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Abstract
We give lower bounds on the complexity of the word problem of certain non-solvable groups: for a
large class of non-solvable infinite groups, including in particular free groups, Grigorchuk’s group and
Thompson’s groups, we prove that their word problem is ALOGTIME-hard. For some of these groups
(including Grigorchuk’s group and Thompson’s groups) we prove that the circuit value problem
(which is equivalent to the circuit evaluation problem) is PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Circuit complexity; Mathematics of computing → Combinatorics

Keywords and phrases NC1-hardness, word problem, G-programs, straight-line programs, non-
solvable groups, self-similar groups, Thompson’s groups, Grigorchuk’s group

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.29

Related Version For the full version see [5].

Funding Michael Figelius: Funded by DFG project LO 748/12-1.
Markus Lohrey: Funded by DFG project LO 748/12-1.
Armin Weiß: Funded by DFG project DI 435/7-1.

Acknowledgements The authors are grateful to Schloss Dagstuhl and the organizers of Seminar
19131 for the invitation, where this work began.

1 Introduction

Groups and word problems. The word problem of a finitely generated group G is the most
fundamental algorithmic problem in group theory [28, 42]. Recall that a group G with
identity element 1 is finitely generated (f.g. for short) if there is a finite set Σ ⊆ G such
that every element of G can be written as a product of elements of Σ; this product can be
formally written as a word from Σ∗. For technical reasons we assume that 1 ∈ Σ (which
is needed for padding reasons) and that for every a ∈ Σ also the inverse a−1 belongs to Σ;
such a generating set Σ is called standard. We have a natural involution on Σ∗ defined by
(a1 · · · an)−1 = a−1

n · · · a−1
1 for ai ∈ Σ (which is the same as forming inverses in the group).

For words u, v ∈ Σ∗ we write u =G v if u and v are equal in G; sometimes we just say u = v
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in G. The word problem for G, WP(G) for short, is the question whether u =G 1 holds for
a given word u ∈ Σ∗. In this formulation the word problem depends on the generating set Σ,
but it is well-known that the complexity/decidability status of the word problem does not
depend on Σ.

The original motivation for the word problem came from topology and group theory
[14] within Hilbert’s “Entscheidungsproblem”. Nevertheless, it also played a role in early
computer science when Novikov and Boone constructed finitely presented groups with an
undecidable word problem [10, 40]. Still, in many classes of groups it is (efficiently) decidable,
a prominent example being the class of linear groups: Lipton and Zalcstein [36] (for linear
groups over a field of characteristic zero) and Simon [44] (for linear groups over a field of
prime characteristic) showed that their word problem is in LOGSPACE. A striking connection
between the word problem for groups and complexity theory was established by Barrington
[3]: for every finite non-solvable group G, the word problem of G is complete for ALOGTIME,
which is the same as DLOGTIME-uniform NC1. Moreover, the reduction is as simple as it
could be: every output bit depends on only one input bit. Thus, one can say that ALOGTIME
is completely characterized via group theory. Moreover, this idea has been extended to
characterize ACC0 by solvable monoids [4]. On the other hand, the word problem of a finite
p-group is in ACC0[p], so Smolensky’s lower bound [45] implies that it is strictly easier than
the word problem of a finite non-solvable group.

Barrington’s construction is based on the observation that an and-gate can be simulated by
a commutator. This explains the connection to non-solvability. In this light, it seems natural
that the word problem of finite p-groups is not ALOGTIME-hard: they are all nilpotent, so
iterated commutators eventually become trivial. For infinite groups, a construction similar to
Barrington’s was used by Robinson [41] to show that the word problem of a non-abelian free
group is ALOGTIME-hard. Since by [36] the word problem of a free group is in LOGSPACE,
the complexity is narrowed down quite precisely (although no completeness is known).

Strongly efficiently non-solvable groups and ALOGTIME. The first contribution of this
paper is to identify the essence of Barrington’s and Robinson’s constructions. For this we
introduce a strengthened condition of non-solvability. Here [h, g] = h−1g−1hg denotes the
commutator of h and g.

I Definition 1. We call a group G with the finite standard generating set Σ uniformly
strongly efficiently non-solvable (uniformly SENS) if there is a constant µ ∈ N and words
gd,v ∈ Σ∗ for all d ∈ N, v ∈ {0, 1}≤d such that
(a) |gd,v| = 2µd for all v ∈ {0, 1}d,
(b) gd,v =

[
gd,v0, gd,v1

]
for all v ∈ {0, 1}<d (here we take the commutator of words),

(c) gd,ε 6= 1 in G, and
(d) given v ∈ {0, 1}d, a positive integer i encoded in binary with µd bits, and a ∈ Σ one can

decide in DLINTIME (see Section 3 for a definition of DLINTIME) whether the i-th letter
of gd,v is a.

If G is required to only satisfy (a)–(c), then G is called SENS.

In a SENS group G, non-solvability is witnessed by efficiently computable balanced nested
commutators of arbitrary depth that are non-trivial in G. The class of (uniformly) SENS
groups enjoys several nice properties: in particular, the definition is independent of the choice
of the generating set, it is inherited from subquotients (quotients of subgroups) and it is
preserved under forming the quotient by the center of a group (see Lemmas 12–14). By
following Barrington’s arguments we show:
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I Theorem 2. Let G be uniformly SENS. Then WP(G) is hard for ALOGTIME un-
der DLOGTIME-reductions (and also DLOGTIME-uniform projection reductions or AC0-
reductions).

That means that for every non-solvable group G, the word problem for G is ALOGTIME-hard,
unless the word length of the G-elements witnessing the non-solvability grows very fast (in
the full version [5] we give an example of a non-solvable group where the latter happens) or
these elements cannot be computed efficiently. For Theorem 2 the padding letter 1 in the
generating set for G is important; otherwise, we only get a TC0-many-one reduction.

Examples of SENS groups. Finite non-solvable groups and non-abelian free groups are
easily seen to be uniformly SENS; this was essentially shown by Barrington (for finite non-
solvable groups) and Robinson (for non-abelian free groups) in their ALOGTIME-hardness
proofs for the word problem. We go beyond these classes and present in the full version [5] a
general criterion that implies the uniform SENS-condition. As an application, we can show
ALOGTIME-hardness of the word problems for several famous groups:

I Corollary 3. The word problems for the following groups are hard for ALOGTIME:
Thompson’s groups,
weakly branched self-similar groups with a finitely generated branching subgroup.

Thompson’s groups F < T < V (introduced in 1965) belong due to their unusual
properties to the most intensively studied infinite groups. From a computational perspective
it is interesting to note that all three Thompson’s groups are co-context-free (i.e., the set
of all non-trivial words over any set of generators is a context-free language) [33]. This
implies that the word problems for Thompson’s groups are in LOGCFL. To the best of our
knowledge no better upper complexity bound is known. Weakly branched groups form an
important subclass of the self-similar groups [39], containing several celebrated groups like
the Grigorchuk group (the first example of a group with intermediate word growth) and the
Gupta-Sidki groups. We also show that the word problem for so-called contracting self-similar
groups is in LOGSPACE. This result is well-known, but to the best of our knowledge no proof
has appeared in the literature. The Grigorchuk group as well as the Gupta-Sidki groups are
known to be contracting and have finitely generated branching subgroups, so Corollary 3
leaves only a small range for the complexity of their word problems.

The proof of the general result implying Corollary 3 is deferred to the full version [5]
(we give a sketch in Section 4). Nevertheless, in this work we present direct proofs that
Thompson’s groups F and the Grigorchuk group are SENS, which yields Corollary 3 for
these special cases.

In [31, Theorem 7], König and the third author showed that the word problem of
f.g. solvable linear group is in TC0. They asked the question whether there is a dichotomy in
the sense that the word problem of a linear group either is in TC0 or ALOGTIME-hard. As
another application of the SENS condition, we can answer this question affirmatively using
the famous Tits’ alternative [46]:

I Corollary 4. For every f.g. linear group the word problem either is in DLOGTIME-uniform
TC0 or the word problem is ALOGTIME-hard.

Circuit value problems for groups. In the second part of the paper we study the circuit value
problem for a finitely generated group G, CVP(G) for short. Fix a standard generating set Σ
for G. The input for CVP(G) is a circuit in which input gates are labelled with generators
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from Σ and every non-input gate computes the group-product of its two predecessor gates (we
have to distinguish the left and right predecessor gate since G is in general not commutative).
There is a distinguished output gate and the question is whether it evaluates to 1. In the
group-theoretic literature, the circuit value problem for G is usually called the compressed
word problem [38]. The reason for this is that one can evaluate a circuit G of the above form
also in the free monoid Σ∗; it then corresponds to a context-free grammar that generates
a single word w. The circuit G can be seen as a compressed representation of this word w.
The circuit value problem is the succinct version of the word problem, where the input word
is represented by a circuit.

Circuit value problems for finite groups have been studied in [8]. It was shown that
CVP(G) is P-complete for finite non-solvable groups (by a Barrington style argument) and
in NC2 for finite solvable groups. The circuit value problem for linear groups is tightly related
to PIT (polynomial identity testing, i.e., the question whether a circuit over a polynomial
ring evaluates to the zero-polynomial; see e.g. [43]): For every f.g. linear group the circuit
value problem reduces in polynomial time to PIT for Z[x] or F[x] and hence belongs to coRP,
the complement of randomized polynomial time [38, Theorem 4.15]. Moreover, the circuit
value problem for the group SL3(Z) is equivalent to PIT for Z[x] with respect to polynomial
time reductions [38, Theorem 4.16].

From a group theoretic viewpoint, the circuit value problem is interesting not only because
it is a natural succinct version of the word problem, but also because several classical word
problems efficiently reduce to circuit value problems. For instance, the word problem for
a finitely generated subgroup of Aut(G) reduces in polynomial time to the circuit value
problem for G [38, Theorem 4.6]. Similar statements hold for certain group extensions [38,
Theorems 4.8 and 4.9]. This motivates the search for groups in which the circuit value
problem can be solved in polynomial time. This applies to finitely generated nilpotent groups
[31] (for which the circuit value problem can be even solved in NC2), hyperbolic groups [27]
and virtually special groups [38]. The latter are defined as finite extensions of subgroups
of right-angled Artin groups and form a very rich class of groups containing for instance
Coxeter groups [21], fully residually free groups [51] and fundamental groups of hyperbolic
3-manifolds [1].

Recently, Wächter and the fourth author constructed an automaton group (a finitely
generated group of tree automorphism, where the action of generators is defined by a Mealy
automaton) with a PSPACE-complete word problem and EXPSPACE-complete circuit value
problem [49]. The group arises by encoding a Turing machine into a group; in particular, one
cannot call this group natural. In this paper, we exhibit several natural groups (that were
intensively studied in other parts of mathematics) with a PSPACE-complete circuit value
problem (and a word problem in LOGSPACE). The two main ingredients for our construction
is the uniform SENS-property defined above and the wreath product construction.

Circuit value problems for wreath products. The wreath product G oH is a fundamen-
tal construction in group theory and semigroup theory; important applications are the
Krasner–Kaloujnine embedding theorem in group theory and the Krohn-Rhodes decomposi-
tion theorem in semigroup theory. The formal definition of wreath products can be found in
Section 2. We are interested in the circuit value problem for wreath products of the form
G o Z (for G f.g.). Such groups are also called lamplighter groups (the classical lamplighter
group is (Z/2) o Z). The following result was shown in [38] (for G non-abelian) and [32] (for
G abelian via a reduction to polynomial identity testing).
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I Theorem 5 (c.f. [32, 38]). If G is a f.g. group, then
CVP(G o Z) is coNP-hard if G is non-abelian and
CVP(G o Z) belongs to coRP (co-randomized polynomial time) if G is abelian.

Our main result for the circuit value problem in wreath products pinpoints the exact
complexity of CVP(G oZ) for the case that G has a trivial center (recall that the center Z(G)
of the group G is the normal subgroup consisting of all elements g ∈ G that commute with
every element from G). Theorem 6 below uses the concept of leaf languages [11, 23, 25, 26, 29],
which is formally defined in Appendix A. For a language K ⊆ Γ∗ over a finite alphabet Γ
one considers nondeterministic polynomial time machines M that after termination print
a symbol from Γ on every computation path. Moreover, one fixes a linear ordering on the
transition tuples of M . As a consequence the computation tree T (x) for a machine input x
becomes a finite ordered tree. The corresponding leaf string leaf(M,x) is obtained by listing
symbols from Γ that are printed in the leafs of T (x) from left to right. The class LEAF(K)
consists of all languages L for which there exists a nondeterministic polynomial time machines
as described above such that x ∈ L if and only if leaf(M,x) ∈ K. As a prototypical example
note that NP = LEAF({0, 1}∗1{0, 1}∗). Here, we are interested in leaf language classes where
K is the word problem for a f.g. group. For this we identify the word problem with the
language WP(G,Σ) = {w ∈ Σ∗ | w =G 1}. One can easily show that the generating set Σ
has no influence on the class LEAF(WP(G,Σ)) (see Lemma 30 in the appendix). Hence, we
simply write LEAF(WP(G)). We are actually interested in the class ∀LEAF(WP(G)), where
for a complexity class C we denote by ∀C the class of all languages L such that there exists a
polynomial p(n) and a language K ∈ C with L = {u | ∀v ∈ {0, 1}p(|u|) : u#v ∈ K} (hence,
for instance ∀P = coNP and ∀PSPACE = PSPACE). Our main result for the circuit value
problem in wreath products is:

I Theorem 6. Let G be a f.g. non-trivial group with center Z = Z(G).
CVP(G o Z) belongs to ∀LEAF(WP(G)).
CVP(G o Z) is hard for the class ∀LEAF(WP(G/Z)).

In particular, if Z = 1, then CVP(G o Z) is complete for ∀LEAF(WP(G)).

PSPACE-complete circuit value problems. From Theorem 6 we derive PSPACE-complete-
ness of the circuit value problem for some interesting groups:

I Corollary 7. The circuit value problem for the following groups is PSPACE-complete:
(i) wreath products G o Z where G is finite non-solvable or free of rank at least two,
(ii) Thompson’s groups,
(iii) the Grigorchuk group, and
(iv) all Gupta-Sidki groups.

In order to derive this corollary from Theorem 6 we also need a kind of padded version of
Theorem 2 saying that PSPACE is contained in LEAF(WP(G/Z(G))) (this yields PSPACE-
hardness of CVP(G o Z) for every SENS group G). For Thompson’s groups, the Grigorchuk
group, and the Gupta-Sidki groups we also use a certain self-embedding property: for all
these groups G a wreath product G oA embeds into G for some A 6= 1. Thompson’s group
F has this property for A = Z [19]. For the Grigorchuk group and the Gupta-Sidki groups
(and, more generally, weakly branched groups whose branching subgroup is finitely generated
and has elements of finite order) we show that one can take A = Z/p for some p ≥ 2.

Some of the proofs can be found only in the full version [5] of this paper. The proof of
Theorem 6 can be found in the appendix.
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2 Background from group theory

For group elements g, h ∈ G or words g, h ∈ Σ∗ we write gh for the conjugate h−1gh and [h, g]
for the commutator h−1g−1hg. We call g a d-fold nested commutator, if d = 0 or g = [h1, h2]
for (d − 1)-fold nested commutators h1, h2. A subquotient of a group G is a quotient of a
subgroup of G.

Wreath products. We consider groups G that act on a set X on the left or right. For
g ∈ G and x ∈ X we write xg ∈ X (resp., gx) for the result of a right (resp., left) action. An
important case arises when G = Sym(X) is the symmetric group on a set X, which acts on
X on the right.

A fundamental group construction that we shall use is the wreath product: given groups
G and H acting on the right on sets X and Y respectively, their wreath product G oH is a
group acting on X × Y . We start with the restricted direct product G(Y ) (the base group) of
all mappings f : Y → G having finite support supp(f) = {y | f(y) 6= 1} with the operation
of pointwise multiplication. The group H has a natural left action on G(Y ): for f ∈ G(Y )

and h ∈ H, we define hf ∈ G(Y ) by (hf)(y) = f(yh). The corresponding semidirect product
G(Y ) oH is the wreath product G oH. In other words:

Elements of G oH are pairs (f, h) ∈ G(Y ) ×H; we simply write fh for this pair.
The multiplication in G oH is defined as follows: Let f1h1, f2h2 ∈ G oH. Then f1h1f2h2 =
f1
h1f2h1h2, where the product f1

h1f2 : y 7→ f1(y)f2(yh1) is the pointwise product.
The wreath product G o H acts on X × Y by (x, y)fh = (xf(y), yh). The wreath product
defined above is also called the (restricted) permutational wreath product. There is also the
variant where G = X, H = Y and both groups act on themselves by right-multiplication,
which is called the (restricted) regular wreath product (or standard wreath product). A subtle
point is that the permutational wreath product is an associative operation whereas the
regular wreath product is in general not. The term “restricted” refers to the fact that the
base group is G(Y ), i.e., only finitely supported mappings are taken into account. If G(Y ) is
replaced by GY (i.e., the set of all mappings from Y to G with pointwise multiplication),
then one speaks of an unrestricted wreath product. For Y finite this makes of course no
difference. We will only deal with restricted wreath products. The action of G on X is
usually not important for us, but it is nice to have an associative operation. The right group
H will be either a symmetric group Sym(Y ) acting on the right on Y or a (finite or infinite)
cyclic group acting on itself by gh = g + h. Thus, if H is cyclic, the permutational wreath
product and the regular wreath product (both denoted by G oH) coincide. Nevertheless,
be aware that G o (H oH) = (G oH) oH holds only for the permutational wreath product
even if H is cyclic. Note that if G is generated by Σ and H is generated by Γ then G oH is
generated by Σ ∪ Γ.

Richard Thompson’s groups. In 1965 Richard Thompson introduced three finitely pre-
sented groups F < T < V acting on the unit-interval, the unit-circle and the Cantor set,
respectively. Of these three groups, F received most attention (the reader should not confuse
F with a free group). This is mainly due to the still open conjecture that F is not amenable,
which would imply that F is another counterexample to a famous conjecture of von Neumann
(a counterexample was found by Ol’shanskii). A standard reference for Thompson’s groups
is [12]. The group F consists of all homeomorphisms of the unit interval that are piecewise
affine, with slopes a power of 2 and dyadic breakpoints. Famously, F has a finite presentation
with two generators: F = 〈x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉. Very convenient is
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also the following infinite presentation: F = 〈x0, x1, x2, . . . | xxi

k = xk+1(i < k)〉. The group
F is orderable (so in particular torsion-free), its derived subgroup [F, F ] is simple and the
center of F is trivial. Important for us is the following fact:

I Lemma 8 ([19, Lemma 20]). The group F contains a subgroup isomorphic to F o Z.

Hence, the limit group H∞ =
⋃
i≥0 Hi, where H0 = Z and Hi+1 = Hi o Z, is contained in F .

Weakly branched groups. We continue our list of examples with an important class of
groups acting on rooted trees. For more details, [6, 39] serve as good references. Let X be a
finite set. The free monoid X∗ serves as the vertex set of a regular rooted tree with an edge
between v and vx for all v ∈ X∗ and all x ∈ X. The group W of automorphisms of this tree
naturally acts on the set X of level-1 vertices, and permutes the subtrees hanging from them.
Exploiting the bijection X+ = X∗ ×X, we thus have an isomorphism

ϕ : W →W o Sym(X) = WX o Sym(X), (1)

mapping g ∈W to elements f ∈WX and π ∈ Sym(X) as follows: π is the restriction of g to
X ⊆ X∗, and f is uniquely defined by (xv)g = xπvf(x). We always write g@x for f(x) and
call it the state (or coordinate) of g at x. If X = {0, . . . , k} we write g = 〈〈g@0, . . . , g@k〉〉π.

I Definition 9. A subgroup G ≤ W is self-similar if ϕ(G) ≤ G o Sym(X). In other words:
the actions on subtrees xX∗ are given by elements of G itself. A self-similar group G is
weakly branched if there exists a non-trivial subgroup K ≤ G with ϕ(K) ≥ KX . In other
words: for every k ∈ K and every x ∈ X the element acting as k on the subtree xX∗ and
trivially elsewhere belongs to K. A subgroup K as above is called a branching subgroup.

Note that we are weakening the usual definition of “weakly branched”: indeed it is usually
additionally required that G act transitively on Xn for all n ∈ N. This extra property is not
necessary for our purposes, so we elect to simply ignore it. In fact, all the results concerning
branched groups that we shall use will be proven directly from Definition 9.

Note also that the join 〈K1 ∪ K2〉 of two branching subgroups K1 and K2 is again a
branching subgroup. Hence, there exists a maximal branching subgroup. It immediately
follows from the definition that, if G is weakly branched, then for every v ∈ X∗ there is in G
a copy of its branching subgroup K whose action is concentrated on the subtree vX∗.

There exist important examples of f.g. self-similar weakly branched groups, notably the
Grigorchuk group G, see [17]. It may be described as a self-similar group in the following
manner: it is a group generated by {a, b, c, d}, and acts on the rooted tree X∗ for X = {0, 1}.
The action, and therefore the whole group, are defined by the restriction of ϕ to G’s generators:
ϕ(a) = (0, 1), ϕ(b) = 〈〈a, c〉〉, ϕ(c) = 〈〈a, d〉〉, and ϕ(d) = 〈〈1, b〉〉, where we use the notation
(0, 1) for the non-trivial element of Sym(X) (that permutes 0 and 1) and 〈〈w0, w1〉〉 for a tuple
in G{0,1} ∼= G×G. We record some classical facts:

I Lemma 10. The Grigorchuk group G is infinite, torsion, weakly branched, and all its finite
subquotients are 2-groups (so in particular nilpotent). It has a f.g. branching subgroup.

Other examples of f.g. self-similar weakly branched groups with a f.g. branching subgroup
include the Gupta-Sidki groups [20], the Hanoi tower groups [18], and all iterated monodromy
groups of degree-2 complex polynomials [7] except z2 and z2 − 2.

CCC 2020
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Contracting self-similar groups. Recall the notation g@x for the coordinates of ϕ(g). We
iteratively define g@v = g@x1 · · ·@xn for any word v = x1 · · ·xn ∈ X∗. A self-similar group
G is called contracting if there is a finite subset N ⊆ G such that, for all g ∈ G, we have
g@v ∈ N whenever v is long enough (depending on g), see also [39, Definition 2.11.1].

If G is a f.g. contracting group with word norm ‖ · ‖ (i.e., for g ∈ G, ‖g‖ is the length of
a shortest word over a fixed generating set of G that represents g), then a more quantitative
property holds: there are constants 0 < λ < 1, h ≥ 1 and k ≥ 0 such that for all g ∈ G
we have ‖g@v‖ ≤ λ‖g‖ + k for all v ∈ Xh; see e.g. [28, Proposition 9.3.11]. Then, for
c = −h/ log λ and a possibly larger k we have g@v ∈ N whenever |v| ≥ c log ‖g‖ + k. It
is well-known and easy to check that the Grigorchuk group, the Gupta-Sidki groups and
the Hanoi tower group for three pegs are contracting. The following result has been quoted
numerous times, but has never appeared in print. We give a proof in the full version [5]. A
proof for the Grigorchuk group may be found in [16]:

I Proposition 11. Let G be a f.g. contracting self-similar group. Then WP(G) can be solved
in LOGSPACE (deterministic logarithmic space).

For the proof of Proposition 11 one shows that, if an element g of a contracting self-similar
group G acts as the identity on all words v ∈ X∗ of length O(log ‖g‖), then g = 1.

3 Complexity theory

Since we also deal with sublinear time complexity classes, we use Turing machines with
random access. Such a machine has an additional index tape and some special query states.
Whenever the Turing machine enters a query state, the following transition depends on the
input symbol at the position which is currently written on the index tape in binary notation.
We use the abbreviations DTM/NTM/ATM for deterministic/non-deterministic/alternating
Turing machine. We define the following complexity classes:

DLINTIME: the class of languages that can be accepted by a DTM in linear time.
DLOGTIME: the class of languages that can be accepted by a DTM in logarithmic time.
ALOGTIME: the class of languages that can be accepted by an ATM in logarithmic time.
It is well-known that ALOGTIME = DLOGTIME-uniform NC1, see [47] for details.
APTIME: the class of languages that can be accepted by an ATM in polynomial time.
We have APTIME = PSPACE.

A function f : Γ∗ → Σ∗ is DLOGTIME-computable if there is some polynomial p with |f(x)| ≤
p(|x|) for all x ∈ Γ∗ and the set Lf = {(x, a, i) | x ∈ Γ∗ and the i-th letter of f(x) is a}
belongs to DLOGTIME. Here i is a binary encoded integer. A DLOGTIME-reduction is a
DLOGTIME-computable many-one reduction.

The class AC0 (resp. TC0) is defined as the class of languages (respectively functions)
accepted (respectively computed) by circuits of constant depth and polynomial size with
not-gates and unbounded fan-in and- and or-gates (resp. unbounded fan-in threshold-gates).

4 Efficiently non-solvable groups and ALOGTIME

Recall the definition of a SENS (strongly efficiently non-solvable) group from Definition 1;
(a)–(d) refer to this definition in the following. We start with some observations:

A SENS group is clearly non-solvable, so the terminology makes sense. In the full version
[5] we give an example of a f.g. group that is non-solvable, has decidable word problem,
but is not SENS. The construction is inspired from [50].
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If one can find suitable gd,v of length at most 2µd, then these words can always be padded
to length 2µd thanks to the padding letter 1.
It suffices to specify gd,v for v ∈ {0, 1}d; the other gd,v are then defined by Condition (b).
We have |gd,v| = 2µd+2(d−|v|) for all v ∈ {0, 1}≤d. Thus, all gd,v have length 2O(d).
Equivalently to Condition (d), we can require that given v ∈ {0, 1}d and a binary encoded
number i with µd bits, one can compute the i-th letter of gd,v in DLINTIME.

Proof sketch for Theorem 2. The proof of Theorem 2 essentially follows Barrington’s proof
that the word problem of finite non-solvable groups is ALOGTIME-hard [3]. The entire
proof can be found in the full version [5], where we also state a non-uniform version of
Theorem 2. Since the proof for the uniform case is not difficult but tedious, in this sketch we
primarily focus on the non-uniform version, which only gives us hardness via (non-uniform)
AC0-reductions instead of DLOGTIME-reductions.

Like in Barrington’s proof, we start with an ALOGTIME-machine (resp. NC1-circuit) and
construct a family of so-called G-programs. Since we are dealing with finitely generated, but
infinite groups, we have to adapt the definition of G-programs slightly.

Fix a finite standard generating set Σ of G. A G-program P of length m and input length
n is a sequence of instructions 〈ij , bj , cj〉 for 0 ≤ j ≤ m− 1 where ij ∈ [1..n] and bj , cj ∈ Σ.
On input of a word x = x1 · · ·xn ∈ {0, 1}∗, an instruction 〈ij , bj , cj〉 evaluates to bj if xij = 1
and to cj otherwise. The evaluation of a G-program is the product (in the specified order) of
the evaluations of its instructions, and is denoted with P [x] ∈ Σ∗.

Let M be an ALOGTIME-machine in input normal form [47, Lemma 2.41], i. e., every
computation path queries at most one input bit andM halts immediately after the query. For
every input size n, the computation tree ofM translates immediately into a Boolean circuit of
depth d ∈ O(logn). Moreover, M can be normalized such that this circuit is a fully balanced
binary tree meaning that the gates of the circuit are indexed by the set {0, 1}≤d, where {0, 1}<d

are the inner gates (where ε is the output gate, which counts here as an inner gate) and {0, 1}d

are the leaves (input gates). We can assume that all inner gates are nand-gates (where the
Boolean function nand : {0, 1}2 → {0, 1} is defined by nand(0, 0) = nand(0, 1) = nand(1, 0) = 1
and nand(1, 1) = 0) and each leaf is labelled by a possibly negated input variable or constant
via an input mapping qn : {0, 1}d → [1..n]× {0, 1} × {0, 1}. The meaning of this mapping is
as follows: if the input to the circuit is the bit string x1x2 · · ·xn and qn(v) = 〈i, a, b〉, then
the input gate v ∈ {0, 1}d evaluates to a (resp., b) if xi = 1 (resp., xi = 0).

The family of circuits obtained this way can be shown to be DLOGTIME-uniform in
an even stronger sense than the usual definition (see e. g. [47]). For the sake of a simpler
description, we fix the input length n and write C for the n-input circuit of depth d ∈ O(logn).
W. l. o. g. for every x ∈ {0, 1}n, we have x ∈ L(M) if and only if the output gate of C evaluates
to 0 on input x.

For each gate v ∈ {0, 1}≤d, let gv = gd,v as in Definition 1. We construct two G-programs
Pv and P−1

v (both of input length n) such that for every input x ∈ {0, 1}n we have

Pv[x] =G

{
gv if gate v evaluates to 1,
1 if gate v evaluates to 0,

(2)

and P−1
v [x] = Pv[x]−1 in G. Notice that gvP−1

v [x] = gv if v evaluates to 0 and gvP−1
v [x] = 1,

otherwise. Thus, gvP−1
v is a G-program for the “negation” of Pv. Moreover, by Equation (2),

Pε evaluates to 1 on input x if and only if the output gate evaluates to 0 which by our
assumption is the case if and only if x ∈ L.

The construction of the Pv and P−1
v is straightforward: For an input gate v ∈ {0, 1}d with

qn(v) = 〈i, a, b〉 we define Pv to be a G-program evaluating to gv or 1 depending on the i-th
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input bit. More precisely, write gv = a1 · · · am with ai ∈ Σ. If qn(v) = 〈i, a, b〉 for i ∈ [1..n] and
a, b ∈ {0, 1}, we set Pv = 〈i, aa1 , ab1〉 · · · 〈i, aam, abm〉 and P−1

v = 〈i, a−am , a−bm 〉 · · · 〈i, a−a1 , a−b1 〉.
For a nand-gate v with inputs from v0 and v1, we define

Pv = gv[Pv1, Pv0] = gvP
−1
v1 P

−1
v0 Pv1Pv0,

P−1
v = [Pv0, Pv1]g−1

v = P−1
v0 P

−1
v1 Pv1Pv1g

−1
v ,

where the gv and g−1
v represent constant G-programs evaluating to gv and g−1

v , respectively,
irrespective of the actual input (such constant G-programs consist of triples of the form
〈1, a, a〉 for a ∈ Σ). These constant G-programs are defined via the commutator identities
gv =

[
gv0, gv1

]
for v ∈ {0, 1}<d in Definition 1.

Clearly, by induction we have Pv[x]−1 = P−1
v [x] in G (for every input x). Let us show

that Equation (2) holds: For an input gate v ∈ {0, 1}d, Equation (2) holds by definition.
Now, let v ∈ {0, 1}<d. Then, by induction, we have the following equalities in G:

Pv[x] = gv[Pv1[x], Pv0[x]] =
{
gv if v0 or v1 evaluates to 0,
gv[gv1, gv0] if v0 and v1 evaluate to 1,

=
{
gv if v evaluates to 1,
1 if v evaluates to 0.

Note that [gv1, gv0] = [gv0, gv1]−1 = g−1
v for the last equality. Thus, Pv satisfies Equation (2).

For P−1
v the analogous statement can be shown with the same calculation. For a leaf

v ∈ {0, 1}d, we have |gv| ∈ 2O(d) = nO(1) by Condition (a) from Definition 1 (recall that
d ∈ O(logn)). Hence, P−1

v and Pv have polynomial length in n. Finally, also Pε has
polynomial length in n.

This gives us a non-uniform AC0-reduction (more precisely, a projection reduction) of
L(M) to WP(G). In order to obtain a DLOGTIME-reduction, we apply essentially the same
construction. However, we need to introduce some padding so that the function mapping
an index i encoded in binary to the i-th instruction of Pε can be computed in DLINTIME.
In order to show the last point, we need condition (d) of the uniform SENS definition
(Definition 1). J

Let us next state some algebraic properties of SENS groups. The proofs of the following
three lemmas are straightforward.

I Lemma 12. The property of being (uniformly) SENS is independent of the choice of the
standard generating set.

I Lemma 13. If Q = H/K is a f.g. subquotient of a f.g. group G and Q is (uniformly)
SENS, then G is also (uniformly) SENS.

I Lemma 14. If G is (uniformly) SENS, then G/Z(G) is (uniformly) SENS.

The following result is, for G = A5, the heart of Barrington’s argument:

I Lemma 15. If G is a finite non-solvable group, then G is uniformly SENS.

Proof. Let us first show the statement for a non-abelian finite simple group G. By the proof
of Ore’s conjecture [34], every element of G is a commutator. This means that we may choose
gε 6= 1 at will, and given gv we define gv0, gv1 by table lookup, having chosen once and for
all for each element of G a representation of it as a commutator. Computing gv requires |v|
steps and bounded memory.
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If G is finite non-solvable, then any composition series of G contains a non-abelian simple
composition factor Gi/Gi+1. Hence, we can apply Lemma 13. J

We remark that a direct proof of Lemma 15 without using the deep result [34] is also not
difficult, but requires some more work.

By Lemmas 13 and 15, every group having a finite non-solvable subquotient is uniformly
SENS. Since every free group of rank n ≥ 2 projects to a finite non-solvable group, we get:

I Corollary 16. A f.g. free group of rank n ≥ 2 is uniformly SENS.

This result was essentially shown by Robinson [41], who showed that the word problem of
a free group of rank two is ALOGTIME-hard. He used a similar commutator approach as
Barrington. One can prove Corollary 16 also directly by exhibiting a free subgroup of infinite
rank whose generators are easily computable. For example, in the free group F2 = 〈x0, x1〉
take gd,v = x−v0 x1x

v
0 for v ∈ {0, 1}d viewing the string v as a binary encoded number (the

other gd,v for v ∈ {0, 1}<d are then defined by the commutator identity in Definition 1),
and appropriately padding with 1’s. It is even possible to take the gd,v of constant length:
consider a free group F = 〈x0, x1, x2〉 of rank 3 and the elements gd,v = xv mod 3 with v read
as the binary representation of an integer. It is easy to see that the nested commutator gd,ε
is non-trivial.

A dichotomy for linear groups. Instead of Corollary 4, we prove a slightly more detailed
result. Recall that a group G is called C1-by-C2 for group classes C1 and C2 if G has a normal
subgroup K ∈ C1 such that G/K ∈ C2.

I Theorem 17. For every f.g. linear group the word problem is in DLOGTIME-uniform TC0

or ALOGTIME-hard. More precisely: let G be a f.g. linear group.
If G is finite solvable, then WP(G) belongs to DLOGTIME-uniform ACC0.
If G is infinite solvable, then WP(G) is complete for DLOGTIME-uniform TC0 (via
uniform AC0-Turing-reductions).
If G is solvable-by-(finite non-solvable), then WP(G) is complete for ALOGTIME (via
DLOGTIME-reductions).
In all other cases, WP(G) is ALOGTIME-hard and in LOGSPACE.

Note that we can obtain a similar dichotomy for hyperbolic groups: they are either virtually
abelian or contain a non-abelian free subgroup. In the first case, the word problem is in
DLOGTIME-uniform TC0, in the second case it is ALOGTIME-hard.

Proof. Let G be f.g. linear. First of all, by [36, 44], WP(G) belongs to LOGSPACE. By Tits
alternative [46], G either contains a free subgroup of rank 2 or is virtually solvable. In the
former case, WP(G) is ALOGTIME-hard by Corollary 16 and Theorem 2. Let us now assume
that G is virtually solvable. Let K be a solvable subgroup of G of finite index. By taking the
intersection of all conjugates of K in G, we can assume that K is a normal subgroup of G.
If also G/K is solvable, then G is solvable. Hence, WP(G) is in DLOGTIME-uniform ACC0

(if G is finite) or, by [31], complete for DLOGTIME-uniform TC0 (if G is infinite). Finally,
assume that the finite group G/K is non-solvable (thus, G is solvable-by-(finite non-solvable).
By Lemmas 13 and 15, G is uniformly SENS, and Theorem 2 implies that WP(G) is
ALOGTIME-hard. Moreover, by [41, Theorem 5.2], WP(G) is AC0-reducible to WP(K) and
WP(G/K). The latter belongs to ALOGTIME and WP(K) belongs to DLOGTIME-uniform
ACC0 if K is finite and to DLOGTIME-uniform TC0 if K is infinite (note that K as a finite
index subgroup of G is f.g. linear too). In all cases, WP(G) belongs to ALOGTIME. J
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New examples of SENS groups. In order to get new examples of (uniformly) SENS groups,
we use the following result on groups with a certain self-embedding property with respect to
wreath products.

I Theorem 18. Let G be a finitely generated group with G oH ≤ G for some non-trivial
group H. Then G is uniformly SENS.

As an immediate consequence of this theorem and Lemma 8, we obtain:

I Corollary 19. Thompson’s groups F < T < V are uniformly SENS.

By the following result, Grigorchuk’s group and the Gupta-Sidki groups are uniformly SENS.

I Theorem 20. Let G be a weakly branched self-similar group, and assume that it admits a
f.g. branching subgroup K. Then K and hence G are uniformly SENS.

In the long version [5] we derive Theorems 18 and 20 from a single result. Roughly speaking,
it states that a f.g. group G is uniformly SENS if G contains a subgroup 〈h0, h1, h2, . . .〉 that
acts on a tree X∗ (where X can be also infinite) in such a way that there exist x−1, x, x1 ∈ X
with the following properties for all k ≥ 0:
(i) hk only acts non-trivially on the subtree below xk and
(ii) the three tree nodes xkx−1, xkx, and xkx1 are consecutive in the orbit of hk.
In addition, hk must be of word length 2O(k) (with respect to the generators of G) and the
symbol in hk at a certain position must be computable in linear time.

Theorem 18 can be derived from this statement as follows: we can use the embedding
G o H ≤ G in order to find in G a subgroup 〈h0, h1, . . . 〉 ∼= (· · · o Z) o Z or 〈h0, h1, . . . 〉 ∼=
(· · · o (Z/p)) o (Z/p). This subgroup acts in a canonical way on the tree X∗ for X = Z or
X = Z/p. Let the element hk be a generator of the (k + 1)-st cyclic factor from the right.
Then h0 cyclically permutes the children of the root ε, and, more generally, hk cyclically
permutes the children of the node 0k and stabilizes all other nodes. Using an appropriate
padding, the symbols of the hk are computable in linear time, so we can apply the above
mentioned result from the long version [5]. For weakly branched self-similar groups, after
overcoming some minor technical difficulties, the proof follows the same outline.

Direct proofs for Thompson’s and Grigorchuk’s groups. One can also prove the uniform
SENS property for Thompson’s group F directly. Recall the infinite presentation F =
〈x0, x1, x2, . . . | xxi

k = xk+1(i < k)〉.

I Proposition 21. Let g = x3x
−1
2 ∈ F and define cv for v ∈ {0, 1}∗ inductively via

cε = ε, cv0 = x1cv, and cv1 = x−1
0 x1cv.

Finally, for d ∈ N and v ∈ {0, 1}≤d let gd,v = gcv . Then gd,v = [gd,v0, gd,v1] for all d ∈ N
and v ∈ {0, 1}≤d and gε = g 6= 1 in F . In particular, G is uniformly SENS.

Proof. Obviously, we have gε = g in F . Moreover, since x2 6= x3 (which follows directly from
the normal form theorem for F ; see e.g. [12, Corollary 2.7]), we have g 6= 1 in F (Condition
(c) of Definition 1). The identity g = [g, gx−1

0 ]x1 = [gx1 , gx
−1
0 x1 ] is straightforward to check.

Thus, we obtain Condition (b):

gd,v = gcv = [gx1cv , gx
−1
0 x1cv ] = [gcv0 , gcv1 ] = [gd,v0, gd,v1].

Moreover, since |gd,v| = |g|+ 2 |cv| ≤ |g|+ 4d, we can pad with the identity symbol writing
gv,d as a word of length 2µd for some proper constant µ ∈ N in order to meet Condition (a)
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(be aware that the lengths need to be computed over a finite standard generating set Σ, e. g.
Σ =

{
1, x0, x

−1
0 , x1, x

−1
1
}
). This shows that F is SENS.

Condition (d) of Definition 1 is also straightforward to check by introducing some more
padding: we slightly change the definition of the cv by setting cε = ε, cv0 = 1x1cv, and cv1 =
x−1

0 x1cv where 1 ∈ Σ. This new cv represents the same group element as the old cv, but now
we have |cv| = 2 |v| for all v ∈ {0, 1}∗ and all letters at even positions are x1, while letters at
odd positions are either 1 or x−1

0 (the (2j + 1)-st letter of cv depends on the (|v| − j)-th bit
of v). Notice that we have |gd,v| = |g|+ 2 |cv| = |g|+ 4d.

On input of v ∈ {0, 1}d, i ∈ N (encoded with µd bits), and a ∈ Σ, first decide whether
1 ≤ i ≤ 2d, or 2d < i ≤ 2d+ |g|, or 2d+ |g| < i ≤ 4d+ |g|, or i > 4d+ |g|. This clearly can
be done in DLINTIME (recall that g is a constant). Now assume that 1 ≤ i ≤ 2d (i. e., i
points into the leading c−1

v of gd,v = c−1
v gcv). If i is odd, one accepts if and only if a = x−1

1 ;
if i is even, one accepts if and only if the i/2-th bit of v is zero and a = 1 or if the i/2-th bit
of v is one and a = x0. The other cases are similar. J

For the special case of Grigorchuk’s group we give below an alternative proof for the
uniform SENS property, where the gd,v are of constant length.

I Proposition 22. Consider in the Grigorchuk group G = 〈a, b, c, d〉 the elements x = (abad)2

and y = xb = babadabac. Define inductively zv ∈
{
x, y, x−1, y−1} for v ∈ {0, 1}∗: zε = x

and if zv is defined, then we define zv0 and zv1 according to the following table:

zv zv0 zv1

x x−1 y−1

x−1 y−1 x−1

y y x

y−1 x y

For every d ∈ N and v ∈ {0, 1}≤d let gd,v = zv for |v| = d and gd,v = [gd,v0, gd,v1] for |v| < d.
We then have gd,ε 6= 1 in G. In particular, G is uniformly SENS.

Proof. That x 6= 1 6= y is easy to check by computing the action of x and y on the third
level of the tree. Now the following equations are easy to check in G:

[x, y] =
〈〈

1,
〈〈

1, y−1〉〉〉〉 [x−1, y−1] = 〈〈1, 〈〈1, x〉〉〉〉
[y, x] = 〈〈1, 〈〈1, y〉〉〉〉 [y−1, x−1] =

〈〈
1,
〈〈

1, x−1〉〉〉〉
Hence, [zv0, zv1] = 〈〈1, 〈〈1, zv〉〉〉〉. The checks are tedious to compute by hand, but easy in the
GAP package FR (note that vertices are numbered from 1 in GAP and from 0 here):

gap> LoadPackage("fr");
gap> AssignGeneratorVariables(GrigorchukGroup);
gap> x := (a*b*a*d)^2; y := x^b;
gap> Assert(0,Comm(x,y) = VertexElement([2,2],y^-1));
gap> Assert(0,Comm(x^-1,y^-1) = VertexElement([2,2],x));
gap> Assert(0,Comm(y,x) = VertexElement([2,2],y));
gap> Assert(0,Comm(y^-1,x^-1) = VertexElement([2,2],x^-1));

We claim that gd,ε 6= 1 in G. The equation [zv0, zv1] = 〈〈1, 〈〈1, zv〉〉〉〉 immediately implies that
gd,v acts as zv on the subtree below vertex 12(d−|v|) and trivially elsewhere. In particular, gd,ε
acts as zε = x 6= 1 on the subtree below vertex 12d and is non-trivial. With this definition,
the gd,v satisfy the definition of a SENS group. Moreover, given some v ∈ {0, 1}d, gd,v can be
computed in time O(d) by a deterministic finite automaton with state set

{
x±1, y±1}. J
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5 Circuit value problems for wreath products

This section provides further details regarding Theorem 6. We start with two applications for
Mod-classes (applications for PSPACE can be found in the next section). For a complexity
class C we define the class ModmC by L ∈ ModmC if there exists a polynomial p(n) and a
language K ∈ C such that L =

{
u
∣∣ |{v ∈ {0, 1}p(|u|) : u#v ∈ K}| 6≡ 0 mod m

}
.

I Example 23. IfG is a finite non-abelian p-group, then LEAF(WP(G)) ⊆ Modp · · ·ModpP =
ModpP ⊆ LEAF(WP(G)) by [22, Satz 4.32], [9, Theorem 6.7], and [24, Theorem 2.2] and
likewise LEAF(WP(G/Z(G))) = ModpP. Hence, in this case CVP(G o Z) is complete for
∀ModpP.

I Example 24. Consider the symmetric group on three elements S3. By [24, Example 2.5]
we have LEAF(WP(S3)) = Mod3Mod2P (also written as Mod3⊕P). Since S3 has trivial
center, it follows that CVP(S3 o Z) is complete for ∀Mod3⊕P.

In the rest of the section, we outline the proof of Theorem 6; full details can be found in the
appendix. The first statement of Theorem 6 (that CVP(G o Z) belongs to ∀LEAF(WP(G)))
is the easy part: Let Σ be a standard generating set for G and fix a generator t for Z. Then
Γ = Σ ∪ {t, t−1} is a standard generating set for G o Z. Consider a circuit over the wreath
product G o Z whose input gates are labelled with generators from Γ. We can evaluate this
circuit also in the free monoid Γ∗ and obtain a word w ∈ Γ∗ as the evaluation of the output
gate. We have to verify that w = 1 in G oZ. One first checks in polynomial time whether the
exponent sum of t in w is zero. If not, the algorithm rejects, otherwise the word w represents
in G o Z a function f : Z → G with finite support. One can easily compute in polynomial
time two binary encoded integers i, j such that supp(f) is contained in [i..j] (the integer
interval from i to j). It remains to verify that ∀x ∈ [i..j] : f(x) = 1. The ∀-quantifier over
[i..j] corresponds to the ∀-part in ∀LEAF(WP(G)). Finally, for a specific number x ∈ [i..j]
the machine then produces a leaf string wx ∈ Σ∗ such that wx represents the group element
f(x) ∈ G. Basically, the machine branches to all positions p in the word w and prints the
symbol a at that position p, if (i) a ∈ Σ and (ii) the exponent sum of all t’s in the prefix up
to position p− 1 in w is x (this can be checked in polynomial time). Otherwise, the machine
prints the padding letter 1.

The hard part of Theorem 6 is showing hardness for ∀LEAF(WP(G/Z(G))). The proof for
this uses some of the techniques from the paper [37], where a connection between leaf strings
and string compression was established. Instead of going into the details (which can be found
in Appendix C) we want to explain another perspective on the theorem. Let us restrict to
the case that the center of G is trivial; hence the circuit value problem for G o Z is complete
for ∀LEAF(WP(G)). Also fix a standard generating set Γ for G. Recall that a circuit over
the group G can be seen also as a succinct representation of a string over the alphabet Γ,
which is obtained by evaluating the circuit in the free monoid Γ∗. The circuit value problem
for G then asks whether this word belongs to WP(G). Leaf languages correspond to an even
more succinct form of string compression by Boolean circuits. A Boolean circuit C with n
inputs represents the binary string of length 2n, where the i-th symbol is 1 if and only if C
evaluates to true under the i-th truth assignment. In order to represent an arbitrary string
w ∈ Γ∗ by a Boolean circuit, one has to (i) fix an encoding of the symbols from Γ by binary
strings and (ii) specify in addition to the circuit also the length of w. It is then well-known
that the question whether a string specified by a Boolean circuit belongs to a fixed language
K is complete for LEAF(K) (strictly speaking this is only true if LEAF(K) is replaced by the
corresponding balanced leaf language class, but for K = WP(G) this makes no difference
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due to the padding letter 1; see Appendix A). Compression by Boolean circuits is much more
succinct than compression by group circuits. For instance, for a finite non-solvable group G,
LEAF(WP(G)) = PSPACE but CVP(G) is P-complete. Roughly speaking, Theorem 6 says
that compression by group circuits over the wreath product G o Z has the same power as
compression by Boolean circuits over the group G.

6 PSPACE-complete circuit value problems

In this section we apply Theorem 6 to SENS groups. The results are summarized in Corollary 7
from the introduction. The proofs of this section can be found in the full version [5].

The following result can be derived from Theorem 2 using a padding argument (recall
that PSPACE = APTIME). Another point of view is that Lemma 25 generalizes the inclusion
PSPACE ⊆ LEAF(WP(G)) for a finite simple group (in which case equality holds) [25]. Note
that, by Lemma 14, G/Z(G) is uniformly SENS if G is uniformly SENS.

I Lemma 25. If G is uniformly SENS, then PSPACE ⊆ LEAF(WP(G/Z(G))).

From Theorem 6 and Lemma 25 we get:

I Corollary 26. If G is uniformly SENS, then CVP(G o Z) is PSPACE-hard.

We can apply Corollary 26 to wreath products G o Z where G is finite non-solvable or free
of rank n ≥ 2 (statement (i) in Corollary 7 from the introduction). In this case, the word
problem for G o Z can be solved in LOGSPACE (which follows from a transfer theorem for
wreath products [48] and the fact the word problem for finite groups and free groups can be
solved in LOGSPACE [36]). This in turn implies that CVP(G o Z) belongs to PSPACE.

For Thompson’s group F we have F oZ ≤ F (Lemma 8). Moreover, F is uniformly SENS
(Corollary 19). Hence, Corollary 26 shows that CVP(F ) is PSPACE-hard. Furthermore,
CVP(F ) belongs to PSPACE. This follows from the fact that F is co-context-free, i.e., the
complement of the word problem of F is a context-free language [33] (this is independent of
the finite generating set). We obtain statement (ii) in Corollary 7.

Finally, statements (iii) and (iv) from Corollary 7 are consequences of the following result:

I Corollary 27. If G is a weakly branched torsion group whose branching subgroup is f.g.,
then CVP(G) is PSPACE-hard. If, in addition, G is contracting, then CVP(G) is PSPACE-
complete.

Proof sketch. The second statement follows easily from the first statement since for a
contracting group the word problem belongs to LOGSPACE (Proposition 11), which implies
that the circuit value problem belongs to PSPACE (see Lemma 34 in the appendix). For the
first statement, the main observation is that the hardness proof for the second statement
of Theorem 6 (see Appendix C) uses only a subinterval of the integers whose length is
exponentially bounded in the input length. This means that it suffices to find a copy of
G o(Z/pn) in G for each n and some fixed p ≥ 2. Moreover, the embedding ϕ : G o(Z/pn)→ G

must be circuit-efficient in the sense that for every generator a of G o (Z/pn) one can compute
from n (given in unary notation) a circuit Gn,a for ϕ(a). For the case of a weakly branched
torsion group G whose branching subgroup K is finitely generated we cannot show the
existence of such a circuit-efficient embedding for G itself, but we can prove it for K (in fact,
it suffices to show an embedding K o (Z/p) ≤ K, which can then be iterated n-times in order
to get the embedding K o (Z/pn) ≤ K). This implies that the circuit value problem for K
(and hence for G) is PSPACE-hard. J
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7 Conclusion and open problems

We have added an algorithmic constraint (uniformly SENS) to the algebraic notion of being
a non-solvable group, which implies that the word problem is ALOGTIME-hard. Using this,
we produced several new examples of non-solvable groups with an ALOGTIME-hard word
problem. However, the question remains open whether every non-solvable group has an
ALOGTIME-hard word problem, even if it is not SENS. We showed that for every contracting
self-similar group the word problem belongs to LOGSPACE. Here, the question remains
whether there exists a contracting self-similar group with a LOGSPACE-complete word
problem. In particular, is the word problem for the Grigorchuk group LOGSPACE-complete?
(We proved that it is ALOGTIME-hard.) Also the precise complexity of the word problem
for Thompson’s group F is open. It is ALOGTIME-hard and belongs to LOGCFL; the latter
follows from [33]. In fact, from the proof in [33] one can deduce that the word problem for F
belongs to LOGDCFL (the closure of the deterministic context-free languages with respect to
LOGSPACE-reductions).
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A Leaf languages

In the following, we introduce more details concerning leaf languages that were briefly
explained in the introduction. An NTM M with input alphabet Γ is called adequate, if (i) for
every input x ∈ Γ∗, M does not have an infinite computation on input x, (ii) the finite set of
transition tuples of M is linearly ordered, and (iii) when terminating M prints a symbol α(q)
from a finite alphabet Σ, where q is the current state of M . For an input x ∈ Γ∗, we define
the computation tree by unfolding the configuration graph ofM from the initial configuration.
By condition (i) and (ii), the computation tree can be identified with a finite ordered tree
T (x) ⊆ N∗. For u ∈ T (x) let q(u) be the M -state of the configuration that is associated with
the tree node u. Then, the leaf string leaf(M,x) is the string α(q(v1)) · · ·α(q(vk)) ∈ Σ+,
where v1, . . . , vk are all leaves of T (x) listed in lexicographic order.

A complete binary tree is a rooted tree, where every non-leaf node has a left and a
right child, and every path from the root to a leaf has the same length. An adequate
NTM M is called balanced, if for every input x ∈ Γ∗, the computation T (x) (produced
by M on input x) is a complete binary tree. In Section 3 we defined the complexity
class LEAF(K) = {LEAF(M,K) | M is an adequate polynomial time NTM} for a language
K ⊆ Σ∗. Let us define the subclass

bLEAF(K) = {LEAF(M,K) |M is a balanced polynomial time NTM}.

Both classes LEAF(K) and bLEAF(K) are closed under polynomial time reductions. We
clearly have bLEAF(K) ⊆ LEAF(K). The following result was shown in [29] by padding
computation trees to complete binary trees.

I Lemma 28. Assume that K ⊆ Σ∗ is a language such that Σ contains a symbol 1 with the
following property: if uv ∈ K for u, v ∈ Σ∗ then u1v ∈ K. Then LEAF(K) = bLEAF(K).

In particular, we obtain the following lemma:

I Lemma 29. Let G be a finitely generated group and Σ a finite standard generating set for
G. Then LEAF(WP(G,Σ)) = bLEAF(WP(G,Σ)).

Moreover, we have:

I Lemma 30. Let G be finitely generated group and Σ, Γ finite standard generating sets for
G. Then LEAF(WP(G,Σ)) = LEAF(WP(G,Γ)).

Proof. Consider a language L ∈ LEAF(WP(G,Σ)). Thus, there exists an adequate polyno-
mial time NTM M such that L = LEAF(M,WP(G,Σ)). We modify M as follows: If M
terminates and prints the symbol a ∈ Σ, it enters a small nondeterministic subcomputation
that produces the leaf string wa, where wa ∈ Γ∗ is a word that evaluates to the same group
element as a. Let M ′ be the resulting adequate polynomial time NTM. It follows that
LEAF(M,WP(G,Σ)) = LEAF(M ′,WP(G,Γ)). J

As remarked in the main part, Lemma 29 allows to just write LEAF(WP(G)) (as well as
bLEAF(WP(G))). In [25] it was shown that PSPACE = LEAF(WP(G)) for every finite
non-solvable group.

B Compressed words and the circuit value problem

We mentioned in the introduction that the circuit value problem for a f.g. group G can be
seen as a succinct version of the word problem, where the input word is succinctly represented
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by a context-free grammar that produces exactly one word. Such a context-free grammar is
also called a straight-line program in the literature on string compression. This alternative
viewpoint on the circuit value problem turns out to be convenient for our proofs. In the
following we will elaborate this viewpoint.

A straight-line program (SLP for short) over the alphabet Σ is a triple G = (V, ρ, S),
where V is a finite set of variables such that V ∩ Σ = ∅, S ∈ V is the start variable, and
ρ : V → (V ∪Σ)∗ is a mapping such that the relation {(A,B) ∈ V ×V : B occurs in ρ(A)} is
acyclic. For the reader familiar with context free grammars, it might be helpful to view the
SLP G = (V, ρ, S) as the context-free grammar (V,Σ, P, S), where P contains all productions
A→ ρ(A) for A ∈ V . The definition of an SLP implies that this context-free grammar derives
exactly on terminal word, which will be denoted by val(G). Formally, one can extend ρ to a
morphism ρ : (V ∪ Σ)∗ → (V ∪ Σ)∗ by setting ρ(a) = a for all a ∈ Σ. The above acyclicity
condition on ρ implies that for m = |V | we have ρm(w) ∈ Σ∗ for all w ∈ (V ∪ Σ)∗. We then
define valG(w) = ρm(w) (the string derived from the sentential form w) and val(G) = valG(S).
We define the size of the SLP G as the total length of all right-hand sides: |G| =

∑
A∈V |ρ(A)|.

SLPs offer a succinct representation of words that contain many repeated substrings. For
instance, the word (ab)2n can be produced by the SLP G = ({A0, . . . , An}, ρ, An) with
ρ(A0) = ab and ρ(Ai+1) = AiAi for 0 ≤ i ≤ n− 1.

The word ρ(A) is also called the right-hand side of A. Quite often, it is convenient
to assume that all right-hand sides are of the form a ∈ Σ or BC with B,C ∈ V . This
corresponds to the well-known Chomsky normal form for context-free grammars. There is a
simple linear time algorithm that transforms an SLP G with val(G) 6= ε into an SLP G′ in
Chomsky normal form with val(G) = val(G′), see e.g. [38, Proposition 3.8].

The circuit value problem CVP(G) for a f.g. group G (as defined in the introduction) is
equivalent to the following problem, where Σ is a finite standard generating set for G:
Input: an SLP G over the alphabet Σ.
Question: does val(G) = 1 hold in G?
It is an easy observation that the computational complexity of the circuit value problem
for G does not depend on the chosen generating set Σ: More precisely, if we denote for a
moment with CVP(G,Σ) the circuit value problem for the specific generating set Σ, then for
all generating sets Σ and Σ′ for G, CVP(G,Σ) is LOGSPACE-reducible to CVP(G,Σ′) [38,
Lemma 4.2]. The circuit value problem for G is also known as the compressed word problem
for G [38].

We need a couple of known results for SLPs. For this we use the following notations on
strings (which will be also needed in Appendix C). Take a word w = a0 · · · an−1 ∈ Σ∗ over
the alphabet Σ (n ≥ 0, a0, . . . , an−1 ∈ Σ). For 0 ≤ i < n let w[i] = ai and for 0 ≤ i ≤ j < n

let w[i : j] = aiai+1 · · · aj . Moreover w[: i] = w[0 : i]. Note that in the notations w[i] and
w[i : j] we take 0 as the first position in w. This will be convenient in Appendix C. Finally,
with |w|a = |{i | ai = a}| we denote the number of occurrences of a in w.

I Lemma 31 (c.f. [13]). For every SLP G we have |val(G)| ≤ 3|G|/3.

I Lemma 32 ([38, Chapter 3]). The following problems can be solved in polynomial time,
where G is an SLP over a terminal alphabet Σ, a ∈ Σ, and p, q ∈ N are numbers given in
binary notation:

Given G, compute the length |val(G)| of the word val(G).
Given G and a, compute the number |val(G)|a of occurrences of a in val(G).
Given G and p, compute the symbol val(G)[p] ∈ Σ (in case 0 ≤ p < |val(G)| does not hold,
the algorithm outputs a special symbol).
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Given G and p, q, compute an SLP for the string val(G)[p : q] (in case 0 ≤ p ≤ q < |val(G)|
does not hold, the algorithm outputs a special symbol).

I Lemma 33 (c.f. [38, Lemma 3.12]). Given a symbol a0 ∈ Σ and a sequence of morphisms
ϕ1, . . . , ϕn : Σ∗ → Σ∗, where every ϕi is given by a list of the words ϕi(a) for a ∈ Σ, one
can compute in LOGSPACE an SLP for the word ϕ1(ϕ2(· · ·ϕn(a0) · · · )).

The next lemma follows easily by evaluating a given SLP and then running an algorithm
for the “ordinary” word problem:

I Lemma 34. If G is a finitely generated group such that WP(G) can be solved in polyloga-
rithmic space, then CVP(G) belongs to PSPACE.

C Additional details for Section 5

This section presents a detailed proof of Theorem 6. Instead of circuits over groups we will
use the equivalent framework of SLPs from Appendix B. The proof of the lower bound in
Theorem 6 uses some of the techniques from the paper [37], where a connection between leaf
strings and SLPs was established. In Sections C.1–C.3 we will introduce these techniques.
The proof of Theorem 6 will be given in Appendix C.4.

Let us first fix some general notations. For integers i ≤ j we write [i..j] for the interval
{z ∈ Z | i ≤ z ≤ j}. In the following, we will identify a bit string α = a1a2 · · · an
(a1, . . . , an ∈ {0, 1}) with the vector (a1, a2, . . . , an). In particular, for another vector
s = (s1, s2, . . . , sn) ∈ Nn we will write α · s =

∑n
i=1 ai · si for the scalar product. Moreover,

we write
∑
s for the sum s1 + s2 + · · ·+ sn.

C.1 Subsetsum problems
A sequence (s1, . . . , sn) of natural numbers is super-decreasing if si > si+1 + · · · + sn for
all 1 ≤ i ≤ n. For example, (s1, . . . , sn) with si = 2n−i is super-decreasing. An instance of
the subsetsum problem is a tuple (t, s1, . . . , sk) of binary encoded natural numbers. It is a
positive instance if there are a1, . . . , ak ∈ {0, 1} such that t = a1s1 + · · ·+ aksk. Subsetsum
is a classical NP-complete problem, see e.g. [15]. The super-decreasing subsetsum problem is
the restriction of subsetsum to instances (t, s1, . . . , sk), where (s1, . . . , sk) is super-decreasing.
In [30] it was shown that super-decreasing subsetsum is P-complete.1 We need a slightly
generalized version of the construction showing P-hardness that we discuss in Appendix C.2.

C.2 From Boolean circuits to super-decreasing subsetsum
For this section, we have to fix some details on Boolean circuits. Let us consider a Boolean
circuit C with input gates x1, . . . , xm and output gates y0, . . . , yn−1.2 We view C as a
directed acyclic graph with multi-edges (there can be two edges between two nodes); the
nodes are the gates of the circuit. The number of incoming edges of a gate is called its
fan-in and the number of outgoing edges is the fan-out. Every input gate xi has fan-in
zero and every output gate yi has fan-out zero. Besides the input gates there are two more
gates c0 and c1 of fan-in zero, where ci carries the constant truth value i ∈ {0, 1}. Besides

1 In fact, [30] deals with the super-increasing subsetsum problem. But this is only a nonessential detail.
For our purpose, super-decreasing sequences are more convenient.

2 It will be convenient for us to number the input gates from 1 and the output gates from 0.

CCC 2020



29:22 ALOGTIME-hard word problems and PSPACE-complete circuit value problems

x1, . . . , xm, c0, c1 every other gate has fan-in two and computes the nand of its two input
gates. Moreover, we assume that every output gate yi is a nand-gate. For a bit string
α = b1 · · · bm (b1, . . . , bm ∈ {0, 1}) and 0 ≤ i ≤ n− 1 we denote with C(α)i the value of the
output gate yi when every input gate xj (1 ≤ j ≤ m) is set to bj . Thus, C defines a map
{0, 1}m → {0, 1}n.

We assume now that C is a Boolean circuit as above with the following additional
property that will be satisfied later: For all input bit strings α ∈ {0, 1}m there is exactly
one i ∈ [0..n− 1] such that C(α)i = 1. Using a refinement of the construction from [30] we
compute in LOGSPACE q0, . . . , qn−1 ∈ N and two super-decreasing sequences r = (r1, . . . rm)
and s = (s1, . . . , sk) for some k (all numbers are represented in binary notation) with the
following properties:

The r1, . . . , rm are pairwise distinct powers of 4.
For all 0 ≤ i ≤ n− 1 and all α ∈ {0, 1}m: C(α)i = 1 if and only if there exists δ ∈ {0, 1}k
such that δ · s = qi + α · r.

Let us first add for every input gate xi two new nand-gates x̄i and ¯̄xi, where ¯̄xi has the same
outgoing edges as xi. Moreover we remove the old outgoing edges of xi and replace them by
the edges (xi, x̄i), (c1, x̄i) and two edges from x̄i to ¯̄xi. This has the effect that every input
gate xi has a unique outgoing edge. Clearly, the new circuit computes the same Boolean
function (basically, we introduce two negation gates for every input gate). Let g1, . . . , gp
be the nand-gates of the circuit enumerated in reverse topological order, i.e., if there is an
edge from gate gi to gate gj then i > j. We denote the two edges entering gate gi with
e2i+n−2 and e2i+n−1. Moreover, we write ei (0 ≤ i ≤ n−1) for an imaginary edge that leaves
the output gate yi and whose target gate is unspecified. Thus, the edges of the circuit are
e0, . . . , e2p+n−1. We now define the natural numbers q0, . . . , qn−1, r1, . . . rm, s1, . . . , sk with
k = 3p:

Let I = {j | ej is an outgoing edge of the constant gate c1 or a nand-gate}. For 0 ≤ i ≤
n− 1 we define the number qi as

qi =
∑

j∈I\{i}

4j .

Recall that ei is the unique outgoing edge of the output gate yi.
If ej is the unique outgoing edge of the input gate xi then we set ri = 4j . We can choose
the reverse topological sorting of the nand-gates in such a way that r1 > r2 > · · · > rm
(we only have to ensure that the target gates x1, . . . , xm of the input gates appear in the
order xm, . . . , x1 in the reverse topological sorting of the nand-gates).
To define the numbers s1, . . . , sk we first define for every nand-gate gi three numbers t3i,
t3i−1 and t3i−2 as follows, where Ii = {j | ej is an outgoing edge of gate gi}:

t3i = 42i+n−1 + 42i+n−2 +
∑
j∈Ii

4j

t3i−1 = 42i+n−1 − 42i+n−2 = 3 · 42i+n−2

t3i−2 = 42i+n−2

Then, the tuple (s1, . . . , sk) is (t3p, t3p−1, t3p−2, . . . , t3, t2, t1), which is indeed super-
decreasing (see also [30]). In fact, we have si − (si+1 + · · ·+ sk) ≥ 4n−1 for all i ∈ [1..k].
To see this, note that the sets Ii+1, . . . , Ik are pairwise disjoint. This implies that the
n− 1 low-order digits in the base-4 expansion of si+1 + · · ·+ sk are zero or one.

In order to understand this construction, one should think of the edges of the circuit carrying
truth values. Recall that there are 2p + n edges in the circuit (including the imaginary
outgoing edges of the output gates y0, . . . , yn−1). A number in base-4 representation with
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2p+ n digits that are either 0 or 1 represents a truth assignment to the 2p+ n edges, where
a 1-digit represents the truth value 1 and a 0-digit represents the truth value 0. Consider an
input string α = b1 · · · bm ∈ {0, 1}m and consider an output gate yi, i ∈ [0..n− 1]. Then the
number N := 4i + qi + b1r1 + · · ·+ bmrm encodes the truth assignment for the circuit edges,
where:

all outgoing edges of the constant gate c1 carry the truth value 1,
all outgoing edges of the constant gate c0 carry the truth value 0,
the unique outgoing edge of an input gate xi carries the truth value bi,
all outgoing edges of nand-gates carry the truth value 1.

We have to show that C(α)i = 1 if and only if there exists δ ∈ {0, 1}k such that δ · s =
N − 4i. For this we apply the canonical algorithm for super-decreasing subsetsum with
input (N, s1, . . . , sk). This algorithm initializes a counter A to N and then goes over the
sequence s1, . . . , sk in that order. In the j-th step (1 ≤ j ≤ k) we set A to A− sj if A ≥ sj .
If A < sj then we do not modify A. After that we proceed with sj+1. The point is that this
process simulates the evaluation of the circuit on the input values b1, . . . , bm. Thereby the
nand-gates are evaluated in the topological order gp, gp−1, . . . , g1. Assume that gj is the gate
that we want to evaluate next. In the above algorithm for super-decreasing subsetsum the
evaluation of gj is simulated by the three numbers t3j , t3j−1, and t3j−2. At the point where
the algorithm checks whether t3j can be subtracted from A, the base-4 digits at positions
2j + n, . . . , 2p+ n− 1 in the counter value A have been already set to zero. If the digits at
the next two high-order positions 2j + n− 1 and 2j + n− 2 are still 1 (i.e., the input edges
e2j+n−2 and e2j+n−1 for gate gj carry the truth value 1), then we can subtract t3j from A.
Thereby we subtract all powers 42j+n−1, 42j+n−2 and 4h, where eh is an outgoing edge for
gate gj . Since gate gj evaluates to zero (both input edges carry 1), this subtraction correctly
simulates the evaluation of gate gj : all outgoing edges eh of gj (that were initially set to the
truth value 1) are set to the truth value 0. On the other hand, if one of the two digits at
positions 2j + n− 1 and 2j + n− 2 in A is 0 (which means that gate gj evaluates to 1), then
we cannot subtract t3j from A. If both digits at positions 2j + n− 1 and 2j + n− 2 in A are
0, then also t3j−1 and t3j−2 cannot be subtracted. On the other hand, if exactly one of the
two digits at positions 2j + n− 1 and 2j + n− 2 is 1, then with t3j−1 and t3j−2 we can set
these two digits to 0 (thereby digits at positions < 2j + n− 2 are not modified).

Assume now that yj (j ∈ [0..n− 1]) is the unique output gate that evaluates to 1, i.e., all
output gates yj′ with j′ 6= j evaluate to zero. Then after processing all weights s1, . . . , sk
we have A = 4j (we will never subtract 4j). We have shown that there exists δ ∈ {0, 1}k
such that δ · s+ 4j = N . Hence, if i = j (i.e., C(α)i = 1) then δ · s = N − 4i. Now assume
that i 6= j. In order to get a contradiction, assume that there is δ′ ∈ {0, 1}k such that
δ′ · s+ 4i = N . We have δ 6= δ′ and δ · s+ 4j = δ′ · s+ 4i, i.e, δ · s− δ′ · s = 4i − 4j . Since
i, j ∈ [0..n− 1], we get |δ · s− δ′ · s| < 4n−1. But si − (si+1 + · · · sk) ≥ 4n−1 for all i ∈ [1..k]
implies that |δ · s− δ′ · s| ≥ 4n−1.

C.3 From super-decreasing subsetsum to straight-line programs
In [35] a super-decreasing sequence t = (t1, . . . , tk) of natural numbers is encoded by the
string S(t) ∈ {0, 1}∗ of length

∑
t+ 1 such that for all 0 ≤ p ≤

∑
t:

S(t)[p] =
{

1 if p = α · t for some α ∈ {0, 1}k,
0 otherwise.

(3)

Note that in the first case α is unique. Since t is a super-decreasing sequence, the number of
1’s in the string S(t) is 2k. Also note that S(t) starts and ends with 1. In [35] it was shown
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that from a super-decreasing sequence t of binary encoded numbers one can construct in
LOGSPACE an SLP for the word S(t).

C.4 Proof of Theorem 6
Let us fix a regular wreath product of the form G o Z for a finitely generated group G. Such
groups are also known as generalized lamplighter groups (the lamplighter group arises for
G = Z2). Throughout this section, we fix a set of standard generators Σ for G and let τ = 1
be the generator for Z. Then Σ∪{τ, τ−1} is a standard generating set for the wreath product
G o Z. In G o Z the G-generator a ∈ Σ represents the mapping fa ∈ G(Z) with fa(0) = a and
fa(z) = 1 for z 6= 0. For a word w ∈ (Σ ∪ {τ, τ−1})∗ we define η(w) := |w|τ − |w|τ−1 . Thus,
the element of G o Z represented by w is of the form fτη(w) for some f ∈ G(Z). Recall the
definition of the left action of Z on G(Z) from Section 2 (where we take H = Y = Z). For
better readability, we write c◦f for cf (c ∈ Z, f ∈ G(Z)). Hence, we have (c◦f)(z) = f(z+c).
If one thinks of f as a bi-infinite word over the alphabet G, then c ◦ f is the same word but
shifted by −c.

The following intuition might be helpful: Consider a word w ∈ (Σ ∪ {τ, τ−1})∗. In G o Z
we can simplify w to a word of the form τz0a1τ

z1a2 · · · τzk−1akτ
zk (with zj ∈ Z, aj ∈ Σ),

which in G o Z can be rewritten as

τz0a1τ
z1a2 · · · τzk−1akτ

zk =
( k∏
j=1

τz0+···+zj−1ajτ
−(z0+···+zj−1)) τz0+···+zk .

Hence, the word w represents the group element

( k∏
j=1

(z0 + · · ·+ zj−1) ◦ faj

)
τz0+···+zk .

This gives the following intuition for evaluating τz0a1τ
z1a2 · · · τzk−1akτ

zk : In the beginning,
every Z-position carries the G-value 1. First, go to the Z-position −z0 and multiply the
G-element at this position with a1 (on the right), then go to the Z-position −z0 − z1 and
multiply the G-element at this position with a2, and so on.

Proof of Theorem 6. The easy part is to show that the circuit value problem for G o Z
belongs to ∀LEAF(WP(G)). In the following, we make use of the statements from Lemma 32.
Let G be an SLP over the alphabet Σ ∪ {τ, τ−1} and let fτη(val(G)) ∈ G o Z be the group
element represented by val(G). By Lemma 32 we can compute η(val(G)) in polynomial time.
If η(val(G)) 6= 0 then the Turing-machine rejects by printing a non-trivial generator of G
(here we need the assumption that G is non-trivial). So, let us assume that η(val(G)) = 0.
We can also compute in polynomial time two integers b, c ∈ Z such that supp(f) ⊆ [b..c].
We can take for instance b = −|val(G)| and c = |val(G)|. It suffices to check whether for all
x ∈ [b..c] we have f(x) = 1. For this, the Turing-machine branches universally to all binary
encoded integers x ∈ [b..c] (this yields the ∀-part in ∀LEAF(WP(G))). Consider a specific
branch that leads to the integer x ∈ [b..c]. From x and the input SLP G the Turing-machine
then produces a leaf string over the standard generating set Σ of G such that this leaf string
represents the group element f(x) ∈ G. For this, the machine branches to all positions
p ∈ [0..|val(G)|−1] (if p < q < |val(G)| then the branch for p is to the left of the branch for q).
For a specific position p, the machine computes in polynomial time the symbol a = val(G)[p].
If a is τ or τ−1 then the machine prints 1 ∈ Σ. On the other hand, if a ∈ Σ then the machine
computes in polynomial time d = η(val(G)[: p]). This is possible by first computing an SLP
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for the prefix val(G)[: p]. If d = −x then the machine prints the symbol a, otherwise the
machine prints the trivial generator 1. It is easy to observe that the leaf string produced in
this way represents the group element f(x).

Let us now prove hardness for ∀LEAF(WP(G/Z(G))) with respect to LOGSPACE-reduc-
tions. By Lemma 29 it suffices to show that CVP(G o Z) is hard for the balanced class
∀bLEAF(WP(G/Z(G))). Let a0, . . . , an−1 be an arbitrary enumeration of the standard
generators in Σ. Fix a language L ∈ ∀bLEAF(WP(G/Z(G))). From the definition of the
class ∀bLEAF(WP(G/Z(G))) it follows that there exist two polynomials p1 and p2 and a
balanced polynomial time NTM M running in time p1 + p2 that outputs a symbol from Σ
after termination and such that the following holds: Consider an input word z for M and let
m1 = p1(|z|), m2 = p2(|z|), m = m1 +m2, and T (z) be the corresponding computation tree
of M on input z. It is a complete binary tree of height m. Its node set can be identified with
the bit strings in {0, 1}≤m, where v0 (resp., v1) is the left (resp., right) child of v ∈ {0, 1}<m.
For every leaf α ∈ {0, 1}m let us denote with λ(α) the symbol from Σ that M prints when
reaching the leaf α. Then we have: z ∈ L if and only if for all β ∈ {0, 1}m1 the string

λβ :=
∏

γ∈{0,1}m2

λ(βγ) (4)

represents a group element from the center Z(G). Here (and in the following), the product
in the right-hand side of (4) goes over all bit strings of length m2 in lexicographic order. Our
construction consists of five steps:

Step 1. Note that given a bit string α ∈ {0, 1}m, we can compute in polynomial time the
symbol λ(α) ∈ Σ by following the computation path specified by α. Using the classical
Cook-Levin construction (see e.g. [2]), we can compute from the input z and a ∈ Σ in
LOGSPACE a Boolean circuit Cz,a with m input gates x1, . . . , xm and a single output gate
y0 such that for all α ∈ {0, 1}m: Cz,a(α)0 = 1 if and only if λ(α) = a. By taking the disjoint
union of these circuits and merging the input gates, we can build a single circuit Cz with
m input gates x1, . . . , xm and n = |Σ| output gates y0, . . . , yn−1. For every α ∈ {0, 1}m and
every 0 ≤ i ≤ n− 1 the following holds: Cz(α)i = 1 if and only if λ(α) = ai.

Step 2. Using the construction from Appendix C.2 we can compute from the circuit Cz in
LOGSPACE numbers q0, . . . , qn−1 ∈ N and two super-decreasing sequences r = (r1, . . . , rm)
and s = (s1, . . . , sk) with the following properties:

The r1, . . . , rm are pairwise distinct powers of 4.
For all 0 ≤ i ≤ n− 1 and all α ∈ {0, 1}m we have: λ(α) = ai if and only if Cz(α)i = 1 if
and only if there is δ ∈ {0, 1}k such that δ · s = qi + α · r.

Note that for all α ∈ {0, 1}m there is a unique i such that Cz(α)i = 1. Hence, for all
α ∈ {0, 1}m there is a unique i such that qi + α · r is of the form δ · s for some δ ∈ {0, 1}k.
For this unique i we have λ(α) = ai.

We split the super-decreasing sequence r = (r1, . . . , rm) into the two sequences r1 =
(r1, . . . , rm1) and r2 = (rm1+1, . . . , rm). For the following consideration, we need the following
numbers:

` = max
{∑

r1 + max{q0, . . . , qn−1}+ 1,
∑
s−

∑
r2 −min{q0, . . . , qn−1}+ 1

}
(5)

π = `+
∑
r2 (6)
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The binary encodings of these numbers can be computed in LOGSPACE (since iterated
addition, max, and min can be computed in LOGSPACE). The precise value of ` will be only
relevant at the end of step 4.

Step 3. By the result from [35] (see Appendix C.3) we can construct in LOGSPACE from
the three super-decreasing sequences r1, r2 and s three SLPs G1, G2 and H over the alphabet
{0, 1} such that val(G1) = S(r1), val(G2) = S(r2) and val(H) = S(s) (see (3)). For all
positions p ≥ 0 (in the suitable range) we have:

val(G1)[p] = 1 ⇐⇒ ∃β ∈ {0, 1}m1 : p = β · r1

val(G2)[p] = 1 ⇐⇒ ∃γ ∈ {0, 1}m2 : p = γ · r2

val(H)[p] = 1 ⇐⇒ ∃δ ∈ {0, 1}k : p = δ · s

Note that |val(G1)| =
∑
r1 + 1, |val(G2)| =

∑
r2 + 1, and |val(H)| =

∑
s+ 1.

Step 4. We build in LOGSPACE for every 0 ≤ i ≤ n − 1 an SLP Hi from the SLP H by
replacing in every right-hand side of H every occurrence of 0 by τ−1 and every occurrence of 1
by aiτ−1. Let Ti be the start variable ofHi, let S1 be the start variable of G1, and let S2 be the
start variable of G2. We can assume that the variable sets of the SLPs G1,G2,H0, . . . ,Hn−1
are pairwise disjoint. We next combine these SLPs into a single SLP I. The variables of I
are the variables of the SLPs G1,G2,H0, . . . ,Hn−1 plus a fresh variable S which is the start
variable of I. The right-hand sides for the variables are defined below. In the right-hand sides
we write powers τp for integers p whose binary encodings can be computed in LOGSPACE.
Such powers can be produced by small subSLPs that can be constructed in LOGSPACE too.

In all right-hand sides of G1 and G2 we replace all occurrences of the terminal symbol 0
by the Z-generator τ .
We replace every occurrence of the terminal symbol 1 in a right-hand side of G1 by S2τ

`,
where ` is from (5).
We replace every occurrence of the terminal symbol 1 in a right-hand side of G2 by στ ,
where

σ = τ q0T0τ
h−q0τ q1T1τ

h−q1 · · · τ qn−1Tn−1τ
h−qn−1 (7)

and h =
∑
s + 1 is the length of the word val(H) (which is −η(valI(Ti)) for every

i ∈ [0..n− 1]). Note that η(valI(σ)) = 0.
Finally, the right-hand side of the start variable S is S1τ

−d where d :=
∑
r1 + 1 + 2m1 ·π.

(note that d = η(valI(S1))).
Before we explain this construction, let us first introduce some notations.

Let u := valI(S2). We have η(u) = |val(G2)|. Hence, the group element represented by u
can be written as fuτ |val(G2)| for a mapping fu ∈ G(Z).
Let v := valI(σ), where σ is from (7). Note that η(v) = 0. Hence, the group element
represented by v is a mapping fv ∈ G(Z). Its support is a subset of the interval from
position −max{q0, . . . , qn−1} to position

∑
s−min{q0, . . . , qn−1}.

For β ∈ {0, 1}m1 let bin(β) be the number represented by β in binary notation (thus,
bin(0m1) = 0, bin(0m1−11) = 1, . . . , bin(1m1) = 2m1 − 1). Moreover, let

pβ := −bin(β) · π.

First, note that η(val(I)) = 0. This is due to the factor τ−d in the right-hand side of the
start variable S of I. Hence, the group element represented by val(I) is a mapping f ∈ G(Z).
The crucial claim is the following:
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B Claim. For every β ∈ {0, 1}m1 , f(pβ) is the group element represented by the leaf string
λβ from (4).

Proof of the claim. In the following, we compute in the restricted direct product G(Z).
Recall that the multiplication in this group is defined by the pointwise multiplication of
mappings.

Since we replaced in G1 every 1 in a right-hand side by S2τ
`, which produces uτ ` in I

(which evaluates to fuτπ+1), the mapping f is a product (in the restricted direct product
G(Z)) of shifted copies of fu. More precisely, for every β′ ∈ {0, 1}m1 we get the shifted copy(

β′ · r1 + bin(β′) · π
)
◦ fu (8)

of fu. The shift distance β′ · r1 + bin(β′) ·π can be explained as follows: The 1 in val(G1) that
corresponds to β′ ∈ {0, 1}m1 occurs at position β′ · r1 (the first position is 0) and to the left
of this position we find bin(β′) many 1’s and β′ · r1 − bin(β′) many 0’s in val(G1). Moreover,
every 0 in val(G1) was replaced by τ (shift by 1) and every 1 in val(G1) was replaced by uτ `
(shift by `+ |val(G2)| = π + 1). Hence, the total shift distance is indeed (8). Also note that
if β′ ∈ {0, 1}m1 is lexicographically smaller than β′′ ∈ {0, 1}m1 then β′ · r1 < β′′ · r1. This
implies that

f =
∏

β′∈{0,1}m1

(
β′ · r1 + bin(β′) · π

)
◦ fu =

∏
β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦ fu.

Let us now compute the mapping fu. Recall that we replaced in G2 every occurrence of 1 by
στ , where σ is from (7) and derives to v. The 1’s in val(G2) occur at positions of the form
γ · r2 for γ ∈ {0, 1}m2 and if γ ∈ {0, 1}m2 is lexicographically smaller than γ′ ∈ {0, 1}m2 then
γ · r2 < γ′ · r2. We therefore get

fu =
∏

γ∈{0,1}m2

(γ · r2) ◦ fv.

We obtain

f =
∏

β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦ fu

=
∏

β′∈{0,1}m1

(
β′ · r1 − pβ′

)
◦

∏
γ∈{0,1}m2

(γ · r2 ◦ fv)

=
∏

β′∈{0,1}m1

∏
γ∈{0,1}m2

(
β′ · r1 + γ · r2 − pβ′

)
◦ fv

and hence

f(pβ) =
∏

β′∈{0,1}m1

∏
γ∈{0,1}m2

fv(pβ − pβ′ + β′ · r1 + γ · r2).

We claim that for all β 6= β′ and all γ ∈ {0, 1}m2 we have

fv(pβ − pβ′ + β′ · r1 + γ · r2) = 1. (9)

Let us postpone the proof of this for a moment. From (9) we get

f(pβ) =
∏

γ∈{0,1}m2

fv(β · r1 + γ · r2).
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Consider a specific γ ∈ {0, 1}m2 and let α = βγ and p = β · r1 + γ · r2 = α · r. From the
definition of v = valI(σ) it follows that for all x ∈ Z, fv(x) is a product of those group
generators ai such that x = −qi + δ · s for some δ ∈ {0, 1}k. For the position p this means
that qi + α · r = δ · s. By our previous remarks, there is a unique such i ∈ [0..n− 1] and for
this i we have λ(α) = ai. Hence, we obtain fv(p) = λ(α) = λ(βγ) and thus

f(pβ) =
∏

γ∈{0,1}m2

λ(βγ) = λβ .

It remains to show (9). To get this identity, we need the precise value of ` from (5) (so far,
the value of ` was not relevant). Assume now that β 6= β′, which implies

|pβ − pβ′ | ≥ π = `+
∑

r2.

Hence, we either have

pβ − pβ′ + β′ · r1 + γ · r2 ≥ `+
∑

r2 + β′ · r1 + γ · r2

≥ `+
∑

r2

>
∑

s−min{q0, . . . , qn−1}

or

pβ − pβ′ + β′ · r1 + γ · r2 ≤ −`−
∑

r2 + β′ · r1 + γ · r2

≤ −`+
∑

r1

< −max{q0, . . . , qn−1},

where the strict inequalities follow from our choice of `. Recall that the support of the
mapping fv is contained in [−max{q0, . . . , qn−1}..

∑
s−min{q0, . . . , qn−1}]. This shows (9)

and hence the claim. J

Step 5. By the above claim, we have f(pβ) ∈ Z(G) for all β ∈ {0, 1}m1 if and only if
λβ ∈ Z(G) for all β ∈ {0, 1}m1 , which is equivalent to z ∈ L. The only remaining problem is
that the word val(I) produces some “garbage” group elements f(x) on positions x that are
not of the form pβ . Note that for every g ∈ G \ Z(G), there is a generator ai ∈ Σ such that
the commutator [g, ai] is non-trivial. We now produce from I an SLP I−1 such that val(I−1)
represents the inverse element of f ∈ G(Z), which is the mapping g with g(x) = f(x)−1 for
all x ∈ Z. To construct I−1, we have to reverse every right-hand side of I and replace every
occurrence of a symbol a0, . . . , an−1, τ, τ

−1 by its inverse.
It is easy to compute in LOGSPACE for every i ∈ [0..n− 1] an SLP for the word

wi :=
(
aiτ

π
)2m1

τ−2m1 ·π.

Then the group element represented by wi is the mapping fi ∈ G(Z) whose support is
the set of positions pβ for β ∈ {0, 1}m1 and fi(pβ) = ai for all β ∈ {0, 1}m1 . We can
also compute in LOGSPACE an SLP for the word w−1

i . We then built in LOGSPACE SLPs
J0, . . . ,Jn−1 such that val(Ji) = val(I−1)w−1

i val(I)wi. Hence, the word val(Ji) represents
the group element gi ∈ G(Z), where gi(x) = 1 for all x ∈ Z \ {pβ | β ∈ {0, 1}m1} and
gi(pβ) = f(pβ)−1a−1

i f(pβ)ai = [f(pβ), ai].
Finally, we construct in LOGSPACE an SLP J such that

val(J ) = val(J0) τ val(J1) τ val(J2) · · · τ val(Jn−1) τ−n+1.
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We can assume that n ≤ `+
∑
r2 = π (n is a constant and we can always make ` bigger).

Then val(J ) evaluates to the group element g ∈ G(Z) with g(x) = 1 for x ∈ Z \ {pβ − i | β ∈
{0, 1}m1 , 0 ≤ i ≤ n − 1} and g(pβ − i) = gi(pβ) = [f(pβ), ai] for 0 ≤ i ≤ n − 1. Hence, if
f(pβ) ∈ Z(G) for all β ∈ {0, 1}m1 then val(J ) = 1 in G o Z. On the other hand, if there is a
β ∈ {0, 1}m1 such that f(pβ) ∈ G \Z(G) then there is an ai such that [f(pβ), ai] 6= 1. Hence
g(pβ − i) 6= 1 and val(J ) 6= 1 in G o Z. This concludes the proof of Theorem 6. J
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