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Abstract. The definition of kth-order empirical entropy of strings is extended

to node-labelled binary trees. A suitable binary encoding of tree straight-line
programs (that have been used for grammar-based tree compression before) is

shown to yield binary tree encodings of size bounded by the kth-order empir-

ical entropy plus some lower order terms. This generalizes recent results for
grammar-based string compression to grammar-based tree compression.

Keywords. Grammar-based compression, binary trees, empirical entropy,

lossless compression

1. Introduction

Grammar-based string compression. The idea of grammar-based compression
is based on the fact that in many cases a word w can be succinctly represented
by a context-free grammar that produces exactly w. Such a grammar is called
a straight-line program (SLP) for w. In the best case, one gets an SLP of size
Θ(log n) for a word of length n, where the size of an SLP is the total length of all
right-hand sides of the rules of the grammar. A grammar-based compressor is an
algorithm that produces for a given word w an SLP Gw for w, where, of course,
Gw should be smaller than w. Grammar-based compressors can be found at many
places in the literature. Probably the best known example is the classical LZ78-
compressor of Lempel and Ziv [39]. Indeed, it is straightforward to transform the
LZ78-representation of a word w into an SLP for w. Other well-known grammar-
based compressors are Bisection [23], Sequitur [32], and Repair [26], just to
mention a few.

Recently, several upper bounds on the compression perfomance of grammar-
based compressors in terms of higher order empirical entropy have been shown. For
this, the choice of a concrete binary encoding B(G) of an SLP G is crucial. Kieffer
and Yang [22] came up with such a binary encoding B and proved that under
certain assumptions on the grammar-based compressor w 7→ Gw, the combined
compressor w 7→ B(Gw) yields a universal code with respect to the family of finite-
state information sources over finite alphabets. More precisely, it is needed that
the size of the SLP Gw is bounded by O(|w|/ logσ̂ |w|) where σ is the size of the
underlying alphabet and σ̂ = max{2, σ}. This upper bound is met by all grammar-
based compressors that produce so-called irreducible SLPs [22], which is the case
for e.g. LZ78, Bisection, and Repair after a small modification of the latter. In
their recent paper [33], Navarro and Ochoa used the binary encoding B(Gw) from
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[22] in order to prove for every word w over an alphabet of size σ the upper bound

(1) |B(Gw)| ≤ |w|Hk(w) + o(|w| log σ̂)

for every k ∈ o(logσ̂ |w|). Here, Hk(w) is the kth-order empirical entropy of
w, and the grammar-based compressor w 7→ Gw must satisfy the upper bound
|Gw| ≤ O(|w|/ logσ̂ |w|). Similar but weaker upper bounds for more practical binary
SLP-encodings have been shown in [15, 31]. Finally, beyond grammar-based com-
pression, universal encodings for strings have been proposed for example based on
the Burrows-Wheeler transform [2, 7], Lempel–Ziv compressors [34], or the context-
tree weighting method [37].

Grammar-based tree compression. Grammar-based compression has been gen-
eralized from strings to trees by means of linear context-free tree grammars gen-
erating exactly one tree [4]. Such grammars are also known as tree straight-line
programs, TSLPs for short, see [28] for a survey. TSLPs can be seen as a proper
generalization of SLPs and DAGs (directed acyclic graphs, which are a widely used
compact representation of trees). Whereas DAGs only have the ability to share
repeated subtrees of a tree, TSLPs can also share repeated tree patterns with a
hole (so-called contexts). In [12], the authors presented a linear time algorithm
that computes for a given binary tree t of size1 n a TSLP Gt of size O(n/ logσ̂ n)
where σ is the size of the underlying set of node labels and σ̂ = max{2, σ}. An
alternative algorithm with the same asymptotic size bound can be found in [13].
TSLPs have been also extended to so-called forest straight-line programs (FSLPs)
which allow to compress unranked node-labelled trees [17]. FSLPs are very similar
to top DAGs [3] and also meet the size bound O(n/ logσ̂ n) for unranked trees of
size n. The reader should notice that the O(n/ logσ̂ n)-bound cannot be achieved
by DAGs: the smallest DAG for an unlabelled binary tree of size n may still contain
n edges.

Entropy bounds for grammar-based tree compressors. In this paper we first
consider node-labelled binary trees: every node has a label from a finite set Σ of
size σ and every non-leaf node has a left and a right child. For unlabelled binary
trees the results of Kieffer and Yang on universal grammar-based string compressors
have been extended to trees in [14, 38]. Whereas the universal tree encoder from
[38] is based on DAGs (and needs a certain assumption on the average DAG size
with respect to the input distribution), the encoder from [14] uses TSLPs of size
O(n/ log n). For this, a binary encoding of TSLPs similar to the one for SLPs from
[22] is proposed. In this paper we extend the binary TSLP-encoding from [14] to
node-labelled binary trees (which is straightforward) and prove an entropy bound
similar to the one from [33] for strings. To do this, we first have to come up with
a reasonable higher order entropy for binary node-labelled trees (we just speak of
binary trees in the following). Several notions of tree entropy can be found in the
literature, but all are tailored towards unranked trees and do not yield nontrivial
results for the special case of unlabelled binary trees (which is an indication that
these entropy measures only deal with some partial aspects of trees).

• The kth-order label entropy of a tree t [8] is the expected uncertainty about
the label of a node v, given the k first node labels on the path from the
parent node of v to the root of t.

1We define the size of a binary tree as its number of leaves.
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• The degree entropy from [21] is the 0th-order entropy of the node degrees
(in [21] it is called the tree entropy, but this term could be misleading since
here we talk about several entropy measures for trees).
• Recently, two combinations of degree entropy and kth-order label entropy

were proposed in [16]. The first one is the kth-order degree-label entropy of
a tree t: it is the expected uncertainty about the label of a node v of t, given
(i) the k first labels on the path from the parent node of v to the root and
(ii) the degree of v. The second combination is the kth-order label-degree
entropy of t: it is the expected uncertainty about the degree of a node v,
given (i) the k first labels on the path from the parent node of v to the root
and (ii) the label of v. In [16], the following two upper bounds (in bits) for
the space to represent t are shown: (a) the kth-order degree-label entropy
of t plus the degree entropy of t and (b) the kth-order label-degree entropy
of t plus the kth-order label entropy of t.

Degree entropy [21] is not useful in the context of binary trees, since a binary tree
with n leaves has n − 1 nodes of degree 2, which shows that the degree entropy
divided by the number of nodes (2n−1) converges to 1 when n increases. A binary
unlabelled tree can be encoded with one bit per node; so the degree entropy only
yields a trivial upper bound for the encoding length. Node labels are completely
ignored by the degree entropy, therefore it cannot be used for node-labelled trees.
On the other hand, kth-order label entropy [8] is not useful for unlabelled trees since
it ignores the shape of the tree. For the special case of unlabelled binary trees, also
the combinations of [16] do not lead to useful entropy measures: for an unlabelled
binary tree t, the above two entropy sums (a) and (b) are both equal to the degree
entropy of t, which by the above remark only yields a trivial upper bound for the
encoding length.

Our first contribution is the definition of a reasonable entropy measure for binary
trees that can be also used for the unlabelled case. For this we define the k-history
of a node v in a binary tree t by taking the last k edges on the unique path from
the root to v. For each edge (v1, v2) traversed on this path we write down the node
label of v1 and a 0 (resp., 1) if v2 is a left (resp., right) child of v1. Thus, the
k-history of a node is a word of length 2k that alternatingly consists of symbols
from Σ and directions that are encoded by 0 or 1. For nodes at depth smaller
than k we pad the history with 0’s and a default node label � ∈ Σ in order to
get length exactly k.2 For each k-history h we then consider the joint probability
distribution P th of the node degree (either 0 or 2) and the node label, conditioned
on the history h. Thus, P th(a, i) is the probability that a randomly chosen node
among the nodes with history h is labelled with the symbol a and has i ∈ {0, 2}
children. The kth-order empirical entropy of t, Hk(t) for short, is then the sum
of the entropies of these distributions P th (the sum is taken over all histories h)
weighted with the number of nodes with history h. This definition is similar to the
definition of the kth-order empirical entropy of a string. A detailed quantitative as
well as experimental comparison of our kth-order empirical entropy of trees with
the above mentioned tree entropies from [8, 16, 21] can be found in [20].

2This is an ad hoc decision to make the definitions easier. In the appendix we discuss different
approaches of how to deal with nodes of depth smaller than k, and prove that they asymptotically

lead to the same entropy measure.
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Our main result states that

(2) |B(Gt)| ≤ Hk(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ,

where t is a binary tree with n leaves, the grammar-based compressor t 7→ Gt
produces TSLPs of size O(n/ logσ̂ n) for binary trees of size n with σ many node
labels and σ̂ = max(2, σ). Moreover, B is an extension of the binary TSLP-encoding
described in [14] from unlabelled binary trees to labelled binary trees (Section 3.3).
If k ≤ o(logσ̂ n) then this bound can be simplified to |B(Gt)| ≤ Hk(t) + o(n log σ̂).
The assumption k ≤ o(logσ̂ n) can be also found in [33]. In fact, Gagie argued
in [11] that the kth-order empirical entropy for strings stops being a reasonable
complexity measure for almost all strings of length n over alphabets of size σ when
k ≥ logσ̂ n. Our bound (2) can be seen as an extension of the bound (1) [33] from
strings to trees.

Our definition of kth-order empirical entropy does not capture all regularities
that can be exploited in grammar-based tree compression: Take for instance a
complete unlabelled binary tree tn of height n (all paths from the root to a leaf
have length n). This tree has 2n leaves and is well compressible: its minimal DAG
has only n + 1 nodes, hence there also exists a TSLP of size n + 1 for tn. But
for every fixed k the kth-order empirical entropy of tn divided by n converges to
2 (the trivial upper bound) for n → ∞. If n � k then for every k-history z the
number of leaves with k-history z is roughly the same as the number of internal
nodes with k-history z. Hence, although tn is highly compressible with TSLPs (and
even DAGs), its kth-order empirical entropy is close to the maximal value. This
phenomenon is also known for strings: in contrast to grammar-based compression,
kth-order empirical string entropy does not capture repetitiveness in strings. In
[24, Lemma 2.6] it is shown that the unnormalized empirical kth-order entropy of
a string ww is at least twice the unnormalized empirical kth-order entropy of w
(as long as k ≤ |w|). In Section 6 we prove that the gap between grammar-based
compression and empirical kth-order entropy can be extreme in the following sense:
there exists a family of strings Sn of length Θ(2n) such that Sn has an SLP of size
O(n) whereas the empirical kth-order entropy of Sn is of size Ω(2n−k) for k ∈ o(n).

Unranked trees. In Section 5 we present a simple extension of our entropy notion
to node-labelled unranked trees. In an unranked tree the number of children of a
node is arbitrary. Unranked trees are important in the area of XML, where the
hierarchical structure of a document is represented by a node-labelled unranked
tree.3 For such a tree t we define the kth-order empirical entropy as the kth-order
empirical entropy of the first-child next-sibling (fcns for short) encoding of t. The
fcns-encoding of t is a binary tree which contains all nodes of t. If a node v of t has
the first (i.e., left-most) child v1 and the right sibling v2 then v1 (resp., v2) is the
left (resp., right) child of v in the fcns-encoding of t. If v has no child or no right
sibling then one adds dummy leaves to the fcns-encoding in order to obtain a full
binary tree. Our choice of defining the kth-order empirical entropy of an unranked
tree via the fcns-encoding is motivated by the fact that in XML document trees
the label of a node v usually depends on the labels of the ancestors and the labels

3Being able to apply our tree entropy to XML trees is the main reason for considering node-
labelled binary trees in this paper.
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of the left siblings of v. This information is contained in the history of v in the
fcns-encoding.

We present experimental results with real XML document trees showing that
in these cases the kth-order empirical entropy is indeed very small compared to
the worst-case bit size. An unranked tree with n nodes and σ node labels can be
encoded with 2n+log2(σ)n bits [18]. Up to low order terms, this is optimal. Table 1
shows the values of the kth-order empirical entropy (for k = 1, 2, 4, 8) divided by
2n+ log2(σ)n for several real XML trees (that were also used in other experiments
for XML compression [29, 30]). For k = 4, these quotients never exceed 20% and
for k = 8 all quotients are bounded by 13.5%.

Our experimental results combined with our entropy bound (2) for grammar-
based compression are in accordance with the fact that grammar-based tree com-
pressors yield excellent compression ratios for XML document trees, see e.g. [29].
Some of the XML documents from our experiments were also used in [29], where
the performance of TreeRePair (currently the best grammar-based tree compressor
from a practical point of view) on XML document trees was tested. An interesting
observation is that those XML trees, for which our k-th order empirical entropy is
large are indeed those XML trees with the worst compression ratio for TreeRePair
in [29] (this is in particular the Treebank document from Table 1).

Proof ideas and comparison with related work. In this section we explain
some of the main ideas behind the proof of our main inequality (2). In particular,
we explain the connections to [14, 33], which are the main inspirations for this work.

In our work as well as in [14] probability distributions on trees play a crucial role.
In our paper, we deal with so-called kth-order tree processes. For a fixed set of node
labels Σ, a kth-tree process P specifies for every possible k-history z a probability
distribution Pz : Σ × {0, 2} → [0, 1] where Pz(q, i) (for a ∈ Σ and i ∈ {0, 2}) is
the probability that in a tree a node with k-history z is labelled with a and has
i children (here, we only deal with binary trees). Using these distributions Pz we
can assign a probability ProbP(t) to every binary tree; see (10) in Section 2.2.3.
One can show that the sum over all ProbP(t) for t a finite binary Σ-labelled tree
is at most one; see Lemma 2 (the sum of all probabilities for finite trees can be
smaller than one because a tree process may also produce infinite trees with non-
zero probability). Our technical main result (Theorem 3, from which (2) easily
follows) states that for every kth-order tree process P with ProbP(t) > 0 we have

(3) |B(Gt)| ≤ − log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

Here, t, n, σ, Gt and B have the same meaning as in (2). This result can be
also stated as follows: The tree encoder t 7→ B(Gt) is universal for the class
of all kth-order tree processes (assuming that k ≤ o(logσ̂ n)) so that |B(Gt)| ≤
− log2 ProbP(t) + o(n log σ̂). Note that − log2 ProbP(t) is the self-information of t
with respect to P.

Also in [14], universality results are shown, but the underlying probability distri-
butions are different. In [14] the focus is on so-called leaf-centric and depth-centric
binary tree sources, which were introduced in [38]. A leaf-centric binary tree source
P specifies for every n ≥ 1 a probability distribution on the set of all binary trees
with exactly n leaves. A depth-centric binary tree source P specifies for every
h ≥ 0 a probability distribution on the set of all binary trees of height h. In this
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way, we again a assign a probability ProbP(t) to every binary tree (in [14, 38] only
unlabelled trees are considered), but the sum of all these probabilities is of course
infinity. It is shown in [14] that for certain classes C of leaf-centric (resp., depth-
centric) binary tree sources the tree encoder t 7→ B(Gt) is again universal in the
sense that |B(Gt)| ≤ − log2 ProbP(t) + o(n log σ̂) for all P ∈ C. The tree encoder
t 7→ B(Gt) used in [14] is almost the same as in this paper, except for the fact that
[14] only deals with unlabelled binary trees.

In contrast to our work, the universality results from [14] do not seem to imply
an entropy bound of the form (2). For this one would first have to come up with a
suitable entropy notion that is related to the tree sources from [14]. For our notion
of kth-order empirical tree entropy Hk(t) the relation to kth-order tree processes is
established by Theorem 1. It states that Hk(t) is the minimal self-information of t
with respect to a kth-order tree process P, where the minimum is taken over all P.
This result is exactly the link between (2) and (3).

Theorem 1 extends an analogous result for kth-order empirical string entropy
(instead of kth-order empirical tree entropy) and kth-order Markov processes (in-
stead of kth-order tree processes) by Gagie [11, Theorem 1].4 Gagie’s result is in
fact one of the key ingredients for the proof of the entropy bound (1) of Ochoa
and Navarro [33] for strings. We remark that Gagie’s result is at the basis of the
definition of pointwise redundancy [35] and that further similar and related results
can be found in early papers on universal coding (see e.g. [25]).

The general dictionary for translating the proof of (1) [33] into our proof of (2)
is:

strings → node-labelled binary trees

kth-order empirical string entropy → kth-order empirical tree entropy

kth-order Markov processes → kth-order tree processes

string straight-line programs → tree straight-line programs

The details of this extension from strings to trees turn out to be quite technical.

2. Preliminaries

In this section, we introduce some basic definitions concerning information theory
(Section 2.1) and binary trees (Section 2.2).

With N we denote the natural numbers including 0. We use the standard O-
notation. If b > 0 is a constant, then we just write O(log n) for O(logb n). We
make the convention that 0 · log(0) = 0 and 0 · log(x/0) = 0 for x ≥ 0. For the unit
interval {r ∈ R | 0 ≤ r ≤ 1} we write [0, 1].

Let w = a1a2 · · · al ∈ Σ∗ be a word over an alphabet Σ. With |w| = l we denote
the length of w. The empty word is denoted by ε. For a ∈ Σ we denote with
|w|a = |{i | 1 ≤ i ≤ l, ai = a}| the number of occurrences of a in w.

2.1. Empirical distributions and empirical entropy. Let A be a finite set. A
probability distribution on A is a mapping p : A→ [0, 1] such that

∑
a∈A p(a) = 1.

For a probability distribution p on A we define its Shannon entropy

H(p) =
∑
a∈A
−p(a) log2 p(a) =

∑
a∈A

p(a) log2(1/p(a)).

4In fact, one could derive [11, Theorem 1] from Theorem 1 by considering chain-like trees.
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We have 0 ≤ H(p) ≤ log2 |A|. A well-known generalization of Shannon’s inequality
states that for every probability distribution p on A and any mapping q : A→ [0, 1]
such that

∑
a∈A q(a) ≤ 1 we have

(4) H(p) =
∑
a∈A
−p(a) log2 p(a) ≤

∑
a∈A
−p(a) log2 q(a);

see [1] for a proof. Shannon’s inequality is the special case where q is a probabil-
ity distribution as well. The Kullback-Leibler divergence between two probability
distributions p, q on A (see [6, Section 2.3]) is defined as

(5) D(p || q) =
∑
a∈A

p(a) · log2(p(a)/q(a)).

It is known that D(p || q) ≥ 0 for all p, q (this follows from Shannon’s inequality)
and D(p || q) = 0 if and only if p = q.

Let a = (a1, a2, . . . , al) be a tuple of elements that are from some (not necessarily
finite) set S. The empirical distribution pa : {a1, a2, . . . , al} → [0, 1] of a is defined
by

pa(a) =
|{i | 1 ≤ i ≤ l, ai = a}|

l
.

We use this (and the following) definition also for words over some alphabet by
identifying a word w = a1a2 · · · al with the tuple (a1, a2, . . . , al). The unnormalized
empirical entropy of a is

(6) H(a) = l ·H(pa) = −
l∑
i=1

log2 pa(ai).

From (4) it follows that for a tuple a = (a1, a2, . . . , al) with a1, . . . , al ∈ S and real
numbers q(a) ≥ 0 (a ∈ S) with

∑
a∈{a1,...,al} q(a) ≤ 1 we have

(7)

l∑
i=1

− log2 pa(ai) ≤
l∑
i=1

− log2 q(ai).

We also need the famous log-sum inequality, see e.g. [6, Theorem 2.7.1] (recall our
conventions 0 · log(0) = 0 and 0 · log(x/0) = 0 for x ≥ 0):

Lemma 1. Let a1, a2, . . . , al, b1, b2, . . . , bl ≥ 0 be real numbers. Moreover, let a =∑l
i=1 ai and b =

∑l
i=1 bi. Then

a log2

(
b

a

)
≥

l∑
i=1

ai log2

(
bi
ai

)
.

2.2. Trees, tree processes, and tree entropy.

2.2.1. Trees and contexts. Let Σ denote a finite non-empty alphabet of size |Σ| = σ.
Later, we will need a fixed distinguished symbol from Σ that we will denote with
� ∈ Σ. We will also need the value σ̂ = max{2, σ}. With T (Σ) we denote the set
of labelled binary trees over the alphabet Σ. Formally, it is inductively defined as
the smallest set of terms over Σ such that

• Σ ⊆ T (Σ) and
• if t1, t2 ∈ T (Σ) and a ∈ Σ, then a(t1, t2) ∈ T (Σ).
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If e.g. Σ = {a, b}, then a ∈ T (Σ) is the binary tree with a single node labelled
by a and a(b(b(a, b), a), a(b, a)) ∈ T (Σ) is the binary tree depicted on the left of
Figure 1.

A tree encoder is an injective mapping E : T (Σ) → {0, 1}∗ such that the range
E(T (Σ)) is prefix-free, i.e., there do not exist t, t′ ∈ T (Σ) with t 6= t′ such that
E(t) is a prefix of E(t′).

It is convenient to define the size |t| of t ∈ T (Σ) as the number of leaves of t,
which can be inductively defined by |a| = 1 and |a(t1, t2)| = |t1| + |t2| for a ∈ Σ
and t1, t2 ∈ T (Σ). Note that 2|t| − 1 is the number of occurrences of symbols from
Σ in t. Let Tn(Σ) = {t ∈ T (Σ) | |t| = n} for n ≥ 1. Note that T1(Σ) = Σ. We have
|Tn(Σ)| = σ2n−1Cn−1, where Ck is the kth Catalan number. These numbers satisfy
the following well-known asymptotic estimate

(8) Ck ∼
4k
√
πk

3
2

,

see e.g. [10]. In fact, we have Ck ≤ 4k for all k ≥ 0 and hence |Tn(Σ)| ≤ (2σ)2n.
A context is a labelled binary tree, where exactly one leaf is labelled with the

special symbol x /∈ Σ (called the parameter); all other nodes are labelled with
symbols from Σ. Formally, the set of contexts C(Σ) is the smallest set such that

• x ∈ C(Σ) and
• if a ∈ Σ, c ∈ C(Σ) and t ∈ T (Σ) then also a(c, t), a(t, c) ∈ C(Σ).

If e.g. Σ = {a, b}, then x ∈ C(Σ) is the context with a single node labelled by the
parameter x and a(b(b(a, b), x), a(b, a)) ∈ C(Σ) is the context depicted on the right
of Figure 1.

For a tree or context t ∈ T (Σ) ∪ C(Σ) and a context c ∈ C(Σ), we denote by c[t]
the tree or context which results from c by replacing the unique occurrence of the
parameter x by t. For example c = a(a, x) and t = b(a, a) yield c[t] = a(a, b(a, a))
(with Σ = {a, b}). For a context c we define |c| inductively by |x| = 0 and |a(c, t)| =
|a(t, c)| = |t| + |c| for c ∈ C(Σ) and t ∈ T (Σ). In other words, |c| is the number of
leaves of c, where the unique occurrence of the parameter x is not counted. Note
that |c| = |c[a]|−1, where a ∈ Σ is arbitrary. We define Cn(Σ) = {c ∈ C(Σ) | |c| = n}
for n ∈ N. Since the set Σ will not change in this paper, we use the abbreviations
T , Tn, C, and Cn for T (Σ), Tn(Σ), C(Σ), and Cn(Σ), respectively. Contexts will be
needed for the definition of tree straight-line programs in Section 3.

Occasionally, we will consider a binary tree or context as a graph with nodes
and edges in the usual way, where each node is labelled with a symbol from Σ (or
x in the case of a context). Note that t ∈ Tn has 2n − 1 nodes in total (n leaves
and n− 1 internal nodes) and c ∈ Cn has 2n+ 1 nodes in total (n+ 1 leaves and n
internal nodes).

It is convenient to define a node v of s ∈ T ∪ C as a bit string that describes the
path from the root to the node (0 means left, 1 means right). Formally, we define
the node set V (s) ⊆ {0, 1}∗ of s ∈ T ∪ C by

• V (a) = {ε} for every a ∈ Σ,
• V (x) = ∅ and
• V (a(s0, s1)) = {iw | i ∈ {0, 1}, w ∈ V (si)} ∪ {ε} for every a ∈ Σ.

Note that for a context c ∈ C, the set V (c) does not contain the unique node in
c labelled with the parameter x. We use this definition due to better readability
of the paper since we mostly need the set of nodes without the parameter node.
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Figure 1. A tree (left) and a context (right).

Also, it is still possible to uniquely determine from V (c) the path to the parameter
x due to the following properties: For a tree t ∈ T we have w0 ∈ V (t) if and only
if w1 ∈ V (t) for all w ∈ {0, 1}∗ since each node has zero or two children. The only
context c which fulfills this property is c = x, i.e., the parameter node is the only
node of c and V (c) = ∅. For all other contexts c ∈ C this property is violated since
there exists a unique w ∈ {0, 1}∗ such that w0 ∈ V (c) (respectively, w1 ∈ V (c))
and w1 /∈ V (c) (respectively, w0 /∈ V (c)). In this case the parameter node is w1
(respectively, w0). Alternatively, the parameter node of a context c is the single
node in the set V (c[a]) \ V (c) for a symbol a ∈ Σ. We denote this node with
ω(c) ∈ {0, 1}∗. In other words: V (c[a]) \ V (c) = {ω(c)}.

Example 1. Consider the tree t = a(b(b(a, b), a), a(b, a)) with Σ = {a, b} depicted
on the left of Figure 1.We have V (t) = {ε, 0, 1, 00, 01, 10, 11, 000, 001}. For the
context c = a(b(b(a, b), x), a(b, a)) depicted on the right of Figure 1, we have t = c[a]
and ω(c) = 01.

Consider a tree or context s and let v ∈ V (s). The leaves of s are those strings
in V (s) that are maximal with respect to the prefix relation. The length |v| is the
depth of the node v in s and the depth of s is the maximal depth of a node in V (s)
(the depth of s = x is not defined but also not needed). Let λs : V (s)→ Σ×{0, 2}
denote the function mapping a node v to the pair (a, i) where a ∈ Σ is the label
of v and i ∈ {0, 2} is the number of children of v. We can define this function
inductively as follows:

• λa(ε) = (a, 0) for a ∈ Σ,
• λs(ε) = (a, 2) for s = a(s0, s1) with a ∈ Σ and s0, s1 ∈ T ∪ C,
• λs(iw) = λsi(w) for s = a(s0, s1) with a ∈ Σ, s0, s1 ∈ T ∪C and iw ∈ V (s).

Note that in the last case, if s is a context, we cannot have si = x because we must
have w ∈ V (si). In the following, we will omit the subscript s in λs(v) if s is clear
from the context.

2.2.2. Histories. We now come to the crucial notion of the history of a node v in
a tree or context. Intuitively, the history of v records all information that can be
obtained by walking from the root of the tree/context straight down to the node v.
This information consists of the directions (0 or 1) along the path from the root to
v and the node labels along this path.

First, we define the set of histories as

L = (Σ{0, 1})∗ = {a1i1 · · · anin | n ≥ 0, ak ∈ Σ, ik ∈ {0, 1} for all 1 ≤ k ≤ n}.
For an integer k ≥ 0, let

Lk = {w ∈ L | |w| = 2k}
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be the set of k-histories and let `k : L → Lk denote the partial function mapping a
history z ∈ L with |z| ≥ 2k to the suffix of z of length 2k, i.e., `k(a1i1 · · · anin) =
an−k+1in−k+1 · · · anin (the function `0 maps a string to the empty string).

For a tree t and a node v ∈ V (t) (resp., a context c and a node v ∈ V (c)∪{ω(c)}),
we inductively define its history h(v) ∈ L (in t) by

• h(ε) = ε and
• h(wi) = h(w)ai for i ∈ {0, 1} and wi ∈ V (t) (resp., wi ∈ V (c) ∪ {ω(c)}).

Here, a is the symbol that labels the node w, i.e., λ(w) = (a, 2). That is, in order
to obtain h(v), while walking downwards in the tree from the root node to the node
v we alternately concatenate symbols from Σ with binary numbers in {0, 1} such
that the symbol from Σ corresponds to the label of the current node and the binary
number 0 (resp., 1) states that we move on to the left (resp. right) child node.
Note that the symbol that labels v is not part of the history of v.

The k-history of a tree node v ∈ V (t) is

hk(v) = `k((�0)kh(v)) ∈ Lk,

i.e., the suffix of length 2k of the word (�0)kh(v), where � is a fixed dummy symbol
in Σ (the choice is arbitrary). This means that if |v| ≥ k then hk(v) describes the
last k directions and node labels along the path from the root to node v. If |v| < k,
we pad the history of v with �’s and zeros such that hk(v) ∈ Lk. In the appendix,
we discuss other reasonable approaches of how to deal with nodes of depth smaller
than k. It will turn out that those choices have only a minor influence on our main
results. The k-history of a tree node v is the natural extension of the k preceding
symbols of a string position.

For z ∈ Lk we denote with

(9) Vz(t) = {v ∈ V (t) | hk(v) = z}

the set of nodes in t with k-history z.

Example 2. Consider the tree t = a(b(b(a, b), a), a(b, a)) from Example 1 and let
� = a ∈ Σ. Then, h(001) = h3(001) = a0b0b1 and h4(10) = a0a0a1a0.

2.2.3. Tree processes. A tree process is an infinite tuple P = (Pz)z∈L where every
Pz is a probability distribution on Σ× {0, 2}. A pair (a, i) ∈ Σ× {0, 2} represents
the information that a certain tree node v is labelled with a and has i children. The
probability Pz(a, i) is the probability that the tree node with history z (if it exists
it is of course unique) is labelled with a and has i children. Tree processes will be
used in Section 2.2.4 for the definition of our kth-order empirical entropy for trees.
Thereby, we will restrict to so-called kth-order tree process that can be seen as an
extension of kth-order Markov processes to binary labelled trees. But first we will
derive a few facts about general tree processes.

A tree process can be used to randomly construct a tree from T as follows: In a
top-down way we determine for every tree node its label (from Σ) and its number
of children, where this decision depends on the history of the tree node. We start at
the root node, whose history is the empty word ε. If we have reached a tree node v
with history z ∈ L then we use the probability distribution Pz to randomly choose
a pair (a, i) ∈ Σ×{0, 2}. We assign the label a ∈ Σ to v. If i = 0 then v becomes a
leaf, otherwise the process continues at the two children v0 and v1 (whose history
is well-defined). Note that in this way we may produce infinite trees with non-zero
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probability (e.g. if Pz(a, 2) = 1 for some a ∈ Σ). For a finite tree s ∈ T we obtain
the probability

(10) ProbP(s) =
∏

v∈V (s)

Ph(v)(λs(v)).

For technical reason we will use this definition also for the case that s is a context.
In other words: we associate with P the function ProbP : T ∪ C → [0, 1] using
(10). Note that if s is a context, then the parameter node of s is not in V (s) and
therefore does not contribute to ProbP(s).

We first prove upper bounds for the sums
∑
t∈T ProbP(t) and

∑
c∈C ProbP(c).

These bounds will be needed in the proof of our main technical result (Lemma 7 in
Section 4).

The reason that we obtain only an inequality in the following lemma is that
the above tree generating process may also produce infinite trees with non-zero
probability.

Lemma 2. Let P be a tree process. Then
∑
t∈T ProbP(t) ≤ 1.

Proof. First, note that as ProbP(t) is non-negative for every tree t ∈ T , the order
of summation in the sum

∑
t∈T ProbP(t) does not matter: If

∑
t∈T ProbP(t) <∞,

then this sum converges absolutely, and thus any rearrangement of the order of
summation does not change its value.

Define the set of trees T ′n inductively by T ′1 = T1 and

T ′n+1 = T1 ∪ {a(t0, t1) | a ∈ Σ, t0, t1 ∈ T ′n}.
Thus, T ′n+1 is the set of all trees of height at most n. We have T ′n ( T ′n+1 and
T =

⋃
n≥1 T ′n. It then suffices to show

∑
t∈T ′n

ProbP(t) ≤ 1 for every n ≥ 1. We

prove this by induction on n. For this, it turns out to be useful to define for every
z ∈ L the shifted tree process Pz = (Pzz′)z′∈L. We then prove by induction on n
that

∑
t∈T ′n

ProbPz (t) ≤ 1 for every n ≥ 1 and all z ∈ L (in particular, for z = ε as

well, which then yields the original statement). For n = 1 we have∑
t∈T ′1

ProbPz (t) =
∑
t∈T1

ProbPz (t) =
∑
a∈Σ

Pz(a, 0) ≤ 1.

Now assume that n ≥ 1. We get∑
t∈T ′n+1

ProbPz (t)

=
∑
t∈T1

ProbPz (t) +
∑
a∈Σ

∑
t0∈T ′n

∑
t1∈T ′n

ProbPz (a(t0, t1))

=
∑
a∈Σ

Pz(a, 0) +∑
a∈Σ

∑
t0∈T ′n

∑
t1∈T ′n

Pz(a, 2) ·
∏

v∈V (t0)

Pza0h(v)(λt0(v)) ·
∏

v∈V (t1)

Pza1h(v)(λt1(v))

=
∑
a∈Σ

Pz(a, 0) +

∑
a∈Σ

(
Pz(a, 2) ·

∑
t0∈T ′n

∏
v∈V (t0)

Pza0h(v)(λt0(v)) ·
∑
t1∈T ′n

∏
v∈V (t1)

Pza1h(v)(λt1(v))

)
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=
∑
a∈Σ

Pz(a, 0) +

∑
a∈Σ

(
Pz(a, 2) ·

∑
t0∈T ′n

ProbPza0(t0) ·
∑
t1∈T ′n

ProbPza1(t1)

)
≤

∑
a∈Σ

Pz(a, 0) +
∑
a∈Σ

Pz(a, 2)

= 1.

This proves the lemma. �

Lemma 2 cannot be extended to contexts, but the following bound will suffice
for our purpose.

Lemma 3. Let P be a tree process. We have
∑
c∈Cn ProbP(c) ≤ n + 1 for every

n ≥ 1.

Proof. In order to bound
∑
c∈Cn ProbP(c), we first represent the probability of

each context c ∈ Cn as a sum of probabilities of trees. So fix a context c ∈ Cn
for the first part of the proof. Note first that in general no tree t exists such that
ProbP(c) ≤ ProbP(t) (or even ProbP(c) = ProbP(t)) since ω(c) (the parameter node
of c) does not contribute to the probability of the context c. For example, the tree
c[a] (a ∈ Σ) which results from c by replacing the parameter node by an a-labelled
leaf node has probability ProbP(c) · Ph(ω(c))(a, 0) ≤ ProbP(c). In order to bound
ProbP(c), the idea is to replace the parameter node by all possible trees and not
only by a single node. So consider the set c[T ] = {c[t] | t ∈ T } of all trees that arise
from c by replacing the parameter by an arbitrary tree. Unfortunately, the total
probability

∑
t∈c[T ] ProbP(t) can still be strictly smaller than ProbP(c) since there

might be infinite trees with positive probability with respect to P. To get rid of
this problem, we fix an element a ∈ Σ and modify P to a tree process P ′ = (P ′z)z∈L
such that (i) P ′z = Pz for |z| ≤ 2n and (ii) P ′z(a, 0) = 1 and P ′z(a

′, i) = 0 for
every (a′, i) ∈ Σ × {0, 2} \ {(a, 0)} and |z| > 2n. The tree process P ′ is created
such that all nodes v of depth |v| ≤ n contribute the probability Ph(v)(λ(v)) as
before and all nodes of depth n+ 1 in a tree are a-labelled leaves with probability
1. Note first that for each context c ∈ Cn and each node v ∈ V (c) we have |v| ≤ n
and thus P ′h(v)(λ(v)) = Ph(v)(λ(v)). Secondly, all trees of depth larger than n + 1

have probability 0 with respect to P ′ (including infinite trees). Hence, we get∑
t∈T ProbP′(t) = 1. We obtain∑

t∈c[T ]

ProbP′(t) =
∑
t∈c[T ]

∏
v∈V (t)

P ′h(v)(λ(v))

=
∑
t∈c[T ]

 ∏
v∈V (c)

P ′h(v)(λ(v))
∏

v∈V (t)\V (c)

P ′h(v)(λ(v))


= ProbP(c) ·

∑
t∈c[T ]

∏
v∈V (t)\V (c)

P ′h(v)(λ(v))

︸ ︷︷ ︸
(a)

.

We claim that (a) equals 1. To see this, consider the tree process P ′′ = (P ′′z )z∈L
with P ′′z = P ′h(ω(c))z. Also for P ′′ only finite trees have non-zero probability and
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thus
∑
t∈T ProbP′′(t) = 1. We have

(a) =
∑
t∈T

∏
v∈V (t)

P ′h(ω(c))h(v)(λ(v))

=
∑
t∈T

∏
v∈V (t)

P ′′h(v)(λ(v))

=
∑
t∈T

ProbP′′(t) = 1.

It follows that ProbP(c) =
∑
t∈c[T ] ProbP′(t). In the second part of the proof it

remains to bound
∑
c∈Cn ProbP(c) =

∑
c∈Cn

∑
t∈c[T ] ProbP′(t). The key point here

is that for each tree t ∈ T there are at most n+1 different contexts c ∈ Cn such that
t ∈ c[T ]. Note that for a tree t, the number of different contexts c ∈ Cn such that
t ∈ c[T ] is exactly the number of nodes v ∈ V (t) such that replacing the subtree
rooted at v by the parameter x yields a context c with |c| = n. This is the same as
the number of subtrees of t with |t|−n leaves. Since different subtrees in t of equal
size do not share nodes, we can bound the number of subtrees with |t| − n leaves
by |t|/(|t| − n). We can assume that |t| > n since otherwise there is no context
c ∈ Cn such that t ∈ c[T ]. So we have |t| = n + k for some k > 0 and the number
of subtrees of t with |t| − n leaves is at most (n+ k)/k = n/k + 1 ≤ n+ 1. We get∑

c∈Cn

∑
t∈c[T ]

ProbP′(t) ≤ (n+ 1)
∑
t∈T

ProbP′(t) = n+ 1.

This concludes the proof of the lemma. �

Lemma 3 will be needed in order to prove our main technical Lemma (Lemma 7
in Section 4).

A kth-order tree process is a tree process P = (Pz)z∈L such that Pz = Pz′ if
`k((�0)kz) = `k((�0)kz′). Thus, the probability distribution that is chosen for a
certain tree node v depends only on the k-history of v. As mentioned before, kth-
order tree processes can be seen as a tree extension of kth-order Markov processes
for strings. We will identify the kth-order tree process P = (Pz)z∈L with the finite
tuple (Pz)z∈Lk (recall that Lk is the set of k-histories); it contains all information
about P. Note that for a kth-order tree process P we can compute ProbP(s) for a
tree or context s as

(11) ProbP(s) =
∏
z∈Lk

∏
v∈Vz(s)

Pz(λ(v)),

where Vz(s) is defined in (9) and the empty product (which arises in case Vz(s) = ∅)
is 1.

2.2.4. Higher-order entropy of a tree. We now come to the definition of our kth-
order empirical entropy of trees. As for stings, the term “empirical” refers to the
fact that we assign an information content to a single tree instead of a probability
distribution on trees. This has the advantage that empirical entropy is also useful
in situations where we do not know the underlying probability distribution.

Let us fix k ≥ 0. We define the kth-order (unnormalized) empirical entropy
Hk(t) of a tree t ∈ Tn as follows: For z ∈ Lk let

mt
z = |Vz(t)|
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be the number of nodes of t with k-history z and for ã ∈ Σ× {0, 2} let

(12) mt
z,ã = |{v ∈ Vz(t) | λ(v) = ã}|.

We then define the empirical kth-order tree process Pt = (P tz)z∈Lk by

(13) P tz(ã) =
mt
z,ã

mt
z

for all ã ∈ Σ × {0, 2} and all z ∈ Lk with mt
z > 0. If ã = (a, i) ∈ Σ × {0, 2}, then

this is the probability that a node of t that is randomly chosen among the nodes
with history z is labelled with a and has i children. If mt

z = 0, then we can define
P tz as an arbitrary distribution. Finally, we define

(14) Hk(t) =
∑
z∈Lk

mt
z ·H(P tz).

This definition extends the notion of kth-order empirical entropy for strings to trees.
The k-history of a tree node takes the role of the k preceding symbols of a string
position. Note that

0 ≤ Hk(t) ≤ (2n− 1) log2(2σ) = (2n− 1)(1 + log2 σ)

since 0 ≤ H(P tz) ≤ log2(2σ) and
∑
z∈Lk m

t
z = 2n − 1. This upper bound on the

entropy matches the information theoretic bound for the worst-case output length
of any tree encoder on Tn. Using the asymptotic bound (8) for the Catalan numbers,
one sees that for any tree encoder there must exist a tree t ∈ Tn which is encoded
with 2 log2(2σ)n−o(n) = 2(log2 σ+1)n−o(n) bits. The kth-order empirical entropy
Hk(t) is a lower bound on the coding length of a tree encoder that encodes for each
node the relevant information (the label of the node and the binary information
whether the node is a leaf or internal) depending on the k-history of the node:
Thus, kth-order empirical entropy is the expected uncertainty about the label and
degree (0 or 2) of a node, given the last k directions and labels on the path from
the root node to the node.

Example 3. Let t denote the binary tree t = a(b(b(a, b), a), a(b, a)) as depicted on
the left of Figure1. In order to compute the first order empirical entropy H1(t)
of t, we have to consider k-histories of t with k = 1: Let � = a. It follows that
Va0(t) = {ε, 0, 10}, Vb0(t) = {00, 000}, Va1(t) = {1, 11} and Vb1(t) = {01, 001}.
Thus, we have mt

a0 = 3 and mt
a1 = mt

b0 = mt
b1 = 2. Next, for each k-history z, we

consider λ(v) for v ∈ Vz(t): For z = a0, we have λ(ε) = (a, 2), λ(0) = (b, 2) and
λ(10) = (b, 0). Hence, mt

a0,(a,2) = mt
a0,(b,0) = mt

a0,(b,2) = 1 and H(P ta0) = log2(3).

Analogously, we find H(P tb0) = H(P ta1) = H(P tb1) = 1/2 log2(2) + 1/2 log2(2) = 1.
Altogether, this yields H1(t) = 3 · log2(3) + 2 · 1 + 2 · 1 + 2 · 1 which is roughly 9.3.

One can define Hk(t) alternatively in the following way: Take a k-history z ∈ Lk
and enumerate the set Vz(t) in an arbitrary way as v1, v2, . . . , vj . Define the string
w(t, z) = λ(v1)λ(v2) · · ·λ(vj) ∈ (Σ× {0, 2})∗. We have

Hk(t) =
∑
z∈Lk

H(w(t, z)),

where the empirical entropy H(w(t, z)) is defined according to (6).
The following theorem and its proof are very similar to a corresponding statement

for strings shown by Gagie [11]. One obtains Gagie’s result by replacing in the
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following theorem (i) kth-order tree processes by kth-order Markov processes and
(ii) kth-order empirical entropy of trees by kth-order empirical entropy of strings.

Theorem 1. Let t ∈ T . For every kth-order tree process P = (Pz)z∈Lk with
ProbP(t) > 0 we have

Hk(t) ≤ − log2 ProbP(t)

with equality if and only if P tz = Pz for all z ∈ Lk with mt
z > 0.

Proof. We have

− log2 ProbP(t)
(11)
=

∑
z∈Lk

∑
v∈Vz(t)

log2(1/Pz(λ(v))

(12)
=

∑
z∈Lk

∑
ã∈Σ×{0,2}

mt
z,ã log2(1/Pz(ã))

(13)
=

∑
z∈Lk

mt
z

∑
ã∈Σ×{0,2}

P tz(ã) · (log2(P tz(ã)/Pz(ã)) + log2(1/P tz(ã)))

(5)
=

∑
z∈Lk

mt
z · (D(P tz ||Pz) +H(P tz))

(14)

≥ Hk(t)

with equality in the last line if and only if P tz = Pz for all z ∈ Lk with mt
z > 0. �

Theorem 1 will be a main ingredient for the proof of our main result (Theorem 4
in Section 4) in the same way as the above mentioned result from [11] is used by
Ochoa and Navarro [33] in order to bound the compression ratio of grammar-based
string compressors by the kth-order empirical entropy of strings: In our main tech-
nical result (Theorem 3 in Section 4), we show that for every kth-order tree process
P with ProbP(t) > 0, we have that |B(Gt)| is upper-bounded by − log2 ProbP(t)
plus certain lower-order terms, where B is a binary TSLP-encoding (to be defined
in the following section) and t → Gt is a grammar-based tree compressor (also to
be defined in the following section). Our main result (Theorem 4 in Section 4), i.e.,
that |B(Gt)| is upper-bounded in terms of the kth order empirical entropy Hk(t)
plus lower-order terms, will then easily follow as a corollary from Theorem 3 by
applying Theorem 1.

3. Tree straight-line programs and compression of binary trees

We now introduce tree straight-line programs (TSLPs) and use them for the
compression of binary trees. The main idea behind TSLPs can be best explained
by viewing them as a generalization of DAGs (directed acyclic graphs). A binary
tree t can be compressed into a DAG by keeping for several isomorphic subtrees
only one copy. Formally, such a DAG D can be represented by a set of rules of the
form A→ a(B,C) (resp, A→ a). Here a ∈ Σ is a node label and A,B,C are nodes
of D. The rule A → a(B,C) tells us that node A is labelled with a, and its left
(right) outgoing edge goes to B (C). The rule A→ a says that node A is labelled
with a and has no outgoing edges. These rules formally define a so-called regular
tree grammar from which t (and only t) can be derived. The DAG nodes A,B,C,
etc. then become nonterminals of the regular tree grammar. There is a unique start
nonterminal S from which the whole tree t can be derived.
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The main limitation of DAGs for tree compression is that they only allow to ex-
ploit repetitions of subtrees. We can obtain a better compression by also exploiting
repetitions of subcontexts. Consider a tree t = a(c[a], c[b]), where c is a context.
The two occurrences of c in t cannot be shared in a DAG. But they can be shared
if we extend regular tree grammars by a second type of nonterminal that derives
contexts instead of trees. Then we can derive t using the rule S → a(C(a), C(b)),
where C = C(x) is a context nonterminal (called a nonterminal of rank one in
the formal definition below). Additional rules are needed to derive this context
nonterminal C to the context c. If, for instance, c = f(a, f(a, x) then these rules
might be C(x) → B(B(x)) and B(x) → f(a, x). These rules define a so-called
context-free tree grammar. This grammar must be acyclic, i.e., from a nonterminal
we cannot reach the same nonterminal in an arbitrary number of derivation steps.
Moreover, every nonterminal A has exactly one rule with A on the left-hand side;
the corresponding right-hand side is denoted with r(A) in the formal definition
below.

3.1. General tree straight-line programs. Let V be a finite alphabet of sym-
bols, where each symbol A ∈ V has an associated rank 0 or 1 (we also speak of
a ranked alphabet). The elements of V are called nonterminals. We assume that
V contains at least one nonterminal of rank 0 and that V is disjoint from the set
Σ∪ {x}, which are the labels used for binary trees and contexts. We use V0 (resp.,
V1) for the set of nonterminals of rank 0 (resp., of rank 1). The idea is that non-
terminals from V0 (resp., V1) derive to trees from T (resp., contexts from C). We
denote by TV (Σ) the set of trees over Σ ∪ V , i.e., each node in a tree t ∈ TV (Σ)
is labelled with a symbol from Σ ∪ V such that nodes labelled by symbols from
Σ have zero or two children and if a node is labelled by a symbol from V , then
the number of children of this node corresponds to the rank of its label (a formal
definition follows). With CV (Σ) we denote the corresponding set of all contexts,
i.e., the set of trees over Σ∪{x}∪V , where the parameter symbol x occurs exactly
once and at a leaf position. Formally, we define TV (Σ) and CV (Σ) as the smallest
sets of formal expressions with the following conditions, where here and in the rest
of the paper we use the abbreviations TV for TV (Σ) and CV for CV (Σ):

• Σ ∪ V0 ⊆ TV and x ∈ CV ,
• if a ∈ Σ, A ∈ V1 and t1, t2 ∈ TV then A(t1), a(t1, t2) ∈ TV , and
• if a ∈ Σ, A ∈ V1, s ∈ CV and t ∈ TV then A(s), a(s, t), a(t, s) ∈ CV .

If e.g. Σ = {a, b}, V0 = {A} and V1 = {B}, then B(a(b(A, b), B(a))) ∈ TV and
B(a(b(A, b), B(x))) ∈ CV as depicted in Figure 2. Note that T (Σ) ⊆ TV (Σ) and
C(Σ) ⊆ CV (Σ).

A tree straight-line program G, or TSLP for short, is a tuple (V,A0, r), where
A0 ∈ V0 is the start nonterminal and r : V → (TV ∪CV ) is a function which assigns
to each nonterminal its unique right-hand side. It is required that if A ∈ V0 (resp.,
A ∈ V1), then r(A) ∈ TV (resp., r(A) ∈ CV ). Furthermore, the binary relation
{(A,B) ∈ V × V | B occurs in r(A)} has to be acyclic. These conditions ensure
that exactly one tree is derived from the start nonterminal A0 by using the rewrite
rules A→ r(A) for A ∈ V . To define this formally, we define valG(t) ∈ T for t ∈ TV
and valG(c) ∈ C for c ∈ CV inductively by the following rules:

• valG(a) = a for a ∈ Σ and valG(x) = x,
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x

Figure 2. Elements of TV (left) and CV (right), where a, b ∈ Σ,
A ∈ V0 and B ∈ V1.

• valG(a(s1, s2)) = a(valG(s1), valG(s2)) for a ∈ Σ and s1, s2 ∈ TV ∪ CV (and
s1 ∈ TV or s2 ∈ TV since there is at most one parameter in a(s1, s2)),
• valG(A) = valG(r(A)) for A ∈ V0,
• valG(A(s)) = valG(r(A))[valG(s)] for A ∈ V1 and s ∈ TV ∪ CV (note that
valG(r(A)) is a context c, so we can build c[valG(s)]).

The tree defined by G is val(G) = valG(A0) ∈ T .

Example 4. Let Σ = {a, b} and G = ({A0, A1, A2}, A0, r) be a TSLP such that
A0, A1 ∈ V0, A2 ∈ V1 and

r(A0) = a(A1, A2(b)), r(A1) = A2(A2(b)), r(A2) = b(x, a).

We get valG(A2) = b(x, a), valG(A1) = b(b(b, a), a) and val(G) = valG(A0) =
a(b(b(b, a), a), b(b, a)).

3.2. Tree straight-line programs in normal form. In this section, we introduce
TSLPs in a certain normal form. The properties of this normal form make the
binary encoding of TSLPs in Section 3.3 easier.

A TSLP G = (V,A0, r) is in normal form if the following conditions hold:

• V = {A0, A1, . . . , Am−1} for some m ∈ N, m ≥ 1.
• For every Ai ∈ V0, the right-hand side r(Ai) is an expression of the form
Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ Σ.

• For every Ai ∈ V1 the right-hand side r(Ai) is an expression of the form
Aj(Ak(x)), a(α, x), or a(x, α), where Aj , Ak ∈ V1, a ∈ Σ and α ∈ V0 ∪ Σ.

• For every Ai ∈ V define the word ρ(Ai) ∈ (V ∪ Σ)∗ as follows:

ρ(Ai) =


Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(x))

aα if r(Ai) = a(α, x) or a(x, α)

Let ρG = ρ(A0)ρ(A1) · · · ρ(Am−1) ∈ (Σ ∪ {A1, A2, . . . , Am−1})∗. Then we
require that ρG is of the form ρG = A1u1A2u2 · · ·Am−1um−1 with ui ∈
(Σ ∪ {A1, A2, . . . , Ai})∗.
• valG(Ai) 6= valG(Aj) for i 6= j

We also allow the TSLP Ga = ({A0}, A0, A0 7→ a) for every a ∈ Σ in order to get
the singleton tree a. In this case, we set ρGa = ρ(A0) = a.

Let G = (V,A0, r) be a TSLP in normal form with V = {A0, A1, . . . , Am−1}
for the further definitions. We define the size of G as |G| = |V | = m. Thus
2|G| is the length of ρG . Let ωG be the word obtained from ρG by removing the
first (i.e., left-most) occurrence of Ai from ρG for every 1 ≤ i ≤ m − 1. Thus,
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Figure 3. The derivation tree TG of the TSLP from Example 6
(left) and an initial subtree T ′ of TG (right).

if ρG = A1u1A2u2 · · ·Am−1um−1 with ui ∈ (Σ ∪ {A1, A2, . . . , Ai})∗, then ωG =
u1u2 · · ·um−1. Note that |ωG | = |ρG | −m + 1 = m + 1. The entropy H(G) of the
normal form TSLP G is defined as the empirical unnormalized entropy of the word
ωG (see (6)):

H(G) = H(ωG).

Example 5. Let Σ = {a, b} and G = ({A0, A1, A2, A3, A4}, A0, r) be the normal
form TSLP with A0, A2, A3 ∈ V0, A1, A4 ∈ V1 and

r(A0) = A1(A2(x)), r(A1) = a(x,A3), r(A2) = A4(A3(x)),

r(A3) = A4(b), r(A4) = b(x, a).

We have val(G) = a(b(b(b, a), a), b(b, a)), ρG = A1A2aA3A4A3A4bba (u1 = u3 = ε,
u2 = a, u4 = A3A4bba), |G| = 5 and ωG = aA3A4bba.

The derivation tree TG of the normal form TSLP G is a binary tree with node
labels from V ∪ Σ. The root is labelled with A0. Nodes labelled with a symbol
from Σ are the leaves of TG . A node v that is labelled with a nonterminal Ai has
|ρ(Ai)| = 2 many children. If ρ(Ai) = αβ with α, β ∈ V ∪ Σ, then the left child
of v is labelled with α and the right child is labelled with β. For every node u of
TG we define the tree or context su = valG(α) where α ∈ V ∪ Σ is the label of u.
If α ∈ V0 ∪ Σ then su ∈ T and if α ∈ V1 then su ∈ C. An initial subtree of the
derivation tree TG is a tree that can be obtained from TG as follows: Take a subset
U of the nodes of TG and remove from TG all proper descendants of nodes from U ,
i.e., all nodes that are located strictly below a node from U .

Example 6. Let G be the normal form TSLP from Example 5. The derivation tree
TG is shown in Figure 3 on the left; an initial subtree T ′ of it is shown on the right.

We obtain the following lemma with respect to initial subtrees of a derivation
tree TG , which will be needed in order to prove our technical main lemma (Lemma 7
in Section 4):

Lemma 4. Let G be a TSLP in normal form with t = val(G). Let T ′ be an initial
subtree of TG and let v1, . . . , vl be the sequence of all leaves of T ′ (in left-to-right

order). Then 2|t| ≥
∑l
i=1 |svi |.

Proof. Let u be a node of TG and let Tu be the subtree of TG rooted in u. Then,
the nodes of su are in a one-to-one correspondence with the leaves of Tu, that is,
if su ∈ T , we have 2|su| − 1 = |Tu| and if su ∈ C, we have 2|su| = |Tu| (recall that
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|Tu| is the number of leaves of Tu). Thus, 2|su| − 1 ≤ |Tu|. Since T ′ is an initial

subtree of TG we get 2|t|−1 = 2|val(G)|−1 = |TG | =
∑l
i=1 |Tvi | ≥

∑l
i=1(2|svi |−1).

Since |svi | ≥ 1 we get 2|t| ≥
∑l
i=1 2|svi | − l+ 1 ≥

∑l
i=1 |svi |+ 1 and the statement

follows. �

A grammar-based tree compressor is an algorithm ψ that produces for a given tree
t ∈ T a TSLP Gt in normal form such that t = val(Gt). It is not hard to show that
every TSLP can be transformed with a linear size increase into a normal form TSLP
that derives the same tree. For example, the TSLP from Example 4 is transformed
into the normal form TSLP described in Example 5. We will not use this fact, since
all we need is the following theorem from [12] (recall that σ̂ = max{2, σ}):

Theorem 2. There exists a grammar-based compressor ψ (working in linear time)
with maxt∈Tn |Gt| ≤ O(n/ logσ̂ n).

3.3. Binary coding of TSLPs in normal form. In this section we fix a binary
encoding for normal form TSLPs. This binary encoding is a straightforward exten-
sion of the one for TSLPs producing unlabelled binary trees [14] (which in turn is
based on the encoding for SLPs from [22] and the encoding of DAGs from [38]).
We only have to incorporate node labels into the encoding from [14].

Let G = (V,A0, r) be a TSLP in normal form with m = |V | = |G| nonterminals.
We define the type type(Ai) ∈ {0, 1, 2, 3} of a nonterminal Ai ∈ V as follows:

type(Ai) =


0 if r(Ai) = Aj(α) for some Aj ∈ V1, α ∈ V0 ∪ Σ

1 if r(Ai) = Aj(Ak(x)) for some Aj , Ak ∈ V1

2 if r(Ai) = a(α, x) for some α ∈ V0 ∪ Σ, a ∈ Σ

3 if r(Ai) = a(x, α) for some α ∈ V0 ∪ Σ, a ∈ Σ

We define the binary word B(G) = w0w1w2w3w4, where the words wi ∈ {0, 1}+,
0 ≤ i ≤ 4, are defined as follows:

• w0 = 0m−11
• w1 = a0b0a1b1 · · · am−1bm−1, where ajbj is the 2-bit binary encoding of

type(Aj). Note that |w1| = 2m.
• Let ρG = A1u1A2u2 · · ·Am−1um−1 with ui ∈ (Σ∪{A1, A2, . . . , Ai})∗. Then
w2 = 10|u1|10|u2| · · · 10|um−1|. Note that |w2| = 2m.

• For 1 ≤ i ≤ m − 1 let ki = |ρG |Ai ≥ 1 be the number of occurrences of
the nonterminal Ai in the word ρG . Moreover, fix a total ordering on Σ.
For 1 ≤ i ≤ σ, let ai denote the ith symbol in Σ according to this ordering
and let li = |ρG |ai ≥ 0 be the number of occurences of the symbol ai in the
word ρG . Then w3 = 0k1−110k2−11 · · · 0km−1−110l110l21 · · · 0lσ1. Note that
|w3| = 2m+ σ.

• The word w4 encodes the word ωG using the well-known enumerative en-
coding [5]. Every nonterminal Ai, 1 ≤ i ≤ m − 1, has η(Ai) := ki − 1 oc-
currences in ωG . Every symbol ai ∈ Σ, 1 ≤ i ≤ σ, has η(ai) = li occurences
in ωG . Let S be the set of words over the alphabet Σ ∪ {A1, . . . , Am−1}
with η(ai) occurrences of ai ∈ Σ (1 ≤ i ≤ σ) and η(Ai) occurrences of Ai
(1 ≤ i ≤ m− 1). Hence,

(15) |S| = (m+ 1)!∏σ
i=1 η(ai)!

∏m−1
i=1 η(Ai)!

.
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Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration of the words from
S with respect to the alphabet order a1, . . . , aσ, A1, . . . , Am−1. Then w4

is the binary encoding of the unique index i such that ωG = vi, where
|w4| = dlog2 |S|e (leading zeros are added to the binary encoding of i to
obtain the length dlog2 |S|e).

Example 7. Consider the normal form TSLP G from Example 5. We have w0 =
00001, w1 = 0011000011, w2 = 1101100000 and w3 = 110101001001. To compute
w4, note first that there are |S| = 180 words with two occurrences of a and b and
one occurrence of A3 and A4. It follows that |w4| = dlog2(180)e = 8. Furthermore,
with the canonical ordering on Σ = {a, b}, the order of the alphabet is a, b, A3, A4.
The word ωG = aA3A4bba is the lexicographically largest word in S starting with
aA3. There are 132 words in S that are lexicographically larger than aA3A4bba,
namely all words in S that start with b (60 words), A3 (30 words), A4 (30 words),
or aA4 (12 words). Hence ωG = aA3A4bba is the 48th word in S in lexicographic
order, i.e., ωG = v47 and thus w4 = 00101111.

The following lemma generalizes a result from [14]:

Lemma 5. The set of code words B(G), where G ranges over all TSLPs in normal
form, is a prefix code.

Proof. Let B(G) = w0w1w2w3w4 with wi defined as above. We show how to recover
the TSLP G, given the alphabet Σ and the ordering on Σ. From w0 we can determine
m = |V | and the factors w1, w2, and w3 of B(G). Hence, we can determine the
type of every nonterminal from w1. The types allow to compute G from the word
ρG. Hence, it remains to determine ρG . To compute ρG from w2, one only needs
ωG . For this, one determines the frequencies η(A1), . . . , η(Am−1), η(a1), . . . , η(aσ)
of the symbols in ωG from w3. Using these frequencies one computes the size |S|
from (15) and the length dlog2 |S|e of w4. From w4, one can finally compute ωG . �

Note that |B(G)| ≤ 7|G|+ σ+ |w4|. By using the well-known bound on the code
length of enumerative encoding [6, Theorem 11.1.3], we get the following bound,
which extends [14, Lemma 11] to node-labelled binary trees:

Lemma 6. For the length of the binary coding B(G) we have

|B(G)| ≤ O(|G|) + σ +H(G).

Intuitively, by Lemma 5, we can uniquely recover a binary tree t from B(Gt),
where Gt is a TSLP for t. By Lemma 6, we find that in order to upper-bound |B(G)|
in terms of the kth-order empirical entropy (plus lower-order terms), we can focus
on the entropy H(G) of the grammar G: Our technical main result (Lemma 7 in the
following section) will provide a suitable upper-bound on H(G). We furthermore
remark that a corresponding result (corresponding to Lemma 6) exists for strings
([22, Lemma 8] and [33, Lemma 2]).

4. Entropy bounds for binary encoded TSLPs

For this section we fix a grammar-based tree compressor ψ : t 7→ Gt such that
maxt∈Tn |Gt| ∈ O(n/ logσ̂ n); see Theorem 2. Let γ > 0 be a concrete constant such
that

(16) |Gt| ≤
γn

logσ̂ n
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for every tree t ∈ Tn and n large enough. We allow that the alphabet size σ grows
with n, i.e., σ = σ(n) is a function in the tree size n such that 1 ≤ σ(n) ≤ 2n − 1
(a binary tree t ∈ Tn has 2n− 1 nodes).

Our technical main result is the following bound on the entropy H(Gt). A similar
bound (but for a different class of probability distributions on trees) is stated in
[14, Lemma 13].

Lemma 7. Let k ≥ 0, t ∈ Tn with n ≥ 2 and let P = (Pw)w∈Lk be a kth-order tree
process with ProbP(t) > 0. We have

H(Gt) ≤ − log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
.

Proof. Let m = |Gt| = |V | be the size of Gt. Let T = TGt be the derivation tree of
Gt. We define an initial subtree T ′ as follows: If v1 and v2 are non-leaf nodes of
T that are labelled with the same nonterminal and v1 comes before v2 in preorder
(depth-first left-to-right), then we remove from T all proper descendants of v2.
Thus, for every Ai ∈ V there is exactly one non-leaf node in T ′ that is labelled with
Ai. For the TSLP from Example 5, the tree T ′ is shown in Figure 3 on the right.
We now use the tree T ′ in order to define a factorization of the tree t into several
subtrees, subcontexts and inner nodes. A similar factorization is also used in [14,
proof of Lemma 7].

Recall the definition of the words ρGt and ωGt from Section 3.2. The word ρGt
can be obtained by writing down for every node v of T ′ the labels of v’s children
and then concatenating these labels. Moreover, the word ωGt is obtained by writing
down (in the right order) the labels of the leaves of T ′. Note that T ′ has m non-leaf
nodes and m + 1 leaves. Let v1, v2, . . . , vm+1 be the sequence of all leaves of T ′

(w.l.o.g. in preorder) and let αi ∈ Σ ∪ {A1, . . . , Am−1} be the label of vi. Let α =
(α1, α2, . . . , αm+1). Then α is a permutation of ωGt . We therefore have |ωGt |α =
|α|α for every α ∈ Σ∪{A1, . . . , Am−1}. Hence, pα and pωGt are the same empirical
distributions. For the TSLP from Example 5 we get α = (a, b, a, b, A4, A3). Let
si = valGt(αi) ∈ T ∪ (C \ {x}). Since valGt(Ai) 6= valGt(Aj) for all i 6= j (Gt is in
normal form) and valGt(Ai) /∈ Σ for all i (this holds for every normal form TSLP
that produces a tree of size at least two), the tuple s = (s1, s2, . . . , sm+1) satisfies
for all 1 ≤ i ≤ m+ 1:

(17) pωGt (αi) = ps(si).

We define from P for every z ∈ Lk a modified tree process Pz = (Pz,w)w∈L by
setting

(18) Pz,w(ã) = P`k(zw)(ã)

for all ã ∈ Σ × {0, 2}. Note that the kth-order tree process P is obtained for z =
(�0)k for the fixed padding symbol � ∈ Σ. We define a mapping τ : T ∪ C → [0, 1]
by

(19) τ(s) =

{
1 if s ∈ T1 = Σ

maxz∈Lk ProbPz (s) if s ∈ (T ∪ C) \ T1

for every s ∈ T ∪ C. Thus, for every s ∈ (T ∪ C) \ T1, the function τ maximizes
the values of the function ProbP associated with the kth-order tree process P =
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Figure 4. The tree val(G) of the TSLP from Example 5. The
canonical occurrences of the trees/contexts or inner nodes in
(a, b, a, b, valG(A4), valG(A3)) = (a, b, a, b, b(x, a), b(b, a)) used in
the proof of Lemma 7 are highlighted.

(Pw)w∈Lk by choosing an optimal k-history for the nodes of s whose history is of
length smaller than 2k. We show that τ satisfies

(20) τ(t) ≤
m+1∏
i=1

τ(si).

In order to prove (20), first note that by definition of the tree/context su, for
each node u of the derivation tree T , the tree/context su corresponds to a sub-
tree/subcontext or a single inner node of the binary tree t. We define a function
χ which maps a node u of the derivation tree T to a node χ(u) ∈ V (t) ⊆ {0, 1}∗:
Intuitively, χ(u) is the root of the subtree/subcontext, respectively, the inner node
of t which corresponds to su. Formally, χ is defined inductively as follows: For the
root node u of T , we set χ(u) = ε. Furthermore, let u be a non-leaf node of T which
is labelled with the non-terminal Ai and for which χ(u) has been defined. Let u1

be the left child and u2 be the right child of u in T . We define χ(u1) = χ(u). The
node χ(u2) is defined as follows:

(i) If r(Ai) = Aj(α) with Aj ∈ V1 and α ∈ V ∪Σ, then we set χ(u2) = χ(u)ω(su1)
(recall that ω(su1) 6= ε is the position of the parameter x in the context
su1

= valG(Aj)).
(ii) If r(Ai) = a(α, x) (respectively, r(Ai) = a(x, α)) for a ∈ Σ and α ∈ Σ ∪ V0,

then we define χ(u2) = χ(u)0 (respectively, χ(u2) = χ(u)1).

This yields a well-defined function χ mapping a node u of T to a node χ(u) ∈ V (t).
Let us define

Vu = {χ(u)v | v ∈ V (su)} ⊆ V (t).

Then, the mapping

(21) V (su) 3 v 7→ χ(u)v ∈ Vu

is bijective. The definition of the sets Vu implies that if two nodes u and v of T
are not in an ancestor-descendant relationship, then Vu ∩ Vv = ∅. Since the nodes
v1, . . . , vm+1 are the leaves of the initial subtree T ′ and hence not in an ancestor-
descendant relationship, the sets Vi := Vvi are disjoint subsets of V (t). For the
TSLP from Example 5, the node sets V1, V2, V3, V4, V5 and V6 corresponding to the
six leaves of the initial subtree depicted in Figure 3 (right) are shown in Figure 4.
Note that if si /∈ T1 then the bijection from (21) also preserves the λ-mapping in
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the following sense:

(22) λt(χ(vi)w) = λsi(w)

for every w ∈ V (si). However, if si ∈ T1 then this statement can be wrong since the
number of children is not preserved in general: If si ∈ T1, then si might correspond
to a single inner node of t. In this case, we have Vi = {χ(vi)}, V (si) = {ε} and
λt(χ(vi)) = (a, 2) for some a ∈ Σ, but λsi(ε) = (a, 0). For example, in the TSLP
from Example 5, the left-most leaf node of its initial subtree depicted in Figure 3
corresponds to the root node of the tree val(G) (see Figure 4). We define

I := {i ∈ {1, . . . ,m+ 1} | si /∈ T1}.

In our running example, we have (s1, s2, s3, s4, s5, s6) = (a, b, a, b, b(x, a), b(b, a))
and hence I := {5, 6}.

The history h(χ(vi)w) of a node χ(vi)w ∈ Vi with w ∈ V (si) in the tree t is the
concatenation of the history h(χ(vi)) of χ(vi) in t and the history h(w) of w in the
tree/context si. Thus, if i ∈ I, we have

max
z∈Lk

∏
v∈Vi

P`k(zh(v))(λt(v)) = max
z∈Lk

∏
w∈V (si)

P`k(zh(χ(vi))h(w))(λt(χ(vi)w))

(22)
= max

z∈Lk

∏
w∈V (si)

P`k(zh(χ(vi))h(w))(λsi(w))

≤ max
z∈Lk

∏
w∈V (si)

P`k(zh(w))(λsi(w)).

(23)

For the inequality in the last line, note that every k-history `k(zh(χ(vi))h(w)) for
z ∈ Lk is also of the form `k(z′h(w)) for some z′ ∈ Lk.

We can now show (20). Since t ∈ Tn with n ≥ 2 we have

τ(t)
(19)
= max

z∈Lk
ProbPz (t)

(18)
= max

z∈Lk

∏
v∈V (t)

P`k(zh(v))(λt(v))

≤ max
z∈Lk

∏
i∈I

∏
v∈Vi

P`k(zh(v))(λt(v)) (since P`k(zh(v))(λ(v)) ≤ 1 for v ∈ V (t))

≤
∏
i∈I

max
z∈Lk

∏
v∈Vi

P`k(zh(v))(λt(v))

(23)

≤
∏
i∈I

max
z∈Lk

∏
w∈V (si)

P`k(zh(w))(λsi(w))

=

m+1∏
i=1

τ(si) (since τ(si) = 1 for i /∈ I).

Next, we define the function ξ : T ∪ C \ {x} → [0, 1] as follows:

ξ(s) =

{
2−(k+2)σ−(k+1)τ(s) if s ∈ T
6
π2 2−(k+1)σ−k τ(s)

|s|2(|s|+1) if s ∈ C \ {x}.
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We get∑
s∈T ∪C\{x}

ξ(s) = 2−(k+2)σ−(k+1)
∑
s∈T

τ(s) +
6

π2
2−(k+1)σ−k

∑
s∈C\{x}

τ(s)

|s|2(|s|+ 1)

= 2−(k+2)σ−(k+1)

( ∑
s∈T \T1

max
z∈Lk

ProbPz (s) +
∑
s∈T1

1

)
+

6

π2
2−(k+1)σ−k

∑
r≥1

1

r2(r + 1)

∑
s∈Cr

max
z∈Lk

ProbPz (s)

≤ 2−(k+2)σ−(k+1)

( ∑
z∈Lk

∑
s∈T \T1

ProbPz (s) + σ

)
+

6

π2
2−(k+1)σ−k

∑
z∈Lk

∑
r≥1

1

r2(r + 1)

∑
s∈Cr

ProbPz (s)

(∗)
≤ 2−(k+2)σ−(k+1)

(
2kσk + σ

)
+

6

π2
2−(k+1)σ−k2kσk

∑
r≥1

1

r2

(∗∗)
= 2−2σ−1 + 2−(k+2)σ−k + 1/2

≤ 1,

where (∗) follows from Lemmas 2 and 3 and |Lk| = 2kσk and (∗∗) follows from the
well-known fact that

∑
r≥1 r

−2 = π2/6. In particular, we have
∑
s∈{s1,...,sm+1} ξ(s) ≤

1. Thus, with Shannon’s inequality (7), we obtain:

H(Gt) = H(ωGt) =

m+1∑
i=1

− log2 pωGt (αi)
(17)
=

m+1∑
i=1

− log2 ps(si) ≤
m+1∑
i=1

− log2 ξ(si).

With I0 = {i | 1 ≤ i ≤ m + 1, si ∈ T } and I1 = {i | 1 ≤ i ≤ m + 1, si ∈ C} we
obtain

H(Gt) ≤
∑
i∈I0

− log2 ξ(si) +
∑
i∈I1

− log2 ξ(si)

=
∑
i∈I0

− log2

(
2−(k+2)σ−(k+1)τ(si)

)
+

∑
i∈I1

− log2

(
6

π2
2−(k+1)σ−k

τ(si)

|si|2(|si|+ 1)

)
by definition of ξ. Using logarithmic identities, we get

H(Gt) ≤ |I0|(k + 2) + |I0|(k + 1) log2 σ − log2

(∏
i∈I0

τ(si)

)
+

log2

(
π2

6

)
|I1|+ |I1|(k + 1) + |I1|k log2 σ − log2

(∏
i∈I1

τ(si)

)
+

∑
i∈I1

log2 |si|2(|si|+ 1).
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Using |I0| + |I1| = m + 1 ≤ 2m = 2|Gt|, log2(π2/6)|I1| ≤ |I1| and |si| + 1 ≤ 2|si|,
we obtain

H(Gt) ≤ 2(k + 2)|Gt|+ 2(k + 1)|Gt| log2 σ − log2

(
m+1∏
i=1

τ(si)

)
+

m+1∑
i=1

log2 2|si|3.

Equation (20) and τ(t) ≥ ProbP(t) yield

H(Gt) ≤ 2(k + 3)|Gt|+ 2(k + 1)|Gt| log2 σ − log2 τ(t) + 3

m+1∑
i=1

log2 |si|

≤ − log2 ProbP(t) +O(k|Gt| log σ̂ +

m+1∑
i=1

log2 |si|).

Let us bound the sum
∑m+1
i=1 log2 |si|: Using Jensen’s inequality and Lemma 4

(which yields
∑m+1
i=1 |si| ≤ 2n), we get

m+1∑
i=1

log2 |si| ≤ (m+ 1) log2

(
m+1∑
i=1

|si|
m+ 1

)

≤ (m+ 1) log2

(
2n

m+ 1

)
≤ 2|Gt| log2

(
2n

|Gt|

)
and thus

(24) H(Gt) ≤ − log2 ProbP(t) +O
(
k|Gt| log σ̂ + |Gt| log2

(
n

|Gt|

))
.

To bound the term |Gt| log2(n/|Gt|) recall that for n large enough we have |Gt| ≤
γ · n/ logσ̂ n = γ · n · log σ̂/ log n by (16). Here, γ is a constant. Since σ ≤ 2n − 1
there is a constant γ′ ≥ 1 with γ · n/ logσ̂ n ≤ γ′n. Since for every fixed z ≥ 1, the
function φ(x) = x log2

(
z
x

)
is monotonically increasing for 0 < x ≤ z

e (where e is
Euler’s number), we get

|Gt| log2

(
n

|Gt|

)
≤ |Gt| log2

(
eγ′n

|Gt|

)
≤
γn log2

(
eγ′

γ logσ̂ n
)

logσ̂ n
≤ O

(
n log logσ̂ n

logσ̂ n

)
.

With (24) we get

H(Gt) ≤ − log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
,

which proves the lemma. �

We now consider the tree encoder Eψ : T → {0, 1}∗ defined by Eψ(t) = B(Gt),
where as before the grammar-based tree compressor t 7→ Gt has to satisfy (16) for
every tree t ∈ Tn and n large enough. The following theorem says that the encoder
Eψ is universal with respect to the class of all kth-order tree processes. Universality
means that the maximal pointwise redundancy [34] converges to zero for n→∞.
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Theorem 3. For every t ∈ Tn, every k ≥ 0 and every kth-order tree process
P = (Pz)z∈{0,1}k with ProbP(t) > 0 we have

|Eψ(t)| ≤ − log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

Proof. Let P = (Pz)z∈{0,1}k be a kth-order tree process with ProbP(t) > 0. Lem-
mas 6 and 7 yield

|Eψ(t)| ≤ O(|Gt|) +H(Gt) + σ

≤ O(|Gt|)− log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ

= − log2 ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ,

where the last equality uses the bound |Gt| ∈ O(n/ logσ̂ n). �

By taking in Theorem 3 for P the empirical kth-order tree process Pt and using
Theorem 1, we obtain:

Theorem 4. For every t ∈ Tn and every k ≥ 0 we have

|Eψ(t)| ≤ Hk(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

5. Extension to unranked trees

So far, we have only considered node-labelled binary trees. In this section, we
consider unranked, ordered node-labelled trees, where the number of children of a
node (also-called its degree) can be any natural number and the children of every
node are totally ordered. As before, each node is labelled by an element of some
finite alphabet Σ. Let us denote by U(Σ) (or simply U) the set of all such trees.
For technical reasons we also define forests which are ordered sequences of trees
from U . The set of forests is denoted with F . The sets U and F can be inductively
defined as the smallest sets of strings over the alphabet Σ ∪ {(, )} such that the
following conditions hold:

• ε ∈ F (this is the empty forest),
• if a ∈ Σ and f ∈ F then a(f) ∈ U (the tree whose node is labelled with a

and whose children form the forest f)
• if t ∈ U and f ∈ F then tf ∈ F (the forest consisting of the tree t followed

by the forest f).

The singleton tree a() (which is obtained by taking f = ε in the second point) is
usually written as a. Note that U ⊆ F and that F = U∗. The size |f | of f ∈ F is
the number of occurrences of Σ-labels in f ; formally: |ε| = 0, |a(f)| = 1 + |f | and
|tf | = |t|+ |f | for a ∈ Σ, t ∈ U , and f ∈ F .

The first-child/next-sibling encoding transforms a forest f ∈ F into a binary
tree fcns(f) ∈ T . It is defined inductively as follows (recall that � ∈ Σ is a fixed
distinguished symbol in Σ):

• fcns(ε) = � and
• fcns(a(f)g) = a(fcns(f), fcns(g)) for f, g ∈ F and a ∈ Σ.

Thus, the left (resp., right) child of a node in fcns(f) is the first child (resp., right
sibling) of the node in f or a �-labelled leaf if it does not exist.
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Figure 5. Forest f on the left and fcns(f) on the right from Example 8.

Example 8. If f = a(bc)d(e) then

fcns(f) = fcns(a(bc)d(e)) = a(fcns(bc), fcns(d(e))

= a(b(�, fcns(c)), d(fcns(e),�)) = a(b(�, c(�,�)), d(e(�,�),�)),

see also Figure 5.

Note that if t ∈ U , |t| = n then fcns(t) is a binary tree with n internal nodes.
Hence we have |fcns(t)| = n+1 (which is the number of leaves of fcns(t)). We define
the kth-order empirical entropy of an unranked tree t ∈ U as Hk(t) = Hk(fcns(t)).
Note that this definition is independent of the choice of the symbol � ∈ Σ. From
Theorem 4, we immediately obtain:

Theorem 5. For every t ∈ U with |t| = n and every k ≥ 0 we have

|Eψ(fcns(t))| ≤ Hk(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

The above definition of the kth-order empirical entropy of an unranked tree
can be also applied to binary trees t (a binary tree can be viewed as a particular
unranked tree). This yields Hk(fcns(t)) and leads to the question how this value
relates to Hk(t) (the kth-order empirical entropy of t as defined before in (14)). In
one direction, we have the following bound:

Lemma 8. Let t ∈ T (Σ) denote a binary tree with first-child next-sibling encoding
fcns(t) ∈ T (Σ). Then H2k(fcns(t)) ≤ Hk−1(t) for 1 ≤ k ≤ |t|.

The somewhat technical proof of Lemma 8 can be found in Appendix B. In
contrast to Lemma 8, there are families of binary trees tn where Hk(fcns(tn)) is
exponentially smaller than Hk′(tn) for every n ≥ 1 and k, k′ ≥ 2 with k, k′ ∈ o(n).
Define tn inductively by t1 = a and tn = a(c, tn−1) if n is even and tn = a(b, tn−1)
if n is odd. Thus, tn denotes a right-degenerate binary tree of size n, whose inner
nodes and right-most leaf are labelled with a and whose leaves except for the right-
most leaf are alternately labelled b and c. We get Hk(tn) ∈ Θ(n − k): there
are n − k many nodes v with k-history (a1)k−1a0, and about half of them are
b-labelled leaves, while the other half are c-labelled leaves. Moreover, we have
Hk(fcns(tn)) ∈ Θ(log(n − k)): the fcns-encodings of the binary trees tn can be
inductively defined by fcns(t1) = a(�,�) and fcns(tn) = a(c(�, fcns(tn−1)),�) if n
is even and fcns(tn) = a(b(�, fcns(tn−1)),�) if n is odd. Intuitively, as the labels b
and c are thus incorporated in k-histories of nodes of fcns(tn), we can thus determine
the label of a node from its k-history for k ≥ 2 for most nodes of fcns(tn).
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Our definition of the kth-order empirical entropy of an unranked tree via the
fcns-encoding has a practical motivation. Unranked trees occur for instance in the
context of XML, where the hierarchical structure of a document is represented as an
unranked node labelled tree. In this setting, the label of a node quite often depends
on (i) the labels of the ancestor nodes and (ii) the labels of the (left) siblings. This
dependence is captured by our definition of the kth-order empirical entropy.

We also confirmed this intuition by experimental data (shown in Table 1) with
real XML document trees (ignoring textual data at the leaves) showing that in
these cases the kth-order empirical entropy is indeed very small compared to the
worst-case bit size. More precisely, we computed for 21 real XML document trees5

the kth-order empirical entropy (for k = 1, 2, 4, 8) and divided the value by the
worst-case bit length 2n + log2(σ)n, where n is the number of nodes and σ is the
number of node labels [18].

Our experimental results combined with our entropy bound (2) for grammar-
based compression are in accordance with the fact that grammar-based tree com-
pressors yield impressive compression ratios for XML document trees, see e.g. [29].
Some of the XML documents from our experiments were also used in [29], where
the performance of the grammar-based tree compressor TreeRePair was tested. An
interesting observation is that those XML trees, for which our k-th order empiri-
cal entropy is large are indeed those XML trees with the worst compression ratio
for TreeRePair in [29]. This is in particular true for the Treebank document, see
Table 1. TreeRePair obtained for Treebank a compression ratio of around 20%,
whereas for all other documents tested in [29] TreeRePair achieved a compression
ratio below 8%.

XML document n σ w := (2 + log2 σ)n H1/w H2/w H4/w H8/w

Baseball 28 306 46 212 961.9447 2.9818 % 1.2547 % 0.6739 % 0.6662 %
DBLP 3 332 130 35 23 755 697.8193 10.9775 % 8.7407 % 8.2134 % 6.7270 %
DCSD-Normal 2 242 699 50 17 142 868.6330 4.2437 % 2.2481 % 1.7517 % 1.3038 %
EnWikiNew 404 652 20 2 558 180.8475 9.5317 % 3.0760 % 3.0759 % 2.9378 %
EnWikiQuote 262 955 20 1 662 382.6021 9.4270 % 3.1014 % 3.1014 % 3.1006 %
EnWikiVersity 495 839 20 3 134 658.5046 8.8952 % 2.3753 % 2.3753 % 2.3750 %
EXI-Array 226 523 47 1 711 288.1304 0.2506 % 0.2495 % 0.2492 % 0.2483 %
EXI-factbook 55 453 199 534 379.7451 2.2034 % 0.9450 % 0.8132 % 0.8092 %
EXI-Invoice 15 075 52 116 084.1288 0.0484 % 0.0268 % 0.0139 % 0.0098 %
EXI-Telecomp 177 634 39 1 294 135.1377 1.5405 % 0.0044 % 0.0034 % 0.0021 %
EXI-weblog 93 435 12 521 830.9713 0.0032 % 0.0028 % 0.0028 % 0.0028 %
Lineitem 1 022 976 18 6 311 685.1983 0.0003 % 0.0003 % 0.0003 % 0.0003 %
Mondial 22 423 23 146 277.8297 11.1285 % 9.2940 % 8.4702 % 7.7679 %
NASA 476 646 61 3 780 154.2290 7.7424 % 4.4588 % 3.8898 % 3.8054 %
Shakespeare 179 690 22 1 160 695.2676 11.9140 % 10.8416 % 10.6368 % 10.4765 %
SwissProt 2 977 031 85 25 035 017.5080 12.1892 % 10.5249 % 9.2455 % 8.1204 %
TCSD-Normal 2 749 751 24 18 107 007.2213 8.5450 % 8.4004 % 8.2862 % 8.2472 %
Treebank 2 437 666 250 24 293 253.5140 30.8912 % 23.0825 % 19.2444 % 13.4058 %
USHouse 6 712 43 49 845.0890 21.0500 % 18.2164 % 12.6572 % 9.3754 %
XMark1 167 865 74 1 378 079.8892 12.1610 % 9.5101 % 9.2271 % 8.4281 %
XMark2 1 666 315 74 13 679 535.2849 12.2125 % 9.5634 % 9.3259 % 8.9400 %

Table 1. Experimental results for XML tree structures, where n
denotes the number of nodes and σ denotes the number of node
labels.

5All data are available from http://xmlcompbench.sourceforge.net/Dataset.html.

http://xmlcompbench.sourceforge.net/Dataset.html
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6. String straight-line programs versus higher-order empirical
entropy of strings

Our definition of kth-order empirical entropy does not capture all regularities
that can be exploited in grammar-based compression. Take for instance a complete
unlabelled binary tree tn of height n (all paths from the root to a leaf have length n
and the alphabet Σ of node labels contains a single symbol). This tree has 2n leaves
and is very well compressible: its minimal DAG has only n+ 1 nodes, hence there
also exists a TSLP of size n+1 for tn. But for every fixed k the kth-order empirical
entropy of tn divided by n converges to 2 (the trivial upper bound) for n→∞. If
n � k then for every k-history z the number of leaves with k-history z is roughly
the same as the number of internal nodes with k-history z. Hence, although tn is
highly compressible with TSLPs (and even DAGs), its kth-order empirical entropy
is close to the maximal value. We show in the following that the same phenomenon
occurs for grammar-based string compression and the well-established empirical
entropy of strings.

The kth-order empirical entropy of a string is defined as follows (see e.g. [11]).
Let Σ denote a finite alphabet and let w ∈ Σ∗. For a non-empty string α ∈ Σ+,
define w(α) ∈ Σ∗ as the string whose ith symbol is the symbol in w immediately
following the ith occurrence of the string α in w. Thus, if α is not a suffix of w, the
length of w(α) is equal to the number of occurrences of the string α in w. In case
α is a suffix of w, |w(α)| is the number of occurrences of α in w minus one. Recall
the definition of the unnormalized empirical entropy H(w) of a string w ∈ Σ+

(or tuple) from Section 2.1. For an integer k ≥ 1, the kth-order (unnormalized)
empirical entropy of a string w ∈ Σ+ is defined as

Hk(w) =
∑
α∈Σk

H(w(α)),

where we set H(ε) = 0. For k = 0, H0(w) = H(w) is the (unnormalized) empirical
entropy of w.

A straight-line program (SLP) for a string w is a context-free grammar that
produces only the string w. The size of an SLP is the sum of the lengths of the
right-hand sides of the production rules of the context-free grammar, see e.g. [27]
for details. We prove that for each n ≥ 1 there exists a string of length 2n+1 − 1,
which is highly compressible with SLPs, but whose kth-order empirical entropy is
close to the maximum.

Theorem 6. There exists a family of strings (Sn)n (n ≥ 1) over a binary alphabet
with the following properties:

• |Sn| = 2n+1 − 1,
• there exists an SLP of size 3n for Sn, and
• Hk(Sn) ≥ 2n+1−k(1− o(1)) for k ∈ o(n).

Proof. We inductively define a string Sn ∈ {a, b}∗ for n ≥ 1 as follows: We set

• S1 = baa and
• Sn = bSn−1Sn−1.

We have |Sn| = 2n+1 − 1. The string Sn corresponds to the preorder traversal of
the perfect binary tree of size 2n, whose internal nodes are labelled with the symbol
b and whose leaves are labelled with the symbol a. The recursive definition of Sn
directly translates to an SLP for Sn of size 3n (there is a nonterminal for each Si
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with 1 ≤ i ≤ n and each rule has three symbols on the right-hand side according
to the recursive definition).

It remains to show that Hk(Sn) ≥ 2n−k for 0 ≤ k < n. We start with the case
k = 0. Recall that |w|x denotes the number of occurrences of a symbol x in a string
w, as defined in Section 2. We have |Sn|a = 2n and |Sn|b = 2n − 1, which yields

H(Sn) =
∑

x∈{a,b}

|Sn|x log2

(
|Sn|
|Sn|x

)

= 2n log2

(
2n+1 − 1

2n

)
+ (2n − 1) log2

(
2n+1 − 1

2n − 1

)
.

Define the function g : [2,∞)→ R by

g(x) =
x

2x− 1
log2

(
2x− 1

x

)
+

x− 1

2x− 1
log2

(
2x− 1

x− 1

)
.

It converges to 1 from below for x → ∞. Since |Sn| = 2n+1 − 1 we have H(Sn) =
g(2n)|Sn| ≥ 2n+1(1− o(1)).

Let us now consider the case k ≥ 1 and let 1 ≤ m ≤ n. By construction of Sn,
the last symbol of Sn is a. Therefore, the length of the string Sn(bm) equals the
number of occurrences of the string bm in Sn. In order to lower-bound the kth-order
empirical entropy of Sn, we first show inductively in n, that

(25) |Sn(bm)| = 2n−m+1 − 1

for 1 ≤ m ≤ n: For the base case, let n = 1. We have S1 = baa and thus,
|S1(b)| = 1. For the induction step, let n > 1. By definition of Sn, we have
Sn = bSn−1Sn−1. By the induction hypothesis, we have |Sn−1(bm)| = 2n−m− 1 for
1 ≤ m ≤ n− 1. Moreover, bn does not occur in Sn−1 (which follows by induction),
i.e., |Sn−1(bn)| = 0 = 2n−n − 1. By construction, the last symbol of the string
Sn−1 is a. Thus, for all 1 ≤ m ≤ n we have |Sn−1Sn−1(bm)| = 2|Sn−1(bm)| =
2n−m+1−2. Hence, as the string bm with 1 ≤ m ≤ n occurs additionally as a prefix
of the string Sn = bSn−1Sn−1, the number of occurrences of bm in Sn in total is
|Sn(bm)| = 2n−m+1 − 1 for every 1 ≤ m ≤ n. This proves (25).

Next, we count the number of occurrences of bm in Sn, which are followed by
the symbol a, that is, we count |Sn(bm)|a. We show inductively in n, that

|Sn(bm)|a = 2n−m

for 1 ≤ m ≤ n: For the base case, let n = 1. As S1 = baa, we have |S1(b)|a = 1. For
the induction step, let n > 1. By the induction hypothesis, we have |Sn−1(bm)|a =
2n−1−m for 1 ≤ m ≤ n − 1. As Sn−1 ends with a, we obtain |Sn−1Sn−1(bm)|a =
2n−m for 1 ≤ m ≤ n− 1. Moreover, the construction of Sn implies that the prefix
bn of Sn, which is the only occurrence of bn in Sn, is followed by the symbol a.
Thus, |Sn(bm)|a = 2n−m for 1 ≤ m ≤ n, which proves the claim.

As |Sn(bm)|a = 2n−m, we have |Sn(bm)|b = 2n−m − 1. Thus, we obtain the
following lower bound for the kth-order empirical entropy of Sn for k ∈ o(n).

Hk(Sn) =
∑

α∈{a,b}k
H(Sn(α))

≥
∑

x∈{a,b}

|Sn(bk)|x log2

(
|Sn(bk)|
|Sn(bk)|x

)
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= 2n−k log2

(
2n−k+1 − 1

2n−k

)
+ (2n−k − 1) log2

(
2n−k+1 − 1

2n−k − 1

)
= (2n−k+1 − 1)g(2n−k)

≥ 2n−k+1(1− o(1))

This proves the theorem. �
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Appendix A. Histories of length smaller than k

In order to define kth-order empirical entropy for binary trees, there are basically
three possibilities how to deal with nodes whose history is shorter than 2k:

(i) pad the histories with a fixed dummy symbol � ∈ Σ and direction i ∈ {0, 1},
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(ii) allow histories of length smaller than 2k, or, equivalently, pad the histories
with a fixed dummy symbol � /∈ Σ and direction i ∈ {0, 1}, or

(iii) ignore nodes whose history is of length smaller than 2k.

Recall that in the main text we used the variant (i) with i = 0. In this subsection,
we show that the above three variants are basically equivalent if k is small compared
to the size of the binary tree.

Fix an integer k ≥ 1. Recall that in Section 2.2.4 we defined for a tree t, a
k-history z ∈ Lk, and ã ∈ Σ × {0, 2} the numbers mt

z = |Vz(t)| and mt
z,ã = |{v ∈

Vz(t) | λ(v) = ã}|. The tree t will be fixed in this section; hence we will write mz

and mz,ã in the following. We define several variants of these numbers.
For a k-history z ∈ Lk and ã ∈ Σ× {0, 2} we define:

m< = |{v ∈ V (t) | |v| < k}|,
m<

z = |{v ∈ Vz(t) | |v| < k}|,
m<

z,ã = |{v ∈ Vz(t) | |v| < k, λ(v) = ã}|,
m≥z = |{v ∈ Vz(t) | |v| ≥ k}|,
m≥z,ã = |{v ∈ Vz(t) | |v| ≥ k, λ(v) = ã}|.

We have m< ≤ 2k − 1 and m< ≥ 2k − 1 if |t| ≥ k. Also note that mz = m<
z +m≥z

and
∑
z∈Lk m

<
z = m< and

∑
z∈Lk m

≥
z = 2|t| − 1−m<.

Fix a fresh symbol � /∈ Σ and let L� = ((Σ ∪ {�}){0, 1})∗ and L�k = {w ∈ L� |
|w| = 2k}. Clearly, L ⊆ L� and Lk ⊆ L�k. Let `k : L� → L�k denote the partial
function mapping a string z ∈ L� with |z| ≥ 2k to the suffix of z of length 2k.
For a binary tree t and a node v ∈ V (t), define h�k(v) = `k((�0)kh(v)). Note that
h�k(v) = hk(v) for nodes v ∈ V (t) with |v| ≥ k. Finally, for z ∈ L�k and ã ∈ Σ×{0, 2}
we define

m�z = |{v ∈ V (t) | h�k(v) = z, |v| < k}|,
m�z,ã = |{v ∈ V (t) | h�k(v) = z, |v| < k, λ(v) = ã}|.

Using the above numbers, we can define three natural variations of the kth-order
empirical entropy of a binary node-labelled tree t:

(i) Padding histories of length shorter than 2k with � ∈ Σ and i ∈ {0, 1} yields
the definition of kth-order empirical entropy from Section 2 (for i = 0):

Hk(t) =
∑
z∈Lk

∑
ã∈Σ×{0,2}

mz,ã log2

(
mz

mz,ã

)
.

(ii) Padding histories of length shorter than 2k with � /∈ Σ and i = 0 yields

H�k(t) =
∑
z∈L�k

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z
m≥z,ã

)
+m�z,ã log2

(
m�z
m�z,ã

)
.

This is equivalent to allowing histories of length shorter than 2k: By
padding with a symbol � /∈ Σ, we have h�k(v1) = h�k(v2) if and only if
h(v1) = h(v2) for nodes v1, v2 ∈ V (t) with |v1|, |v2| < k.

(iii) Ignoring nodes whose history is of length smaller than 2k yields

H≥k (t) =
∑
z∈Lk

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z
m≥z,ã

)
.
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We can now show that these three approaches are basically equivalent:

Theorem 7. For every k ≥ 1 and every binary tree t, we have the following:

|Hk(t)−H�k(t)| ≤ m<

(
1 +

1

ln(2)
+ log2 σ + log2

(
2|t| − 1

m<

))
,

|Hk(t)−H≥k (t)| ≤ m<

(
1 +

1

ln(2)
+ log2 σ + log2

(
2|t| − 1

m<

))
,

|H≥k (t)−H�k(t)| ≤ m<(1 + log2 σ).

Proof. First, note that

0 ≤
∑
z∈Lk

m<

z

∑
ã∈Σ×{0,2}

m<

z,ã

m<
z

log2

(
m<
z

m<

z,ã

)
≤ m<(1 + log2 σ),(26)

as the inner sum is the Shannon entropy H(P ) of the probability distribution
P : Σ × {0, 2} → [0, 1] given by P (ã) = m<

z,ã/m
<
z (and hence H(P ) ≤ log2(2σ) =

1 + log2 σ) and as
∑
z∈Lk m

<
z = m<. Analogously, we get

0 ≤
∑
z∈L�k

m�z
∑

ã∈Σ×{0,2}

m�z,ã
m�z

log2

(
m�z
m�z,ã

)
≤ m<(1 + log2 σ).(27)

We start with upper-bounding |Hk(t)−H≥k (t)|: By the log-sum inequality (Lemma 1)
and (26), we get

Hk(t) =
∑
z∈Lk

∑
ã∈Σ×{0,2}

mz,ã log2

(
mz

mz,ã

)

=
∑
z∈Lk

∑
ã∈Σ×{0,2}

(m≥z,ã +m<

z,ã) log2

(
m≥z +m<

z

m≥z,ã +m<

z,ã

)

≥
∑
z∈Lk

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z
m≥z,ã

)
+
∑
z∈Lk

∑
ã∈Σ×{0,2}

m<

z,ã log2

(
m<
z

m<

z,ã

)

≥
∑
z∈Lk

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z
m≥z,ã

)
= H≥k (t).

Moreover, we find

Hk(t) =
∑
z∈Lk

∑
ã∈Σ×{0,2}

(m≥z,ã +m<

z,ã) log2

(
m≥z +m<

z

m≥z,ã +m<

z,ã

)

=
∑
z∈Lk

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z +m<

z

m≥z
· m≥z
m≥z,ã +m<

z,ã

)
+

∑
z∈Lk

∑
ã∈Σ×{0,2}

m<

z,ã log2

(
m≥z +m<

z

m<
z

· m<
z

m≥z,ã +m<

z,ã

)

≤
∑
z∈Lk

m≥z log2

(
m≥z +m<

z

m≥z

)
+
∑
z∈Lk

∑
ã∈Σ×{0,2}

m≥z,ã log2

(
m≥z
m≥z,ã

)
+
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∑
z∈Lk

m<

z log2

(
m≥z +m<

z

m<
z

)
+
∑
z∈Lk

∑
ã∈Σ×{0,2}

m<

z,ã log2

(
m<
z

m<

z,ã

)
≤ H≥k (t) +m< (1 + log2 σ) +

(2|t| − 1−m<) log2

(
2|t| − 1

2|t| − 1−m<

)
+m< log2

(
2|t| − 1

m<

)
by the log-sum inequality (Lemma 1) and our estimate from (26). We have

(2|t| − 1−m<) log2

(
2|t| − 1

2|t| − 1−m<

)
≤ m<

ln(2)
,(28)

which follows immediately from the mean-value theorem: as a consequence of the
mean-value theorem, for every mapping f : [a, b] → R, which is differentiable on
[a, b], we have

|f(b)− f(a)| ≤ max
x∈[a,b]

|f ′(x)| · |b− a|.

With f(x) = log2(x), a = 2|t|−1−m< and b = 2|t|−1 and by logarithmic identities,
we obtain the estimate (28). Thus, we have:

|Hk(t)−H≥k (t)| ≤ m<

(
1 + log2 σ +

1

ln(2)
+ log2

(
2|t| − 1

m<

))
.

Next, we upper-bound |H≥k (t)−H�k(t)|: From the definitions of H≥k (t) and H�k(t),
we get

H�k(t) = H≥k (t) +
∑
z∈L�k

∑
ã∈Σ×{0,2}

m�z,ã log2

(
m�z
m�z,ã

)
.

As the second sum on the right-hand side is between 0 and m<(1 + log2 σ) (see
(27)), we get |H≥k (t)−H�k(t)| ≤ m<(1 + log2 σ).

Finally, as H�k(t) ≥ H≥k (t) and Hk(t) ≥ H≥k (t), we have

|Hk(t)−H�k(t)| ≤ m<

(
1 + log2 σ +

1

ln(2)
+ log2

(
2|t| − 1

m<

))
.

This proves the theorem. �

Theorem 7 moreover shows that the choice of the symbol � ∈ Σ used for padding
the histories only affects the value of the kth-order empirical entropy by an additive
term of at most m<(1 + log2 σ + 1/ ln(2)) +m< log2((2|t| − 1)/m<).

Appendix B. Proof of Lemma 8

Fix a binary tree t ∈ T (Σ). By definition of the first-child next-sibling encoding,
every inner node of fcns(t) corresponds in a bijective manner to a node of t: For
an inner node v of fcns(t), let fcns−1(v) denote the corresponding node of t and
let fcns(v) denote the corresponding inner node of fcns(t) of a node v of t. If v is
a node of t, then we obtain h(fcns(v)) as follows: If v = ε, then h(fcns(v)) = ε.
Moreover, if v is a left child of a node parent(v) with label a ∈ Σ, then h(fcns(v)) =
h(fcns(parent(v)))a0 (and h(v) = h(parent(v))a0). Finally, if v is a right child
of a node parent(v) with label a ∈ Σ and v’s left sibling has label a′ ∈ Σ, then
h(fcns(v)) = h(fcns(parent(v)))a0a′1 (and h(v) = h(parent(v))a1). Thus, we are
also able to determine h(fcns−1(v)) from h(v) for every inner node v of fcns(t):
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locating every occurrence of a pattern of the form 0a1 with a ∈ Σ in the string h(v)
and replacing it by 1 yields h(fcns−1(v)).

In particular, we have |h(fcns(v))| ≤ 2|h(v)| for every node v of t, respectively,
|h(fcns−1(v))| ≥ 1/2|h(v)| for every inner node v of fcns(t). Moreover, for every
inner node v of fcns(t), we can uniquely determine hk(fcns−1(v)) from h2k(v). Thus,
we are also able to determine hk−1(fcns−1(v)) from h2k−1(v) for every inner node
v of fcns(t). Let

Lm(fcns(t)) = {hm(v) | v is an inner node of fcns(t)}

denote the set of m-histories that appear as m-history of an inner node of fcns(t).
We define a mapping ϕ : L2k(fcns(t)) → Lk by ϕ(h2k(v)) = hk(fcns−1(v)), which
maps the 2k-history of an inner node of fcns(t) to the k-history of the corresponding
node in t: By the above considerations, this mapping is well-defined. Furthermore,
we define a mapping π : L2k−1(fcns(t))→ Lk−1 by π(h2k−1(v)) = hk−1(fcns−1(v)).
Again, by the above considerations, this mapping is well-defined, as we are able to
determine hk−1(fcns−1(v)) from h2k−1(v).

For m ≥ 2 we partition Lm into the following disjoint subsets:

L0
m = {a1i1 · · · amim ∈ Lm | im = 0},
L01
m = {a1i1 · · · amim ∈ Lm | im−1 = 0 and im = 1},
L11
m = {a1i1 · · · amim ∈ Lm | im−1 = 1 and im = 1}.

Moreover, we define Ls2k(fcns(t)) = Ls2k ∩ L2k(fcns(t)) for s ∈ {0, 01, 11}. We
observe the following:

(i) If h2k(v) ∈ L11
2k for a node v of fcns(t), then v is a �-labelled leaf of fcns(t):

As t is a binary tree, the right sibling of a node has no right sibling. Thus,
there are no inner nodes v in fcns(t) with h2k(v) ∈ L11

2k.
(ii) If h2k(v) ∈ L01

2k for a node v of fcns(t), then v is an inner node of fcns(t):
This follows again from the fact that t is a binary tree (and hence does not
have unary nodes).

(iii) If h2k(v) ∈ L0
2k for a node v of fcns(t), then v can be an inner node or a leaf

of fcns(t). If v is a leaf, then its label is the fixed dummy symbol � ∈ Σ.
(iv) For every i ∈ {0, 1} and node v of t, we have hk(v) ∈ Lik if and only

if h2k(fcns(v)) ∈ Li2k(fcns(t)). In particular ϕ(z) ∈ L0
k for every z ∈

L0
2k(fcns(t)) and ϕ(z) ∈ L1

k for every z ∈ L01
2k(fcns(t)). Hence ϕ(z) 6= ϕ(z′)

if z ∈ L01
2k(fcns(t)) and z′ ∈ L0

2k(fcns(t)).

From (i), we obtain ∑
z∈L11

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)
= 0.(29)

From (ii) and (iv), we obtain the following:∑
z∈L01

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

=
∑

z∈L01
2k(fcns(t))

∑
a∈Σ

m
fcns(t)
z,(a,2) log2

m
fcns(t)
z

m
fcns(t)
z,(a,2)
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≤
∑
y∈L1

k

∑
a∈Σ

 ∑
z∈ϕ−1(y)

m
fcns(t)
z,(a,2)

 log2

∑z∈ϕ−1(y)m
fcns(t)
z∑

z∈ϕ−1(y)m
fcns(t)
z,(a,2)

 ,

where the last estimate follows from the log-sum inequality (Lemma 1). For every
y ∈ L1

k we have ∑
z∈ϕ−1(y)

m
fcns(t)
z,(a,2) = mt

y,(a,0) +mt
y,(a,2),∑

z∈ϕ−1(y)

mfcns(t)
z = mt

y.

Thus, we obtain

∑
z∈L01

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

≤
∑
y∈L1

k

∑
a∈Σ

(
mt
y,(a,0) +mt

y,(a,2)

)
log2

(
mt
y

mt
y,(a,0) +mt

y,(a,2)

)
.(30)

From (iii) and (iv), we obtain

∑
z∈L0

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

=
∑

z∈L0
2k(fcns(t))

∑
a∈Σ

m
fcns(t)
z,(a,2) log2

m
fcns(t)
z

m
fcns(t)
z,(a,2)

+
∑
z∈L0

2k

m
fcns(t)
z,(�,0) log2

m
fcns(t)
z

m
fcns(t)
z,(�,0)

 .

For the first summand, we find analogously as in the previous estimate (30):

∑
z∈L0

2k(fcns(t))

∑
a∈Σ

m
fcns(t)
z,(a,2) log2

m
fcns(t)
z

m
fcns(t)
z,(a,2)


≤

∑
y∈L0

k

∑
a∈Σ

(
mt
y,(a,0) +mt

y,(a,2)

)
log2

(
mt
y

mt
y,(a,0) +mt

y,(a,2)

)
.(31)

For the second summand, we obtain as k ≥ 1:

∑
z∈L0

2k

m
fcns(t)
z,(�,0) log2

m
fcns(t)
z

m
fcns(t)
z,(�,0)


=

∑
z∈L2k−1

∑
a∈Σ

m
fcns(t)
za0,(�,0) log2

 m
fcns(t)
za0

m
fcns(t)
za0,(�,0)


≤

∑
y∈Lk−1

∑
a∈Σ

 ∑
z∈π−1(y)

m
fcns(t)
za0,(�,0)

 log2

 ∑
z∈π−1(y)m

fcns(t)
za0∑

z∈π−1(y)m
fcns(t)
za0,(�,0)

 ,
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where the last inequality follows from the log-sum inequality. Moreover, for all
y ∈ Lk−1 we have

∑
z∈π−1(y)

m
fcns(t)
za0,(�,0) = mt

y,(a,0),∑
z∈π−1(y)

m
fcns(t)
za0 = mt

y,(a,0) +mt
y,(a,2).

Thus, we find

∑
z∈L0

2k

m
fcns(t)
z,(�,0) log2

m
fcns(t)
z

m
fcns(t)
z,(�,0)


≤

∑
y∈Lk−1

∑
a∈Σ

mt
y,(a,0) log2

(
mt
y,(a,0) +mt

y,(a,2)

mt
y,(a,0)

)
.(32)

Altogether, if we combine the estimates from (29), (30), (31) and (32), we obtain:

H2k(fcns(t)) =
∑
z∈L2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

=
∑
z∈L0

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)
+
∑
z∈L01

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

+
∑
z∈L11

2k

∑
ã∈Σ×{0,2}

m
fcns(t)
z,ã log2

(
m

fcns(t)
z

m
fcns(t)
z,ã

)

≤
∑
z∈L1

k

∑
a∈Σ

(
mt
z,(a,0) +mt

z,(a,2)

)
log2

(
mt
z

mt
z,(a,0) +mt

z,(a,2)

)

+
∑
z∈L0

k

∑
a∈Σ

(
mt
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where the last-but-one estimate follows again from the log-sum inequality. This
proves Lemma 8. �
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