
Balancing Straight-Line Programs∗

MOSES GANARDI,Max Planck Institute for Software Systems (MPI-SWS), Germany

ARTUR JEŻ, University of Wrocław, Poland

MARKUS LOHREY, University of Siegen, Germany

We show that a context-free grammar of sizem that produces a single stringw of length n (such a grammar

is also called a string straight-line program) can be transformed in linear time into a context-free grammar

for w of size O (m), whose unique derivation tree has depth O (logn). This solves an open problem in the

area of grammar-based compression, improves many results in this area and greatly simplifies many existing

constructions. Similar results are shown for two formalisms for grammar-based tree compression: top dags

and forest straight-line programs. These balancing results can be all deduced from a single meta-theorem

stating that the depth of an algebraic circuit over an algebra with a certain finite base property can be

reduced to O (logn) with the cost of a constant multiplicative size increase. Here, n refers to the size of the

unfolding (or unravelling) of the circuit. In particular, this results applies to standard arithmetic circuits over

(noncommutative) semirings.

ACM Reference Format:
Moses Ganardi, Artur Jeż, and Markus Lohrey. 2021. Balancing Straight-Line Programs. 1, 1 (March 2021),

39 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Grammar-based string compression. In grammar-based compression a combinatorial object is

compactly represented using a grammar of an appropriate type. Such a grammar can be up to

exponentially smaller than the object itself. A well-studied example of this general idea is grammar-

based string compression using context-free grammars that produce only one string, which are also

known as straight-line programs. Since the term “straight-line programs” is used in the literature

for different kinds of objects (e.g. arithmetic straight-line programs) and we will also deal with

different types of straight-line programs, we use the term string straight-line program, SSLP for

short. Grammar-based string compression is tightly related to dictionary-based compression: the

famous LZ78 algorithm can be viewed as a particular grammar-based compressor, the number

of phrases in the LZ77-factorization is a lower bound for the smallest SSLP for a string [36], and

an LZ77-factorization of lengthm can be converted to an SSLP of size O (m · logn) where n is the

length of the string [11, 24, 26, 36]. For various other aspects of grammar-based string compression

see [11, 29].

∗
This article is an extended version of the conference paper [18]

Artur Jeż was supported under National Science Centre, Poland project number 2017/26/E/ST6/00191.

Markus Lohrey has been supported by the DFG research project LO 748/10-1.

Authors’ addresses: Moses Ganardi, ganardi@mpi-sws.org, Max Planck Institute for Software Systems (MPI-SWS), Paul-

Ehrlich-Straße G 26, 67663, Kaiserslautern, Germany; Artur Jeż, aje@cs.uni.wroc.pl, University of Wrocław, Poland; Markus

Lohrey, lohrey@eti.uni-siegen.de, University of Siegen, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

XXXX-XXXX/2021/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Moses Ganardi, Artur Jeż, and Markus Lohrey

Balancing string straight-line programs. The two important measures for an SSLP are size and

depth. To define these measures, it is convenient to assume that all right-hand sides of the grammar

have length two (as in Chomsky normal form). Then, the size |G| of an SSLP G is the number of

variables (nonterminals) of G and the depth of G (depth(G) for short) is the depth of the unique

derivation tree of G. It is straightforward to show that any string s of length n can be produced

by an SSLP of size O (n) and depth O (logn). A more difficult problem is to balance a given SSLP:

Assume that the SSLP G produces a string of length n. Several authors have shown that one can

restructure G in time O (|G| · logn) into an equivalent SSLP H of size O (|G| · logn) and depth

O (logn) [11, 26, 36].
Finding SSLPs of small size and small depth is important in many algorithmic applications.

A prominent example is the random access problem for grammar-compressed strings: For a given
SSLP G that produces the string s of length n and a given position p ∈ [1,n] one wants to access

the p-th symbol in s . As observed in [8] one can solve this problem in time O (depth(G)) (assuming

arithmetic operations on numbers from the interval [0,n] use constant time). Combined with one

of the known SSLP balancing procedures [11, 36] one obtains access time O (logn), but one has to
pay with an increased SSLP size of O (|G| · logn). Using sophisticated data structures, the following
result was shown in [8]:

Theorem 1.1 (random access to grammar-compressed strings, cf. [8]). From a given SSLP G of size
m that generates the string s of length n, one can construct in time O (m) a data structure of size O (m)
(measured in words of bit length logn) that allows to answer random access queries in time O (logn).

Our main result for string straight-line programs states that SSLP balancing is in fact possible

with a constant blow-up in size.

Theorem 1.2. Given an SSLP G producing a string of length n one can construct in linear time
an equivalent SSLPH of size O (|G|) and depth O (logn).

As a corollary we obtain a very simple and clean proof of Theorem 1.1. We can also obtain

an algorithm for the random access problem with running time O (logn/ log logn) using O (m ·
log

ϵ n) words of bit length logn; previously this bound was only shown for balanced SSLPs [2].

Section 2.4 contains a list of further applications of Theorem 1.2, which include the following

problems on SSLP-compressed strings: rank and select queries [2], subsequence matching [3],

computing Karp-Rabin fingerprints [6], computing runs, squares, and palindromes [23], real-time

traversal [19, 33] and range-minimum queries [20]. In all these applications we either improve

existing results or significantly simplify existing proofs by replacing depth(G) by O (logn) in
time/space bounds.

Let us say a few words over the underlying computational model in Theorem 1.2. Our balancing

procedure involves (simple) arithmetic on lengths, i.e., numbers of order n. Thus the linear running
time can be achieved assuming that machine words have Ω(logn) bits. Otherwise the running time

increases by a multiplicative logn factor. Note that such an assumption is realistic and standard in

the field since machine words of bit length Ω(logn) are needed, say, for indexing positions in the

represented string. Furthermore, our procedure works in the pointer model regime.

Balancing forest straight-line programs and top dags. Grammar-based compression has been

generalized from strings to ordered ranked node-labelled trees. In fact, the representation of a tree t
by its smallest directed acyclic graph (DAG) is a form of grammar-based tree compression. This DAG

is obtained by merging nodes where the same subtree of t is rooted. It can be seen as a regular tree

grammar that produces only t . A drawback of DAG-compression is that the size of the DAG is lower-

bounded by the height of the tree t . Hence, for deep narrow trees (like for instance caterpillar trees),

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :3

the DAG-representation cannot achieve good compression. This can be overcome by representing

a tree t by a linear context-free tree grammar that produces only t . Such grammars are also known

as tree straight-line programs in the case of ranked trees [10, 31, 32] and forest straight-line programs
in the case of unranked trees [16]. The latter are tightly related to top dags [4, 7, 13, 16, 22], which
are another tree compression formalism, also akin to grammars. Our balancing technique works

similarly for those types of compression:

Theorem 1.3. Given a top dag / forest straight-line program / tree straight-line program G producing
the tree t one can compute in time O (|G|) a top dag / forest straight-line program / tree straight-line
programH for t of size O (|G|) and depth O (log |t |).

For top dags, this solves an open problem from [7], where it was proved that from a tree t of size
n, whose minimal DAG has sizem (measured in number of edges in the DAG), one can construct in

linear time a top dag for t of size O (m · logn) and depth O (logn). It remained open whether one

can get rid of the factor logn in the size bound. For the specific top dag constructed in [7], it was

shown in [4] that the factor logn in the size bound O (m · logn) cannot be avoided. On the other

hand, our results yield another top dag of size O (m) and depth O (logn). To see this note that one

can easily convert the minimal DAG of t into a top dag of roughly the same size, which can then be

balanced. This also gives an alternative proof of a result from [13], according to which one can

construct in linear time a top dag of size O (n/ logσ n) and depth O (logn) for a given tree of size n
containing σ many different node labels.

Balancing circuits over algebras. Our balancing results for SSLPs, top dags, forests straight-line

programs and tree straight-line programs are all instances of a general balancing result that applies

to a large class of circuits over algebraic structures. To see the connection between circuits and

straight-line programs, consider SSLPs as an example. An SSLP is the same thing as a bounded

fan-in circuit over a free monoid. The circuit gates compute the concatenation of their inputs and

correspond to the variables of the SSLP. In general, for any algebra one can define straight-line

programs, which coincide with the classic notion of circuits.

The definition of a class of algebras, to which our general balancing technique applies, uses

unary linear term functions, which were also used for instance in the context of efficient parallel

evaluation of expression trees [34]. Fix an algebra A (a set together with finitely many operations

of possibly different arities). For some of our applications we have to allow multi-sorted algebras

that have several carrier sets (think for instance of a vector space, where the two carrier sets are

an abelian group and a field of scalars). A unary linear term function is a unary function onA that

is computed by a term (or algebraic expression) that contains a single variable x (which stands for

the function argument) and, moreover, x occurs exactly once in the term. For instance, a unary

linear term function over a commutative ring is of the form x 7→ ax + b for ring elements a,b.
A subsumption base for an algebra A is, roughly speaking, a finite set C (A) of unary linear term

functions that are described by terms with parameters such that every unary linear term function

can be obtained from one of the terms in C (A) by instantiating the parameters. In the above

example for a commutative ring the set C (A) consists of the single term ax + b, where a and b are

the parameters.

Our general balancing result needs one more concept, namely the unfolded size of a circuit G. It
can be conveniently defined as follows: we replace in G every input gate by the number 1, and we

replace every internal gate by an addition gate. The unfolded size of G is the value of this additive

circuit. In other words, this is the size of the tree obtained by unravelling G into a tree. Note that the

size of this unfolding can be exponential in the circuit size. Now we can state the general balancing

result in a slightly informal way (the precise statement can be found in Theorem 3.20):

, Vol. 1, No. 1, Article . Publication date: March 2021.

:4 Moses Ganardi, Artur Jeż, and Markus Lohrey

Theorem1.4 (informal statement). LetA be amulti-sorted algebra with a finite number of operations
(of arbitrary arity) such thatA has a finite subsumption base. Given a circuit G overA whose unfolded
size is n, one can compute in time O (|G|) a circuitH evaluating to the same element of A such that
|H | ∈ O (|G|) and depth(H) ∈ O (logn).

Theorems 1.2 and 1.3 are immediate corollaries of Theorem 1.4. Theorem 1.4 can be also applied

to not necessarily commutative semirings, as every semiring has a finite subsumption base. Hence,

for every semiring circuit one can reduce with a linear size blow-up the depth to O (logn), where n
is the size of the circuit unfolding.

Note that in the depth bound O (logn) in our balancing result for string straight-line programs

(Theorem 1.2), n refers to the length of the produced string. A string straight-line program can

be viewed as a circuit for a non-commutative semiring circuit that produces a single monomial

(the symbols in the string correspond to the non-commuting variables). If one considers arbitrary

circuits over non-commutative semirings (that produce a sum of more than one monomial), depth

reduction is not possible in general by a result of Kosaraju [27]. For circuits over commutative

semirings depth reduction is possible by a seminal result of Valiant, Skyum, Berkowitz and Rackoff

[38]: for any commutative semiring, every circuit of sizem and formal degree d can be transformed

into an equivalent circuit of depth O (logm logd) and size polynomial in m and d . This result
led to many further investigations on depth reduction for bounded degree circuits over various

classes of commutative as well as non-commutative semirings [1]. If one drops the restriction to

bounded degree circuits, then depth reduction gets even harder. For general Boolean circuits, the

best known result states that every Boolean circuit of sizem is equivalent to a Boolean circuit of

depth O (m/ logm) [35].

Proof strategy. The proof of Theorem 1.2 consists of twomain steps (the general result Theorem 1.4

is shown similarly). Take an SSLP G for the string s of length n and letm be the size of G. We

consider the derivation tree t for G; it has size O (n). The SSLP G can be viewed as a DAG for t of
sizem. We decompose this DAG into node-disjoint paths such that each path from the root to a leaf

intersects O (logn) paths from the decomposition (Section 2.1). Each path from the decomposition

is then viewed as a string of integer-weighted symbols, where the weights are the lengths of the

strings derived from nodes that branch off from the path. For this weighted string we construct

an SSLP of linear size that produces all suffixes of the path in a weight-balanced way (Section 2.2).

Plugging these SSLPs together yields the final balanced SSLP.

Some of the concepts of our construction can be traced back to the area of parallel algorithms:

the path decomposition for DAGs from Section 2.1 is related to the centroid decomposition of

trees [12], where it is the key technique in several parallel algorithms on trees. Moreover, the

SSLP of linear size that produces all suffixes of a weighted string with (Section 2.2) can be seen as

a weight-balanced version of the optimal prefix sum algorithm.

For the general result Theorem 1.4 we need another ingredient: when the above construction is

used for circuits over algebras, the corresponding procedure produces a tree straight-line program

for the unfolding of the circuit. We show that if the underlying algebra A has a finite subsumption

base, then one can compute from a tree straight-line program an equivalent circuit overA. Moreover,

the size and depth of this circuit are linearly bounded in the size and depth of the tree straight-

line program. This construction was used before for the special cases of semirings and regular

expressions [15, 17].

2 PART I: BALANCING OF STRING STRAIGHT-LINE PROGRAMS
The goal of the first part of the paper is to prove Theorem 1.2. This result can be also derived

from our general balancing theorem (Theorem 1.4), which will be shown in the second part of

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :5

the paper (Section 3). The techniques that we introduce in part I will be also needed in Section 3.

Moreover, we believe that it helps the reader to first see the simpler balancing procedure for string

straight-line programs before going into the details of the general balancing result. Finally, the

reader who is only interested in SSLP balancing can ignore part II completely.

We start with the afore-mentioned new decomposition technique for DAGs that we call symmetric

centroid decomposition. The technical heart of our string balancing procedure is the linear-size

SSLP that produces all suffixes of the path in a weight-balanced way (Section 2.2). Section 2.2

concludes the proof of Theorem 1.2, and Section 2.4 presents applications.

2.1 The symmetric centroid decomposition of a DAG
We start with a new decomposition of a DAG (directed acyclic graph) into disjoint paths. We

believe that this decomposition might have further applications. For trees, there exist several

decompositions into disjoint paths with the additional property that every path from the root to a

leaf only intersects a logarithmic number of paths from the decomposition; note that in general

such decompositions allow empty paths, i.e., consisting of a single node only. Examples are the

heavy path decomposition [21] and centroid decomposition [12]. These decompositions can be

also defined for DAGs but a technical problem is that the resulting paths are no longer disjoint and

form, in general, a subforest of the DAG, see e.g. [8].

Our new decomposition can be seen as a symmetric form of the centroid decomposition of [12].

Consider a DAG D = (V ,E) with node set V and the set of multi-edges E, i.e., E is a finite subset

of V × N × V such that (u,d,v) ∈ E implies that for every 1 ≤ i < d there exists v ′ ∈ V with

(u, i,v ′) ∈ E. Intuitively, (u,d,v) is the d-th outgoing edge of u. We assume that there is a single

root node r ∈ V , i.e., r is the unique node with no incoming edges. Hence, all nodes are reachable

from r . A path from u ∈ V to v ∈ V is a sequence of edges (v0,d1,v1), (v1,d2,v2), . . . , (vp−1,dp ,vp)
where u = v0 and v = vp . We also allow the empty path from u to u. With π (u,v) we denote
the number of paths from u to v , and for V ′ ⊆ V let π (u,V ′) =

∑
v ∈V ′ π (u,v). LetW ⊆ V be the

set of sink nodes of D, i.e., those nodes without outgoing edges, and let n(D) = π (r ,W). This is
the number of leaves in the tree obtained by unfolding D into a tree. For a node v ∈ V consider

(π (r ,v),π (v,W)): the number of paths leading from the root to v and the number of paths leading

from v to all leaves. We assign to v the pair consisting of rounded (down) logarithms of those

two numbers: λD (v) = (⌊log
2
π (r ,v)⌋, ⌊log

2
π (v,W)⌋). If λD (v) = (k, ℓ), then k, ℓ ≤ ⌊log

2
n(D)⌋

because π (r ,v) and π (v,W) are both bounded by n(D). Let us now define the edge set Escd (D)
(“scd” stands for symmetric centroid decomposition) as Escd (D) = {(u, i,v) ∈ E | λD (u) = λD (v)}.
Figure 1 gives a detailed example of a symmetric centroid decomposition of a DAG.

Lemma 2.1. Let D = (V ,E) be a DAG with n = n(D). Then every node has at most one outgoing
and at most one incoming edge from Escd (D). Furthermore, every path from the root r to a sink node
contains at most 2 log

2
n edges that do not belong to Escd (D).

Proof. Consider a node v ∈ V with two different outgoing edges (u, i,v), (u, j,w) ∈ Escd (D).
Hence, λD (u) = λD (v) = λD (w). Let λD (u) = (k, ℓ). IfW is the set of sinks, we get π (u,W) ≥
π (v,W) + π (w,W) (since we consider paths of multi-edges, this inequality also holds for v = w).

W.l.o.g. assume that π (w,W) ≥ π (v,W) and thus π (u,W) ≥ 2π (v,W). We get

⌊log
2
π (u,W)⌋ ≥ 1 + ⌊log

2
π (v,W)⌋ = 1 + ⌊log

2
π (u,W)⌋,

where the last equality follows from λD (u) = λD (v). This is a contradiction and proves the claim

for outgoing edges. Incoming edges are treated similarly, this time using π (r ,v).
For the second claim of the Lemma, consider a path (v0,d1,v1), (v1,d2,v2), . . . , (vp−1,dp ,vp),

where v0 is the root and vp is a sink. Let λD (vi) = (ki , ℓi), then ki ≤ ki+1 and ℓi ≥ ℓi+1 for all

, Vol. 1, No. 1, Article . Publication date: March 2021.

:6 Moses Ganardi, Artur Jeż, and Markus Lohrey

1, 62

1, 61

1, 60

1, 58

1, 56

1, 52

1, 48

1, 40

1, 32

2, 16

6, 8

14, 4

30, 2

31, 1 31, 1

Fig. 1. A DAG and its symmetric centroid path decomposition. The numbers in a nodev are the values π (r ,v),
where r is the root, i.e., the number of incoming paths from r , and π (v,W), whereW consists of the two
sink nodes, i.e., the number of paths from v to sinks. Edges that belong to a symmetric centroid path are
drawn in red. Note that the 9 topmost nodes form a symmetric centroid path since ⌊log

2
π (r ,v)⌋ = 0 and

⌊log
2
π (v,W)⌋ = 5 for each of these nodes. In this example the symmetric centroid path decomposition

consists of one path of length 8 (number of edges); all other nodes form symmetric centroid paths of length
zero, i.e., they are trivial.

0 ≤ i ≤ p − 1. Moreover, k0 = ℓp = 0 and ℓ0,kp ≤ ⌊log2 n⌋. Consider now an edge (vi ,di ,vi+1) ∈
E \ Escd (D). Since λD (vi) , λD (vi+1), we have ki < k+1 or ℓi > ℓi+1. Hence, there can be at most

2⌊log
2
n⌋ ≤ 2 log

2
n edges from E \ Escd (D) on the path. □

Lemma 2.1 implies that the subgraph (V ,Escd (D)) is a disjoint union of possibly empty paths,

called symmetric centroid paths of D. It is straight-forward to compute the edge set Escd (D) in
time O (|D|), where |D| is defined as the number of edges of the DAG: By traversing D in both

directions (from the root to the sinks and from the sinks to the root) one can compute all pairs

λD (v) for v ∈ V in linear time.

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :7

One can use Lemma 2.1 in order to simplify the original proof of Theorem 1.1 from [8]: in [8], the

authors use the heavy-path decomposition of the derivation tree of an SSLP. In the SSLP (viewed

as a DAG that defines the derivation tree), these heavy paths lead to a forest, called the heavy path

forest [8]. The important property used in [8] is the fact that any path from the root of the DAG to

a sink node contains only O (logn) edges that do not belong to a heavy path, where n is the length

of string produced by the SSLP. Using Lemma 2.1, one can replace this heavy path forest by the

decomposition into symmetric centroid paths. The fact that the latter is a disjoint union of paths

in the DAG simplifies the technical details in [8] a lot. On the other hand, Theorem 1.1 follows

directly from Theorem 1.2, see Section 2.4.

2.2 Straight-line programs and suffixes of weighted strings
Given an alphabet of symbols Σ, Σ∗ denotes the set of all finite words over the alphabet Σ, including
the empty word ε . The set of non-empty words is denoted by Σ+ = Σ∗ \ {ε }. The length of a word

w is denoted with |w |.
Let Σ be a finite alphabet of terminal symbols. A string straight-line program (SSLP for short)

over the alphabet Σ is a triple G = (V, ρ, S), whereV is a finite set of variables, S ∈ V is the start

variable, and ρ : V → (Σ ∪ V)∗ (the right-hand side mapping) has the property that the binary

relation E (G) = {(X ,Y) ∈ V × V : Y occurs in ρ (X)} is acyclic. This allows to define for every

variable X ∈ V a string JX KG as follows: if ρ (X) = u0X1u1X2 · · ·un−1Xnun with u0,u1, . . . ,un ∈ Σ
∗

and X1, . . . ,Xn ∈ V then JX KG = u0JX1KGu1JX2KG · · ·un−1JXnKGun . We omit the subscript G if G

is clear from the context. Finally, we define JGK = JSK.
An SSLP G can be seen as a context-free grammar that produces the single string JGK. Quite often,

one assumes that all right-hand sides ρ (X) are from Σ ∪VV . This corresponds to the Chomsky

normal form. For a given SSLP G with JGK , ε one can construct in linear time an equivalent SSLP

in Chomsky normal form [30, Proposition 3.8].

Fix an SSLP G = (V, ρ, S). We define the size |G| of G as

∑
X ∈V |ρ (X) |. Let d be the length

of a longest path in the DAG (V,E (G)) and r = max{|ρ (X) | : X ∈ V}. We define the depth of

G as depth(G) = d · ⌈log
2
r⌉. Note that for an SSLP in Chomsky normal form, the definition of

the depth simplifies to depth(G) = d and that these definitions ensure that depth and size only

increase by fixed (multiplicative) constants when an SSLP is transformed into Chomsky normal

form. This is exactly the purpose of this definition: transforming into Chomsky normal form is a

standard preprocessing and/or normalization procedure and we want size and height to be roughly

preserved during such a procedure. Lastly, observe that more refined notion of height, which takes

into the account the rule sizes on particular paths, and not a bound on all of them, or the height of

the actual Chomsky normal form (which is not unique) could be devised, but it is not needed for

our purposes.

A weighted string is a string s ∈ Σ∗ equipped with a weight function ∥ · ∥ : Σ→ N \ {0}, which is

extended to a homomorphism ∥ · ∥ : Σ∗ → N by ∥a1a2 · · ·an ∥ =
∑n

i=1 ∥ai ∥. If X is a variable in an

SSLP G, we also write ∥X ∥ for the weight of the string JX KG derived from X . Moreover, when we

speak of suffixes of a string, we always mean non-empty suffixes.

Proposition 2.2. For every non-empty weighted string s of length n one can construct in linear time
an SSLP G with the following properties:

• G contains at most 3n variables,
• all right-hand sides of G have length at most 4,
• G contains suffix variables S1, . . . , Sn producing all suffixes of s , and
• every path from Si to some terminal symbol a in the derivation tree of G has length at most
3 + 2(log

2
∥Si ∥ − log2 ∥a∥).

, Vol. 1, No. 1, Article . Publication date: March 2021.

:8 Moses Ganardi, Artur Jeż, and Markus Lohrey

Before moving to the proof, let us explain the intuition behind the definition and statement: The

intended usage of the weight is that a letter a with weight ∥a∥ > 1 is in fact a variable that has its

separate SSLPA, in which it derives a string of length ∥a∥, i.e., ∥JaKA ∥ = ∥a∥: in our constructions

we will compose several SLPs and symbols treated as letters in one SSLP are the starting variables in

the other. The last condition of Proposition 2.2 fits well into this understanding: when we compose

several SSLPs, then a becomes a variable deriving string of length ∥a∥. Then several estimation

of the form 3 + 2(log
2
∥Si ∥ − log2 ∥a∥), 3 + 2(log2 ∥a∥ − log2 ∥b∥), . . . are added together and they

form a telescopic sum, so in the end we are left with 2(log ∥Si ∥ − 0), which is logarithmic in the

length of the word derived by Si , as desired (there are also the sums of 3s, but those are estimated

separately).

Proof. First, the presented algorithm never uses the fact that some letters of s may be equal.

Thus it is more convenient to assume that letters in s are pairwise different—in this way the path

from a variable Si to a terminal symbol a in the last condition is defined uniquely.

For the sake of an inductive proof, the constructed SSLP will satisfy a slightly stronger and

more technical variant of the last condition: every path from Si to some terminal symbol a in

the derivation tree of G has length at most 1 + 2(⌈log
2
∥Si ∥⌉ − log

2
∥a∥). The trivial estimation

⌈log
2
∥Si ∥⌉ ≤ 1 + log

2
∥Si ∥ then yields the announced variant.

We first show how to constructG with the desired properties and then prove that the construction

can be done in linear time.

The case n = 1 is trivial. Now assume that n ≥ 2 and let

s = a1 · · ·ak c b1 · · ·bm

where cb1 · · ·bm is the shortest suffix of s such that ⌈log
2
∥cb1 · · ·bm ∥⌉ = ⌈log2 ∥s ∥⌉. Clearly such

a suffix exists (in the extreme cases it is the entire string s or a single letter). Note that

⌈log
2
∥cb1 · · ·bm ∥⌉ = ⌈log2 ∥ai · · ·akcb1 · · ·bm ∥⌉ (1)

for 1 ≤ i ≤ k + 1. Moreover, the following inequalities hold:

⌈log
2
∥cb1 · · ·bm ∥⌉ ≥ ⌈log2 ∥b1 · · ·bm ∥⌉ + 1 (2)

⌈log
2
∥cb1 · · ·bm ∥⌉ ≥ ⌈log2 ∥a1 · · ·ak ∥⌉ + 1 (3)

(here, we define log
2
(0) = −∞). The former is clear from the definition of cb1 · · ·bm , as b1 · · ·bm sat-

isfies ⌈log
2
∥b1 · · ·bm ∥⌉ < ⌈log2 ∥s ∥⌉ = ⌈log2 ∥cb1 · · ·bm ∥⌉. If (3) does not hold then both a1 · · ·ak

and cb1 · · ·bm have weights strictly more than 2
⌈log

2
∥s ∥⌉−1

and so their concatenation s has weight
strictly more than 2

⌈log
2
∥s ∥⌉ ≥ ∥s∥, which is a contradiction.

Recall that the symbols a1, . . . ,ak , c,b1, . . . ,bm are pairwise different by the convention from

the first paragraph of the proof.

For b1 · · ·bm we make a recursive call (if m = 0 we do nothing at this step) and include the

produced SSLP in the output SSLP G. Let V1,V2, . . . ,Vm be the variables such that

JViKG = bi · · ·bm .

By the inductive assumption, every path Vi
∗
−→ bj in the derivation tree has length at most

1 + 2⌈log
2
∥Vi ∥⌉ − 2 log2 ∥aj ∥.

Add a variable V0 with right-hand side cV1 (or c ifm = 0), which derives the suffix cb1 · · ·bm . The

path from V0 to c in the derivation tree has length 1, which is fine, and the path V0
∗
−→ aj is one

larger than the path V1
∗
−→ aj and hence has length at most

1 + 1 + 2⌈log
2
∥V1∥⌉ − 2 log2 ∥aj ∥ ≤ 2⌈log

2
∥V0∥⌉ − 2 log2 ∥aj ∥,

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :9

as 1 + ⌈log
2
∥V1∥⌉ ≤ ⌈log2 ∥V0∥⌉ by (2).

Next we decompose the prefix a1 · · ·ak into ⌊k/2⌋ many blocks of length two and, when k is odd,

one block of length 1, consisting of ak . We add to the output SSLP G new variables X1, . . . ,X ⌊k/2⌋
and define their right-hand sides by

ρ (Xi) = a2i−1a2i .

The number of variables in G is ⌊k/2⌋. For ease of presentation, when k is odd, define X ⌈k/2⌉ = ak ,
this is not a new variable, rather just a notational convention to streamline the presentation.

Note that for even k we have ⌈k/2⌉ = ⌊k/2⌋ and in this case X ⌈k/2⌉ is already defined. Viewing

X1 · · ·X ⌈k/2⌉ as a weighted string of length ⌈k/2⌉ over the alphabet {X1, . . . ,X ⌈k/2⌉ }, we obtain
inductively an SSLP GX with at most 3⌈k/2⌉ variables and right-hand sides of length at most 4 (if

k = 0 we do nothing at this step). Moreover, GX contains variablesU1,U2, . . . ,U ⌈k/2⌉ with

JUiKGX = XiXi+1 · · ·X ⌈k/2⌉

such that any path of the formUi
∗
−→ X j in the derivation tree of GX has length at most

1 + 2⌈log
2
∥Ui ∥⌉ − 2 log2 ∥X j ∥.

By adding all variables and right-hand side definitions from GX to G (where all symbols Xi are

variables, except X ⌈k/2⌉ when k is odd, in which case X ⌈k/2⌉ = ak) we obtain

JUiKG = a2i−1a2i · · ·ak

for all 1 ≤ i ≤ ⌈k/2⌉. Any pathUi
∗
−→ aj in the derivation tree of G has length at most

2 + 2⌈log
2
∥Ui ∥⌉ − 2 log2 ∥aj ∥. (4)

Now, every suffix of s that includes some letter of a1 · · ·ak (note that we already have variables

for all other suffixes) can be defined by a right-hand side of the form UicV1 or a2i−2UicV1 (Uic or
a2i−2Uic if m = 0). As in the statement of the lemma, denote those variables by S1, . . . , Sk . Let
us next verify the condition on the path lengths for derivations from those variables. All paths

Si
∗
−→ c have length one. Now consider a path Si

∗
−→ aj . If the path has length one then we are done.

Otherwise, the path must be of the form Si → Ul
∗
−→ aj . Therefore, by (4) the path length is at most

3 + 2⌈log
2
∥Ul ∥⌉ − 2 log2 ∥aj ∥ ≤ 3 + 2⌈log

2
∥U1∥⌉ − 2 log2 ∥aj ∥

= 3 + 2⌈log
2
∥a1 · · ·ak ∥⌉ − 2 log2 ∥aj ∥

≤ 1 + 2⌈log
2
∥cb1 · · ·bm ∥⌉ − 2 log2 ∥aj ∥

= 1 + 2⌈log
2
∥Si ∥⌉ − 2 log2 ∥aj ∥,

where the second inequality follows from (3) and the equality at the end follows from (1).

Paths of the form Si
∗
−→ bj can be treated similarly: they are of the form Si → V1

∗
−→ bj , where the

path V1
∗
−→ bj is of length at most 1 + 2⌈log

2
∥V1∥⌉ − 2 log2 ∥aj ∥ by the inductive assumption. Thus,

the whole path is of length at most

2 + 2⌈log
2
∥V1∥⌉ − 2 log2 ∥bj ∥ ≤ 2⌈log

2
∥cb1 · · ·bm ∥⌉ − 2 log2 ∥bj ∥

= 2⌈log
2
∥Si ∥⌉ − 2 log2 ∥bj ∥,

which follows from (2) and (1).

The SSLP G consists of ⌊k/2⌋ variables Xi , 3(⌈k/2⌉) variables from the recursive call for the

weighted string X1 · · ·X ⌈k/2⌉ , 3m = 3(n − k − 1) variables from the recursive call for b1 · · ·bm , and

, Vol. 1, No. 1, Article . Publication date: March 2021.

:10 Moses Ganardi, Artur Jeż, and Markus Lohrey

1 + k new suffix variables for suffixes beginning at a1 · · ·akc (note that those beginning at b1 · · ·bm
are taken care of by the recursive call). Therefore G contains at most

⌊k/2⌋ + 3⌈k/2⌉ + 3(n − k − 1) + 1 + k = 3n + 2⌈k/2⌉ − k − 2 < 3n

variables. Also note that all right-hand sides of G have length at most four.

It remains to show that the construction works in linear time. To this end we need a small trick:

we assume that when the algorithm is called on s , we supply the algorithm with the value ∥s∥. More

formally, the main algorithm applied to a string s computes ∥s ∥ in linear time by going through s and
adding weights. Then it calls a subprocedure main

′(s, ∥s∥), which performs the actions described

above. To find the appropriate symbol c , main
′
computes the weights of consecutive prefixes

s1s2 · · · si , until it finds the first such that ⌈log
2
∥s∥⌉ > ⌈log

2
(∥s∥ − ∥s1 · · · si ∥)⌉. Then k = i − 1 and

so a1 · · ·ak = s1 · · · si−1, c = si , b1 · · ·bm = si+1 · · · s |s | . Moreover, we can compute ∥a1 · · ·ak ∥ and
∥b1 · · ·bm ∥ for the recursive calls of main

′
in constant time.

LetT (n) be the running time of main
′
on a word of length n. Then all operations of main

′
, except

the recursive calls, take at most α (k + 1) time for some constant α ≥ 1, where s is represented as

a1 · · ·akcb1 · · ·bm . Thus T (n) satisfies T (1) = 1 and

T (n) = T (⌈k/2⌉) +T (n − k − 1) + α (k + 1).

We claim that T (n) ≤ 2αn. This is true for n = 1 and inductively for n ≥ 2 we get

T (n) ≤ 2α (⌈k/2⌉) + 2α (n − k − 1) + α (k + 1)

≤ 2α
k + 1

2

+ 2αn − α (k + 1)

= 2αn.

This concludes the proof of the lemma. □

2.3 Proof of Theorem 1.2
We now prove Theorem 1.2. Let G = (V, ρG, S). W.l.o.g. we can assume that G is in Chomsky

normal form (the case that JGK = ε is trivial). Note that the graph (V,E (G)) is a directed acyclic

graph (DAG). We can assume that every variable is reachable from the start variable S . Consider
a variable X with ρG (X) = YZ . Then X has the two outgoing edges (X ,Y) and (X ,Z) in (V,E (G)).
We replace these two edges by the triples (X , 1,Y) and (X , 2,Z). Hence, D := (V,E (G)) becomes

a DAG with multi-edges (triples fromV × {1, 2} × V). Figure 2 shows the DAG D for an example

SSLP; it is the same DAG as in Figure 1. The right-hand sides for the two sink variables X13 and X14

are terminal symbols (the concrete terminals are not relevant for us). The start variable S is X0.

We define for every X ∈ V the weight ∥X ∥ as the length of the string JX KG . Moreover, for a

stringw = X1X2 · · ·Xn we define the weight ∥w ∥ =
∑n

i=1 ∥Xi ∥. Note that ∥S ∥ = n is the length of

the derived string JGK and that this also the value n(D) defined in Section 2.1.

We compute in linear time the edges from symmetric centroid decomposition of the DAG D,

see Lemma 2.1. In Figure 2 these are the red edges. The weights ∥Xi ∥ of the variables are written

next to the corresponding nodes; these weights can be found as the second components in Figure 1.

Hence, we have ∥X0∥ = 62, ∥X1∥ = 61, ∥X2∥ = 60, ∥X3∥ = 58, etc.

Consider a symmetric centroid path

(X0,d0,X1), (X1,d1,X2), . . . , (Xp−1,dp−1,Xp) (5)

in D, where all Xi belong to V and di ∈ {1, 2}. Thus, for all 0 ≤ i ≤ p − 1, the right-hand side

of Xi in G has the form ρG (Xi) = Xi+1X
′
i+1 (if di = 1) or ρG (Xi) = X ′i+1Xi+1 (if di = 2) for some

X ′i+1 ∈ V . Note that we can have X ′i = X ′j for i , j, this happens for instance on Figure 2, it can

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :11

X0 62

X1 61

X2 60

X3 58

X4 56

X5 52

X6 48

X7 40

X8 32

X9 16

X10 8

X11 4

X12 2

X13 1 X14 1

Fig. 2. The DAG for an SSLP (it is the the same DAG as in Figure 1). The only non-trivial symmetric centroid
path is drawn in red, as in Figure 1. Each node is annotated with the length of the derived string. The blue
edges are the left edges of nodes whose right edges are on the symmetric centroid path (i.e., are red), similarly
green edges are the right edges such that the corresponding left edges are on the symmetric centroid path.
All other edges are black. If a node has an outgoing black edge then both its outgoing edges are black and
this node is the last node on some symmetric centroid path (this includes the case, when it is the only node
on the path, i.e., when the path is trivial). Using the notation from the proof of Theorem 1.2, the node X10 is
both X ′

7
and X ′

8
, as there are edges outside the centroid path from X6 and X7 to X10.

also happen that Xi′ = X j for j > i . The right-hand side ρG (Xp) belongs to Σ ∪ VV . Note that

the variables X ′i (1 ≤ i ≤ p) and the variables in ρG (Xp) (if they exist) belong to other symmetric

centroid paths. We will introduce O (p) many variables in the SSLPH to be constructed. Moreover,

all right-hand sides ofH have length at most four. By summing over all symmetric centroid paths,

this yields the size bound O (|G|) forH .

We now define the right-hand sides of the variables X0, . . . ,Xp in H . We write ρH for the

right-hand side mapping ofH . For Xp we set ρH (Xp) = ρG (Xp). For the variables X0, . . . ,Xp−1 we

have to “accelerate” the derivation somehow in order to get the depth bound O (logn) at the end.

, Vol. 1, No. 1, Article . Publication date: March 2021.

:12 Moses Ganardi, Artur Jeż, and Markus Lohrey

For this, we apply Proposition 2.2. Let L1 · · · Ls be the subsequence obtained from X ′
1
X ′
2
· · ·X ′p by

keeping only those X ′i with di−1 = 2 for i = 1, . . . ,p and let R1 · · ·Rt be the subsequence obtained
from the reversed sequence X ′pX

′
p−1 · · ·X

′
1
by keeping only those X ′i with di−1 = 1 for i = p, . . . , 1.

Take for instance the red symmetric centroid path consisting of the nodes X0,X1, . . . ,X8 (hence,

p = 8) from our running example in Figure 2. We have L1 · · · Ls = X13X12X11X10 (the target nodes

of the blue edges) and R1 · · ·Rt = X10X11X12X14 (the target nodes of the green edges).

Note that every string JXiK (0 ≤ i ≤ p − 1) can be derived in G from a word wℓXpwr , where

wℓ is a suffix of L1 · · · Ls and wr is a prefix of R1 · · ·Rt . For instance, JX2K can be derived from

(X12X11X10)X8 (X10X11X12) in our running example, so wℓ = X12X11X10 and wr = X10X11X12. We

now apply Proposition 2.2 to the sequence L1 · · · Ls in order to get an SSLP Gℓ of size O (s) ≤ O (p)
that contains variables S1 . . . , Ss for the non-empty suffixes of L1 · · · Ls . Moreover, every path from

a variable Si to some Lj in the derivation tree has length at most 3+ 2 log
2
∥Si ∥ − 2 log2 ∥Lj ∥, where

∥Si ∥ is the weight of JSiKGℓ . Analogously, we obtain an SSLP Gr of size O (t) ≤ O (p) that contains
variables P1 . . . , Pt for the non-empty prefixes of R1 · · ·Rt . Moreover, every path from a variable

Pi to some R j in the derivation tree has length at most 3 + 2 log
2
∥Pi ∥ − 2 log2 ∥R j ∥. We can then

define every right-hand side ρH (Xi) as S jXpPk , XpPk , S jXp , or Xp for suitable j and k . Moreover,

we add all variables and right-hand side definitions of Gℓ and Gr toH .

We make the above construction for all symmetric centroid paths of the DAG D. This concludes

the construction ofH . In our running example we set ρH (Xi) = ρG (Xi) for 8 ≤ i ≤ 14. Since we

introduce O (p) many variables for every symmetric centroid path of length p and all right-hand

sides ofH have length at most four, we obtain the size bound O (|G|) forH .

It remains to show that the depth of the SSLPH is O (logn). Let us first consider the symmetric

centroid path (5) and a path in the derivation tree ofH from a variable Xi (0 ≤ i ≤ p) to a variable

Y , where Y is

(a) a variable in ρG (Xp) = ρH (Xp) or
(b) a variable X ′j for some i < j ≤ p.

In case (a), the path Xi
∗
−→ Y has length at most two. In case (b) the path Xi

∗
−→ Y is of the form

Xi → Sk
∗
−→ X ′j = Y or Xi → Pk

∗
−→ X ′j = Y . Here, Sk

∗
−→ X ′j (resp., Pk

∗
−→ X ′j) is a path in Gℓ (resp.,

Gr) and therefore has length at most 3+ 2 log
2
∥Sk ∥ − 2 log2 ∥Y ∥ (resp., 3+ 2 log2 ∥Pk ∥ − 2 log2 ∥Y ∥).

In both cases, we can bound the length of the path Xi
∗
−→ Y by 4 + 2 log

2
∥Xi ∥ − 2 log2 ∥Y ∥.

Consider a maximal path in the derivation tree ofH that starts in the root S and ends in a leaf.

We can factorize this path as

S = X0

∗
−→ X1

∗
−→ X2

∗
−→ · · ·

∗
−→ Xk (6)

where all variables Xi belong to the original SSLP and every subpath Xi
∗
−→ Xi+1 is of the form

Xi
∗
−→ Y considered in the previous paragraph; note that Xi in general is not a parent of Xi+1, which

is the case in the running example of Figure 2. The right-hand side of Xk is a single symbol from Σ.

In the DAG D we have a corresponding path Xi
∗
−→ Xi+1, which is contained in a single symmetric

centroid path except for the last edge leading to Xi+1. By the above consideration, the length of the

path (6) is bounded by

k−1∑
i=0

(4 + 2 log
2
∥Xi ∥ − 2 log2 ∥Xi+1∥) ≤ 4k + 2 log

2
∥S ∥ = 4k + 2 log

2
n.

By the second claim of Lemma 2.1 we have k ≤ 2 log
2
n which shows that the length of the path (6)

is bounded by 10 log
2
n. □

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :13

2.4 Applications of Theorem 1.2
There are several algorithmic applications of Theorem 1.2 with always the same idea: let G be

an SSLP of size m for a string s of length n. In many algorithms for SSLP-compressed strings

the running time or space consumption depends on depth(G), which can bem in the worst case.

Theorem 1.2 shows that we can replace depth(G) by O (logn). This is the best we can hope for

since depth(G) ≥ Ω(logn) for every SSLP G. Moreover, SSLPs that are produced by practical

grammar-based compressors (e.g., LZ78 or RePair) are in general unbalanced in the sense that

depth(G) ≥ ω (logn).
The time bounds in the following results refer to the RAM model, where arithmetic operations

on numbers from the interval [0,n] need time O (1). The size of a data structure is measured in the

number of words of bit length log
2
n.

As a first application of Theorem 1.2 we can present a very simple new proof of Theorem 1.1

(random access for grammar-compressed strings) based on the folklore random access algorithm

that works in time O (depth(G)).

Proof of Theorem 1.1. Using Theorem 1.2 we compute in time O (m) an equivalent SSLP H

for s of size O (m) and depth O (logn). By a single pass over H we compute for every variable

X of H the length of the word JX K. Using these lengths one can descend in the derivation tree

JH K from the root to the i-th leaf node (which is labelled with the i-th symbol of s) in time

O (depth(H)) ≤ O (logn). □

Remark 2.3. It is easy to see that the balancing algorithm from Theorem 1.2 can be implemented

on a pointer machine, see [37] for a discussion of the pointer machine model. This yields a pointer

machine implementation of the random access data structure from Theorem 1.1. In contrast, the

random access data structure from [8] needs the RAM model (for the pointer machine model only

preprocessing time and size O (m · αk (m)) for any fixed k , where αk is the k-th inverse Ackermann

function, is shown in [8]). On the other hand, recently, in [5], the O (m)-space data structure from
[8] has been modified so that it can be implemented on a pointer machine as well.

Using fusion trees [14] one can improve the time bound in Theorem 1.1 to O (logn/ log logn) at
the cost of an additional factor of O (logϵ n) in the size bound. The following result has been shown

in [2, Theorem 2] under the assumption that the input SSLP has depth O (logn). We can enforce

this bound with Theorem 1.2.

Corollary 2.4. Fix an arbitrary constant ϵ > 0. From a given SSLP G of sizem such that the string
s = JGK has length n, one can construct in time O (m · logϵ n) a data structure of size O (m · logϵ n)
that allows to answer random access queries in time O (logn/ log logn).

Proof. The proof is exactly the same as for [2, Theorem 2]. There, the authors have to assume

that the input SSLP has depth O (logn), which we can enforce by Theorem 1.2. Roughly speaking,

the idea in [2] is to reduce the depth of the SSLP to O (logn/ log logn) by expanding right-hand

sides to length O (logϵ n). Then for each right-hand side a fusion tree is constructed, which allows

to spend constant time at each variable during the navigation to the i-th symbol.

Let us also remark that the size bound for the computed data structure in [2] is given in bits,

which yields O (m · log1+ϵ n) bits since numbers from [0,n] have to be encoded with log
2
n bits. □

In the general case of SSLPs, the balancing in [2, Theorem 3] was ensured using known algo-

rithm [36], at the cost of increasing the SSLP size by log(n/m) and so the resulting data structure

had size O (m · logϵ n · log(n/m)).
Given a string s ∈ Σ∗, a rank query gets a position 1 ≤ i ≤ |s | and a symbol a ∈ Σ and returns

the number of a’s in the prefix of s of length i . A select query gets a symbol a ∈ Σ and returns

, Vol. 1, No. 1, Article . Publication date: March 2021.

:14 Moses Ganardi, Artur Jeż, and Markus Lohrey

the position of the i-th a in s (if it exists). Similarly to random access queries, the following result

was shown [2, Theorem 2] assuming that the input SSLP is balanced, which we can ensure using

Theorem 1.2.

Corollary 2.5. Fix an arbitrary constant ϵ > 0. From a given SSLP G of size m such that the
string s = JGK has length n, one can construct in time O (m · |Σ| · logϵ n) a data structure of size
O (m · |Σ| · logϵ n) that allows to answer rank and select queries in time O (logn/ log logn).

Proof. Again we follow the proof [2, Theorem 2] but first apply Theorem 1.2 in order to reduce

the depth of the SSLP to O (logn). □

For arbitrary grammars in [2, Theorem 3] the balancing increased the SSLP size by a fac-

tor of log(n/m), and so the resulting data structure answering rank and select queries in time

O (logn/ log logn) had size O (m · |Σ| · logϵ n · log(n/m)).
Our balancing result also yields an improvement for the compressed subsequence problem [3].

Bille et al. [3] present an algorithm based on a labelled successor data structure. Given a string

s = a1 · · ·an ∈ Σ∗, a labelled successor query gets a position 1 ≤ i ≤ n and a symbol a ∈ Σ
and returns the minimal position j > i with aj = a (or rejects if it does not exist). The following

result is an improvement over [3], where the authors present two algorithms for the compressed

subsequence problem: one with O (m +m · |Σ|/w) preprocessing time and O (logn · logw) query
time, and another algorithm with O (m +m · |Σ| · logw/w) preprocessing time and O (logn) query
time.

Corollary 2.6. There is a data structure supporting labelled successor (and predecessor) queries on
a string s ∈ Σ∗ of length n compressed by an SSLP of sizem in the word RAM model with word size
w ≥ log

2
n using O (m +m · |Σ|/w) space, O (m +m · |Σ|/w) preprocessing time, and O (logn) query

time.

Proof. In the preprocessing phase we first reduce the depth of the given SSLP to O (logn) using
Theorem 1.2. We compute for every variable X the length of JX K in time and space O (m) as in
the proof of Theorem 1.1. Additionally for every variable X we compute a bitvector of length

|Σ| which encodes the set of symbols a ∈ Σ that occur in JX K. Notice that this information takes

O (m · |Σ|) bits and fits into O (m · |Σ|/w) memory words. If ρ (X) = YZ then the bitvector of X can

be computed from the bitvectors of Y and Z by O (|Σ|/w) many bitwise OR operations. Hence in

total all bitvectors can be computed in time O (m · |Σ|/w).
A labelled successor query (for position i and symbol a) can now be answered in O (logn) time in

a straightforward way: First we compute the path (X0,X1, . . . ,Xℓ) in the derivation tree from the

root X0 to the symbol at the i-th position. Then we follow the path starting from the leaf upwards

to find the maximal k such that ρ (Xk) = Xk+1Y and JY K contains the symbol a, or reject if no such

k exists. Finally, starting from Y we navigate in time O (logn) to the leftmost leaf in the derivation

tree which produces the symbol a. □

A minimal subsequence occurrence of a string p = a1a2 · · ·ak in a string s = b1b2 · · ·bl is given by

two positions i, j with 1 ≤ i ≤ j ≤ l such that p is a subsequence of bibi+1 · · ·bj (i.e., bibi+1 · · ·bj
belongs to the language Σ∗a1Σ

∗a2 · · · Σ
∗akΣ

∗
) but p is neither a subsequence of bi+1 · · ·bj nor of

bi · · ·bj−1. Following the proof of [3, Theorem 1] we obtain:

Corollary 2.7. Given an SSLP G of sizem producing a string s ∈ Σ∗ of length n and a pattern p ∈ Σ∗

one can compute all minimal subsequence occurrences of p in s in space O (m +m · |Σ|/w) and time
O (m +m · |Σ|/w + |p | · logn · occ) wherew ≥ logn is the word size and occ is the number of minimal
subsequence occurrences of p in s .

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :15

Corollary 2.7 improves [3, Theorem 1], which states the existence of two algorithms for the

computation of all minimal subsequence occurrences with the following running times (the space

bounds are the same as in Corollary 2.7):

• O (m +m · |Σ|/w + |p | · logn · logw · occ),
• O (m +m · |Σ| · logw/w + |p | · logn · occ).

Let us briefly mention some other application of Theorem 1.2. As before let G be an SSLP of sizem
for a string s of length n.

Computing Karp-Rabin fingerprints for compressed strings. This problem has been studied in [6],

where the reader can also finde the definition of finger prints. Given two positions i ≤ j in s one
wants to compute the Karp-Rabin fingerprint of the factor of s that starts at position i and ends

at position j. In [6] it was shown that one can compute from G a data structure of size O (m) that
allows to compute fingerprints in time O (logn). First, the authors of [6] present a very simple data

structure of size O (m) that allows to compute fingerprints in time O (depth(G)). With Theorem 1.2,

we can use this data structure to obtain a O (logn)-time solution. This simplifies the proof in [6]

considerably.

Computing runs, squares, and palindromes in SSLP-compressed strings. It is shown in [23] that

certain compact representations of the set of all runs, squares and palindromes in s (see [23] for
precise definitions) can be computed in time O (m3 · depth(G)). With Theorem 1.2 we can improve

the time bound to O (m3 · logn).

Real time traversal for SSLP-compressed strings. One wants to output the symbols of s from left

to right and thereby spend constant time per symbol. A solution can be found in [19]; a two-way

version (where one can navigate in each step to the left or right neighboring position in s) can be

found in [33]. The drawback of these solutions is that they need workspace O (depth(G)). With

Theorem 1.2 we can reduce this to workspace O (logn).

Compressed range minimum queries. Range minimum data structure preprocesses a given string

s of integers so that the following queries can be efficiently answered: given i ≤ j, what is the
minimum element in si , . . . , sj (the substring of s from position i to j).We are interested in the variant

of the problem, in which the input is given as an SSLP G. It is known, that after a preprocessing

takingO (|G|) time, one can answer rangeminimum queries in timeO (logn) [20, Theorem 1.1]. This

implementation extends the data structure for random access for SSLP [8] with some additional

information, which includes in particular adding standard range minimum data structures for

subtrees leaving the heavy path and extending the original analysis. Using the balanced SSLP the

same running time can be easily obtained, treating the balanced SSLP construction as a black-box,

without the need of enhancing it. To this end for each variable X we store the length ℓX of the

derived word JX K as well the minimum value in JX K. In the following, let RMQ(X , i, j) be the range
minimum query called on JX K for interval [i, j]. Given RMQ(X , i, j), with the rule for X being

X → YZ we proceed as follows:

• If the query asks about the minimum in the whole JX K, i.e., i = 1 and j = ℓX , then we return

the minimum of JX K; we call this case trivial in the following.

• If the whole range is within the substring generated by the first variable in the rule, i.e.,

j ≤ ℓY , then we call RMQ(Y , i, j).
• If the whole range is within the substring generated by the second nonterminal in a rule, i.e.,

i > ℓY , then we call RMQ(Z , i − ℓY , j − ℓY).

, Vol. 1, No. 1, Article . Publication date: March 2021.

:16 Moses Ganardi, Artur Jeż, and Markus Lohrey

• Otherwise, i.e., when i ≤ ℓY and j > ℓY and (i, j) , (1, ℓX), the range spans over the

substrings generated by both nonterminals. Thus we compute the queries for two substrings

and take their minimum, i.e., we return the minimum of RMQ(Y , i, ℓY) and RMQ(Z , 1, j − ℓY).

To see that the running time is O (depth(G)) = O (logn) observe first that the cost of trivial cases
can be charged to the function that called them. Thus it is enough to estimate the number of

nontrivial recursive calls. In the second and third case there is only one recursive call for a variable

that is deeper in the derivation tree of the SSLP. In the fourth case there are two calls, but two

nontrivial calls are made at most once during the whole computation: if two nontrivial calls are

made in the fourth case then one of them asks for the RMQ of a suffix of JY K and the other call asks
for the RMQ of a prefix of JZK. Moreover, every recursive call on a prefix of some string JX ′K leads
to at most one nontrivial call, which is again on a prefix of some string JX ′′K; and analogously for

suffixes.

Lifshits’ algorithm for compressed pattern matching [28]. The input consists of an SSLP P for

a pattern p and an SSLP T for a text t and the question is whether p occurs in t . Lifshits’ algorithm
has a running time of O (|P | · |T |2). It was conjectured by the author that the running time could

be improved to O (|P | · |T | · log |t |). This follows easily from Theorem 1.2: the algorithm fills a table

of size |P | · |T | and on each entry it calls a recursive subprocedure, whose running time is at most

depth(T). By Theorem 1.2 we can bound the running time by O (log |t |), which proves Lifshits’

conjecture. Note, that in the meantime a faster algorithm with running time O (|T | · log |p |) [25]
was found.

Smallest grammar problem. We conclude Part I of the paper with a remark on the so-called

smallest grammar problem for strings. In this problem one wants to compute for a given string

w a smallest SSLP defining w . The decision variant of this problem is NP-hard, the best known

approximation lower bound is
8569

8568
[11], and the best known approximation algorithms have an

approximation ratio of O (log(n/mopt)), where n is the length of the input string andmopt the size of

the smallest SSLP for the input string [11, 24, 26, 36]. Except for [24], all these algorithms produce

SSLPs of depth O (logn). It was discussed in [24] that the reason for the lack of constant-factor

approximation algorithms might be the fact that smallest SSLPs can have larger than logarithmic

depth. Theorem 1.2 refutes this conjecture.

3 PART II: BALANCING CIRCUITS OVER ALGEBRAS
In this second part of the paper we prove our general balancing result Theorem 1.4.

Example of free monoids. For a gentle introduction into this more algebraic part of the paper,

let us illustrate the main ideas using the example of a free monoidA = Σ∗, which is the underlying

algebraic structure of SSLPs. Recall that in the proof of Theorem 1.2 we treated every symmetric

centroid path X0,X1, . . . ,Xp individually. Let L1, . . . ,Ls be the variables branching off the path to

the left and R1, . . . ,Rt be the variables branching off the path to the right. We were able to produce

all suffixes of L1 · · · Ls and all prefixes of R1 · · ·Rt in “small depth” by the suffix lemma on weighted

strings (Proposition 2.2). Then every variable Xi can be written as a uiXpvi where ui is a suffix of

L1 . . . Ls and vi is a prefix of R1 . . .Rt .
A different approach would be to introduce special variables Zi which produce strings with

“holes” ui ∗ vi , i.e., we replace in the above right-hand side uiXpvi the variable Xp (the last last

variable on the symmetric centroid path) by the hole ∗. For the moment, we allow such variables

Zi , which will be eliminated in a second step. Observe that the variable Zi is obtained from Zi+1 by
inserting either Lj∗ or ∗R j for some j into the hole ∗. In the end Xi is obtained from Zi by inserting

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :17

Xp , which closes the hole. Again, using the suffix lemma on weighted strings, we can balance the

computation of the variables Zi to achieve logarithmic depth of the SLP.

What we obtain in this way is not a string SLP anymore, but an SLP (or a circuit) over a two-sorted

algebra
ˆA: besides the sort of strings from Σ∗, it contains a second sort, namely so called contexts

(strings with holes), which can be formalized as functions x 7→ uxv on Σ∗. We write lin(Σ∗) for the
set of all such functions (the function x 7→ uxv is a linear function on Σ∗). The above variables Zi
would be of sort lin(Σ∗); the hole ∗ in ui ∗vi markes the position of the variable x .

Besides the usual concatenation on strings (which is an operation from Σ∗ × Σ∗ to Σ∗) the algebra
ˆA contains an operation α : Σ∗ × lin(Σ∗) → Σ∗ to insert a string into a context (which corresponds

to function application) and an operation γ : lin(Σ∗) × lin(Σ∗) → lin(Σ∗) to insert a context into

another context (which corresponds to the composition of functions). Finally, it has two operations

that take a stringw as input and return the contextw∗, respectively ∗w . An SLP over
ˆA contains

variables of two sorts, which either produce strings or contexts. Every variable is computed from

other variables by applying the operations from the algebra
ˆA.

In a second step, the SLP over
ˆA of logarithmic depth (whose construction we have sketched

above) can be turned into an ordinary SSLP again. The reason is that every variable X which

computes a context u ∗ v can be split into two component variables X1 computing u and X2

computing v . Furthermore, all operations on context variables can be simulated in an SSLP on

these component variables. For example to translate the insertion of a context into another one,

say X = α (Y ,Z), we define X1 = Y1Z1 and X2 = Z2Y2.
At this point the reader might ask for the purpose of this detour via the two-sorted algebra

ˆA.

Indeed, if we would only be interested in the free monoid A = Σ∗ and SSLPs there would be no

reason to do this detour. The main advantage of our detour is that it can be generalized to a large

class of algebraic structures A. It enables us to balance SLPs (or, equivalently, circuits) over A

using a general construction and thereby avoiding an adhoc approach for each individual structure

A. As for the case of the free monoid, our general construction proceeds in two steps.

(1) First we constructed from the input SLP over A an equivalent logarithmic depth linear sized

SLP over an extended algebra
ˆA. It turns out that this step can be carried out for every

(multi-sorted) algebraA. For this we define
ˆA as the extension ofA by so called unary linear

term functions (unary linear term function over the free monoid Σ∗ are exactly functions of

the form x 7→ uxv).
(2) In the second step we have to transform the SLP over

ˆA from the first step back into an SLP

overA. Thereby the size and depth of the SLP should only increase by a constant factor. This

second step only works for algebras with a finite subsumption base. Roughly speaking, this

means that all unary linear term functions over A can be described by a finite number of

parameterized term functions. In the example of the free monoid, this parameterized form is

x 7→ y1xy2 where y1,y2 are the parameters that can be substituted by strings.

Outline. Part II of this paper is structured as follows: In Sections 3.1.1–3.1.6 we start with

definitions on (multi-sorted) algebras, terms, and straight-line programs over algebras. In Sec-

tions 3.1.7 and 3.2 we prove (a reformulation of) Theorem 1.4. Finally in Section 3.3 and 3.4 we

apply Theorem 1.4 to forest straight-line programs and top dags, which yields Theorem 1.3 from

the introduction.

3.1 Algebras and their straight line programs
3.1.1 Ranked trees. Let us fix a finite set S of sorts. Later, we will assign to each sort i ∈ S a

set Ai (of elements of sort i). Formally, an S-sorted signature is a set of symbols Γ and a mapping

type : Γ → S+ that assigns to each symbol from Γ a non-empty word over the alphabet S. For each

, Vol. 1, No. 1, Article . Publication date: March 2021.

:18 Moses Ganardi, Artur Jeż, and Markus Lohrey

f ∈ Γ the number |type(f) | − 1 ≥ 0 is also called the rank of f . Let Γi ⊆ Γ (i ≥ 0) be the set of all

symbols in Γ of rank i .
In most cases, i.e., in proofs and definitions, the type mapping is either clear from the context or

unimportant, therefore it is suppressed and the sorted signature (Γ, type) is simply denoted by Γ,
which is called a sorted signature.

Let us also fix a second (infinite) S-sorted signature X, where every x ∈ X has rank zero; so

formally: the sorted signature is (X, type) and type(x) is an element of S for each x ∈ X. Elements

of X are called variables. For p ∈ S let Xp = {x | type(x) = p}. We assume that every set Xp is

infinite. We will always work with a finite subset Y of X. Take such a set Y . For each sort p ∈ S
we define the set of terms Tp (Γ,Y) of sort p by simultaneous induction as the smallest set such

that the following holds:

• Every x ∈ Xp ∩ Y belongs to Tp (Γ,Y).
• If f ∈ Γn with type(f) = p1 · · ·pnq and ti ∈ Tpi (Γ,Y) for 1 ≤ i ≤ n, then f (t1, t2, . . . , tn) ∈
Tq (Γ,Y).

We write Tp (Γ) for Tp (Γ, ∅), and call its elements ground terms (of sort p). Note that if a ∈ Γ0 and
type(a) = p ∈ S then a() ∈ Tp (Γ). In this case, we write a for a() and call a a constant of sort p. Let
T (Γ,Y) =

⋃
p∈S Tp (Γ,Y).

Elements of T (Γ,Y) can be viewed as node labeled trees, where leaves are labeled with symbols

from Γ0 ∪ Y and every internal node is labeled with a symbol from some Γn with n ≥ 1: The root

of the tree corresponding to the term f (t1, t2, . . . , tn) is labeled with f and its direct subtrees are

the trees corresponding to t1, . . . , tn . Note that the composition of two functions f : A→ B and

д : B → C is denoted by д ◦ f , in particular we first apply f followed by д.
For a term t we define the size |t | of t as the number of edges of the corresponding tree. Equiva-

lently, |t | is inductively defined as follows: If t = x is a variable, then |t | = 0. If t = f (t1, t2, . . . , tn)
for f ∈ Γ, then |t | = n +

∑n
i=1 |ti |. The depth of a term t is denoted by depth(t) and defined in-

ductively as usual: If t = x is a variable, then depth(t) = 0. If t = f (t1, t2, . . . , tn) for f ∈ Γ, then
depth(t) = max{1 + depth(ti) | 1 ≤ i ≤ n} with max ∅ = 0.

Definition 3.1 (substitutions). A substitution is a mapping η : Y → T (Γ,Z) for finite (not nec-
essarily disjoint) subsets Y,Z ⊆ X such that y ∈ Y ∩ Xp implies η(y) ∈ Tp (Γ,Z). If Z = ∅, we
speak of a ground substitution. For t ∈ T (Γ,Y) we define the term η(t) by replacing simultaneously

all occurrences of variables in t by their images under η. Formally we extend η : Y → T (Γ,Z) to a
mapping η : T (Γ,Y) → T (Γ,Z) by η(f (t1, . . . , tn)) = f (η(t1), . . . ,η(tn)) (in particular, η(a) = a
for a ∈ Γ0). A variable renaming is a bijective substitution η : Y → Z for finite variable sets Y and

Z of the same size.

Definition 3.2 (contexts). Letp,q ∈ S. We define the set of contexts Cpq (Γ,Y) as the set of all terms

t ∈ Tq (Γ,Y ∪ {x }), where x ∈ Xp \ Y is a fresh variable such that (i) t , x , (ii) and x occurs exactly

once in t . We call x themain variable of t andY the set of auxiliary variables of t .1 We write Cpq (Γ)
for Cpq (Γ, ∅). Elements of Cpq (Γ) are called ground contexts. Let C (Γ,Y) =

⋃
p,q∈S Cpq (Γ,Y) and

C (Γ) = C (Γ, ∅). For s ∈ Cqr (Γ,Y) and t ∈ Tq (Γ,Z) (or t ∈ Cpq (Γ,Z))we define s[t] ∈ Tr (Γ,Y∪Z)
(s[t] ∈ Cpr (Γ,Y∪Z)) as the result of replacing the unique occurrence of the main variable in s by t .
Formally, we can define s[t] as η(s) where η is the substitution with domain {x } and η(x) = t , where
x is the main variable of s . An atomic context is a context of the form f (y1, . . . ,yk−1,x ,yk+1, . . . ,yk)
where x is the main variable and the yi are the auxiliary variables (we can have yi = yj for i , j).
Note that there are only finitely many atomic contexts up to renaming of variables.

1
Since also Y may contain a variable y that occurs exactly once in t , we explicitly have to declare a variable as the main

variable. Most of the times, the main variable will be denoted with x .

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :19

3.1.2 Algebras. We will produce strings, trees and forests by ground terms (also called algebraic

expressions in this context) over certain (multi-sorted) algebras. These expressions will be com-

pressed by directed acyclic graphs. In this section, we introduce the generic framework, which will

be reinstantiated several times later on.

Fix a finite S-sorted signature Γ. A Γ-algebra is a tuple A = ((Ap)p∈S, (f
A)f ∈Γ) where every

Ap is a non-empty set (the universe of sort p or the set of elements of sort p) and for every f ∈ Γn
with type(f) = p1p2 · · ·pnq, f

A
:

∏
1≤j≤n Apj → Aq is an n-ary function. We also say that Γ is the

signature of A. In our settings, the sets Ap will be always pairwise disjoint, but formally we do not

need this. Quite often, we will identify the function f A with the symbol f . Functions of arity zero

are elements of some Ap . A ground term t ∈ Tp (Γ) can be viewed as an algebraic expression over

A that evaluates to an element tA ∈ Ap in the natural way. For x ∈
⋃

p∈S Ap we also write x ∈ A
and for Ap we also write Ap .

When we define a Γ-algebra, we usually will not specify the types of the symbols in Γ. Instead,
we just list the sets Ap (p ∈ S) and the functions f A (f ∈ Γ) including their domains. The latter

implicitly determine the types of the symbols in Γ.

Example 3.3. A well known example of a multi-sorted algebra is a vector space. More precisely, it

can be formalized as a Γ-algebra, where Γ = {0, 0, 1, ⊕, ⊙,+, ·} is a S-sorted signature for S = {v, s}.
Here v stands for “vectors” and s stands for “scalars”. The types of the symbols in Γ are defined as

follows:

• type(0) = v (the zero vector),

• type(0) = s (the 0-element of the scalar field),

• type(1) = s (the 1-element of the scalar field),

• type(⊕) = vvv (vector addition),

• type(⊙) = svv (multiplication of a scalar by a vector),

• type(+) = sss (addition in the field of scalars),

• type(·) = sss (multiplication in the field of scalars).

Note that we cannot define non-trivial vectors by ground terms. For this, we should add some

constants of type v to the signature. For the vector space Fn for a field F we might for instance add

the constants e1, . . . , en , where ei denotes the i-th unit vector in the standard basis.

From the sets Tp (Γ) one can construct the free term algebra

T (Γ) = ((Tp (Γ))p∈S, (f)f ∈Γ),

where every ground term evaluates to itself. For every Γ-algebraA, the mapping t 7→ tA (t ∈ T (Γ))
is a homomorphism from the free term algebra to A. We need the technical assumption that this

homomorphism is surjective, i.e., for every a ∈ A there exists a ground term t ∈ T (Γ) with a = tA .
In our concrete applications this assumption will be satisfied. Moreover, one can always replace A

by the subalgebra induced by the elements tA (we will say more about this later).

For a Γ-algebra A = ((Ap)p∈S, (f
A)f ∈Γ), a variable x ∈ Xp and a ∈ Ap , we define the (Γ ∪ {x })-

algebra A[x/a] = ((Ap)p∈S, (f
A[x/a])f ∈Γ∪{x }) by f A[x/a] = f A for f ∈ Γ and xA[x/a] = a.

Definition 3.4 (unary linear term functions). Given a Γ-algebraA and a ground context t ∈ Cpq (Γ)

with main variable x , we define the function tA : Ap → Aq by tA (a) = tA[x/a]
for all a ∈ Ap . We

call tA a unary linear term function, ULTF for short. We write linpq (A) for the set of all ULTFs tA

with t ∈ Cpq (Γ).

Example 3.5. Consider the the vector space R2 in the context of Example 3.3 and let

t = e1 ⊕ ((1 + 1) ⊙ (xv ⊕ e2)) ∈ Cvv

, Vol. 1, No. 1, Article . Publication date: March 2021.

:20 Moses Ganardi, Artur Jeż, and Markus Lohrey

(recall that v is the sort of vectors). The corresponding ULTF is the affine mapping x 7→ 2x ⊕ (1, 2)T

on R2 ((1, 2)T is the column vector with entries 1 and 2).

As another example note that a ULTF, where the underlying algebra is a ring R (this is a one-

sorted algebra), is nothing else than a linear polynomial over R in a single variable x .

3.1.3 Straight-line programs. Let Γ be any S-sorted signature. A straight-line program over Γ
(Γ-SLP for short) is a tuple G = (V, ρ, S), whereV ⊆ X is a finite set of variables, S ∈ V is the

start variable and ρ : V → T (Γ,V) is a substitution (the so called right-hand side mapping) such
that the edge relation E (G) = {(y, z) ∈ V × V | z occurs in ρ (y)} is acyclic. This implies that

there exists an n ≥ 1 such that ρn : T (Γ,V) → T (Γ) (the n-fold composition of ρ) is a ground
substitution (we can choose n = |V |). For this n, we write ρ∗ for ρn . Note that ρ∗ ◦ ρ = ρ ◦ ρ∗ = ρ∗.
The term defined by G is JGK := ρ∗ (S); it is also called the derivation tree of G.

In many papers on straight-line programs, the variables of a Γ-SLP are denoted by capital letters

X ,Y ,Z ,X ′, etc. We follow this tradition. For a variable X ∈ V we also write JX KG (or JX K if G is

clear from the context) for the ground term ρ∗ (X).
Let A be a Γ-algebra. A Γ-SLP G = (V, ρ, S) is also called an SLP over the algebra A. We can

evaluate every variableX ∈ V to its value ρ∗ (X)A = JX KA ∈ A inA. It is important to distinguish

this value from the syntactically computed ground term ρ∗ (X) (which is the evaluation of X in the

free term algebra). Also note that in part I of the paper, we used the notation JX K for variables of
string straight-line programs, which are obtained from the above general definition by taking a free

monoid Σ∗ for the structure A. In other words: a string JX K from the first part of the paper would

be denoted with JX KΣ∗ in the second part of the paper. The reason for this change in notation is

two-fold. First, we did not want to overload the notation in Part I (especially for readers that are

only interested in the balancing result for strings); hence we decided to omit the superscripts Σ∗

there. Second, in the following sections the ground terms JX K are the important objects, which

justifies a short notation for them.

The term ρ (X) is also called the right-hand side of the variable X ∈ V . By adding fresh variables,

we can transform every Γ-SLP in linear time into a so-called standard Γ-SLP, where all right-

hand sides have the form f (X1, . . . ,Xn) for variables X1, . . . ,Xn (we can have Xi = X j for i , j).
A standard Γ-SLP G is the same object as a DAG (directed acyclic graph) with Γ-labelled nodes: the

DAG is (V,E (G)) and if ρ (X) = f (X1, . . . ,Xn) then node X is labelled with f . Since the order of
the edges (X ,Xi) (1 ≤ i ≤ n) is important and we may have Xi = X j for i , j we formally replace

the edge (X ,Xi) by the triple (X , i,Xi). A Γ-SLP interpreted over a Γ-algebra A is also called an

algebraic circuit over A.

Consider a (possibly non-standard) Γ-SLP G = (V, ρ, S). We define the size |G| of G as∑
X ∈V |ρ (X) |. For a standard Γ-SLP this is the number of edges of the corresponding DAG (V,E (G)).

The depth of G is defined as depth(G) = depth(JGK), i.e. the depth of the derivation tree of G. For

a standard Γ-SLP G this is the maximum length of a directed path in the DAG (V,E (G)). Our
definitions of size and depth ensure that both measures do not increase when one transforms a

given Γ-SLP into a standard Γ-SLP. In this paper, the sizes of the right-hand sides will be always

bounded by a constant that only depends on the underlying algebra A.

Example 3.6. Consider the following standard Γ-SLP G, where Γ is the {v, s}-sorted signature for

vector spaces from Example 3.3. The variables are X1, . . . ,X7 (variables of sort v) and Y1, . . . ,Y4
(variables of sort s), the start variable is X1, and the mapping ρ is defined by

ρ (X1) = X2 ⊕ X6, ρ (X2) = X3 ⊕ X4, ρ (X3) = Y1 ⊙ X4, ρ (X4) = X5 ⊕ X6, ρ (X5) = X7 ⊕ X7,

ρ (X6) = e2, ρ (X7) = e1

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :21

⊕(34, 18)T X1

⊕(34, 17)T X2

⊙(32, 16)T X3

⊕(2, 1)T X4

·16 Y1

+4 Y2

+2 Y3

11 Y4

⊕(2, 0)T X5

e1(1, 0)T X7

e2(0, 1)T X6

Fig. 3. A circuit over the vector space R2, which evaluates to the vector (34, 18)T.

ρ (Y1) = Y2 · Y2, ρ (Y2) = Y3 + Y3, ρ (Y3) = Y4 + Y4, ρ (Y4) = 1.

Figure 3 shows the algebraic circuit that corresponds to G. We can evaluate the SLP over the vector

spaceA = R2 (a particular Γ-algebra, see also Examples 3.5). The resulting values (either vectors or

scalars) of the variables are written next to the corresponding gates in Figure 3. We have |G| = 16

(there are 16 edges in Figure 3) and depth(G) = 6.

3.1.4 Functional extensions. An important concept in this paper is a functional extension
ˆT (Γ)

of the free term algebra T (Γ). We define an algebra
ˆT (Γ) over an S ∪ S2

-sorted signature Γ̂.

Definition 3.7 (Signature Γ̂). Let Γ be a S-sorted signature. The S ∪ S2
-sorted signature Γ̂ is

Γ̂ = Γ ⊎
⋃
n≥1

{ ˆfi | f ∈ Γn , 1 ≤ i ≤ n} ⊎ {γpqr | p,q, r ∈ S} ⊎ {αpq | p,q ∈ S} (7)

where the type function is defined as follows:

• Symbols from Γ have the same types in Γ̂.

• If type(f) = p1 · · ·pnq then type(ˆfi) = p1 · · ·pi−1pi+1 · · ·pnq.
• For all p,q, r ∈ S we set type(γpqr) = (p,q) (q, r) (p, r).
• For all p,q ∈ S we set type(αpq) = p (p,q)q.

Definition 3.8 (Γ̂-algebra ˆT (Γ)). The Γ̂-algebra ˆT (Γ) = ((As)s ∈S∪S2 , (f
ˆT (Γ))f ∈Γ̂) is defined as

follows: the sets Ap and Apq for p,q ∈ S are defined as

• Ap = Tp (Γ) and
• Apq = Cpq (Γ).

The operations д
ˆT (Γ)

(д ∈ Γ̂) are defined as follows, where we write д instead of д
ˆT (Γ)

:

• For every symbol f ∈ Γn the algebra
ˆT (Γ) inherits the function f T (Γ)

from T (Γ).
• For every symbol f ∈ Γn with type(f) = p1 · · ·pnq (n ≥ 1) and every 1 ≤ k ≤ n we define

the (n − 1)-ary operation

ˆfk :
∏
1≤i≤n
i,k

Tpi (Γ) → Cpkq (Γ)

, Vol. 1, No. 1, Article . Publication date: March 2021.

:22 Moses Ganardi, Artur Jeż, and Markus Lohrey

by
ˆfk (t1, . . . , tk−1, tk+1, . . . , tn) = f (t1, . . . , tk−1,x , tk+1, . . . , tn) for all ti ∈ Tpi (Γ) (1 ≤ i ≤ n,

i , k).
• For all p,q, r ∈ S the binary operation γpqr : Cpq (Γ) × Cqr (Γ) → Cpr (Γ) is defined by

γpqr (t , s) = s[t].
• For all p,q ∈ S the binary operation αpq : Tp (Γ) × Cpq (Γ) → Tq (Γ) is defined by αpq (t , s) =
s[t].

The definition of the operations αpq and γpqr suggests to write s[t] instead of αpq (t , s) or γpq (t , s),
which we will do most of the times.

Recall the definition of unary linear term functions (ULTFs) fromDefinition 3.4. An atomic ULTF is
of the form z 7→ f A (a1, . . . ,ak−1, z,ak+1, . . . ,an) for f ∈ Γn with type(f) = p1 · · ·pnq and ai ∈ Api
for (1 ≤ i ≤ n, i , k). We denote this function with f A (a1, . . . ,ak−1, ·,ak+1, . . . ,an) in the following.
At this point, we use the assumption that every element ofA can be written as tA for a ground term

t . Hence, the elements ai are defined by terms, which ensures that f A (a1, . . . ,ak−1, ·,ak+1, . . . ,an)
is indeed a ULTF. It is easy to see that every ULTF is the composition of finitely many atomic

ULTFs.

Definition 3.9 (Γ̂-algebra ˆA). Given a Γ-algebraA = ((Ap)p∈S, (f
A)f ∈Γ) we define the Γ̂-algebra

ˆA = ((Bs)s ∈S∪S2 , (f
ˆA)f ∈Γ̂) as follows: The sets Bp and Bpq for p,q ∈ S are defined as:

• Bp = Ap and

• Bpq = linpq (A).

The operations д
ˆA
(д ∈ Γ̂) are defined as follows, where we write д instead of д

ˆA
.

• Every f ∈ Γ is interpreted as f
ˆA = f A .

• For every symbol f ∈ Γn with type(f) = p1 · · ·pnq (n ≥ 1) and every 1 ≤ k ≤ n we define

the (n − 1)-ary operation

ˆfk :

∏
1≤i≤n
i,k

Api → linpkq (A)

by
ˆfk (a1, . . . ,ak−1,ak+1, . . . ,an) = f A (a1, . . . ,ak−1, ·,ak+1, . . . ,an) for all ai ∈ Api (1 ≤ i ≤

n, i , k).
• For all p,q, r ∈ S the binary operation γpqr : linpq (A) × linqr (A) → linpr (A) is defined as

function composition: γpqr (д,h) = h ◦ д.
• For all p,q ∈ S the binary operation αpq : Ap × linpq (A) → Aq is defined as function

application: αpq (a,д) = д(a).

Note that Definitions 3.8 and 3.9 are consistent in the following sense: If we apply the construction

from Definition 3.9 forA = T (Γ) (the free term algebra) then we obtain an isomorphic copy of the

algebra
ˆT (Γ) from Definition 3.8, i.e.,

ET (Γ) � ˆT (Γ). Moreover, the mappings t 7→ tA (for ground

terms t) and c 7→ cA (for ground contexts c) yield a canonical surjective morphism from
ˆT (Γ) to

ˆA that extends the canonical morphism from the free term algebra T (Γ) to A.

Example 3.10. IfA = (Σ∗, ·) is the free monoid over the finite alphabet Σ (i.e., · is the concatenation

function: u · v = uv), then ˆA is the extended algebra explained in the example at the beginning of

Section 3: The unary function ·̂1 (respectively, ·̂2) turns a string w ∈ Σ∗ into the unary function

x 7→ xw (respectively, x 7→ wx). The function γ inserts into a unary function another unary

function, and α inserts into a unary function a string.

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :23

3.1.5 Tree straight-line programs. Recall the definition of the S ∪ S2
-sorted signature Γ̂ in (7).

A Γ̂-SLP G which evaluates in the Γ̂-algebra ˆT (Γ) to a ground term (i.e., JGK ˆT (Γ) ∈ T (Γ)) is also
called a tree straight-line program over Γ (Γ-TSLP for short) [15, 17, 31].

Recall that Γ̂ contains for every f ∈ Γn with n ≥ 1 the unary symbols
ˆfk (1 ≤ k ≤ n). Right-hand

sides of the form
ˆfk (X1, . . . ,Xk−1,Xk+1, . . . ,Xn) in a Γ-TSLP are written for better readability as

f (X1, . . . ,Xk−1,x ,Xk+1, . . . ,Xn). This is also the notation used in [15, 17, 31]. For right-hand sides

of the form αpq (X ,Y) or γpqr (X ,Y) we write X [Y].

Example 3.11. Let us assume that S consists of a single sort. Consider the Γ-TSLP

G = ({S,X1, . . . ,X7}, ρ, S)

with Γ2 = { f ,д}, Γ0 = {a,b} and ρ (S) = X1[X2], ρ (X1) = X3[X3], ρ (X2) = X4[X5], ρ (X3) = f (x ,X7),
ρ (X4) = X6[X6], ρ (X5) = a, ρ (X6) = д(X7,x), ρ (X7) = b. We get

• JX6K
ˆT (Γ) = ρ∗ (X6)

ˆT (Γ) = д(b,x),

• JX4K
ˆT (Γ) = ρ∗ (X4)

ˆT (Γ) = д(b,x)[д(b,x)] = д(b,д(b,x)),

• JX3K
ˆT (Γ) = ρ∗ (X3)

ˆT (Γ) = f (x ,b),

• JX2K
ˆT (Γ) = ρ∗ (X2)

ˆT (Γ) = д(b,д(b,x))[a] = д(b,д(b,a)),

• JX1K
ˆT (Γ) = ρ∗ (X1)

ˆT (Γ) = f (x ,b)[f (x ,b)] = f (f (x ,b),b), and

• JGK ˆT (Γ) = ρ∗ (S)
ˆT (Γ) = f (f (x ,b),b)[д(b,д(b,a))] = f (f (д(b,д(b,a)),b),b).

3.1.6 From TSLPs to SLPs. Fix a Γ-algebra A. Our first goal is to transform a Γ-TSLP G into

a Γ-SLPH of size O (|G|) and depth O (depth(G)) such that JH KA = JGK ˆA
. For this, we have to

restrict the class of Γ-algebras. For instance, for the free term algebra the above transformation

cannot be achieved in general: the chain tree tn = f (f (f (· · · f (a) · · ·))) with 2
n
occurrences of f

can be easily produced by a {a, f }-TSLP of size O (n) but the only DAG (= SLP over the free term

algebra T ({a, f })) for tn is tn itself. We restrict ourselves to algebras with a finite subsumption

base, as defined below. Such algebras have been implicitly used in our recent papers [15, 17].

Definition 3.12 (equivalence and subsumption preorder in A). For contexts s, t ∈ Cpq (Γ,Y)
we say that s and t are equivalent in A if for every ground substitution η : Y → T (Γ) we have
η(s)A = η(t)A (which is an ULTF).

For contexts s ∈ Cpq (Γ,Y) and t ∈ Cpq (Γ,Z) we say that t subsumes s inA or that s is subsumed

by t in A (t ≤A s for short) if there exists a substitution ζ : Z → T (Γ,Y) such that s and ζ (t) are
equivalent in A.

A subsumption base of A is a set of (not necessarily ground) contexts C such that for every

context s there exists a context t ∈ C with t ≤A s .

It is easy to see that ≤A is reflexive and transitive but in general not antisymmetric. Moreover,

the relation ≤A satisfies the following monotonicity property:

Lemma 3.13. Let s ∈ Cqr (Γ,Y), t1 ∈ Cpq (Γ,Z1) and t2 ∈ Cpq (Γ,Z2) be contexts such that
Y ∩ Z1 = ∅ and Y ∪ Z1 ∪ Z2 contains none of the main variables of s , t1, t2. If t1 ≤A t2 then
s[t1] ≤

A s[t2].

Proof. Since t1 subsumes t2 in A there exists a substitution ζ : Z1 → T (Γ,Z2) such that for

every ground substitution η : Z2 → T (Γ) we have

η(t2)
A = η(ζ (t1))

A .

, Vol. 1, No. 1, Article . Publication date: March 2021.

:24 Moses Ganardi, Artur Jeż, and Markus Lohrey

Define the substitution ζ ′ : Y ∪Z1 → T (Γ,Y ∪Z2) by

ζ ′(y) =



ζ (y) if y ∈ Z1,

y if y ∈ Y .

AsZ1 ∩ Y = ∅ by the assumption, ζ ′ is well defined. It satisfies ζ ′(t1) = ζ (t1) and ζ
′(s) = s . For

any ground substitution η : Y ∪Z2 → T (Γ) we have:

η(s[t2])
A = (η(s)[η(t2)])

A

= η(s)A ◦ η(t2)
A

= η(s)A ◦ η(ζ (t1))
A

= η(ζ ′(s))A ◦ η(ζ ′(t1))
A

= (η(ζ ′(s))[η(ζ ′(t1))])
A

= η(ζ ′(s[t1]))
A .

This implies s[t1] ≤
A s[t2]. □

We will be interested in algebras that have a finite subsumption base. In order to show that a set

C is a finite subsumption base we will use the following lemma.

Lemma 3.14. Let A be a Γ-algebra and let C be a finite set of contexts with the following properties:
• For every atomic context s there exists t ∈ C with t ≤A s .
• For every atomic context s and every t ∈ C such that s[t] is defined and s and t do not share
auxiliary variables, there exists t ′ ∈ C with t ′ ≤A s[t].

Then C is a subsumption base.

Proof. Assume that the two conditions from the lemma hold. We show by induction on s that
for every context s there exists a context t ∈ C with t ≤A s .
If s = f (s1, . . . , si−1,x , si+1, . . . , sn) for some terms s1, . . . , si−1, si+1, . . . , sn then s is subsumed

in A by the atomic context f (y1, . . . ,yi−1,x ,yi+1, . . . ,yn), which in turn is subsumed in A by

some t ∈ C . If s = f (s1, . . . , si−1, s
′, si+1, . . . , sn) for some terms s1, . . . , sn and some context s ′

then f (y1, . . . ,yi−1, s
′,yi+1, . . . ,yn) ≤

A s for fresh auxiliary variables y1, . . . ,yi−1,yi+1, . . . ,yn
(that neither occur in s ′ nor any context from C). By induction there exists t ′ ∈ C with t ′ ≤A s ′.
By Lemma 3.13 we have f (y1, . . . ,yi−1, t

′,yi+1, . . . ,yn) ≤
A f (y1, . . . ,yi−1, s

′,yi+1, . . . ,yn). By the

second assumption from the lemma, we have that t ′′ ≤A f (y1, . . . ,yi−1, t
′,yi+1, . . . ,yn) for some

t ′′ ∈ C . We get t ′′ ≤A s by transitivity of ≤A . □

Remark 3.15. Recall that we made the technical assumption that every element a of A can be

written as tA for a ground term A. Let B be the subalgebra of A that is induced by all elements

tA for t ∈ T (A). It is obvious that every subsumption base of A is also a subsumption base of B.

Example 3.16. Every semiring A = (A,+,×,a1, . . . ,an), where a1, . . . ,an ∈ A are arbitrary

constants, has a finite subsumption base. Here we do not assume that × is commutative, nor do we

assume that identity elements with respect to + or × exist. In other words: (A,+) is a commutative

semigroup, (A,×) is a semigroup and the left and right distributive law holds. The finite subsumption

baseC (A) consists of the following contexts axb + c,ax + c,xb + c,x + c,axb,ax ,xb, and x , where
x is the main variable and a,b, c are auxiliary variables. We write ab instead of a × b and omit

in axb brackets that are not needed due to the associativity of multiplication. To see that every

context s is subsumed in A by one of the contexts from C (A), observe that a context defines a
linear polynomial in the main variable x . Hence, every context is equivalent inA to a context of the

form sxt + u, sx + u,xt + u,x + u, sxt , sx ,xt or x , where s, t ,u are terms that contain the auxiliary

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :25

parameters. Each of these contexts is subsumed by a context from C (A) by the substitution ζ with

ζ (a) = s , ζ (b) = t , and ζ (c) = u.
Let us remark that the above proof can be adapted to the situation that also + is not commutative.

In that case, we have include the terms c ′ + axb + c , c ′ + ax + c , c ′ + xb + c , c ′ + x + c , c ′ + axb,
c ′ + ax , c ′ + xb and c ′ + x to the set C (A).

On the other hand, if (A,+) has a neutral element, called 0 in the following, then axb + c,ax +
c,xb + c,x + c is s subsumption base. To see this observe that, for instance, axb is subsumed by

axb + c , which is shown by the substitution c 7→ 0.

Example 3.17. If Γ contains a symbol of rank at least one, then the free term algebra T (Γ) has no
finite subsumption base: If C were a finite subsumption base of T (Γ), then every ground context

could be obtained from some t ∈ C by replacing the auxiliary parameters in t by ground terms.

But this replacement does not change the length of the path from the root of the context to its

main variable. Hence, we would obtain a bound for the length of the path from the root to the main

variable in a ground context, which clearly does not exist.

Lemma 3.18. Assume that the Γ-algebraA has a finite subsumption base. Then from a given Γ-TSLP
G one can compute in time O (|G|) a Γ-SLP H of size O (|G|) and depth O (depth(G)) such that
JGK ˆA = JH KA .

Proof. LetC (A) be a finite subsumption base forA. We say that a context s ∈ C (Γ,Y) belongs
to C (A) up to variable renaming if there is a variable renaming θ : Y → Z such that θ (s) ∈ C (Γ).
Since the algebra A is fixed, the set C (A) has size O (1). Assume that s and t are contexts with
the following properties: (i) s[t] is defined, (ii) s and t have no common auxiliary variable, and (iii)

s and t belong to C (A) up to variable renaming. We denote with s · t a context from C (A) with
s · t ≤A s[t]. Since s and t have size O (1) (C (A) is a fixed set of contexts), we can compute from

s, t in constant time the context s · t and a substitution ζ such that s[t] and ζ (s · t) are equivalent in
A. Similarly, one can compute from a given atomic context s in constant time a context t ∈ C (A)
and a ground substitution ζ such that s and ζ (t) are equivalent in A.

Let G = (V, ρ, S). We define V0 = {X ∈ V | ρ∗ (X)
ˆT (Γ) ∈ T (Γ)} and V1 = {X ∈ V |

ρ∗ (X)
ˆT (Γ) ∈ C (Γ)} = V \V0. The Γ-SLPH to be constructed will be denoted withH = (V ′,τ , S).

We will haveV0 ⊆ V
′
. A variableX ∈ V1 is replaced inH by a finite setYX of variables. Moreover,

we will compute a context tX ∈ C (Γ,YX) that belongs to C (A) up to variable renaming. We can

assume that YX ∩ YX ′ = ∅ = YX ∩V0 for all X ,X
′ ∈ V1 with X , X ′. The set of variables ofH is

thenV ′ = V0 ∪
⋃

X ∈V1
YX . Moreover,H will satisfy the following conditions:

(a) If X ∈ V0 then ρ∗ (X)
ˆA = τ ∗ (X)A (which is an element of A).

(b) If X ∈ V1 then ρ∗ (X)
ˆA = τ ∗ (tX)

A
(which is a ULTF on A).

We constructH bottom-up. That means that we process all variables inV in a single pass over G.

When we process a variable X ∈ V we have already processed all variables X ′ that appear in ρ (X).
In particular, the set YX ′ and the context tX ′ ∈ C (Γ,YX ′) (in case X ′ ∈ V1) are defined. In addition,

X ′ satisfies the above conditions (a) and (b).

We proceed by a case distinction according to the right-hand side ρ (X) ofX ∈ V . This right-hand

side has one of the following four forms:

Case 1. X ∈ V0 and ρ (X) = f (X1, . . . ,Xn) for f ∈ Γn (n ≥ 0) and X1, . . . ,Xn ∈ V0. Then we set

τ (X) = ρ (X). Clearly, the above condition (a) holds.

Case 2. X ∈ V0 and ρ (X) = X ′[X ′′] with X ′ ∈ V1, X
′′ ∈ V0. By induction we have ρ∗ (X ′′)

ˆA =

τ ∗ (X ′′)A . Moreover, we have computed a context tX ′ ∈ C (Γ,YX ′) that belongs to C (A) up to

, Vol. 1, No. 1, Article . Publication date: March 2021.

:26 Moses Ganardi, Artur Jeż, and Markus Lohrey

variable renaming and such that ρ∗ (X ′)
ˆA = τ ∗ (tX ′)

A
. We define τ (X) = tX ′[X

′′
] ∈ T (Γ,YX ′ ∪

{X ′′}) (that is, we replace the main variable in tX ′ by X
′′
) and get

ρ∗ (X)
ˆA = ρ∗ (X ′)

ˆA (ρ∗ (X ′′)
ˆA) = τ ∗ (tX ′)

A (τ ∗ (X ′′)A)

= τ ∗ (tX ′[X
′′
])A = τ ∗ (τ (X))A = τ ∗ (X)A .

Case 3. X ∈ V1 and ρ (X) = f (X1, . . . ,Xk−1,x ,Xk+1, . . . ,Xn) for f ∈ Γn (n ≥ 1) and X1, . . . ,Xk−1,

Xk+1, . . . ,Xn ∈ V0. By induction we have ρ∗ (Xi)
ˆA = τ ∗ (Xi)

A
for 1 ≤ i ≤ n, i , k . We can view

ρ (X) as an atomic context with main variable x and auxiliary variables X1, . . . ,Xk−1,Xk+1, . . . ,Xn .

Hence, we can compute tX ∈ C (A) with tX ≤
A ρ (X). We rename the auxiliary variables of

tX such that they do not already belong to H . Let YX be the set of auxiliary variables of tX .
We then add all variables in YX to H . By the definition of ≤A there is a substitution ζ : YX →
T (Γ, {X1, . . . ,Xk−1,Xk+1, . . . ,Xn }) such that

ρ∗ (X)
ˆA = ρ∗ (ρ (X))

ˆA = τ ∗ (ρ (X))A = τ ∗ (ζ (tX))
A .

We define the right-hand side for every new variable Y ∈ YX by τ (Y) = ζ (Y) and get ρ∗ (X)
ˆA =

τ ∗ (ζ (tX))
A = τ ∗ (τ (tX))

A = τ ∗ (tX)
A
, which is point (b).

Case 4. X ∈ V1 with ρG (X) = X ′[X ′′] and X ′,X ′′ ∈ V1. We have already defined the terms tX ′, tX ′′

that belong toC (A) up to variable renaming. The set of auxiliary variables of tX ′ (resp., tX ′′) isYX ′

(resp., YX ′′) and we have YX ′ ∩ YX ′′ = ∅. Moreover, by the induction hypothesis for X ′ and X ′′ we

have ρ∗ (X ′)
ˆA = τ ∗ (tX ′)

A
and ρ∗ (X ′′)

ˆA = τ ∗ (tX ′′)
A
. We set tX := tX ′ · tX ′′ ∈ C (A). We rename the

auxiliary variables of tX such that they do not already belong toH . Let YX be the set of auxiliary

variables of tX . We then add every Y ∈ YX to H . By definition of tX we have tX ≤
A tX ′[tX ′′],

which implies that there is a substitution ζ : YX → T (Γ,YX ′ ∪ YX ′′) with

ρ∗ (X)
ˆA = ρ∗ (X ′)

ˆA ◦ ρ∗ (X ′′)
ˆA = τ ∗ (tX ′)

A ◦ τ ∗ (tX ′′)
A

= τ ∗ (tX ′[tX ′′])
A = τ ∗ (ζ (tX))

A .

We define the right-hand side for every new variable Y ∈ YX by τ (Y) = ζ (Y) and get ρ∗ (X)
ˆA =

τ ∗ (ζ (tX))
A = τ ∗ (τ (tX))

A = τ ∗ (tX)
A
, which is point (b).

The running time for the construction ofH is O (|G|), since for each variable X ∈ V we only

spend constant time (see the remark from the first paragraph of the proof). In each step we have to

take a constant number of fresh auxiliary variables. We can take them from a list Y1,Y1,Y3, . . . and
store a pointer to the next free variable. □

It is known [15, 17] that a ranked tree t of size n can be transformed in linear time into a

tree straight-line program of size O (n/ logσ n) and depth O (logn), where σ is the number of

different node labels that appear in t . With Lemma 3.18 it follows that for every algebra A having

a finite subsumption base one can compute in linear time from a given expression tree of size n an

equivalent circuit of size O (n/ logσ n) and depth O (logn) (σ is a constant here, namely the number

of operations of the algebra A).

3.1.7 Main result for Γ-straight line programs. We now state the main technical result for Γ-
straight line programs. Note that for some applications we need a signature Γ that is part of the

input.

Theorem 3.19. From a given signature Γ and a Γ-SLP G, which defines the tree t = JGK ∈ T0 (Γ),
one can compute in time O (|G|) a Γ-TSLPH such that JH K ˆT (Γ) = t , |H | ∈ O (|G|) and depth(H) ∈
O (log |t |).

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :27

We will prove Theorem 3.19 in Section 3.2. Together with Lemma 3.18, Theorem 3.19 yields the

following result:

Theorem 3.20. Take a fixed signature Γ and a fixed Γ-algebraA that has a finite subsumption base.
From a given Γ-SLP G, which defines the derivation tree t = JGK ∈ T0 (Γ), one can compute in time
O (|G|) a Γ-SLPH such that JH KA = JGKA , |H | ∈ O (|G|) and depth(H) ∈ O (log |t |).

Proof. Using Theorem 3.19 we obtain from G in time O (|G|) a Γ-TSLP G′ such that JG′K ˆT (Γ) = t ,

|G′ | ∈ O (|G|) and depth(G′) ∈ O (log |t |). From JG′K ˆT (Γ) = t = JGK we get JG′K ˆA = JGKA . By
Lemma 3.18 we can compute from G′ in time O (|G′ |) = O (|G|) a Γ-SLPH of size O (|G′ |) = O (|G|)

and depth O (depth(G′)) = O (log |t |) such that JH KA = JG′K ˆA = JGKA . □

Note that Theorem 3.20 is exactly the same statement as Theorem 1.4 from the introduction

(which is formulated via circuits instead of straight-line programs).

Remark 3.21. Recall that we made the technical assumption that every element a of A can be

written as tA for a ground term A. We can still prove Corollary 3.20 in case A does not satisfy

this assumption: let B be the subalgebra of A that is induced by all elements tA for t ∈ T (A). By
Remark 3.15, B has a finite subsumption base as well. Moreover, for every Γ-SLP G we obviously

have JGKA = JGKB . Hence, Corollary 3.20 applied to the algebra B yields the statement for A.

Remark 3.22. Theorem 3.20 only holds for a fixed Γ-algebra because Lemma 3.18 assumes a fixed

Γ-algebra. Nevertheless there are settings, where we consider a family {Ai | i ∈ I } with the Ai
being Γi -algebras. An example is the family of all free monoids Σ∗ for a finite alphabet Σ that is

part of the input. Under certain assumptions, the statement of Theorem 3.20 can be extended to the

uniform setting, where the signature Γi (i ∈ I) is part of the input and SLPs are evaluated in the

algebra Ai . First of all we have to assume that every symbol f ∈ Γi fits into a machine word of the

underlying RAM model, which is a natural assumption if the signature Γi is part of the input. For
the Γi -algebras Ai we need the following assumptions:

(i) There is a constant r such that the rank of every symbol f ∈
⋃

i ∈I Γi is bounded by r .
(ii) There is a constant c and a finite subsumption base C (Ai) for every i ∈ I such that the size of

every context s ∈
⋃

i ∈I C (Ai) is bounded by c . With the above assumption on the word size

of the RAM this ensures that a context s ∈
⋃

i ∈I C (Ai) fits into O (1) many machine words.

(iii) There is a constant time algorithm that computes from a given atomic context s over the
signature Γi a context t ∈ C (Ai) and a substitution ζ such that ζ (t) and s are equivalent in
Ai .

(iv) There is a constant time algorithm that takes two contexts s and t over the signature Γi such
that s[t] is defined, s and t have no common auxiliary variable, and s and t belong to C (Ai)
up to variable renaming, and computes the context s · t (see the first paragraph in the proof of

Lemma 3.18) and a substitution ζ such that ζ (s · t) and s[t] are equivalent in Ai .

Under these assumptions the construction from the proof of Lemma 3.18 can still be carried out in

linear time. Since the statement of Theorem 3.19 holds for a signature Γ that is part of the input,

this allows to extend Theorem 3.20 to the setting where the signature Γi (i ∈ I) is part of the input.
This situation will be encountered for forest algebras (Section 3.3.1) and top dags (Section 3.4).

Before we go into the proof of Theorem 3.19, we first discuss a simple applications of Theorem 3.20

(further applications for certain tree algebras that yield Theorem 1.3 can be found in Sections 3.3

and 3.4). Consider straight-line programs over a semiring A. Such straight-line programs are

also known as arithmetic circuits in the literature. We view addition and multiplication in A as

binary operations. In other words, we consider bounded fan-in arithmetic circuits. We also include

, Vol. 1, No. 1, Article . Publication date: March 2021.

:28 Moses Ganardi, Artur Jeż, and Markus Lohrey

arbitrary constants in the algebraA (this is necessary in order to build expressions). The following

result follows directly from Theorem 3.19 and the fact that every semiring has a finite subsumption

base; see Example 3.16.

Corollary 3.23. Let A be an arbitrary semiring with constants (we neither assume that A is
commutative nor that identity elements with respect to + or × exist). Given an arithmetic circuit G
over A such that the corresponding derivation tree t has n nodes, one can compute in time O (|G|) an
arithmetic circuitH over A such that JH KA = JGKA , |H | ∈ O (|G|) and depth(H) ∈ O (logn).

Theorem 1.2 (balancing of string straight-line programs) can be deduced in the same way from

Theorem 3.19 by noting that every free monoid has a finite subsumption base.

3.2 Proof of Theorem 3.19
Those readers that worked through part I of the paper (Section 2) will notice that our proof of

Theorem 3.19 is very similar to the proof of Theorem 1.2 in Section 2.3. For the following proof we

will use the part I results from Sections 2.1 and 2.2.

Let us fix a signature Γ and a standard Γ-SLP G = (V, ρ, S). Let t = JGK be its derivation tree

and n = |t |. We view G also as a DAG D := (V,E) with node labels from Γ. The edge relation E
contains all edges (X , i,Xi) where ρ (X) is of the form f (X1, . . . ,Xn) and 1 ≤ i ≤ n. We can assume

that all nodes of the DAG are reachable from the start variable S . All variables fromV also belong

to the TSLPH and produce the same trees in G andH . The right-hand side mapping ofH will be

denoted by τ .
We start with the symmetric centroid decomposition of the DAG D, which can be computed

in linear time as remarked in Section 2.1. Note that the number n(D) defined in Section 2.1 is the

number of leaves of t . Hence, we have n(D) ≤ n. Consider a symmetric centroid path

(X0,d0,X1), (X1,d1,X2), . . . , (Xp−1,dp−1,Xp) (8)

in D, where all Xi belong toV and di ≥ 1. Thus, for all 0 ≤ i ≤ p − 1, the right-hand side of Xi in

G has the form

ρ (Xi) = fi (Xi,1, . . . ,Xi,di−1,Xi+1,Xi,di+1, . . . ,Xi,ni) (9)

for fi ∈ Γni , Xi, j ∈ V for 1 ≤ j ≤ ni , j , di . Figure 4 shows such a path. Note that the variables

Xi, j do not have to be pairwise different (as Figure 4 might suggest). Also note that the variables

Xi, j from (9) and all variables in ρ (Xp) belong to other symmetric centroid paths.

We will introduce O (p) many variables in the TSLP H to be constructed and the sizes of the

corresponding right-hand sides will sum up to

∑p
i=0 |ρ (Xi) |+O (p). By summing over all symmetric

centroid paths of D, this yields the size bound O (|G|) forH .

Define the ground terms ti = JXiKG for 0 ≤ i ≤ p and ti, j = JXi, jKG for 0 ≤ i ≤ p − 1 and

1 ≤ j ≤ ni , j , di . Recall that every variable Xi (0 ≤ i ≤ p) of G also belongs to H . For every

0 ≤ i ≤ p − 1 we introduce a fresh variable Yi which will evaluate inH to the context obtained by

taking the tree ti and cutting out the occurrence of the subtree tp that is reached via the directions

di ,di+1, . . . ,dp−1 from the root of ti . In Figure 4 this context is visualized for i = 4 by the red part.

Hence, we set

τ (Xi) = Yi [Xp] (10)

for 0 ≤ i ≤ p. For Xp we define

τ (Xp) = ρ (Xp). (11)

It remains to come up with right-hand sides such that every Yi derives to the intended context. For

this, we introduce variables Zi (0 ≤ i ≤ p − 1) and define

τ (Zi) = fi (Xi,1, . . . ,Xi,di−1,x ,Xi,di+1, . . . ,Xi,ni) (12)

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :29

X0

X0,1 X0,2 X1

X1,1 X2

X3

X3,1 X3,2 X4

X5

X5,1 X6

X6,1 X6,2 X6,3

X4,2 X4,3

X3,4

X2,2

X1,3

Fig. 4. A symmetric centroid path in the proof of Theorem 3.19.

for 0 ≤ i ≤ p − 1. It remains to add variables and right-hand sides such that every Yi derives in
H to Zi [Zi+1[· · · [Zp−1] · · ·]]. This is basically a string problem: we want to produce an SSLP for

all suffixes of Z0Z1 · · ·Zp−1. This SSLP should have small depth in order to keep the total depth of

the final TSLP bounded by O (logn). Here we use Proposition 2.2. For this we have to define the

weights of the variables Zi . We set ∥Zi ∥ = |ti | − |ti+1 |. We additively extend the weight function to

strings over the symbols Z0, . . . ,Zp−1.
Using Proposition 2.2 we can construct in timeO (p) a single SSLPI with the following properties:

• I has O (p) many variables and all right-hand sides have length at most four,

• I contains the variables Y0, . . . ,Yp−1, where Yi produces ZiZi+1 · · ·Zp−1 for 0 ≤ i ≤ p − 1 and
• every path from a variable Yi to a variable Zk in the derivation tree of I has length at most

3 + 2 log
2
∥Yi ∥ − 2 log2 ∥Zk ∥ for i ≤ k ≤ p − 1.

Note that ∥Yi ∥ = |ti | − |tp |. We finally add to the TSLPH all right-hand side definitions (10), (11),

(12), and all right-hand side definitions from the SSLP I. Here, we have to replace a concatenation

YZ in a right-hand side of I by Y [Z].
Concerning the number of introduced variables: for each Xi we introduce Yi ,Zi , so 2p in total,

and the I is guaranteed to have O (p) variables as well. Summed over all paths this yields O (n). For
the size of the rules, each rule introduced in (11) is exactly the rule for Xp (i.e., in (9)) and similarly

a rule for Zi , where 0 ≤ i < p, corresponds to a rule for Xi , in particular, |τ (Zi) | = |ρ (Xi) |. And
so the sum of those productions’ sizes is

∑p
i=0 |ρ (Xi) |. Rules in (10) have size 2 and there are p of

them, so their productions’ size is 2p. Lastly, rules introduced as a translation of rules from I have

the same size as those in I, which is guaranteed to be O (p). Thus the sum of rules’ sizes is at

most

∑p
i=0 |ρ (Xi) | + O (p). We make the above construction for every symmetric centroid path of

G. Hence, the total size of the TSLPH is indeed O (|G|). Moreover, the construction ofH needs

linear time. It remains to show that the depth ofH is O (logn).
First, we consider the symmetric centroid path (8) and a path inH from a variable Xi (0 ≤ i ≤ p)

to a variable X j,k (i ≤ j ≤ p − 1, 1 ≤ k ≤ nj , k , dj) or a variable from ρ (Xp). Let us define the

, Vol. 1, No. 1, Article . Publication date: March 2021.

:30 Moses Ganardi, Artur Jeż, and Markus Lohrey

weight ∥X ∥ for a variable X ∈ V of G as the size of the tree JX KG . A path from Xi to a variable

Y in ρ (Xp) has the form Xi → Y or Xi → Xp → Y (since τ (Xp) = ρ (Xp)) and hence has length at

most two. Now consider a path from Xi to a variable X j,k with i ≤ j ≤ p − 1. We claim that the

length of this path is bounded by 5 + 2 log
2
∥Xi ∥ − 2 log2 ∥X j,k ∥. The path Xi

∗
−→ X j,k has the form

Xi → Yi
∗
−→ Z j → X j,k ,

where Yi
∗
−→ Z j is a path in I and hence has length at most 3 + 2 log

2
∥Yi ∥ − 2 log2 ∥Z j ∥. Hence, the

length of the path is bounded by

5 + 2 log
2
∥Yi ∥ − 2 log2 ∥Z j ∥ ≤ 5 + 2 log

2
∥Xi ∥ − 2 log2 ∥X j,k ∥

since ∥Yi ∥ = |ti | − |tp | ≤ |ti | = ∥Xi ∥ and ∥Z j ∥ = |tj | − |tj+1 | ≥ |tj,k | = ∥X j,k ∥.

Finally, we consider a maximal path in the derivation tree ofH that starts in the root S and ends

in a leaf. We can factorize this path as

S = X0

∗
−→ X1

∗
−→ X2

∗
−→ · · ·

∗
−→ Xk (13)

where all variables Xi belong to the original Γ-SLP G, and every subpath Xi
∗
−→ Xi+1 has the form

considered in the last paragraph. The right-hand side of Xk is a single symbol from Γ0 (such a

right-hand side can appear in (11)). In the Γ-SLP G we have a corresponding path Xi
∗
−→ Xi+1 that

is contained in a single symmetric centroid path except for the last edge leading to Xi+1. By the

above consideration, the length of the path (13) is bounded by

k−1∑
i=0

(5 + 2 log
2
∥Xi ∥ − 2 log2 ∥Xi+1∥) ≤ 5k + 2 log

2
∥S ∥ = 5k + 2 log

2
n.

By the second claim of Lemma 2.1 we have k ≤ 2 log
2
n which shows that the length of the path

(13) is bounded by 7 log
2
n. This concludes the proof of Theorem 3.19. □

3.3 Forest algebras and forest straight-line programs
3.3.1 Forest algebra. Let us fix a finite set Σ of node labels. In this section, we consider Σ-labelled

rooted ordered trees, where “ordered” means that the children of a node are totally ordered. Every

node has a label from Σ. In contrast to the trees from Section 3.1.1 we make no rank assumption:

the number of children of a node (also called its degree) is not determined by its node label. A forest
is a (possibly empty) sequence of such trees. The size |v | of a forest is the total number of nodes in

v . The set of all Σ-labelled forests is denoted by F0 (Σ). Formally, F0 (Σ) can be inductively defined

as the smallest set of strings over the alphabet Σ ∪ {(,)} such that

• ε ∈ F0 (Σ) (the empty forest),

• if u,v ∈ F0 (Σ) then uv ∈ F0 (Σ), and
• if u ∈ F0 (Σ) then a(u) ∈ F0 (Σ) (this is the forest consisting of a single tree whose root is

labelled with a).

Let us fix a distinguished symbol ∗ < Σ. The set of forests u ∈ F0 (Σ ∪ {∗}) such that ∗ has a unique

occurrence in u and this occurrence is at a leaf node is denoted by F1 (Σ). Elements of F1 (Σ) are
called forest contexts. Following [9], we define the forest algebra as the 2-sorted algebra

F(Σ) = (F0 (Σ),F1 (Σ),�00,�01,�10,�0,�1, (a(∗))a∈Σ, ε, ∗)

as follows:

• �i j : Fi (Σ) × Fj (Σ) → Fi+j (Σ) (ij ∈ {00, 01, 10}) is a horizontal concatenation operator: for

u ∈ Fi (Σ), v ∈ Fj (Σ) we set u �i j v = uv (i.e., we concatenate the corresponding sequences

of trees).

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :31

τ1

x

τ1

y

σ1

τ1

y

τ2

τ1

τ2 τ3

x

τ1

τ2 τ3

y

σ1

Fig. 5. The shapes of the contexts in C (proof of Lemma 3.24). Forests and forest contexts are represented by
trapezoids. The roots of the forests/forest contexts are located on the top horizontal lines of the trapezoids.
Bullet nodes represent occurrences of ∗. Symmetric shapes where the roles of τ2 and τ3 exchanged are omitted.

• �i : F1 (Σ)×Fi (Σ) → Fi (Σ) is a vertical concatenation operator: foru ∈ F1 (Σ) andv ∈ Fi (Σ),
u �i v is obtained by replacing in u the unique occurrence of ∗ by v .
• ε ∈ F0 (Σ) and ∗,a(∗) ∈ F1 (Σ) (a ∈ Σ) are constants of the forest algebra.

Note that (F0 (Σ),�00, ε) and (F1 (Σ),�1, ∗) are monoids. In the following wewill omit the subscripts

i, j in �i j and �i , since they will be always clear from the context. Most of the time, we simply

write uv instead of u �v , a(u) instead of a(∗) � u, and a instead of a(ε). With these abbreviations,

a forest u ∈ F (Σ) can be also viewed as an algebraic expression over the algebra F(Σ), which
evaluates to u itself (analogously to the free term algebra).

Lemma 3.24. Every forest algebra F(Σ) has a finite subsumption base.

Proof. In the following we denote by x and y the main variables of sorts F0 (Σ) and F1 (Σ),
respectively, and by σ ,σ1,σ2, . . . (resp., τ ,τ1,τ2, . . .) auxiliary variables of sorts F0 (Σ) (resp., F1 (Σ)).
In the following, subsumption and equivalence of contexts are always meant with respect to the

forest algebra F(Σ).
Let C be the set of containing the following contexts (see also Figure 5):

(a) τ1 � x ,
(b) τ1 � y � σ1 and τ1 � y � τ2,
(c) τ1 � (τ2 � (τ3 � x)) and τ1 � ((τ2 � x) � τ3),
(d) τ1 � (τ2 � (τ3 � y � σ1)) and τ1 � ((τ2 � y � σ1) � τ3).

A context from point (x) (for x = a,b,c,d) will be also called a (x)-context below. First notice that

every atomic context is of the form τ � x , τ � y, y � σ , y � τ , σ � x , x � σ , σ � y, y � σ , τ � x ,
or x � τ (up to variable renaming). Each of these contexts is subsumed by a context in C . For the
atomic contexts τ � x , τ � y, y � σ , y � τ , τ � x , and x � τ this is obvious. For σ � x note that

σ � x is equivalent to the context (σ � ∗) � x , which is subsumed by τ1 � x . A similar argument

also applies to x � σ , σ � y and y � σ .
Now consider any context s ∈ C . We prove that for any atomic context s ′ from above, s ′[s] is

subsumed by some context from C .

Case τ � s Since s is of the form s = τ1 � s ′ for some s ′, the context τ � s = τ � (τ1 � s ′) is
subsumed by s ∈ C itself.

Case s � σ and s � τ In this case s must be either the (b)-context s = τ1 �y � τ2, a (c)-context
or a (d)-context.

(1) If s = τ1 � y � τ2, then s � σ and s � τ are subsumed by a (b)-context.

, Vol. 1, No. 1, Article . Publication date: March 2021.

:32 Moses Ganardi, Artur Jeż, and Markus Lohrey

b

a a a a b

a a a a b

a a a a b

a a a a c a a a a

a a a a

a a a a

a a a a

Fig. 6. Forest JGKF(Σ) for n = 2 from Example 3.26.

(2) Assume that s is a (c)-context, say s = τ1 � (τ2 � (τ3 � x)). Then s � σ is equivalent to

(τ1 � ((τ2 � σ) � τ3)) � x which is subsumed by τ1 � x . Moreover, s � τ is equivalent to

τ1 � ((τ2 � τ) � (τ3 � x)), which is subsumed by s itself.
(3) Assume that s is a (d)-context, say s = τ1 � (τ2 � (τ3 �y � σ1)). Firstly, s � σ is equivalent

to (τ1 � ((τ2 � σ) � τ3)) �y � σ1, which is subsumed by the context τ1 � x � σ1. Secondly,
s � τ is equivalent to τ1 � ((τ2 � τ) � (τ3 � y � σ1)), which is subsumed by s itself.

Case σ � s and s � σ Since s is of the form s = τ1�s ′ for some s ′ the context σ�s is equivalent
to (σ � τ1) � s ′, which is subsumed by s itself. The case s � σ is similar.

Case τ � s and s � τ In this case s must be either the (a)-context or the (b)-context τ1 �y �σ1.
If s is the (a)-context τ1�x then τ �s is subsumed by the (c)-context τ1� (τ2� (τ3�x)). If s is
the (b)-context τ1 �y �σ1 then τ � s is subsumed by the (d)-context τ1 � (τ2 � (τ3 �y �σ1)).
The case s � τ is similar.

By Lemma 3.14, C is a finite subsumption base. □

Remark 3.25. Similarly to the proof of Lemma 3.24 one can show that for every signature Γ the

functional extension
ˆT (Γ) of the free term algebra T (Γ) has a finite subsumption base as well.

Recall from Example 3.17 that the free term algebra T (Γ) has no finite subsumption base if Γ
contains a symbol of rank at least one.

3.3.2 Forest straight-line programs. A forest straight-line program over Σ, FSLP for short, is a

straight-line program G over the algebra F(Σ) such that JGKF(Σ) ∈ F0 (Σ). Iterated vertical and

horizontal concatenations allow to generate forests, whose depth and width is exponential in the

size of the FSLP. For an FSLP G = (V, ρ, S) and i ∈ {0, 1}we defineVi = {X ∈ V | JX KF(Σ) ∈ Fi (Σ)}.
Every right-hand side of a standard FSLP G must have one of the following forms: (i) ε (the empty

forest), (ii) ∗, (iii) a(∗) for a ∈ Σ, (iv) X � Y (for which we write XY) for X ,Y ∈ V with X ∈ V0 or

Y ∈ V0, or (v) X � Y for X ∈ V1 and Y ∈ V .

Example 3.26. Let n ∈ N. Consider the (non-standard) FSLP

G = ({S,X0, . . . ,Xn ,Y0, . . . ,Yn }, ρ, S)

over {a,b, c} with ρ defined by ρ (X0) = a, ρ (Xi) = Xi−1Xi−1 for 1 ≤ i ≤ n, ρ (Y0) = b (Xn ∗ Xn),
ρ (Yi) = Yi−1 � Yi−1 for 1 ≤ i ≤ n, and ρ (S) = Yn � c . We have

JGKF(Σ) = b (a2
n
b (a2

n
· · ·b (a2

n
c a2

n
) · · ·a2

n
)a2

n
),

where b occurs 2
n
many times, see Figure 6 for n = 2.

Let us first show that most occurrences of ε and ∗ can be eliminated in an FSLP.

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :33

Lemma 3.27. From a given FSLP G with JGKF(Σ) , ε one can compute in linear time an FSLP H
such that JGKF(Σ) = JH KF(Σ) , |H | ∈ O (|G|), depth(H) ∈ O (depth(G)), and H does not contain
occurrences of the constants ε and ∗, except for right-hand sides of the form a(ε).2

Proof. Let G = (V, ρ, S). We first construct an equivalent FSLP which does not contain the

constant ∗. Let us denote withV∗ ⊆ V1 the set of all variables X ∈ V1 such that JX KF(Σ) is of the
form uℓ ∗ ur for forests uℓ,ur ∈ F0 (Σ). In other words: ∗ occurs at a root position in the forest

JX KF(Σ) . The setV∗ can be easily computed in linear time by a single pass over G. Every variable

X ∈ V∗ with JX KF(Σ) = uℓ ∗ ur is replaced in H by two variables Xℓ and Xr that produce in H

the forests uℓ and ur , respectively. Every variable X ∈ V1 \ V∗ is replaced inH by three variables

Xt ,Xℓ,Xr . SinceX ∈ V1 \V∗, JX KF(Σ) contains a unique subtree of the form a(uℓ ∗ur). Let us denote
with ut (the top part of u) the forest that is obtained from u by replacing the subtree a(uℓ ∗ ur) by
a(∗). We then will have JXt KF(Σ) = ut , JXℓKF(Σ) = uℓ , and JXr KF(Σ) = ur . Finally, all variables from
V0 also belong toH and produce inH the same forests as in G.

It is straight-forward to define the right-hand sides ofH such that the variables indeed produce

the desired forests (τ denotes the right-hand side mapping ofH):

• If ρ (X) = ∗ then τ (Xℓ) = τ (Xr) = ε .
• If ρ (X) = a(∗) then τ (Xt) = a(∗) and τ (Xℓ) = τ (Xr) = ε .
• If ρ (X) = ε or ρ (X) = YZ with X ,Y ,Z ∈ V0 then τ (X) = ρ (X).
• If ρ (X) = YZ withX ,Y ∈ V∗ and Z ∈ V0 then τ (Xℓ) = Yℓ and τ (Xr) = YrZ , and analogously
for X ,Z ∈ V∗ and Y ∈ V0.

• If ρ (X) = YZ withX ,Y ∈ V1 \V∗ and Z ∈ V0 then τ (Xℓ) = Yℓ , τ (Xr) = Yr , and τ (Xt) = YtZ ,
and analogously for X ,Z ∈ V1 \ V∗ and Y ∈ V0.

• If ρ (X) = Y � Z with X ,Z ∈ V0 and Y ∈ V∗ then τ (X) = YℓZYr .
• If ρ (X) = Y � Z with X ,Z ∈ V0 and Y ∈ V1 \ V∗ then τ (X) = Yt � (YℓZYr).
• If ρ (X) = Y � Z with X ,Y ,Z ∈ V∗ then τ (Xℓ) = YℓZℓ and τ (Xr) = ZrYr .
• If ρ (X) = Y � Z with Y ∈ V∗ and X ,Z ∈ V1 \ V∗ then τ (Xt) = YℓZtYr , τ (Xℓ) = Zℓ , and

τ (Xr) = Zr .
• If ρ (X) = Y � Z with Z ∈ V∗ and X ,Y ∈ V1 \ V∗ then τ (Xt) = Yt , τ (Xℓ) = YℓZℓ , and

τ (Xr) = ZrYr .
• If ρ (X) = Y � Z with X ,Y ,Z ∈ V1 \ V∗ then τ (Xt) = Yt � (YℓZtYr), τ (Xℓ) = Zℓ , and

τ (Xr) = Zr .

Note that all right-hand sides of the new FSLP have constant length. Variables X such that τ (X) is
a variable can be eliminated.

Let us finally eliminate occurrences of the constant ε , except for right-hand sides of the form

a(ε). Let us take an FSLP G = (V, ρ, S) with JGKF(Σ) , ε and which does not contain occurrences

of the constant ∗. Let Vε = {X ∈ V0 | JX KF(Σ) = ε }. Note that S < Vε . The set Vε can be easily

computed in linear time by a single pass over G. We construct an equivalent FSLPH which neither

contains ∗ nor ε , except for right-hand sides of the form a(∗) and a(ε). All variables from G are

also contained inH , except for variables inVε . For every variable X ∈ V1,H also contains a copy

Xε that produces JX KF(Σ) � ε . The right-hand side mapping τ ofH is defined as follows:

• If ρ (X) = a(∗) then τ (X) = a(∗) and τ (Xε) = a(ε).
• If ρ (X) = ε then X does not belong toH .

• If ρ (X) = YZ with Y ,Z ∈ Vε then X ∈ Vε does not belong toH .

• If ρ (X) = YZ or ρ (X) = ZY with Y ∈ Vε and Z ∈ V0 \ Vε then τ (X) = Z .
• If ρ (X) = YZ with Y ,Z ∈ V0 \ Vε then τ (X) = YZ .

2
Constants a (∗) are allowed as well. Formally, a (∗) is a constant symbol that is interpreted by the forest context a (∗).

, Vol. 1, No. 1, Article . Publication date: March 2021.

:34 Moses Ganardi, Artur Jeż, and Markus Lohrey

• If ρ (X) = YZ or ρ (X) = ZY with Y ∈ Vε and X ,Z ∈ V1 then τ (X) = Z and τ (Xε) = Zε .
• If ρ (X) = YZ with Y ∈ V0 \ Vε and X ,Z ∈ V1 then τ (X) = YZ and τ (Xε) = YZε , and
similarly if Z ∈ V0 \ Vε and X ,Y ∈ V1.

• If ρ (X) = Y � Z with X ,Y ,Z ∈ V1 then τ (X) = Y � Z and τ (Xε) = Y � Zε .
• If ρ (X) = Y � Z with Y ∈ V1 and Z ∈ Vε then τ (X) = Yε .
• If ρ (X) = Y � Z with Y ∈ V1 and Z ∈ V0 \ Vε then τ (X) = Y � Z .

As in the previous case, variables X such that τ (X) is a variable, can be eliminated. Note that the

construction does not introduce new occurrences of ∗. All variables fromV \Vε produce the same

forest in G andH , which implies JGKF(Σ) = JH KF(Σ) . Finally note that both constructions increase

the size and depth of the FSLP only by a constant factor. □

Corollary 3.28. Given a finite alphabet Σ and an FSLP G over the forest algebra F(Σ) defining the
forest u = JGKF(Σ) , one can compute in time O (|G|) an FSLPH such that JH KF(Σ) = u, |H | ∈ O (|G|)
and depth(H) ∈ O (log |u |).

Proof. The case u = ε is trivial. Let us now assume that u , ε . We first apply Lemma 3.27 and

construct from G in linear time an equivalent FSLP G′ which does not contain occurrences of the

constants ∗ and ε , except for right-hand sides of the form a(ε). This ensures that the derivation
tree t = JG′K has size O (|u |). The size and depth of G′ are linearly bounded in the size and depth,

respectively, of G. By Lemma 3.24 we can apply Theorem 3.20 in order to get the FSLPH with the

desired properties for the situation where the alphabet Σ is fixed. For the situation where Σ is part

of the input one has to use Remark 3.22. The arguments are analogous to the proof of Theorem 1.2.

Note in particular that the subsumption base from the proof of Lemma 3.24 does not depend on the

alphabet Σ of the forest algebra F(Σ). □

Remark 3.29. Using Remark 3.25 one can show the following variant of Corollary 3.28: Take a fixed

signature Γ. From a given Γ-TSLP G defining the tree t = JGK ˆT (Γ)
, one can compute in time O (|G|)

a Γ-TSLP H such that JH K ˆT (Γ) = t , |H | ∈ O (|G|) and depth(H) ∈ O (log |t |). In other words,

Γ-TSLPs can be balanced with a linear size increase. Note that this is a much stronger statement

than Theorem 3.19, which states that a Γ-SLP can be balanced into an equivalent Γ-TSLP with a

linear size increase. On the other hand, the above balancing result for Γ-TSLPs finally uses the

weaker Theorem 3.19 in its proof. We have to assume a fixed signature Γ in the above argument

since the size of the contexts in a finite subsumption for
ˆT (Γ) depends on the maximal rank of the

symbols in Γ.
Alternatively, the balancing result for Γ-TSLPs can be deduced from the corresponding balancing

result for FSLPs (Corollary 3.28): A given Γ-TSLP G can be directly translated into an FSLP G1

for the tree JGK ˆT (Γ)
. The size of G1 is O (|G|). Using Corollary 3.28 one can compute from G1 a

balanced FSLP G2 of size O (|G1 |). Finally, the FSLP G2 can be easily transformed back into a Γ-TSLP
of size O (r · |G2 |), where r is the maximal rank of a symbol in Γ. For this one has to eliminate

horizontal concatenations in the FSLP. Since we assumed Γ to be a fixed signature, r is a constant.

3.4 Cluster algebras and top dags
FSLPs are very similar to top dags that were introduced in [7] and further studied in [4, 13, 22]. In

fact, top dags can be defined in the same way as FSLPs, one only has to slightly change the two

concatenation operations � and �, which yields the so called cluster algebra defined below.

Let us fix an alphabet Σ of node labels and define for a ∈ Σ the setKa (Σ) = {a(u) | u ∈ F0 (Σ)\{ε }}.
Note that Ka (Σ) consists of unranked Σ-labelled trees of size at least two, where the root is labeled

with a. Elements of Ka (Σ) (for any a) are also called clusters of rank 0. For a,b ∈ Σ let Kab (Σ) be

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :35

the set of all trees t ∈ Ka (Σ) together with a distinguished b-labelled leaf of t , which is called the

bottom boundary node of t . Elements of Kab (Σ) (for any a,b) are called clusters of rank one. The
root node of a cluster t (of rank zero or one) is called the top boundary node of t . When writing a

cluster of rank one, we underline the bottom boundary node. For instance a(bc (ba)) is an element

of Kab (Σ). An atomic cluster is of the form a(b) or a(b) for a,b ∈ Σ.
We define the cluster algebra K(Σ) as an algebra over a (Σ ∪ Σ2)-sorted signature. The universe

of sort a ∈ Σ is Ka (Σ) and the universe of sort ab ∈ Σ2
is Kab (Σ). The operations of K(Σ) are the

following:

• There are |Σ| + 2|Σ|2 many horizontal merge operators; we denote all of them with the

same symbol �. Their domains and ranges are specified by: � : Ka (Σ) × Ka (Σ) → Ka (Σ),
� : Ka (Σ) × Kab (Σ) → Kab (Σ), and � : Kab (Σ) × Ka (Σ) → Kab (Σ), where a,b ∈ Σ. All of
these merge operators are defined by a(u) � a(v) = a(uv), where sorts of the clusters u,v
must match the input sorts for one of the merge operators.

• There are |Σ|2 + |Σ|3 many vertical merge operators; we denote all of them with the same

symbol �. Their domains and ranges are specified by: � : Kab (Σ) × Kb (Σ) → Ka (Σ) and
� : Kab (Σ) × Kbc (Σ) → Kac (Σ) for a,b, c ∈ Σ. For clusters s ∈ Kab (Σ) and t ∈ Kb (Σ) ∪
Kbc (Σ) we obtain s � t by replacing in s the bottom boundary node by t . For instance,

a(bc (ba)) � b (ac) = a(bc (b (ac)a)).

• The atomic clusters a(b) and a(b) are constants of the cluster algebra.

In the following, we just write Ka and Kab for Ka (Σ) and Kab (Σ), respectively. A top dag over Σ
is an SLP G over the algebra K(Σ) such that JGKK(Σ) is a cluster of rank zero.

3
In our terminology,

cluster straight-line program would be a more appropriate name, but we prefer to use the original

term “top dag”.

Example 3.30. Consider the top dag G = ({S,X0, . . . ,Xn ,Y0, . . . ,Yn }, ρ, S) with ρ (X0) = b (a),
ρ (Xi) = Xi−1 �Xi−1 for 1 ≤ i ≤ n, ρ (Y0) = Xn � b (b) �Xn , ρ (Yi) = Yi−1 � Yi−1 for 1 ≤ i ≤ n, and
ρ (S) = Yn � b (c). We have

JGKK(Σ) = b (a2
n
b (a2

n
· · ·b (a2

n
b (c)a2

n
) · · ·a2

n
)a2

n
),

where b occurs 2
n + 1 many times.

In [16] it was shown that from a top dag G one can compute in linear time an equivalent FSLP

of size O (|G|). Vice versa, from an FSLP H for a tree t ∈ Ca (for some a ∈ Σ) one can compute

in time O (|Σ| · |H |) an equivalent top dag of size O (|Σ| · |H |). The additional factor |Σ| in the

transformation from FSLPs to top dags is unavoidable; see [16] for an example.

Lemma 3.31. Every cluster algebra K(Σ) has a finite subsumption base.

Proof. The proof is similar to the proof of Lemma 3.24. Let the set C contain the following

contexts, where in each context, each of the auxiliary variables σ1,σ2,σ3, τ1,τ2,τ3,τ4 can be also

missing (this is necessary since in the cluster algebra, the merge operations have no neutral

elements). The main variable x and the auxiliary variables σ1,σ2,σ3 must have sorts from Σ (rank

zero), whereas the main variable y and the auxiliary variables τ1,τ2,τ3,τ4 must have sorts from ΣΣ
(rank one). The concrete sorts must be chosen such that all horizontal and vertical merge operations

are defined.

(a) τ1 � (σ1 � x � σ2)

3
Note that the definition of a top dag in [7] refers to the outcome of a particular top dag construction. In other words: for

every tree t a very specific SLP over the cluster algebra is constructed and this SLP is called the top dag of t . Here, as in
[16], we call any SLP over the cluster algebra a top dag.

, Vol. 1, No. 1, Article . Publication date: March 2021.

:36 Moses Ganardi, Artur Jeż, and Markus Lohrey

τ1

σ1 σ2
x

τ1

σ1 σ2
y

σ3

τ1

σ1 σ2
y

τ2

τ4

τ1τ3

σ1 σ2
x

τ4

τ1τ3

σ1 σ2
y

σ3

Fig. 7. The shapes of the contexts in C (proof of Lemma 3.31). Bullet nodes represent boundary nodes.
Symmetric shapes where τ3 is to the right of τ1 are omitted.

τ
τ1

σ1 σ2
y

σ3

τ4

τ1τ3

σ σ1 σ2
y

σ3

Fig. 8. Two example cases from the proof of Lemma 3.31.

(b) τ1 � (σ1 � y � σ2) � σ3
(c) τ1 � (σ1 � y � σ2) � τ2
(d) τ4 � (τ3 � (τ1 � (σ1 � x � σ2)))
(e) τ4 � ((τ1 � (σ1 � x � σ2)) � τ3)
(f) τ4 � (τ3 � (τ1 � (σ1 � y � σ2) � σ3))
(g) τ4 � ((τ1 � (σ1 � y � σ2) � σ3) � τ3)

Note that these forms are very similar to the forms (a)–(g) for forest algebras from the proof of

Lemma 3.24. Only the variables σ1 and σ2 that are horizontally merged with x (resp., y) are new.
Figure 7 shows the shapes of the above contexts. Let us explain the intuition behind these shapes.

Take a cluster s (of rank zero or one) and cut out from s a subcluster x of rank zero or a subcluster

y of rank one. We do not give a formal definition of subclusters (see [7]), but roughly speaking this

means that x (resp., y) is a cluster that occurs somewhere in s . In Figure 7, these subclusters are the

red triangles. The part of s that does not belong to the subcluster x (resp., y) can be partitioned into

finitely many subclusters, and these are the white triangles in Figure 7.

Using Lemma 3.14 we can show that C is a finite subsumption base for the cluster algebra K(Σ).
The atomic clusters are τ � x , σ � x , σ �y, x � τ , x � σ , y � σ , τ � x , τ �y, x � τ , x � σ (where x
and σ have sorts from Σ and y and τ have sorts from ΣΣ). Each of these atomic contexts belongs to

, Vol. 1, No. 1, Article . Publication date: March 2021.

Balancing Straight-Line Programs :37

C up to renaming of auxiliary variables. For this it is important that every context from the above

list (a)–(g), where some of the auxiliary variables are omitted, belongs to C as well.

Let us now consider a context s ′[s], where s ∈ C and s ′ is atomic. We have to show that s ′[s] is
subsumed inK(Σ) by a context fromC . The case distinction is very similar to the proof of Lemma 3.24.

Two examples are shown in Figure 8. The left figure shows the case s = τ1 � (σ1 � y � σ2) � σ3
and s ′ = τ � x . In this case s ′[s] = τ � (τ1 � (σ1 � y � σ2) � σ3) is subsumed in K(Σ) by
τ3 � (τ1 � (σ1 � y � σ2) � σ3) (the latter is obtained from the context in (f) by removing τ4).

Figure 8 on the right shows the case s = τ4 � (τ3 � (τ1 � (σ1 � y � σ2) � σ3)) and s ′ =
y � σ . We have s ′[s] = τ4 � ((τ3 � σ) � (τ1 � (σ1 � y � σ2) � σ3)), which is equivalent in

K(Σ) to (τ4 � ((τ3 � σ) � τ1)) � (σ1 � y � σ2) � σ3. The latter context is subsumed in K(Σ) by
τ1 � (σ1 � y � σ2) � σ3 ∈ C . □

We can now show the main result for top dags:

Corollary 3.32. Given a finite alphabet Σ and a top dag G over the cluster algebra K(Σ) producing
the tree t = JGKK(Σ) , one can compute in time O (|G|) a top dag H for t of size O (|G|) and depth
O (log |t |).

Proof. Note that in the derivation tree JGK of a top dag G, all leaves are labelled with atomic

clusters and all internal nodes have rank two. Hence, the size of the derivation tree JGK is linearly
bounded in the size of the generated tree JGKK(Σ) (in the forest algebra, we needed Lemma 3.27 to

enforce this property). For the case of a fixed alphabet Σ, the statement of the corollary follows

from Lemma 3.31 and Theorem 3.20 analogously to Corollary 3.28 for FSLPs. For the general case of

a variable-size alphabet Σ we have to use again Remark 3.22. As for SSLPs and FSLPs we need the

natural assumption that symbols from the input alphabet fit into a single machine word of the RAM.

All operations from a cluster algebra have rank zero and two, and the subsumption baseC from the

proof of Lemma 3.31 has the property that every context s ∈ Σ has constant size. In contrast to

free monoids and forest algebras, the subsumption base depends on the alphabet Σ. Basically, we
need to choose the sorts of the variables x ,y,τ1,τ2,τ3, σ1,σ2,σ3,σ4 in each of the contexts from C .
This implies that every context s ∈ C can be represented by a constant number of symbols from Σ
and hence can be stored in a constant number of machine words. The constant time algorithms

from point (iii) and (iv) from Remark 3.22 make a constant number of comparisons between the

Σ-symbols representing the input contexts. □

In [20] top dags have been used for compressed range minimum queries (RMQs). It is well known

that for a string s of integers one can reduce RMQs to lowest common ancestor queries on the

Cartesian tree corresponding to s . Two compressed data structures for answering RMQs for s are
proposed in [20]: one is based on an SSLP for s , we commented on it already in Section 2.4, the

other one uses a top dag for the Cartesian tree corresponding to s . The following result has been
shown, see [20, Corollary 1.4]:

Given a string s of length n over an alphabet of σ many integers, let mopt denote the size of

a smallest SSLP for s . There is a top dag G for the Cartesian tree corresponding to s of size

|G| ≤ min(O (n/ logn),O (mopt · logn ·σ)), and there is a data structure of size O (|G|) that answers
range minimum queries on s in time O (logσ · logn).
As the time bound O (logσ · logn) comes from the height of the constructed top dag, using

Corollary 3.32we can enforce the boundO (logn) on the height of the constructed top dag and ensure
that the transformation can be applied to any input SSLP. This yields the following improvement

of the result of [20]:

, Vol. 1, No. 1, Article . Publication date: March 2021.

:38 Moses Ganardi, Artur Jeż, and Markus Lohrey

Theorem 3.33. Given an SSLP of size m generating a string s of length n over an alphabet of
σ many integers one can compute a top dag G for the Cartesian tree corresponding to s of size
|G| ≤ min(O (n/ logn),O (m · σ)) and depth O (logn), and there is a data structure of size O (|G|)
that answers RMQs on s in time O (logn). Ifmopt denotes the size of a smallest SSLP generating s then,
using Rytter’s algorithm, we can assume thatm ≤ O (mopt · logn).

4 OPEN PROBLEMS
For SSLPs one may require a strong notion of balancing. Let us say that an SSLP G is c-balanced
if (i) the length of every right-hand side is at most c and (ii) if a variable Y occurs in ρ (X) then
|JY KG | ≤ |JX KG |/2. It is open, whether there is a constant c such that for every SSLP of sizem there

exists an equivalent c-balanced SSLP of size O (m).
Another important open problem is whether the query time bound in Theorem 1.1 (random

access to grammar-compressed strings) can be improved from O (logn) to O (logn/ log logn). If
we allow space O (m · logϵ n) (for any small ϵ > 0) then such an improvement is possible by

Corollary 2.4, but it is open whether query time O (logn/ log logn) can be achieved with space

O (m). By the lower bound from [39] this would be an optimal random-access data structure for

grammar-compressed strings.

REFERENCES
[1] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth reduction and size

lower bounds. Theoretical Computer Science, 209(1-2):47–86, 1998.
[2] Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access, rank, and select in grammar-

compressed strings. In Proceedings of the 23rd Annual European Symposium on Algorithms, ESA 2015, volume 9294 of

Lecture Notes in Computer Science, pages 142–154. Springer, 2015.
[3] Philip Bille, Patrick Hagge Cording, and Inge Li Gørtz. Compressed subsequence matching and packed tree coloring. Al-

gorithmica, 77(2):336–348, 2017. URL: https://doi.org/10.1007/s00453-015-0068-9, doi:10.1007/s00453-015-0068-9.
[4] Philip Bille, Finn Fernstrøm, and Inge Li Gørtz. Tight bounds for top tree compression. In Proceedings of the 24th

International Symposium on String Processing and Information Retrieval, SPIRE 2017, volume 10508 of Lecture Notes in
Computer Science, pages 97–102. Springer, 2017.

[5] Philip Bille, Paweł Gawrychowski, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Top tree compression of

tries. In Pinyan Lu and Guochuan Zhang, editors, Proceedings of the 30th International Symposium on Algorithms and
Computation, ISAAC 2019, volume 149 of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2019.4, doi:10.4230/LIPIcs.ISAAC.2019.4.
[6] Philip Bille, Inge Li Gørtz, Patrick Hagge Cording, Benjamin Sach, Hjalte Wedel Vildhøj, and Søren Vind. Fingerprints

in compressed strings. Journal of Computer and System Sciences, 86:171–180, 2017.
[7] Philip Bille, Inge Li Gørtz, Gad M. Landau, and Oren Weimann. Tree compression with top trees. Information and

Computation, 243:166–177, 2015.
[8] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and Oren Weimann. Random

access to grammar-compressed strings and trees. SIAM Journal on Computing, 44(3):513–539, 2015.
[9] Mikołaj Bojańczyk and IgorWalukiewicz. Forest algebras. In Proceedings of Logic and Automata: History and Perspectives

[in Honor of Wolfgang Thomas]., volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,

2008.

[10] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory representation of XML document trees.

Information Systems, 33(4–5):456–474, 2008.
[11] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat. The

smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.
[12] Richard Cole and Uzi Vishkin. The accelerated centroid decomposition technique for optimal parallel tree evaluation

in logarithmic time. Algorithmica, 3:329–346, 1988.
[13] Bartłomiej Dudek and Paweł Gawrychowski. Slowing down top trees for better worst-case compression. In Proceedings

of the Annual Symposium on Combinatorial Pattern Matching, CPM 2018, volume 105 of LIPIcs, pages 16:1–16:8. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[14] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. Journal of
Computer and System Sciences, 47(3):424–436, 1993.

, Vol. 1, No. 1, Article . Publication date: March 2021.

https://doi.org/10.1007/s00453-015-0068-9
http://dx.doi.org/10.1007/s00453-015-0068-9
https://doi.org/10.4230/LIPIcs.ISAAC.2019.4
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2019.4

Balancing Straight-Line Programs :39

[15] Moses Ganardi, Danny Hucke, Artur Jeż, Markus Lohrey, and Eric Noeth. Constructing small tree grammars and small

circuits for formulas. Journal of Computer and System Sciences, 86:136–158, 2017. URL: http://dx.doi.org/10.1016/j.jcss.
2016.12.007.

[16] Adrià Gascón, Markus Lohrey, Sebastian Maneth, Carl Philipp Reh, and Kurt Sieber. Grammar-based compression of

unranked trees. In Proceedings of 13th International Computer Science Symposium in Russia, CSR 2018, volume 10846 of

Lecture Notes in Computer Science, pages 118–131. Springer, 2018.
[17] Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. ACM Transaction on Computation Theory,

11(1):1:1–1:25, October 2018.

[18] Moses Ganardi, Markus Lohrey, and Artur Jeż. Balancing Straight-Line Programs. In Proceedings of 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages

1169–1183. IEEE Computer Society, 2019.

[19] Leszek Gasieniec, Roman M. Kolpakov, Igor Potapov, and Paul Sant. Real-time traversal in grammar-based compressed

files. In Proceedings of the 2005 Data Compression Conference, DCC 2005, page 458. IEEE Computer Society, 2005.

[20] Paweł Gawrychowski, Seungbum Jo, ShayMozes, and OrenWeimann. Compressed range minimum queries. Theoretical
Computer Science, 812:39–48, 2020. URL: https://doi.org/10.1016/j.tcs.2019.07.002, doi:10.1016/j.tcs.2019.07.002.

[21] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing,
13(2):338–355, 1984.

[22] Lorenz Hübschle-Schneider and Rajeev Raman. Tree compression with top trees revisited. In Proceedings of the 14th
International Symposium on Experimental Algorithms, SEA 2015, volume 9125 of Lecture Notes in Computer Science,
pages 15–27. Springer, 2015.

[23] Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, Kazuyuki

Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-compressed strings. Information and Computation,
240:74–89, 2015.

[24] Artur Jeż. Approximation of grammar-based compression via recompression. Theoretical Computer Science, 592:115–134,
2015. URL: https://doi.org/10.1016/j.tcs.2015.05.027, doi:10.1016/j.tcs.2015.05.027.

[25] Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions on Algorithms, 11(3):20:1–
20:43, Jan 2015. URL: http://doi.acm.org/10.1145/2631920, doi:10.1145/2631920.

[26] Artur Jeż. A really simple approximation of smallest grammar. Theoretical Computer Science, 616:141–150, 2016. URL:
http://dx.doi.org/10.1016/j.tcs.2015.12.032, doi:10.1016/j.tcs.2015.12.032.

[27] S. Rao Kosaraju. On parallel evaluation of classes of circuits. In Proceedings of the 10th Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 1990, volume 472 of Lecture Notes in Computer Science,
pages 232–237. Springer, 1990.

[28] Yury Lifshits. Processing compressed texts: A tractability border. In Proceedings of the 18th Annual Symposium on
Combinatorial Pattern Matching, CPM 2007, volume 4580 of Lecture Notes in Computer Science, pages 228–240. Springer,
2007. URL: http://dx.doi.org/10.1007/978-3-540-73437-6_24, doi:10.1007/978-3-540-73437-6_24.

[29] Markus Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology, 4(2):241–299, 2012.
[30] Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics. Springer, 2014.

[31] Markus Lohrey. Grammar-based tree compression. In Proceedings of the 19th International Conference on Developments
in Language Theory, DLT 2015, volume 9168 of Lecture Notes in Computer Science, pages 46–57. Springer, 2015.

[32] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. XML tree structure compression using RePair. Information
Systems, 38(8):1150–1167, 2013.

[33] Markus Lohrey, Sebastian Maneth, and Carl Philipp Reh. Constant-time tree traversal and subtree equality check for

grammar-compressed trees. Algorithmica, 80(7):2082–2105, 2018.
[34] Gary L. Miller and Shang-Hua Teng. Tree-based parallel algorithm design. Algorithmica, 19(4):369–389, 1997.
[35] Mike Paterson and Leslie G. Valiant. Circuit size is nonlinear in depth. Theoretical Computer Science, 2(3):397–400,

1976.

[36] Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based compression.

Theoretical Computer Science, 302(1–3):211–222, 2003.
[37] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1983.

[38] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of polynomials using few

processors. SIAM Journal on Computing, 12(4):641–644, 1983.
[39] Elad Verbin andWei Yu. Data structure lower bounds on random access to grammar-compressed strings. In Proceedings

of the 24th Annual Symposium on Combinatorial Pattern Matching, CPM 2013, volume 7922 of Lecture Notes in Computer
Science, pages 247–258. Springer, 2013.

, Vol. 1, No. 1, Article . Publication date: March 2021.

http://dx.doi.org/10.1016/j.jcss.2016.12.007
http://dx.doi.org/10.1016/j.jcss.2016.12.007
https://doi.org/10.1016/j.tcs.2019.07.002
http://dx.doi.org/10.1016/j.tcs.2019.07.002
https://doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://doi.acm.org/10.1145/2631920
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1016/j.tcs.2015.12.032
http://dx.doi.org/10.1016/j.tcs.2015.12.032
http://dx.doi.org/10.1007/978-3-540-73437-6_24
http://dx.doi.org/10.1007/978-3-540-73437-6_24

	Abstract
	1 Introduction
	2 Part I: Balancing of string straight-line programs
	2.1 The symmetric centroid decomposition of a DAG
	2.2 Straight-line programs and suffixes of weighted strings
	2.3 Proof of Theorem 1.2
	2.4 Applications of Theorem 1.2

	3 Part II: Balancing circuits over algebras
	3.1 Algebras and their straight line programs
	3.2 Proof of Theorem 3.19
	3.3 Forest algebras and forest straight-line programs
	3.4 Cluster algebras and top dags

	4 Open problems
	References

