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Abstract11

We prove new complexity results for computational problems in certain wreath products of groups12

and (as an application) for free solvable groups. For a finitely generated group we study the13

so-called power word problem (does a given expression uk1
1 . . . u

kd
d , where u1, . . . , ud are words over14

the group generators and k1, . . . , kd are binary encoded integers, evaluate to the group identity?)15

and knapsack problem (does a given equation ux1
1 . . . u

xd
d = v, where u1, . . . , ud, v are words over16

the group generators and x1, . . . , xd are variables, have a solution in the natural numbers). We17

prove that the power word problem for wreath products of the form G o Z with G nilpotent and18

iterated wreath products of free abelian groups belongs to TC0. As an application of the latter, the19

power word problem for free solvable groups is in TC0. On the other hand we show that for wreath20

products G o Z, where G is a so called uniformly strongly efficiently non-solvable group (which form21

a large subclass of non-solvable groups), the power word problem is coNP-hard. For the knapsack22

problem we show NP-completeness for iterated wreath products of free abelian groups and hence23

free solvable groups. Moreover, the knapsack problem for every wreath product G o Z, where G is24

uniformly efficiently non-solvable, is Σp
2-hard.25
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1 Introduction33

Since the seminal work of Dehn [7] on the word and conjugacy problem in surface groups,34

the area of combinatorial group theory [31] is tightly connected to algorithmic questions.35

The famous Novikov-Boone result [4, 40] on the existence of finitely presented groups with36

undecidable word problem was one of the first undecidability results that touched real37

mathematics. Since this pioneering work, the area of algorithmic group theory has been38

extended in many different directions. More general algorithmic problems have been studied39

and also the computational complexity of group theoretic problems has been investigated. In40

this paper, we focus on the decidability/complexity of two specific problems in group theory41

that have received considerable attention in recent years: the knapsack problem and the42

power word problem.43

Knapsack problems There exist several variants of the classical knapsack problem over the44

integers [21]. In the variant that is particularly relevant for this paper, it is asked whether a45

linear equation x1 ·a1+· · ·+xd ·ad = b, with a1, . . . , ad, b ∈ Z, has a solution (x1, . . . , xd) ∈ Nd.46

A proof for the NP-completeness of this problem for binary encoded integers a1, . . . , ad, b47

can be found in [15]. In contrast, if the numbers ai, b are given in unary notation then the48

problem falls down into the circuit complexity class TC0 [8]. In the course of a systematic49

investigation of classical commutative discrete optimization problems in non-commutative50

group theory, Myasnikov, Nikolaev, and Ushakov [33] generalized the above definition of51

knapsack to any f.g. group G: The input for the knapsack problem for G (KP(G) for short)52

is an equation of the form gx1
1 · · · g

xd

d = h for group elements g1, . . . , gd, h ∈ G (specified by53

finite words over the generators of G) and pairwise different variables x1, . . . , xd that take54

values in N and it is asked whether this equation has a solution (in Section 3.2, we formulate55

this problem in a slightly more general but equivalent way). In this form, KP(Z) is exactly56

the above knapsack problem for unary encoded integers studied in [8] (a unary encoded57

integer can be viewed as a word over a generating set {t, t−1} of Z). For the case where58

g1, . . . , gd, h are commuting matrices over an algebraic number field, the knapsack problem59

has been studied in [1]. Let us emphasize that we are looking for solutions of knapsack60

equations in the natural numbers. One might also consider the variant, where the variables61

x1, . . . , xd take values in Z. This latter version can be easily reduced to our knapsack version62

(with solutions in N), but we are not aware of a reduction in the opposite direction.1 Let us63

also mention that the knapsack problem is a special case of the more general rational subset64

membership problem [26].65

We also consider a generalization of KP(G): An exponent equation is an equation of the66

form gx1
1 · · · g

xd

d = h as in the specification of KP(G), except that the variables x1, . . . , xd are67

not required to be pairwise different. Solvability of exponent equations for G (ExpEq(G) for68

short) is the problem where the input is a conjunction of exponent equations (possibly with69

shared variables) and the question is whether there is a joint solution for these equations in70

the natural numbers.71

Let us briefly survey the results about knapsack obtained in [33] and subsequent papers:72

Knapsack can be solved in polynomial time for every hyperbolic group [33]. Some73

extensions of this result can be found in [11, 25].74

1 Note that the problem whether a given system of linear equations has a solution in N is NP-complete,
whereas the problem can be solved in polynomial time (using the Smith normal form) if we ask for a
solution in Z. In other words, if we consider the knapsack problem for Zn with n part of the input,
then looking for solutions in N seems to be more difficult than looking for solutions in Z.
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126:2 The complexity of knapsack problems in wreath products

There are nilpotent groups of class 2 for which knapsack is undecidable. Examples are75

direct products of sufficiently many copies of the discrete Heisenberg group H3(Z) [22],76

and free nilpotent groups of class 2 and sufficiently high rank [37]. In contrast, knapsack77

for H3(Z) is decidable [22]. Thus, direct products to not preserve decidability of knapsack.78

Knapsack is decidable for every co-context-free group [22], i.e., groups where the set79

of all words over the generators that do not represent the identity is a context-free80

language. Lehnert and Schweitzer [23] have shown that the Higman-Thompson groups81

are co-context-free.82

Knapsack belongs to NP for all virtually special groups (finite extensions of subgroups of83

graph groups) [28]. The class of virtually special groups is very rich. It contains all Coxeter84

groups, one-relator groups with torsion, fully residually free groups, and fundamental85

groups of hyperbolic 3-manifolds. For graph groups (a.k.a. right-angled Artin groups) a86

complete classification of the complexity was obtained in [29]: If the underlying graph87

contains an induced path or cycle on 4 nodes, then knapsack is NP-complete; in all other88

cases knapsack can be solved in polynomial time (even in LogCFL).89

Knapsack is NP-complete for every wreath product A o Z with A 6= 1 f.g. abelian [12]90

(wreath products are formally defined in Section 3.1).91

Decidability of knapsack is preserved under finite extensions, HNN-extensions over finite92

associated subgroups and amalgamated free products over finite subgroups [28].93

For a knapsack equation gx1
1 · · · g

xd

d = h we may consider the set of all solutions {(n1, . . . , nd) ∈94

Nd | gn1
1 · · · g

nd

d = g in G}. In the papers [25, 22, 29] it turned out that in many groups the95

solution set of every knapsack equation is a semilinear set (see Section 2 for a definition).96

We say that a group is knapsack-semilinear if for every knapsack equation the set of all97

solutions is semilinear and a semilinear representation can be computed effectively (the same98

holds then also for exponent equations). Note that in any group G the set of solutions on an99

equation gx = h is periodic and hence semilinear. This result generalizes to solution sets of100

knapsack instances of the for gx1g
y
2 = h (see Lemma 9), but there are examples of knapsack101

instances with three variables where solutions sets (in certain groups) are not semilinear.102

Examples of knapsack-semilinear groups are graph groups [29] (which include free groups103

and free abelian groups), hyperbolic groups [25], and co-context free groups [22].2 Moreover,104

the class of knapsack-semilinear groups is closed under finite extensions, graph products,105

amalgamated free products with finite amalgamated subgroups, HNN-extensions with finite106

associated subgroups (see [10] for these closure properties) and wreath products [12].107

Power word problems In the power word problem for a f.g. group G (PowerWP(G) for108

short) the input consists of an expression un1
1 un2

2 · · ·u
nd

d , where u1, . . . , ud are words over109

the group generators and n1, . . . , nd are binary encoded integers. The problem is then to110

decide whether the expression un1
1 un2

2 · · ·u
nd

d evaluates to the identity in G. The power word111

problem arises very naturally in the context of the knapsack problem: it allows us to verify a112

proposed solution for a knapsack equation with binary encoded numbers. The power word113

problem has been first studied in [27], where it was shown that the power word problem for114

f.g. free groups has the same complexity as the word problem and hence can be solved in115

logarithmic space. Other groups with easy power word problems are f.g. nilpotent groups116

and wreath products A o Z with A f.g. abelian [27]. In contrast it is shown in [27] that117

the power word problem for wreath products G o Z, where G is either finite non-solvable118

2 Knapsack-semilinearity of co-context free groups is not stated in [22] but follows immediately from the
proof for the decidability of knapsack.
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or f.g. free, is coNP-complete. Implicitly, the power word problem appeared also in the119

work of Ge [13], where it was shown that one can verify in polynomial time an identity120

αn1
1 αn2

2 · · ·α
nd

d = 1, where the αi are elements of an algebraic number field and the ni are121

binary encoded integers. The power word problem is a special case of the compressed word122

problem [24], which asks whether a grammar-compressed word over the group generators123

evaluates to the group identity.124

Main results Our main focus is on the problems PowerWP(G), KP(G) and ExpEq(G)125

for the case where G is a wreath product. We start with the following result:126

I Theorem 1. PowerWP(G o Z) is in TC0 for every f.g. nilpotent group G.127

Theorem 1 generalizes the above mentioned result from [27] (for G abelian) in a nontrivial128

way. Our proof analyzes periodic infinite words over a nilpotent group G. Roughly speaking,129

we show that one can check in TC0, whether a given list of such periodic infinite words130

pointwise multiplies to the identity of G. We believe that this is a result of independent131

interest. We use this result also in the proof of the following theorem:132

I Theorem 2. KP(G o Z) is NP-complete for every finite nilpotent group G 6= 1.133

Next, we consider iterated wreath products. Fix r ≥ 1 and define the iterated wreath134

products W0,r = Zr and Wm+1,r = Zr oWm,r. By a famous result of Magnus [32] the free135

solvable group Sm,r of derived length r and rank m embeds into Wm,r. Our main results for136

these groups are:137

I Theorem 3. PowerWP(Wm,r) and hence PowerWP(Sm,r) is in TC0 for m ≥ 0, r ≥ 1.138

It was only recently shown in [35] that the word problem (and the conjugacy problem) for139

every free solvable group belongs to TC0. Theorem 3 generalizes TC0 membership of the140

word problem.141

I Theorem 4. ExpEq(Wm,r) and hence ExpEq(Sm,r) is NP-complete for m ≥ 0, r ≥ 1.142

For the proof of Theorem 4 we show that if a given knapsack equation over Wm,r has a143

solution then it has a solution where all numbers are exponentially bounded in the length144

of the knapsack instance. Theorem 4 then follows easily from Theorem 3. For some other145

algorithmic results for free solvable groups see [34].146

Finally, we show new hardness results for the power word problem and knapsack problem.147

For this we make use so-called uniformly strongly efficiently non-solvable groups (uniformly148

SENS groups) that were recently defined in [3]. Roughly speaking, a group G is uniformly149

SENS if there exists nontrivial nested commutators of arbitrary depth that moreover, are150

efficiently computable in a certain sense (see Section 6 for the precise definition). The151

essence of these groups is that they allow to carry out Barrington’s argument showing the152

NC1-hardness of the word problem for a finite solvable group [2]. We prove the following:153

I Theorem 5. PowerWP(G o Z) is coNP-hard for every f.g. uniformly SENS group G.154

This result generalizes a result from [27] saying that PowerWP(G o Z) is coNP-hard for the155

case that G is f.g. free or finite non-solvable.156

I Theorem 6. KP(G o Z) is Σp2-hard for every f.g. uniformly SENS group G.157

Recall that for every nontrivial group G, KP(G o Z) is NP-hard [12]. We also show several158

corollaries of Theorems 5 and 6. For instance, we show that for the famous Thompson’s159

group F , PowerWP(F ) is coNP-complete and KP(F ) is Σp2-hard.160
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2 Preliminaries161

Complexity theory We assume some knowledge in complexity theory; in particular the162

reader should be familiar with the classes P, NP, and coNP. The class Σp2 (second existential163

level of the polynomial time hierarchy) contains all languages L ⊆ Σ∗ for which there exists164

a polynomial p and a language K ⊆ Σ∗#{0, 1}∗#{0, 1}∗ in P (for a symbol # /∈ Σ ∪ {0, 1})165

such that x ∈ L if and only if ∃y ∈ {0, 1}≤p(|x|)∀z ∈ {0, 1}≤p(|x|) : x#y#z ∈ K.166

The class TC0 contains all problems that can be solved by a family of threshold circuits of167

polynomial size and constant depth. In this paper, TC0 will always refer to the DLOGTIME-168

uniform version of TC0. A precise definition is not needed for our work; see [42] for details.169

All we need is that the following arithmetic operations on binary encoded integers belong to170

TC0: iterated addition and multiplication (i.e., addition and multiplication of n many n-bit171

numbers) and division with remainder.172

For languages (or computational problems) A,B1, . . . , Bk ⊆ {0, 1}∗ we write A ∈173

TC0(B1, . . . , Bk) (A is TC0-Turing-reducible to B1, . . . , Bk) if A can be solved by a family174

of threshold circuits of polynomial size and constant depth that in addition may also use175

oracle gates for the languages B1, . . . , Bk (an oracle gate for Bi yields the output 1 if and176

only if the string of input bits belongs to Bi).177

Semilinear sets Fix a dimension d ≥ 1. All vectors will be column vectors. For a vector178

v = (v1, . . . , vd)T ∈ Zd we define its norm ‖v‖ := max{|vi| | 1 ≤ i ≤ d} and for a matrix179

M ∈ Zc×d with entries mi,j (1 ≤ i ≤ c, 1 ≤ j ≤ d) we define the norm ‖M‖ = max{|mi,j | |180

1 ≤ i ≤ c, 1 ≤ j ≤ d}. Finally, for a finite set of vectors A ⊆ Nd let ‖A‖ = max{‖a‖ | a ∈ A}.181

We extend the operations of vector addition and multiplication of a vector by a matrix to sets182

of vectors in the obvious way. A linear subset of Nd is a set of the form L = L(b, P ) := b+P ·Nk,183

where b ∈ Nd and P ∈ Nd×k. A set S ⊆ Nd is called semilinear if it is a finite union of184

linear sets. Semilinear sets play an important role in automata theory, logic, and other areas.185

They are precisely the sets definable in Presburger arithmetic, i.e. first-order logic over the186

structure (N,+), and thus form a Boolean algebra.187

For a semilinear set S =
⋃k
i=1 L(bi, Pi), we call the tuple (b1, P1, . . . , bk, Pk) a semilinear188

representation of S. The magnitude of the semilinear representation (b1, P1, . . . , bk, Pk) is189

max{‖b1‖, ‖P1‖ . . . , ‖bk‖, ‖Pk‖}. The magnitude ‖S‖ of a semilinear set S is the minimal190

magnitude of all semilinear representations for S.191

It is often convenient to treat mappings ν : {x1, . . . , xd} → N, where X = {x1, . . . , xd} is a192

finite set of variables, as vectors. To this end, we identify ν with the vector (ν(x1), . . . , ν(xd))T.193

This way, vector operations (e.g. addition and scalar multiplication) and the notion of194

semilinearity carry over to the set NX of all mappings from X to N.195

3 Groups196

We assume that the reader is familiar with the basics of group theory. Let G be a group. We197

always write 1 for the group identity element. For g, h ∈ G we write [g, h] := g−1h−1gh for198

the commutator of g and h and gh for h−1gh. For subgroups A,B of G we write [A,B] for199

the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B. The order of an200

element g ∈ G is the smallest number z > 0 with gz = 1 and ∞ if such a z does not exist.201

The group G is torsion-free, if every g ∈ G \ {1} has infinite order.202

We say that G is finitely generated (f.g.) if there is a finite subset Σ ⊆ G such that203

every element of G can be written as a product of elements from Σ; such a Σ is called a204
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finite generating set for G. We also write G = 〈Σ〉. We then have a canonical morphism205

h : Σ∗ → G that maps a word over Σ to its product in G. If h(w) = 1 we also say that w = 1206

in G. For g ∈ G we write |g| for the length of a shortest word w ∈ Σ∗ such that h(w) = g.207

This notation depends on the generating set Σ. We always assume that the generating set Σ208

is symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. Then, we can define on Σ∗ a natural209

involution ·−1 by (a1a2 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 for a1, a2, . . . , an ∈ Σ. This allows to use210

the notations [g, h] = g−1h−1gh and gh = h−1gh in the case g, h ∈ Σ∗. By computing a211

homomorphism h : G1 = 〈Σ1〉 → G2 = 〈Σ2〉, we mean computing the images h(a) for a ∈ Σ1.212

A group G is called orderable if there exists a linear order ≤ on G such that g ≤ h implies213

xgy ≤ xhy for all g, h, x, y ∈ G [39, 38]. Every orderable group is torsion-free (this follows214

directly from the definition) and has the unique roots property [41], i.e., gn = hn implies215

g = h. The are numerous examples of orderable groups: for instance, torsion-free nilpotent216

groups, right-angled Artin groups, and diagram groups are all orderable.217

Two elements g, h ∈ G in a group G are called commensurable if gx = hy for some218

x, y ∈ Z \ {0}. This defines an equivalence relation on G, in which the elements with finite219

order form an equivalence class. By [39, Corollary 1.2] commensurable elements in an220

orderable group commute.221

3.1 Wreath products222

Let G andH be groups. Consider the direct sumK =
⊕

h∈H Gh, where Gh is a copy of G. We223

view K as the set G(H) of all mappings f : H → G such that supp(f) := {h ∈ H | f(h) 6= 1}224

is finite, together with pointwise multiplication as the group operation. The set supp(f) ⊆ H225

is called the support of f . The group H has a natural left action on G(H) given by226

hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding semidirect product227

G(H) oH is the (restricted) wreath product G oH. In other words:228

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).229

The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then230

(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1
1 a).231

There are canonical mappings232

σ : G oH → H with σ(f, h) = h and233

τ : G oH → G(H) with τ(f, h) = f234

In other words: g = (τ(g), σ(g)) for g ∈ G oH. Note that σ is a homomorphism whereas τ is235

in general not a homomorphism. Throughout this paper, the letters σ and τ will have the236

above meaning, which of course depends on the underlying wreath product G oH, but the237

latter will be always clear from the context.238

The following intuition might be helpful: An element (f, h) ∈ G oH can be thought of239

as a finite multiset of elements of G \ {1G} that are sitting at certain elements of H (the240

mapping f) together with the distinguished element h ∈ H, which can be thought of as241

a cursor moving in H. If we want to compute the product (f1, h1)(f2, h2), we do this as242

follows: First, we shift the finite collection of G-elements that corresponds to the mapping243

f2 by h1: If the element g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove244

g from a and put it to the new location h1a ∈ H. This new collection corresponds to the245

mapping f ′2 : a 7→ f2(h−1
1 a). After this shift, we multiply the two collections of G-elements246

pointwise: If in a ∈ H the elements g1 and g2 are sitting (i.e., f1(a) = g1 and f ′2(a) = g2),247

then we put the product g1g2 into the location a. Finally, the new distinguished H-element248

(the new cursor position) becomes h1h2.249

Clearly, H is a subgroup of G oH. We also regard G as a subgroup of G oH by identifying250

G with the set of all f ∈ G(H) with supp(f) ⊆ {1}. This copy of G together with H generates251

ICALP 2020
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G oH. In particular, if G = 〈Σ〉 and H = 〈Γ〉 with Σ ∩ Γ = ∅ then G oH is generated by252

Σ ∪ Γ. In this situation, we will also apply the above mappings σ and τ to words over Σ ∪ Γ.253

In [34] it was shown that the word problem of a wreath product G oH is TC0-reducible to254

the word problems for G and H. Let us briefly sketch the argument. Assume that G = 〈Σ〉255

and H = 〈Γ〉. Given a word w ∈ (Σ ∪ Γ)∗ one has to check whether σ(w) = 1 in H and256

τ(w)(h) = 1 in H for all h in the support of τ(w). One can compute in TC0 the word σ(w)257

by projecting w onto the alphabet Γ. Moreover, one can enumerate the support of τ(w)258

by going over all prefixes of w and checking which σ-values are the same. Similarly, one259

produces for a given h ∈ supp(τ(w)) a word over Σ that represents τ(w)(h).260

We will need the following result from [30] (which holds only for the so-called restricted261

wreath product that we consider in this paper):262

I Theorem 7 ([30]). If G and H are orderable then also G oH is orderable.263

3.2 Knapsack problem264

Let G = 〈Σ〉 be a f.g. group. An exponent expression over G is an expression of the265

form E = v0u
x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗, non-empty words266

u1, . . . , ud ∈ Σ∗, and variables x1, . . . , xd. Here, we allow xi = xj for i 6= j. If every variable267

xi occurs at most once, then E is called a knapsack expression. Let X = {x1, . . . , xd}268

be the set of variables that occur in E. For a homomorphism h : G → G′ = 〈Σ′〉 (that269

is specified by a mapping from Σ to (Σ′ ∪ Σ′−1)∗), we denote with h(E) the exponent270

expression h(v0)h(u1)x1h(v1)h(u2)x2h(v2) · · ·h(ud)xdh(vd). For a mapping ν ∈ NX , we271

define ν(E) = v0u
ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xd)

d vd ∈ Σ∗. We say that ν is a G-solution for E if272

ν(E) = 1 in G. With solG(E) we denote the set of all G-solutions of E. The length of273

E is defined as |E| =
∑d
i=1 |ui|+ |vi|. We define solvability of exponent equations over G,274

ExpEq(G) for short, as the following decision problem:275

Input A finite list of exponent expressions E1, . . . , En over G.276

Question Is
⋂n
i=1 solG(Ei) non-empty?277

The knapsack problem for G, KP(G) for short, is the following decision problem:278

Input A single knapsack expression E over G.279

Question Is solG(E) non-empty?280

It is an easy observation that the choice of the generating set Σ has no influence on the281

decidability or complexity of these problems. For the knapsack problem in wreath products282

the following result has been shown in [12]:283

I Theorem 8 ([12]). For every nontrivial group G, KP(G o Z) is NP-hard.284

3.3 Knapsack-semilinear groups285

The group G is called knapsack-semilinear if for every knapsack expression E over Σ, the286

set solG(E) is a semilinear set of vectors and a semilinear representation can be effectively287

computed from E. Since semilinear sets are effectively closed under intersection, it follows288

that for every exponent expression E over Σ, the set solG(E) is semilinear and a semilinear289

representation can be effectively computed from E. Moreover, solvability of exponent290

equations is decidable for every knapsack-semilinear group. As mentioned above, the class291

of knapsack-semilinear groups is very rich. An example of a group G, where knapsack is292

decidable but solvability of exponent equations is undecidable is the Heisenberg group H3(Z)293

(which consists of all upper triangular (3× 3)-matrices over the integers, where all diagonal294

entries are 1), see [22]. In particular, H3(Z) is not knapsack-semilinear. A non-semilinear295
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solution set can be achieved with a three-variable knapsack instance over H3(Z). For two296

variables, the solutions sets are semilinear for any group. In fact, they have a particularly297

simple structure:298

I Lemma 9. Let G be a group and g1, g2, h ∈ G be elements.299

(i) The solution set S1 = {(x, y) ∈ Z2 | gx1g
y
2 = 1} is a subgroup of Z2. If G is torsion-free300

and {g1, g2} 6= {1} then S1 is cyclic.301

(ii) The solution set S = {(x, y) ∈ Z2 | gx1g
y
2 = h} is either empty or a coset (a, b) + S1 of302

S1 where (a, b) ∈ S is any solution.303

For a knapsack-semilinear group G and a finite generating set Σ for G we define a growth304

function. For n ∈ N let Knap(n) (resp., Exp(n)) be the finite set of all knapsack expressions305

(resp., exponent expression) E over Σ such that solG(E) 6= ∅ and |E| ≤ n. We define the306

mapping KG,Σ : N→ N and EG,Σ : N→ N as follows:307

KG,Σ(n) = max{‖solG(E)‖ | E ∈ Knap(n)}, (1)308

EG,Σ(n) = max{‖solG(E)‖ | E ∈ Exp(n)}. (2)309

Clearly, if solG(E) 6= ∅ and ‖solG(E)‖ ≤ N then E has a G-solution ν such that ν(x) ≤ N for310

all variables x that occur in E. Thus, if G has a decidable word problem and a computable311

bound on the function KG,Σ, then we can solve KP(G) non-deterministically: given a312

knapsack expression E with variables from X, we guess ν : X → N with σ(x) ≤ N for all313

variables x and then check (using an algorithm for the word problem) whether ν is a solution.314

Let Σ and Σ′ be two generating sets for the group G. Then there is a constant c such315

that KG,Σ(n) ≤ KG,Σ′(cn), and similarly for EG,Σ(n). To see this, note that for every a ∈ Σ′316

there is a word wa ∈ Σ∗ such that a and wa represent the same element in G. Then we can317

choose c = max{|wa| | a ∈ Σ′}. Due to this fact, we do not have to specify the generating318

set Σ when we say that KG,Σ (resp., EG,Σ) is polynomially/exponentially bounded.319

Important for us is also the following result from [12]:320

I Theorem 10 ([12]). If G and H are knapsack-semilinear then so is G oH.321

The proof of this result in [12] does not yield a good bound of KGoH(n) in terms of KG(n)322

and KH(n) (and similarly for the E-function). One of our main achievements is such a bound323

for the case that the left factor G is f.g. abelian. For EG(n) we then have the following bound,324

which follows from well-known bounds on solutions of linear Diophantine equations [43]:325

I Lemma 11. If G is a f.g. abelian group then EG(n) ≤ 2nO(1) .326

3.4 Power word problem327

A power word (over Σ) is a tuple (u1, k1, u2, k2, . . . , ud, kd) where u1, . . . , ud ∈ Σ∗ are328

words over the group generators (called the periods of the power word) and k1, . . . , kd ∈ Z329

are integers that are given in binary notation. Such a power word represents the word330

uk1
1 u

k2
2 · · ·u

kd

d . We will often identify the power word (u1, k1, u2, k2, . . . , ud, kd) with the word331

uk1
1 u

k2
2 · · ·u

kd

d . Moreover, if ki = 1, then we usually omit the exponent 1 in a power word.332

The power word problem for the f.g. group G, PowerWP(G) for short, is the following:333

Input A power word (u1, k1, u2, k2, . . . , ud, kd).334

Question Does uk1
1 u

k2
2 · · ·u

kd

d = 1 hold in G?335

Due to the binary encoded exponents, a power word can be seen as a succinct description of336

an ordinary word. We have the following simple lemma.337

I Lemma 12. If the f.g. group G is knapsack-semilinear, EG(n) is exponentially bounded,338

and PowerWP(G) belongs to NP then ExpEq(G) belongs to NP.339
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4 Wreath products of nilpotent groups and the integers340

Nilpotent groups. The lower central series of a group G is the sequence of groups (Gi)i≥0341

with G0 = G and Gi+1 = [Gi, G]. The group G is nilpotent if there is a c ≥ 0 with Gc = 1;342

in this case the minimal c with Gc = 1 is called the nilpotency class of G. In this section we343

prove Theorems 1 and 2. Our main tool are periodic words over G as introduced in [12].344

Periodic words over groups. Let G = 〈Σ〉 be a f.g. group. Let Gω be the set of all functions345

f : N→ G, which forms a group by pointwise multiplication (fg)(t) = f(t) · g(t). A function346

f ∈ Gω is periodic if there exists a number d ≥ 1 such that f(t) = f(t+ d) for all t ≥ 0. The347

smallest such d is called the period of f . If f ∈ Gω has period d and g ∈ Gω has period e then348

fg has period at most lcm(d, e). A periodic function f ∈ Gω with period d can be specified349

by its initial d elements f(0), . . . , f(d− 1) where each element f(t) is given as a word over350

the generating set Σ. The periodic words problem Periodic(G) over G is the following:351

Input Periodic functions f1, . . . , fm ∈ Gω and a binary encoded number T .352

Question Does the product f =
∏m
i=1 fi satisfy f(t) = 1 for all t ≤ T?353

We shall derive Theorems 1 and 2 from the following result:354

I Theorem 13. If G is a f.g. nilpotent group then Periodic(G) belongs to TC0.355

Previously it was proven that Periodic(G) belongs to TC0 if G is abelian [12]. As an356

introduction let us reprove this result.357

Let ρ : Gω → Gω be the shift-operator, i.e. (ρ(f))(t) = f(t + 1), which is a group358

homomorphism. For a subgroup H of Gω, we denote by H(n) the smallest subgroup of Gω359

that contains ρ0(H), ρ1(H), . . . , ρn(H). Note that (H(m))(n) = H(m+n) for any m,n ∈ N. A360

function f ∈ Gω satisfies a recurrence of order d ≥ 1 if ρd(f) is contained in the subgroup361

〈f〉(d−1) of Gω. If f has period d then f clearly satisfies a recurrence of order d.362

Let us now consider the case that G is abelian. Then, also Gω is abelian and we use the363

additive notation for Gω. The following lemma is folklore:364

I Lemma 14 (cf. [17]). Let G be a f.g. abelian group. If f1, . . . , fm ∈ Gω satisfy recurrences365

of order d1, . . . , dm ≥ 1 respectively, then
∑m
i=1 fi satisfies a recurrence of order

∑m
i=1 di.366

Proof. Observe that Gω is a Z[x]-module with scalar multiplication367

d∑
i=0

aix
i · f 7→

d∑
i=0

aiρ
i(f). (3)368

Then f ∈ Gω satisfies a recurrence of order d ≥ 1 if and only if there exists a monic369

polynomial p ∈ Z[x] of degree d (where monic means that the leading coefficient is one) such370

that pf = 0. Therefore, if p1, . . . , pm ∈ Z[x] such that deg(pi) = di ≥ 1 and pifi = 0 then371 ∏m
i=1 pi

∑m
j=1 fj =

∑m
j=1(

∏m
i=1 pi)fj = 0. Since

∏m
i=1 pi is a monic polynomial of degree372

d :=
∑m
i=1 di,

∑m
i=1 fi satisfies a recurrence of order d. J373

The above lemma implies that
∑m
i=1 fi = 0 if and only if

∑m
i=1 fi(t) = 0 for all 0 ≤ t ≤ d− 1,374

where d is the sum of the periods of the fi.375

Let us now turn to the nilpotent case. For n ∈ N, let Gω,n be the subgroup of Gω376

generated by all elements with period at most n. Then Gω,n is closed under shift. The key377

fact for showing Theorem 13 is the following.378

I Proposition 15. If G is a f.g. nilpotent group, then there is a polynomial p such that every379

element of Gω,n satisfies a recurrence of order p(n).380
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Let H ≤ Gω be a subgroup which is closed under shifting, i.e. ρ(H) ⊆ H. Since the shift381

is a homomorphism, the commutator subgroup [H,H] is closed under shifting as well. We382

will work in the abelianization H ′ = H/[H,H] where we write f̄ for the coset f [H,H]. We383

also define ρ : H ′ → H ′ by ρ(f̄) = ρ(f). This is well-defined since fg−1 ∈ [H,H] implies384

ρ(f)ρ(g)−1 = ρ(fg−1) ∈ [H,H] and hence ρ(f) = ρ(g). As an abelian group H ′ is a Z-module385

and, in fact, H ′ forms a Z[x]-module using the shift-operator. By the above remark (see (3))386

we have the following (where we use the multiplicative notation for H ′):387

I Lemma 16. H ′ is a Z[x]-module with the scalar multiplication
∑d
i=0 aix

i·f̄ 7→
∏d
i=0 ρ

i(f̄)ai .388

Our first step for proving Proposition 15 is to show that every element of Gω,n satisfies a389

polynomial-order recurrence, modulo some element in [Gω,n, Gω,n].390

I Lemma 17. For every f ∈ Gω,n, we have ρd(f) ∈ 〈f〉(d−1)[Gω,n, Gω,n] for d = n(n+ 1)/2.391

Proof. Suppose f = f1 · · · fm such that f1, . . . , fm ∈ Gω are elements of period ≤ n.392

According to Lemma 16, we consider Gω,n/[Gω,n, Gω,n] as a Z[x]-module.393

If g ∈ Gω has period q then ρq(g)g−1 = 1 and thus (xq − 1)ḡ = ρq(ḡ)ḡ−1 = 1. Define the394

polynomial p(x) =
∏n
i=1(xi − 1) =

∑d
i=0 aix

i of degree d = n(n + 1)/2 satisfying ad = 1.395

Since all functions f1, . . . , fm have period at most n, we have pf̄ = 1. Explicitly, this means396

1 = pf̄ = ρ0(f̄)a0 · ρ1(f̄)a1 · · · ρd(f̄)ad = ρ0(f)a0 · · · ρd(f)ad . Noticing that ad = 1, we can397

write ρd(f) = gh for some g ∈ 〈f〉(d−1) and h ∈ [Gω,n, Gω,n], which has the desired form. J398

The following lemma gives us control over the remaining factor from [Gω,n, Gω,n].399

I Lemma 18. Let G be a group with nilpotency class c. Then [Gω,n, Gω,n] ⊆ [G,G]ω,n2c .400

Proof. We need the fact that the commutator subgroup [F, F ] of a group F with generating401

set Γ is generated by all left-normed commutators [g1, . . . , gk] := [[. . . [[g1, g2], g3], . . . ], gk],402

where g1, . . . , gk ∈ Γ∪Γ−1 and k ≥ 2, cf. [6, Lemma 2.6]. Therefore [Gω,n, Gω,n] is generated403

by all left-normed commutators [g1, . . . , gk] where k ≥ 2 and g1, . . . , gk ∈ Gω have period at404

most n. Furthermore, we can bound k by c since any left-normed commutator [g1, . . . , gc+1]405

is trivial (recall that G is nilpotent of class c). A left-normed commutator [g1, . . . , gk] with406

2 ≤ k ≤ c and g1, . . . , gk periodic with period at most n is a product containing at most407

2k ≤ 2c distinct functions of period at most n (namely, the g1, . . . , gk and their inverses).408

Hence [Gω,n, Gω,n] is generated by functions g ∈ [G,G]ω of period at most n2c. J409

Proof of Proposition 15. We proceed by induction on the nilpotency class of G. If G has410

nilpotency class 0, then G is trivial and the claim is vacuous. Now suppose that G has411

nilpotency class c ≥ 1. According to Lemma 17, we have ρd(f) ∈ 〈f〉(d−1)h for some412

h ∈ [Gω,n, Gω,n]. By Lemma 18, we have [Gω,n, Gω,n] ⊆ [G,G]ω,n2c . Since the group [G,G]413

has nilpotency class at most c− 1 (we included a proof for this in the full version [9]), we414

may apply induction. Thus, we know that ρe(h) ∈ 〈h〉(e−1) for some e = e(n2c). We claim415

that then ρd+e(f) ∈ 〈f〉(d+e−1). Note that ρd+e(f) ∈ ρe(〈f〉(d−1)h) ⊆ ρe(〈f〉(d−1))ρe(h) ⊆416

〈f〉(d+e−1) · ρe(h). Therefore, it suffices to show that ρe(h) ∈ 〈f〉(d+e−1). Since ρd(f) ∈417

〈f〉(d−1)h we have h ∈ 〈f〉(d) and thus ρe(h) ∈ 〈h〉(e−1) ⊆ (〈f〉(d))(e−1) = 〈f〉(d+e−1). J418

Proof of Theorem 13. Given periodic functions f1, . . . , fm ∈ Gω with maximum period n,419

and a number T ∈ N. By Proposition 15 the product f = f1 · · · fm satisfies a recurrence of420

order d, where d is bounded polynomially in n. Notice that f = 1 if and only if f(t) = 1 for421

all t ≤ d− 1. Hence, it suffices to verify that f1(t) · · · fm(t) = 1 for all t ≤ min{d, T}. This422

can be accomplished by solving in parallel a polynomial number of instances of the word423

problem over G, which is contained in TC0 by [36]. J424

ICALP 2020



126:10 The complexity of knapsack problems in wreath products

Proof of Theorem 1. In [27] it is shown that for every f.g. group G, PowerWP(G o Z)425

belongs to TC0(Periodic(G),PowerWP(G)). By [27] the power word problem for a f.g.426

nilpotent group belongs to TC0 and by Theorem 13, Periodic(G) belongs to TC0. J427

Proof of Theorem 2. By Theorem 8, KP(G o Z) is NP-hard. For the upper bound we use428

the following result from [12] that holds for every f.g. group G: There is a non-deterministic429

polynomial time Turing machineM that takes as input a knapsack expression E over GoZ and430

outputs in each leaf of the computation tree the following data: (i) an instance of ExpEq(G)431

and (ii) a finite list of instances of Periodic(G). Moreover, the input expression E has432

a (G o Z)-solution if and only if the computation tree has a leaf in which all Periodic(G)433

instances are positive. If G is finite and nilpotent, then Periodic(G) belongs to TC0 and434

ExpEq(G) belongs to NP (this holds for every finite group). The theorem follows. J435

5 Wreath products with abelian left factors436

In this section we consider wreath products AoH where A is f.g. abelian and H is a f.g. torsion-437

free group. We study for which groups H, the complexity of the power word/knapsack438

problem in H is passed on to A oH. As applications, we obtain Theorems 3 and 4.439

Power word problem over AoH. As a first step, we normalize a given power word uk1
1 . . . ukd

d ,440

i.e. ensure that u1, . . . , ud ∈ AH, say ui = aihi for some ai ∈ A and hi ∈ H for 1 ≤ i ≤ d.441

Intuitively, the computation of the power word can be described by finite progressions in the442

Cayley graph of H, which are labelled with elements ai from A. The goal is to determine443

whether the labels on each point cancel out in the abelian group A. Here, a progression in H444

is a sequence p = (ghk)0≤k≤` with offset g ∈ H and period h ∈ H. If h 6= 1 then p is a ray.445

For all 1 ≤ i ≤ d the power word writes the element ai into the Cayley graph of H along446

the progression pi = (hk1
1 . . . h

ki−1
i−1 h

k
i )0≤k≤ki . Notice that the offset of pi is given as a power447

word for hk1
1 . . . h

ki−1
i−1 and the period is given explicitly as a word for the group element h;448

we call such a progression power-compressed.449

To solve the power word problem over AoH it seems inevitable to compute the intersection450

set {(i, j) ∈ [0, k] × [0, `] | abi = ghj} of two given power-compressed progressions p =451

(abi)0≤i≤k, q = (ghj)0≤j≤`, for any pair of progressions appearing in the power word. Such a452

intersection set is always a finite progression in N2 (c.f. Lemma 9).453

However, the key insight of Theorem 3 is that it essentially suffices to compute the454

intersection of parallel rays, i.e. rays with commensurable periods. This is because two non-455

parallel rays can intersect at most once. Therefore, the number of points in H that cancel to456

zero with the help of intersections between non-parallel rays can be at most polynomial.457

Therefore, roughly speaking, we proceed as follows. Consider a class C of parallel rays458

from the progressions p1, . . . ,pd. First, we compute the intersection sets of all rays in C.459

Second, we decide whether the number of points in the support of C which do not cancel to460

0 in A exceeds a polynomial bound. In order to count such non-cancelling points, we use461

Lemma 14 to limit the search to (polynomially many) polynomial-length rays. If our bound462

on such non-cancelling points is exceeded, then we can reject the entire power word: As463

mentioned above, non-parallel rays pi can only intersect at a polynomial number of points in464

C. If, however, our bound is obeyed, we can explicitly compute the non-cancelling points (as465

power compressed words) for each parallelity class C and verify that they do evaluate to 0 in466

the entire set of progressions pi.467

In order to (i) compute the intersection set of two parallel power-compressed rays and468

(ii) count non-cancelling points, we need to solve a generalization of the power word problem469
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in the group H, which we explain next. For a f.g. group G = 〈Σ〉 we define the power470

compressed power problem PowerPP(G):471

Input A word u ∈ Σ∗ and a power word (v1, k1, . . . , vd, kd) over Σ.472

Output A binary encoded number z ∈ Z with uz = v where v = vk1
1 . . . vkd

d , or no if uz = v473

has no solution.474

Note that the word u in the input of PowerPP is uncompressed. In order to guarantee that475

we have small uncompressed inputs to PowerPP, we need to show another property of our476

groups. Specifically, we prove that the intersection set of parallel rays has a small period: A477

group G = 〈Σ〉 is tame with respect to commensurability, or short c-tame, if there exists a478

number d ∈ N such that for all commensurable elements g, h ∈ G having infinite order there479

exist numbers s, t ∈ Z \ {0} such that gs = ht and |s|, |t| ≤ O((|g|+ |h|)d).480

Our algorithm for the power word problem sketched above yields the following:481

I Proposition 19. If the group H is c-tame and torsion-free then PowerWP(A o H) is482

TC0-reducible to PowerPP(H).483

This means, in order to solve the power word problem for groups Wm,r and Sm,r in TC0,484

we also need to solve the power compressed power problem in TC0. To this end, we first485

establish TC0 membership of PowerPP in groups Wm,r in the following transfer result.486

I Theorem 20. Let H and A be f.g. groups where A is abelian and H is c-tame and487

torsion-free. Then PowerPP(A oH) is TC0-reducible to PowerPP(H).488

To show Theorem 20, we provide an elementary (but still somewhat involved) TC0-reduction489

from PowerPP(A oH) to PowerWP(A oH) and PowerPP(H) and apply Proposition 19.490

Finally, we need to show that all the groups Wm,r and Sm,r are c-tame.491

I Proposition 21. For all r ≥ 1, m ≥ 0 the groups Wm,r and Sm,r are c-tame.492

For Proposition 21, we use elementary arguments and the unique roots property of Wm,r.493

The preceding ingredients now yield Theorem 3.494

Proof of Theorem 3. We will prove by induction on m ∈ N that PowerPP(Wm,r) and495

hence also PowerWP(Wm,r) belongs to TC0. If m = 0 then PowerPP(W0,r) is the496

problem of solving a system of r linear equations aix = bi where ai is given in unary encoding497

and bi is given in binary encoding for 1 ≤ i ≤ r. Since integer division belongs to TC0 (here,498

we only have to divide by the unary encoded integers ai) this problem can be solved in TC0.499

The inductive step follows from Theorem 20 and the fact that all groups Wm,r are c-tame500

(Proposition 21) and torsion-free. J501

Knapsack problem over A oH. For the knapsack problem we prove the following transfer502

theorem (recall the definition of an orderable group from Section 3 and the definition of the503

function EG(n) from (2) in Section 3.3):504

I Theorem 22. Let H and A be f.g. groups where A is abelian and H is orderable and505

knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).506

The proof of Theorem 22 follows a similar pattern as Theorem 20. The condition that507

H is orderable ensures that parallel rays in H are contained in cosets of a common cyclic508

subgroup. We describe the solution set of an exponent equation over A oH as a disjunction509

of polynomially large existential Presburger formulas, which use exponent equations over H510

and inequalities as atomic formulas. Here, we do not need to algorithmically construct the511

formula: Its mere existence yields an exponential bound on the size of a solution.512
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Using Theorem 3 and 22 we can prove Theorem 4: let us fix an iterated wreath product513

W = Wm,r for some m ≥ 0, r ≥ 1 (recall that W0,r = Zr and Wm+1,r = Zr oWm,r). Since514

Zm is orderable, Theorem 7 implies that W is orderable. Moreover, by Theorem 10, W is515

also knapsack-semilinear. Since by Lemma 11, EA(n) is exponentially bounded for every516

f.g. abelian group A, it follows from Theorem 22 that EW (n) is exponentially bounded517

as well. By Theorem 3 and Lemma 12, ExpEq(W ) belongs to NP. Finally, NP-hardness518

of ExpEq(W ) follows from the fact that the question whether a given system of linear519

Diophantine equations with unary encoded numbers has a solution in N is NP-hard.520

6 Wreath products with difficult knapsack and power word problems521

In this section we provide additional details concerning Theorems 5 and 6. We start with a522

formal definition of uniformly SENS groups [3].523

Strongly efficiently non-solvable groups. Let us fix a f.g. group G = 〈Σ〉. Following [3]524

we need the additional assumption that the generating set Σ contains the group identity 1.525

This allows to pad words over Σ to any larger length without changing the group element526

represented by the word. One also says that Σ is a standard generating set for G. The group527

G is called strongly efficiently non-solvable (SENS) if there is a constant µ ∈ N such that for528

every d ∈ N and v ∈ {0, 1}≤d there is a word wd,v ∈ Σ∗ with the following properties:529

|wd,v| = 2µd for all v ∈ {0, 1}d,530

wd,v = [wd,v0, wd,v1] for all v ∈ {0, 1}<d (here we take the commutator of words),531

wd,ε 6= 1 in G.532

The group G is called uniformly strongly efficiently non-solvable if, moreover,533

given v ∈ {0, 1}d, a binary number i with µd bits, and a ∈ Σ one can decide in linear534

time on a random access Turing-machine whether the i-th letter of wd,v is a.535

In [3] the authors defines also the weaker condition of being (uniformly) efficiently non-536

solvable. The definition is more technical and it is not clear whether it really leads to a537

larger class of groups. Examples for uniformly SENS groups are: finite non-solvable groups538

(more generally, every f.g. group that has a finite non-solvable quotient), f.g. non-abelian free539

groups, Thompson’s group F , and weakly branched self-similar groups with a f.g. branching540

subgroup (this includes several famous self-similar groups like the Grigorchuk group, the541

Gupta-Sidki groups and the Tower of Hanoi groups); see [3] for details.542

Wreath products with difficult knapsack problems. Recall that Theorem 6 states that543

KP(G o Z) is Σp
2-hard for every uniformly SENS group G. For the proof we consider G-544

programs. A G-program is a sequence of instructions (X, a, b) where X is a boolean variable545

and a, b are generators of G. Given an assignment for the boolean variables, one can evaluate546

the G-program in the natural way: If X is set to 1 (resp., 0) then the instruction (X, a, b)547

evaluates to a (resp. b). The resulting sequence of group generators evaluates to an element548

of G and this is the evaluation of the G-program under the given assignment. We consider549

now the following computational problem ∃∀-Sat(G): Given a G-program P , whose variables550

are split into two sets X and Y , does there exist an assignment α : X → {0, 1} such that for551

every assignment β : Y → {0, 1} the program P evaluates to the group identity under the552

combined assignment α ∪ β?553

We prove Theorem 6 in two steps. The first is Σp2-hardness of ∃∀-Sat(G).554

I Lemma 23. Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then, ∃∀-Sat(G) is Σp2-hard.555
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Proof. We prove the lemma by a reduction from the following Σp2-complete problem: given556

a boolean formula F = F (X,Y ) in disjunctive normal form, where X and Y are disjoint557

tuples of boolean variables, does the quantified boolean formula ∃X∀Y : F hold? Let us fix558

such a formula F (X,Y ). We can write F as a fan-in two boolean circuit of depth O(log |F |).559

By [3, Remark 34] we can compute in logspace from F a G-program P over the variables560

X ∪ Y of length polynomial in |F | such that for every assignment γ : X ∪ Y → {0, 1} the561

following two statements are equivalent:562

F (γ(X), γ(Y )) holds.563

P (γ) = 1 in G.564

Hence, ∃X∀Y : F holds if and only if ∃X∀Y : P = 1 holds. J565

The second step is to reduce ∃∀-Sat(G) to KP(G o Z). In fact, this reduction works for566

any f.g. group G.567

I Lemma 24. For every f.g. nontrivial group G, ∃∀-Sat(G) is logspace many-one reducible568

to KP(G o Z).569

Proof sketch. Let us fix a G-program570

P = (Z1, a1, b1)(Z2, a2, b2) · · · (Z`, a`, b`) ∈ ((X ∪ Y )× Σ× Σ)∗571

where X and Y are disjoint sets of variables. Let m = |X| and n = |Y |. We want to construct572

a knapsack expression E over G oZ which has a solution if and only if there is an assignment573

α : X → {0, 1} such that P (α ∪ β) = 1 for every assignment β : Y → {0, 1}. Let us choose a574

generator t for Z. Then Σ∪{t, t−1} generates the wreath product G oZ. First, we compute in575

logspace the m+ n first primes p1, . . . , pm+n and fix a bijection p : X ∪ Y → {p1, . . . , pm+n}.576

Moreover, let M =
∏m+n
i=1 pi.577

Roughly speaking, the idea is as follows. Each assignment α : X → {0, 1} will correspond578

to a valuation ν for our expression E. The resulting element ν(E) ∈ G o Z then encodes the579

value P (α∪ β) for each β : Y → {0, 1} in some position s ∈ [0,M − 1]. To be precise, to each580

s ∈ [0,M − 1], we associate the assignment βs : Y → {0, 1} where βs(Y ) = 1 if and only if581

s ≡ 0 mod p(Y ). Then, τ(ν(E))(s) will be P (α ∪ βs). This means, ν(E) = 1 implies that582

P (α ∪ β) = 1 for all assignments β : Y → {0, 1}.583

Our expression implements this as follows. For each i = 1, . . . , `, it walks to the right584

to some position M ′ ≥M and then walks back to the origin. On the way to the right, the585

behavior depends on whether Zi is an existential or a universal variable. If Zi is existential,586

we either place ai at every position (if α(Zi) = 1) or bi at every position (if α(Zi) = 0).587

If Zi is universal, we place ai in the positions divisible by p(Zi); and we place bi in the588

others. That way, in position s ∈ [0,M − 1], the accumulated element will be P (α ∪ βs).589

The complete proof can be found in the full version [9]. J590

Let us now show some applications of Theorem 6:591

I Corollary 25. KP(G o Z) is Σp2-complete for G finite non-solvable or f.g.non-abelian free.592

Proof. Finite non-solvable groups and f.g. non-abelian free groups are uniformly SENS [3].593

By Theorem 6, KP(G o Z) is Σp
2-hard. It remains to show that KP(G o Z) belongs to Σp

2.594

According to [12] (see also the proof of Theorem 2) it suffices to show that Periodic(G) and595

ExpEq(G) both belong to Σp2. The problem Periodic(G) belongs to coNP (since the word596

problem for G can be solved in polynomial time) and ExpEq(G) belongs to NP. For a finite597

group this is clear and for a free group one can use [29]. J598
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Theorem 6 can be also applied to Thompson’s group F . This is one of the most well599

studied groups in (infinite) group theory due to its unusual properties, see e.g. [5]. It600

can be defined in several ways; let us just mention the following finite presentation: F =601

〈x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉. Thompson’s group F is uniformly SENS [3]602

and contains a copy of F o Z [14]. Theorem 6 yields:603

I Corollary 26. The knapsack problem for Thompson’s group F is Σp2-hard.604

We conjecture Σp2-completeness. Since F is co-context-free [23], KP(F ) is decidable [22].605

Wreath product with difficult power word problems. In [27] it was shown that the problem606

PowerWP(G o Z) is coNP-complete in case G is a finite non-solvable group or a f.g. free607

group. The proof in [27] immediately generalizes to the case were G is uniformly SENS. This608

yields Theorem 5. Alternatively, one can prove Theorem 5 by showing that609

∀-Sat(G) (the question whether a given G-program P evaluates to the group identity for610

all assignment) is coNP-hard if G is uniformly SENS, and611

∀-Sat(G) is logspace many-one reducible to PowerWP(G o Z).612

This can be shown with the same reductions as in Lemmas 23 and 24.613

Fix a f.g. group G = 〈Σ〉. With WP(G,Σ) we denote the set of all words w ∈ Σ∗ such614

that w = 1 in G (the word problem for G with respect to Σ). We say that G is co-context-free615

if Σ∗ \WP(G,Σ) is context-free (the choice of Σ is not relevant for this) [18, Section 14.2].616

I Theorem 27. The power word problem for a co-context-free group G belongs to coNP.617

Proof. The following argument is similar to the decidability proof for knapsack in co-618

context-free groups in [22]. Let G = 〈Σ〉 and let (u1, k1, u2, k2, . . . , ud, kd) be the input619

power word, where ui ∈ Σ∗. We can assume that all ki are positive. We have to check620

whether uk1
1 u

k2
2 · · ·u

kd

d is trivial in G. Let L be the complement of WP(G,Σ), which is621

context-free. Take the alphabet {a1, . . . , ad} and define the morphism h : {a1, . . . , ad}∗ → Σ∗622

by h(ai) = ui. Consider the language K = h−1(L) ∩ a∗1a∗2 · · · a∗d. Since the context-free623

languages are closed under inverse morphisms and intersections with regular languages, K is624

context-free too. Moreover, from the tuple (u1, u2, . . . , ud) we can compute in polynomial625

time a context-free grammar for K: Start with a push-down automaton M for L (since626

L is a fixed language, this is an object of constant size). From M one can compute in627

polynomial time a push-down automaton M ′ for h−1(L): when reading the symbol ai, M ′628

has to simulate (using ε-transitions) M on h(ai). Next, we construct in polynomial time a629

push-down automaton M ′′ for h−1(L)∩ a∗1a∗2 · · · a∗d using a product construction. Finally, we630

transform M ′′ back into a context-free grammar. This is again possible in polynomial time631

using the standard triple construction. It remains to check whether ak1
1 a

k2
2 · · · a

kd

d /∈ L(G).632

This is equivalent to (k1, k2, . . . , kd) /∈ Ψ(L(G)), where Ψ(L(G)) denotes the Parikh image633

of L(G). Checking (k1, k2, . . . , kd) ∈ Ψ(L(G)) is an instance of the uniform membership634

problem for commutative context-free languages, which can be solved in NP according to635

[19]. This implies that the power word problem for G belongs to coNP. J636

I Theorem 28. For Thompson’s group F , the power word problem is coNP-complete.637

Proof. Since F is co-context-free [23], Theorem 27 yields the upper bound. The lower bound638

follows from Theorem 5 and the facts that F is uniformly SENS and that F o Z ≤ F . J639
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7 Open problems640

Our results naturally lead to several open research problems:641

Theorems 1 and 5 leave some room for further improvements. In this context, a particularly642

interesting problem is the power word problem for a wreath product G o Z, where G is643

finite solvable but not nilpotent. Recall that for Theorem 5 we reduced ∀-Sat(G) to644

PowerWP(G o Z). This reduction works for every non-trivial f.g. group. Moreover, the645

problem whether a given equation u = v with variables holds in G for all assignments646

of the variables to elements of G (called EqnId(G) in [44]) can be easily reduced to ∀-647

Sat(G). This allows us to apply recent results from [44], where the author constructs finite648

solvable groups G for which EqnId(G) cannot be solved in polynomial time assuming649

the exponential time hypothesis (this holds for instance for all finite solvable groups of650

Fitting length at least 4). Hence, there is no hope to find a polynomial time algorithm651

for the power word problem for G o Z for every finite solvable group G, but one can still652

look at restricted classes of solvable groups.653

We believe that in Theorem 22, the assumption that H is orderable is not needed. In654

other words, we conjecture the following: Let H and A be f.g. groups where A is abelian655

and H is knapsack-semilinear. If EH(n) is exponentially bounded then so is EAoH(n).656

Recall the we proved that knapsack for Thompson’s group F is Σp2-hard. Decidability of657

knapsack for Thompson’s group F follows from [22] and the fact that F is co-context-free.658

It is shown in [22] that for every co-context-free group the knapsack problem reduces to659

checking non-universality of the Parikh image of a bounded context-free language. The660

latter problem belongs to NEXPTIME [20, Theorem 2.10] (see also [16, Corollary 1]). It661

would be interesting to find better complexity bounds for this problem.662
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