(3):4–19, 2016. URL: http://doi.acm.org/10.1145/2984450.
2984453, doi:10.1145/2984450.2984453.

17 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
property testing of visibly pushdown languages. In Piotr Sankowski and Christos D. Zaroliagis,
editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, volume 57 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.43, doi:10.4230/
LIPIcs.ESA.2016.43.

18 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of the 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

19 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. Technical report, arXiv.org, 2018. https://arxiv.org/
abs/1702.04376.

20 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In Proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, volume 65 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

21 Moses Ganardi, Artur Jez, and Markus Lohrey. Sliding windows over context-free languages.
In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS
2018, August 27-31, 2018, Liverpool, UK, pages 15:1–15:15, 2018. URL: https://doi.org/10.
4230/LIPIcs.MFCS.2018.15, doi:10.4230/LIPIcs.MFCS.2018.15.

22 Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc.,
New York, NY, USA, 1966.

23 Seymour Ginsburg and Edwin H Spanier. Bounded algol-like languages. Transactions of the
American Mathematical Society, 113(2):333–368, 1964.

24 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In Logical
and Computational Complexity. Selected Papers. Logic and Computational Complexity, Inter-
national Workshop LCC ’94, Indianapolis, Indiana, USA, 13-16 October 1994, pages 367–392,
1994. URL: https://doi.org/10.1007/3-540-60178-3_93, doi:10.1007/3-540-60178-3\
_93.

STACS 2019

http://doi.acm.org/10.1145/2984450.2984453
http://doi.acm.org/10.1145/2984450.2984453
http://dx.doi.org/10.1145/2984450.2984453
https://doi.org/10.4230/LIPIcs.ESA.2016.43
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43
https://arxiv.org/abs/1702.04376
https://arxiv.org/abs/1702.04376
https://doi.org/10.4230/LIPIcs.MFCS.2018.15
https://doi.org/10.4230/LIPIcs.MFCS.2018.15
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
https://doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1007/3-540-60178-3_93


27:18 Visibly Pushdown Languages over Sliding Windows

25 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. SIAM J. Comput., 43(6):1880–1905, 2014. URL:
https://doi.org/10.1137/130926122, doi:10.1137/130926122.

26 Rohit Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. URL: http://doi.
acm.org/10.1145/321356.321364, doi:10.1145/321356.321364.

27 Christophe Reutenauer and Marcel Paul Schützenberger. Minimization of rational word
functions. SIAM J. Comput., 20(4):669–685, 1991. URL: https://doi.org/10.1137/0220042,
doi:10.1137/0220042.

28 Andreas Weber and Reinhard Klemm. Economy of description for single-valued transducers.
Inf. Comput., 118(2):327–340, 1995. URL: https://doi.org/10.1006/inco.1995.1071, doi:
10.1006/inco.1995.1071.

A Proof of Proposition 3

Since ~t(x) determines t(x) we have | ~t(X ∩ Σ≤n)| ≥ |t(X ∩ Σ≤n)| for all n ∈ N. It suffices to
show that every non-empty preimage t−1({y}) contains at least one word of length O(|y|) in
X, i.e. there exists a number c > 0 such that t(X)∩Ω≤n ⊆ t(X ∩Σ≤cn) for sufficiently large
n ∈ N. Then, if by assumption |t(X) ∩ Ω≤n| grows exponentially, then so does |t(X ∩ Σ≤n)|
and also | ~t(X ∩ Σ≤n)|.

Let us now prove the claim, for which we need to define context-free grammars over
arbitrary monoids. A context-free grammar over a monoid M has the form G = (N,S,→G)
whereN is a finite set of nonterminals (which is disjoint fromM), S is the starting nonterminal,
and →G⊆ N × (M ∗N∗) is a finite set of productions where M ∗N∗ is the free product of
the monoids M and N∗. A derivation tree for m ∈M is a node-labelled rooted ordered tree
with the following properties:

Inner nodes are labelled by nonterminals A ∈ N .
Leaves are labelled by monoid elements m ∈M .
If a node s has children s1, . . . , sk where v is labelled by A and s1, . . . , sk are labelled by
α1, . . . , αk then there exists a production A→G α1 · · ·αk.
If m1, . . . ,m` are the labels of the leaves read from left to right then m = m1 · · ·m`.

The language L(A) generated by a nonterminal A ∈ N is the set of all elements m ∈M such
that there exists a derivation tree for m whose root is labelled by A. The language L(G)
generated by G is the language L(S).

We first construct from a context-free grammar G = (N,S,→G) for X ⊆ Σ∗ a context-free
grammar H = (N ′, S′,→H) for t|X = {(x, t(x)) | x ∈ X} over the product monoid Σ∗ × Ω∗.
We can assume that ε /∈ X and that G is in Chomsky normal form, i.e. each rule has the form
A→ a where A ∈ N and a ∈ Σ, or A→ BC where A,B,C ∈ N . Let R = (Q,Σ,Ω, I,∆, F, o)
be a real-time transducer for t. We define N ′ = {S′} ∪ {Ap,q | A ∈ N, p, q ∈ Q} and →H

contains the productions
Ap,q →H (a, y) for all productions A→G a and transitions p a|y−−→ q in R,
Ap,q →H Bp,rCr,q for all productions A→G BC and p, q, r ∈ Q,
S′ →H Sp,q (ε, o(q)) for all (p, q) ∈ I × F .

One can verify that for all A ∈ N and p, q ∈ Q the language L(Ap,q) is the set of all pairs
(x, y) ∈ L(A)× Ω∗ such that p x|y−−→ q in R, and that L(H) = t|X .

Now let A ∈ N , p, q ∈ Q and (x, y) ∈ L(Ap,q) with the property that |x| = min{|x′| |
(x′, y) ∈ L(Ap,q)}. Consider a derivation tree T for (x, y) whose root is labelled by Ap,q. If
s is a node in T which derives (u, v) then we define the weight of s to be |v|. Clearly, the
weight of an inner node is the sum of the weights of its children.
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B Claim 26. If (s1, s2, . . . , sk) is a path in T such that all nodes si on the path have the
same length then k ≤ |N ′|.

Proof. Assume that k > |N ′|. There exist two nodes si 6= sj with i < j which are labelled
by the same nonterminal from N ′. The subtrees rooted in si and sj are derivation trees for
pairs (u, v) and (u′, v) for some u, u′ ∈ Σ∗ and v ∈ Ω∗ where u′ is a proper factor of u. We
can then replace the subtree rooted in si by the subtree rooted in sj and obtain a derivation
tree for a pair (x′, y) with |x′| < |x|, contradiction. J

Set c = |N ′|. By the claim above every subtree whose root has weight 0 has depth at
most c and hence its size is at most C = 2c − 1. Define D = c+ (c− 1)C.

B Claim 27. The derivation tree T has O(|y|) nodes.

Proof. We prove by induction on |y| that, if |y| ≥ 1 then T has at most (2|y| − 1)D nodes.
The root of T has weight |y|. Let (s1, . . . , sk) be the maximal path starting in the root whose
nodes have weight |y|. We know that k ≤ c. If s′i is the sibling of si−1 for 2 ≤ i ≤ k, then s′i
has weight 0 and the subtree rooted in s′i has at most C nodes.

1. Assume that sk is a leaf. Then T consists of at most D = c + (c − 1)C ≤ (2|y| − 1)D
nodes, namely k ≤ c nodes on the path (s1, . . . , sk) and c− 1 many subtrees with at most
C nodes.

2. Assume that sk has two children sk+1 and s′k+1 and let w and w′ be the weights of sk+1
and s′k+1, respectively. We have |y| = w+w′ and 1 ≤ w,w′ < |y|. By induction hypothesis
the subtrees rooted in sk+1 and s′k+1 have at most (2w − 1)D and (2w′ − 1)D nodes,
respectively. Therefore T has in total at most D+ (2w− 1)D+ (2w′− 1)D ≤ (2|y| − 1)D
nodes.

This concludes the proof of the claim. J

Now let y ∈ t(X) ∩ Ω≤n and x ∈ X be any word with t(x) = y. There exists an initial
accepting run p x|y′−−→ q with y = y′ o(q). As shown above there exists a word x′ with p x′|y′−−−→ q

and x′ ≤ O(|y′|) ≤ O(n), which concludes the proof.

B Proof of Lemma 7

In [5] it was observed that ∼ can be recognized by a synchronous 2-tape automaton. The
convolution of two words u = a1 · · · am, v = b1 · · · bn ∈ Ω∗ is the word u ⊗ v = c1 · · · c` of
length ` = max(m,n) over the alphabet (Ω ∪ {�})2 where ci = (ai, bi) if 1 ≤ i ≤ min(m,n),
ci = (ai,�) if m < i ≤ n and ci = (�, bi) if n < i ≤ m. Similarly, one can define an
associative operation ⊗ on k-tuples of words. A k-ary relation R ⊆ (Ω∗)k is synchronous
rational if ⊗R = {⊗(u1, . . . , uk) | (u1, . . . , uk) ∈ R} is a regular language over (Ω ∪ {�})k.
The set of synchronous rational relations is known to be closed under first-order operations
and, in particular, under Boolean operations, cf. [24]. Clearly, every binary synchronous
rational relation is a rational transduction.

I Lemma 28 ([5]). The equivalence relation ∼R is synchronous rational.

Proof. We present a right automaton which recognizes the complement of ∼R. It reads two
configurations αp and βq synchronously which are aligned to the right, from right to left.
The automaton stores a pair of states of A, starting with the pair (p, q). It then guesses a
word w by its monotonic factorization which witnesses that w belongs to exactly one of the
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languages L(αp) and L(βq). Notice that it suffices to read the maximal descending prefix of
w and test whether the reached state pair (p′, q′) belongs to some fixed set of state pairs since
the remaining ascending suffix cannot access the stack contents of the reached configurations.
To simulate A on a descending prefix in each step the automaton either guesses a return
symbol and removes the top most stack symbol of both configurations (or leaves ⊥ at the
top), or guesses a state transformation τ ∈ ϕ(W ) which only modifies the current state
pair. J

It is well-known that ≤llex is a synchronous rational relation. By the closure properties
of synchronous rational relations the function rep is rational.

C Proof of Proposition 9

Let w = w0w1 · · ·wm ∈ Σ∗ be a monotonic factorization and let s = s0s1 · · · sm ∈ Flat be
the associated flattening. We prove tf (s) ∼ δ(⊥q0, w) by induction on m.

If m = 0 and s0 = ε then tf (s) = ⊥q0 = δ(⊥q0, ε).
If m = 0 and s0 = q1 · · · qk ∈ Q+ then tf (s) = ⊥q1 and νA(w) = rep(δ(⊥q0, w)) = ⊥q1.
If m ≥ 1 and sm ∈ Σc then sm = wm. By induction hypothesis we know that
tf (s0 · · · sm−1) ∼ δ(⊥q0, w0 · · ·wm−1). Since δ(⊥q0, w) = δ(δ(⊥q0, w0 · · ·wm−1), wm)
and tf (s) = δ(tf (s0 · · · sm−1), sm) we obtain δ(⊥q0, w) ∼ tf (s).
If m ≥ 1 and sm = τq2 · · · qk ∈ QQQ∗ then wm is well-matched and ϕ(wm) = τ . Assume
that tf (s0 · · · sm−1) = αp and δ(⊥q0, w0 · · ·wm−1) = βq. By induction hypothesis we
know that αp ∼ βq. Since tf (s) = ατ(p) = δ(αp,wm) and δ(⊥q0, w) = δ(βq,wm) we
obtain tf (s) ∼ δ(⊥q0, w).

Since νf = rep ◦ tf and νA(w) = rep(δ(⊥q0, w)) we have νf (s) = νA(w).

I Lemma 29. Let w = w0w1 · · ·wm ∈ Σ∗ be a monotonic factorization with empty initial
factor w0 = ε and let s = s0s1 · · · sm ∈ Σ∗f be the associated flattening. If δ(⊥p, w) = ⊥αq

then p s|α−−→ q in A1 and hence tp(s) = αq.

Proof. Proof by induction on m. If m = 0 then w = s = ε, p = q and α = ε. For the
induction step assume δ(⊥p, w1 · · ·wm−1) = ⊥αq and δ(⊥αq,wm) = ⊥αα1q1. By induction
hypothesis the run of A1 on s has the form p

s1···sm−1|α−−−−−−−→ q
sm|α2−−−−→ q2. We do a case distinction.

If wm ∈ Σc then δ(q, wm) = (α1, q1). Since sm = wm and by definition of A1 we have
α1 = α2 and q1 = q2. Otherwise wm ∈W \ {ε} and α1 = ε. The word sm = σ1(wm) starts
with τ = ϕ(wm) and we have τ(q) = q1. By definition of A1 we indeed have q2 = τ(q) and
α2 = ε. J

We define the following total function tf : Σ∗f → (Q ∪ Γ)∗. Let s ∈ Σ∗f be an input word
and let q1 · · · qk ∈ Q∗ be the maximal prefix of s from Q∗, say s = q1 · · · qks′ for some s′ ∈ Σ∗f .
Then we define

tf (s) =
{
tq0(s), if k = 0,
tq1(s′), if k ≥ 1.

It is easy to see that tf is rational by providing a transducer for tf . It verifies whether s
starts with a state q ∈ Q. If so, it memorizes q and simulates A1 on s′ from q, and otherwise
A1 is directly simulated on s from q0.

Now let w = w0w1 · · ·wm be a monotonic factorization and s = s0s1 · · · sm ∈ Σ∗f be
the associated flattening. We claim that δ(⊥q0, w) ∼ ⊥tf (s). If w0 = ε then s0 = ε and
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s does not start with a state from Q. In this case we have δ(⊥q0, w) = ⊥tq0(s) = ⊥tf (s)
by Lemma 29. If w0 6= ε then s0 starts with some state q1 ∈ Q. By definition of σ0 we
have δ(⊥q0, w0) ∼ ⊥q1 and thus δ(⊥q0, w) ∼ δ(⊥q1, w1 · · ·wm). By Lemma 29 we have
δ(⊥q1, w1 · · ·wm) = ⊥tq1(s1 · · · sm) = ⊥tf (s), which proves the claim. Finally, we can set
νf (s) = rep(⊥tf (s)) for all s ∈ Σ∗f .

D Proof of Proposition 13

By Proposition 9 we know νf (Flat) = Rep. Clearly νf (Flat) ⊆ νf (RegFlat) and it remains
to show the other inclusion. Consider a word r ∈ RegFlat which does not have a non-empty
prefix from R0, say r = u1v1u2v2 · · · vmum+1 where u1, . . . , um+1 ∈ Σ∗c and v1, . . . , vm ∈ R1.
Then r′ = u1 apx`(v1)u2 apx`(v2) · · · apx`(vm)um+1 belongs to Flat and νf (r) = νf (r′).

Now assume that r has a non-empty prefix q1 · · · qk ∈ R0. We do the replacements
above and the following. By definition q1 · · · qk is a proper suffix of some word x =
τp2 · · · pi−1q1 · · · qk ∈ R1. Let y = apxi(x) ∈ S1 which has a proper suffix of the form
q1q
′
2 · · · q′k belonging to S0. We can replace q1 · · · qk by q1q

′
2 · · · q′k in r and obtain a word

r′ ∈ Flat with νf (r) = νf (r′).

E Proof of Proposition 14

Assume that (u2, v2, u, v, Z) is a linear fooling scheme for νf with {u2, v2}{u, v}∗Z ⊆
RegFlat. We first ensure that {u, v} ∪ Z ⊆ (Σc ∪ R1)∗. Assume that u, v ∈ Q∗ and
hence {u2, v2}{u, v}∗ ⊆ Q∗ is contained in the set of prefixes of words in R0. Since R0 is
bounded by assumption also {u2, v2}{u, v}∗ must be bounded, which contradicts the fact
that {u2, v2}{u, v}∗ has exponential growth.

Without loss of generality, assume that u = u3u4 such that u4 either starts with a call
letter a ∈ Σc or a transformation τ ∈ QQ. We claim that (u2u3, v2u3, u4uu3, u4vu3, u4Z) is
a linear fooling scheme for νf . It has the following properties:
{u2u3, v2u3}{u4uu3, u4vu3}∗u4Z ⊆ RegFlat,
u2u3 is a suffix of u4uu3,
v2u3 is a suffix of u4vu3,
|u2u3| = |v2u3|.

Also, we know that for every n ∈ N there exists a word zn ∈ Z with |zn| ≤ O(n) and
νf (u2wzn) 6= νf (v2wzn) for all w ∈ {uu, uv}≤n{u} and thus, by factoring out the first u3- and
the last u4-factor, we have νf (u2u3wu4zn) 6= νf (v2u3wu4zn) for all w ∈ {u4uu3, u4vu3}≤n.
Hence we have verified the conditions of a linear fooling scheme. It has the desired properties
that {u4uu3, u4vu3}∪u4Z ⊆ (Σc∪R1)∗ because u4 starts with a call letter or a transformation.

Now let (u2, v2, u, v, Z) be a linear fooling scheme with {u, v} ∪ Z ⊆ (Σc ∪ R1)∗. We
replace occurring factors from R1 by factors from S1 while maintaining the values νf (u2wz)
and νf (v2wz) for w ∈ {u, v}∗ and z ∈ Z.

1. First, in each word z ∈ Z ⊆ (Σc ∪ R1)∗ we replace each R1-factor v by apx`(v) which
ensures that Z ⊆ (Σc ∪ S1)∗.

2. Next consider u and v, and assume that u = u1u2 and v = v1v2 for some u1, v1 ∈ Σ∗f . Let
us consider R1-factors which cross the factorization u = u1u2 or v = v1v2, respectively.
If u2 starts with some state we can factorize u1 and u2 as u1 = u3τq2 · · · qi−1 and
u2 = qi · · · qku4 where u3, u4 ∈ (Σc ∪ R1)∗ and τq2 · · · qk ∈ R1. Let apxi(τq2 · · · qk) =
τs′qipi+1 · · · pk ∈ S1. We replace u1 by u3τs

′ and u2 by qipi+1 · · · pku4. Notice that the
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length of u2 has not changed (this maintains |u2| = |v2|) and the first state of u2 has not
changed either (this maintains the values νf (u2wz)). If v2 starts with some state we do
the analogous replacements for v1 and v2.

3. Finally, each R1-factor v in u1, u2, v1 and v2 is replaced by apx`(v).

One can verify that the obtained tuple (u2, v2, u, v, Z) is again a linear fooling scheme for
νf satisfying {u2, v2}{u, v}∗Z ⊆ Flat.

F Proof of Lemma 20

Suppose that w = a1 · · · am. Since Rt is a right congruence we know that ua1 · · · ai Rt
va1 · · · ai for all 0 ≤ i ≤ m. By definition of the look-ahead extension the words eRt

(uw)
and eRt

(vw) have the common suffix

s =
(

a1

[u]Rt

)(
a2

[ua1]Rt

)
· · ·
(

am
[ua1 · · · am−1]Rt

)
.

The initial accepting runs of B on eRt(uw) and eRt(vw) have the form

q
eRt (u)
←−−−− p s←− qin and r

eRt (v)
←−−−− p s←− qin

and thus t(uw) and t(vw) share the suffix out(p s←− q0). This implies

‖t(uw), t(vw)‖ ≤ |outF (q
eRt (u)
←−−−− p)|+ |outF (r

eRt (v)
←−−−− p)| ≤ iml(A) · (|u|+ |v|+ 2),

proving the statement.

G Proof of Lemma 21

Assume that t1 and t2 are not adjacent. By [27, Proof of Proposition 1.] there exist words
x, y, z ∈ Σ∗ and u1, u2, v1, v2, w1, w2 ∈ Ω∗ such that t1(xykz) = u1v

k
1w1, t2(xykz) = u2v

k
2w2

for all k ∈ N, and sup{‖u1v
k
1w1, u2v

k
2w2‖ | k ∈ N} =∞. By the triangle inequality we have

‖vk1w1, v
k
2w2‖ ≤ ‖vk1w1, u1v

k
1w1‖+ ‖u1v

k
1w1, u2v

k
2w2‖+ ‖u2v

k
2w2, v

k
2w2‖

= |u1|+ ‖u1v
k
1w1, u2v

k
2w2‖+ |u2| = ‖t1(xykz), t2(xykz)‖+ |u1|+ |u2|.

We prove that ‖vk1w1, v
k
2w2‖ ≥ Ω(k) which implies that ‖t1(xykz), t2(xykz)‖ ≥ Ω(k). If both

v1 = v2 = ε then

sup
k∈N
‖vk1w1, v

k
2w2‖ = ‖w1, w2‖ <∞,

which contradicts sup{‖u1v
k
1w1, u2v

k
2w2‖ | k ∈ N} =∞. If |v1| 6= |v2| then

‖vk1w1, v
k
2w2‖ ≥

∣∣|vk1w1| − |vk2w2|
∣∣ = Ω(k).

Now assume |v1| = |v2| ≥ 1. Since

‖vk1w1, v
k
2w2‖ = |vk1w1|+ |vk2w2| − 2|vk1w1 ∧ vk2w2| ≥ Ω(k)− 2|vk1w1 ∧ vk2w2|

it suffices to show that supk |vk1w1 ∧ vk2w2| < ∞. Towards a contradiction assume that
supk |vk1w1∧vk2w2| =∞. Then, for every k ∈ N there existsK ∈ N such that |vK1 w1∧vK2 w2| ≥
max{|vk1w1|, |vk2w2|}. If |vk1w1| ≥ |vk2w2| then vk1w1 is a suffix of vK1 w1 ∧ vK2 w2 and otherwise
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vk2w2 is a suffix of vK1 w1 ∧ vK2 w2. This shows that for all k ∈ N either vk1w1 is a suffix of
vk2w2, or vice versa, and therefore |vk1w1 ∧ vk2w2| = min{|vk1w1|, |vk2w2|}. Since |v1| = |v2| we
obtain

‖vk1w1, v
k
2w2‖ = |vk1w1|+ |vk2w2| − 2 min{|vk1w1|, |vk2w2|} = |w1|+ |w2| − 2 min{|w1|, |w2|}

contradicting supk ‖vk1w1, v
k
2w2‖ =∞.
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