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Abstract. The talk will explain a recent balancing result according to
which a context-free grammar in Chomsky normal form of size m that
produces a single string w of length n (such a grammar is also called a
straight-line program) can be transformed in linear time into a context-
free grammar in Chomsky normal form for w of size O(m), whose unique
derivation tree has depth O(logn). This solves an open problem in the
area of grammar-based compression, improves many results in this area
and greatly simplifies many existing constructions. Similar balancing re-
sults can be formulated for various grammar-based tree compression for-
malism like top DAGs and forest straight-line programs. The talk is based
on joint work with Moses Ganardi and Artur Jeż. An extended abstract
appeared in [11]; a long version of the paper can be found in [12].

1 Grammar-based string compression

In grammar-based compression a combinatorial object (e.g. a string or tree)
is compactly represented using a grammar of an appropriate type. In many
grammar-based compression formalisms such a grammar can be exponentially
smaller than the object itself. A well-studied example of this general idea is
grammar-based string compression using context-free grammars that produce
only one string each, which are also known as straight-line programs, SLPs for
short. Formally, we define an SLP as a context-free grammar G in Chomsky
normal form such that (i) G is acyclic and (ii) for every nonterminal A there is
exactly one production, where A is the left-hand side. The size |G| of the SLP
G is the number of nonterminals in G and the depth of G (depth(G) for short)
is the height of the unique derivation tree of G. Since we assume that G is in
Chomsky normal form, we have depth(G) ≥ log n if n is the length of the string
produced by G.

The goal of grammar-based string compression is to compute from a given
string an SLP of small size. Grammar-based string compression is tightly related
to dictionary-based compression: the famous LZ78 algorithm can be viewed as
a particular grammar-based compressor. Moreover, the number of phrases in the
LZ77-factorization is a lower bound for the smallest SLP for a string [24], and
an LZ77-factorization of length m can be converted to an SLP of size O(m·log n)
where n is the length of the string [24,8,18,19]. For various other aspects of
grammar-based string compression see [8,20].



2 Balancing string straight-line programs

An advantage of grammar-based compression is that SLPs are well-suited for
further algorithmic processing. There is an extensive body of literature on al-
gorithms for SLP-compressed strings, see e.g. [20] for a survey. For many of
these algorithms, the depth of the input SLP is an important parameter. Let
us give a simple example: in the random access problem for an SLP-compressed
string s an SLP G for s is given. Let n be the length of s. The goal is to pro-
duce from G a data structure that allows us to compute for a given position i
(1 ≤ i ≤ n) the i-th symbol of s. As observed in [6] one can solve this problem
in time O(depth(G)) (assuming arithmetic operations on numbers from the in-
terval [0, n] need constant time): in the preprocessing phase one computes for
every nonterminal A of G the length nA of the string produced from A; this takes
time O(G) and produces a data structure of size O(G) (assuming a number from
[0, n] fits into a memory location). In the query phase, one computes for a given
position i ∈ [1, n] the path from the root to the i-th leaf in the derivation tree
of G. Only the current nonterminal A and a relative position in the string pro-
duced from A has to be stored. Using the pre-computed numbers nA the whole
computation needs time O(depth(G)). Recall that depth(G) ≥ log n. In [6] it
is shown that one can compute from G a data structure of size O(|G|) which
allows to access every position in time O(log n), irrespective of the depth of G.
The algorithm in [6] is quite complicated and used several sophisticated data
structures. An alternative approach to obtain access time O(log n) is to balance
the input SLP G in the preprocessing phase, i.e., to reduce its depth. This is the
approach that we will follow.

It is straightforward to show that any string s of length n can be produced by
an SLP of size O(n) and depth O(log n). A more difficult problem is to balance a
given SLP: assume that the SLP G produces a string of length n. Several authors
have shown that one can restructure G in time O(|G| · log n) into an equivalent
SLP H of size O(|G| · log n) and depth O(log n) [24,8,19]. Applied to the random
access problem, these balancing procedures would yield access time O(log n) at
the cost of building a data structure of size O(|G|·log n) during the preprocessing.
Our main result shows that SLP balancing is in fact possible with a constant
blow-up in SLP-size:

Theorem 1. Given an SLP G producing a string of length n one can construct
in linear time an equivalent SLP H of size O(|G|) and depth O(log n).

As a corollary we obtain a very simple and clean algorithm for the random ac-
cess problem with access time O(log n) that uses a data structure of size O(m)
(in words of bit length log n). We can also obtain an algorithm for the random
access problem with access time O(log n/ log logn) using a data structure with
O(m · logε n) words for any ε > 0; previously this bound was only shown for
SLPs of height O(log n). [1] The paper [11] contains a list of further applica-
tions of Theorem 1, which include the following problems on SLP-compressed
strings: rank and select queries [1], subsequence matching [2], computing Karp-
Rabin fingerprints [4], computing runs, squares, and palindromes [17], real-time

2



traversal [14,23] and range-minimum queries [15]. In all these applications we ei-
ther improve existing results or significantly simplify existing proofs by replacing
depth(G) by O(log n) in time/space bounds.

3 Proof strategy

The proof of Theorem 1 consists of two main steps. Take an SLP G for the string
s of length n and let m be the size of G. We consider the derivation tree t for
G; it has size O(n). The SLP G can be viewed as a DAG for t of size m. We
decompose this DAG into node-disjoint paths such that each path from the root
to a leaf intersects O(log n) paths from the decomposition. Each path from the
decomposition is then viewed as a string of integer-weighted symbols, where the
weights are the lengths of the strings derived from nodes that branch off from the
path. For this weighted string we construct an SLP of linear size that produces
all suffixes of the path in a certain weight-balanced way. Plugging these SLPs
together yields the final balanced SLP.

Some of the ideas in our algorithm can be traced back to the area of parallel
algorithms: the path decomposition for DAGs is related to the centroid path
decomposition of trees [9], where it is the key technique in several parallel al-
gorithms on trees. Moreover, the SLP of linear size that produces all suffixes of
a weighted string can be seen as a weight-balanced version of the optimal prefix
sum algorithm.

Our balancing procedure involves simple arithmetics on string positions, i.e.,
numbers of order n. Therefore we need machine words of bit-length Ω(log n) in
order to achieve a linear running time in Theorem 1; otherwise the running time
increases by a multiplicative factor of order log n. Note that such an assumption
is realistic and standard in the field: machine words of bit length Ω(log n) are
needed, say, for indexing positions in the represented string. On the other hand,
our procedure works in the pointer model regime.

4 Balancing forest straight-line programs and top DAGs

Grammar-based compression has been generalized from strings to ordered node-
labelled trees. In fact, the representation of a tree t by its smallest directed
acyclic graph (DAG) is a form of grammar-based tree compression. This DAG is
obtained by merging nodes where the same subtree of t is rooted. It can be seen
as a regular tree grammar that produces only t. A drawback of DAG-compression
is that the size of the DAG is lower-bounded by the height of the tree t. Hence,
for deep narrow trees (like for instance caterpillar trees), the DAG-representation
cannot achieve good compression. This can be overcome by representing a tree t
by a linear context-free tree grammar that produces only t. Such grammars are
also known as tree straight-line programs in the case of ranked trees (where the
number of children of a node is uniquely determined by the node label) [7,21,22]
and forest straight-line programs in the case of unranked trees [13]. The latter are
tightly related to top DAGs [5,3,10,13,16], which are another tree compression
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formalism, also akin to grammars. Our balancing technique works similarly for
these compression formalisms:

Theorem 2. Given a top DAG/ forest straight-line program/ tree straight-line
program G producing the tree t one can compute in time O(|G|) a top DAG/ forest
straight-line program/ tree straight-line program H for t of size O(|G|) and depth
O(log |t|).

For top DAGs, this solves an open problem from [5], where it was shown that
from an unranked tree t of size n, whose minimal DAG has size m (measured in
number of edges in the DAG), one can construct in linear time a top DAG for t
of size O(m · log n) and depth O(log n). It remained open whether the additional
factor log n in the size bound can be avoided. A negative answer for the specific
top DAG constructed in [5] was given in [3]. On the other hand, Theorem 2
yields another top DAG of size O(m) and depth O(log n). To see this note that
one can easily convert the minimal DAG of t into a top DAG of roughly the same
size, which can then be balanced. This also gives an alternative proof of a result
from [10], according to which one can construct in linear time a top DAG of size
O(n/ logσ n) and depth O(log n) for a given tree of size n containing σ many
different node labels.

Let us finally mention that Theorems 1 and 2 are instances of a general
balancing result that applies to a large class of circuits over algebraic structures,
see [12] for details.
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