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Abstract

A family of tree automata of size n is presented such that the size of the largest
common prefix (lcp) tree of all accepted trees is exponential in n. Moreover,
it is shown that this prefix tree is not compressible via DAGs (directed acyclic
graphs) or tree straight-line programs. We also show that determining whether
or not the lcp trees of two given tree automata are equal is coNP-complete; the
result holds even for deterministic bottom-up tree automata accepting finite
tree languages. These results are in sharp contrast to the case of context-free
string grammars.

1. Introduction

For a given language L of finite strings one can define the largest common
prefix of L as the longest string which is a prefix of every word in L. This
definition can be extended to tree languages in a natural way. One motivation
to compute the largest common prefix of a set of strings or trees is the so
called earliest normal form, which has been studied for string transducers [2, 11]
and tree transducers [4]. The existence of an earliest normal form has several
important consequences. For instance, the transducer can in a simple further
step be made canonical, which allows deciding equivalence and gives rise to Gold-
style learning algorithms [12, 7]. Intuitively, an earliest transducer produces its
output “as early as possible”. In order to compute the earliest form of a given
transducer, one has to consider all possible inputs (for a certain set of states),
and has to determine if the corresponding outputs have a non-empty common
prefix; if so, then the transducer is not earliest, because this common prefix is
independent of the input and hence should have been produced before. The
questions arise how large such common prefixes can possibly be, and whether
or not they can be compressed.

In this paper we address these questions in a general setting where the trees
of which the common prefix is computed are given by a finite tree automa-
ton. We present a family of tree automata of size Θ(n) such that their largest
common prefixes (lcps) are of size exponential in n and are essentially incom-
pressible via common tree compression methods such as DAGs (directed acyclic
graphs) or tree straight-line programs [6, 9]. Technically, the main ingredient
in the construction of this family of tree automata is the well-known fact that
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a deterministic string automaton needs exponentially many states in order to
recognize strings where the n-th last symbol carries a specific label. Recently it
has been shown that for a given context-free string grammar, a representation
of the largest common prefix can be computed in polynomial time [10].

Whenever above we mention “tree automaton”, we always mean “deter-
ministic bottom-up tree automaton”. These automata recognize exactly the
regular tree languages. Let us now consider the case of deterministic top-down
tree automata. It is known that these automata are strictly less expressive than
deterministic bottom-up tree automata; in fact, they are so weak that they
cannot even recognize finite tree languages such as {f(a, f(a, a)), f(f(a, a), a)}
(here, we use the standard term representation for trees; see Section 2). It turns
out that the largest common prefix of the trees recognized by a deterministic
top-down tree automaton can be computed by a simple (top-down) procedure.
Moreover, the resulting lcps are compressible via DAGs, and the procedure can
produce in linear time a DAG of the lcp.

We then address a second important problem for largest common prefixes
given by tree automata, namely to determine whether or not the largest common
prefixes of two given tree automata coincide. Note that when constructing
an earliest canonical (“minimal”) transducer, we need to determine whether
two given states are equivalent; for this to hold, several lcps must be checked
for equality. The following question arises: what is the precise complexity of
checking equality of the lcps of two given tree automata? In this paper, we prove
that this problem is coNP-complete using a reduction from the complement of
3-SAT.

An extended abstract of this paper appeared in [8].

2. Preliminaries

We assume that the reader is familiar with words and finite automata on
words. A language L ⊆ {0, 1}∗ is a right-ideal if L = L{0, 1}∗. A set S ⊆ {0, 1}∗
is prefix-closed if uv ∈ S implies that u ∈ S for all u, v ∈ {0, 1}∗. Note that L
is a right-ideal if and only if {0, 1}∗ \ L is prefix-closed.

A DFA (deterministic finite automaton) over a finite alphabet Γ is a 5-tuple
A = (Q,Γ, q0, F, δ), where Q is the finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ : Q × Γ → Q is the transition mapping.
The language L(A) accepted by A is defined in the usual way. For an NFA
(non-deterministic finite automaton) we have a set I ⊆ Q of initial states and
the transition function δ maps from Q× Γ to 2Q (the powerset of Q).

We consider finite binary trees that are unlabeled, rooted, and ordered. The
latter means that there is an order on the children of a node. Moreover, every
node is either a leaf or has exactly two children. We will use two equivalent
formalizations of such trees. We can view them as formal expressions over the
set of function symbols {f, a}, where f gets two arguments and a is a constant-
symbol (i.e., gets no arguments). The set of all such expressions is denoted
by T2 and is inductively defined by the following conditions: a ∈ T2 and if
t1, t2 ∈ T2 then also f(t1, t2) ∈ T2. Trees from T2 are binary trees, where each
leaf is labeled with a and every internal node is labeled with f . Obviously,
the labeling bears no information, and trees from T2 can be identified with
unlabeled binary trees. For instance, the expression f(f(a, a), a) represents the
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Figure 1: Trees t0 = f(f(a, a), a) (left), t1 = f(f(a, a), f(a, a)) (midle) and the minimal DAG
of t1 (right).

binary tree t0 from Figure 1. Alternatively, we can specify a binary tree by a
path language. A path language P is a finite non-empty subset of {0, 1}∗ such
that

• P is prefix-closed and

• for every w ∈ {0, 1}∗, w0 ∈ P if and only if w1 ∈ P .

A binary tree t ∈ T2 can be uniquely represented by a path language P (t), and
vice versa. Formally, we define P (t) inductively as follows:

• P (a) = {ε}

• P (f(t1, t2)) = {ε} ∪ {iw | i ∈ {0, 1}, w ∈ P (ti)}.

For instance, for the binary tree t0 from Figure 1 we have P (t0) = {ε, 0, 1, 00, 01}.
The nodes of t can be identified with the words in P (t). The root of a tree
corresponds to the empty word ε, u0 denotes the left child of u, and u1 denotes
the right child of u. The leaves of t correspond to those words in P (t) that
are maximal with respect to the prefix relation. The depth of t ∈ T2 can be
defined as the maximal length of a word in P (t). Note that the intersection of
an arbitrary number of path languages is again a path language.

A nondeterministic top-down tree automaton (NTTA for short) is a 4-tuple
B = (Q, I, F, δ), where Q is a finite set of states, I ⊆ Q with I 6= ∅ is the set of

initial states, F ⊆ Q is the set of final states, and δ : Q→ 2Q
2

is the transition
function (here and in the following we view elements of Q2 as words of length
two over the alphabet Q). A run of B on a tree t is a mapping ρ : P (t) → Q
such that:

• If v ∈ P (t) is a leaf of t, then ρ(v) ∈ F .

• If v, v0, v1 ∈ P (t) with ρ(v) = p, ρ(v0) = p0 and ρ(v1) = p1 then p0p1 ∈
δ(p).

For q ∈ Q, we let T (B, q) denote the set of all trees t for which there exists a
run ρ of B such that ρ(ε) = q. Finally we define T (B) =

⋃
q∈I T (B, q) as the

tree language accepted by B.
An NTTA B = (Q, I, F, δ) is called productive if T (B, q) 6= ∅ for every q ∈ Q.

From a given NTTA B with T (B) 6= ∅ one can construct in polynomial time
an equivalent productive NTTA B′. One first computes in polynomial time the
set P = {p ∈ Q | T (B, p) 6= ∅}. Note that F ⊆ P . Then B′ is obtained from B
by removing all states from Q \ P . To do this, one also has to replace every set
δ(q) (q ∈ P ) by δ(q) ∩ P 2.
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A deterministic top-down tree automaton (DTTA for short) is a 4-tuple B =
(Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ : Q → Q2 is the transition function. We can
identify this 4-tuple with the NTTA (Q, {q0}, F, δ′) where δ′(q) = {δ(q)}. This
allows us the transfer all definitions from NTTAs to DTTAs.

Finally a deterministic bottom-up tree automaton (DBTA for short) is an
NTTA B = (Q, I, F, δ) such that |F | = 1 and for every q1q2 ∈ Q2 there is at
most one q ∈ Q such that q1q2 ∈ δ(q). In other words, the sets δ(q) (q ∈ Q) are
pairwise disjoint. This allows defining a partially defined inverse δ−1 of δ by
δ−1(q1q2) = q if q1q2 ∈ δ(q). For every tree t there is at most one run of B on t
and this run ρ can be constructed bottom-up by first setting ρ(u) = qf for every
leaf u of t, where qf is the unique state in F . Then, for all v, v0, v1 ∈ P (t) such
that ρ(v0) and ρ(v1) have been already defined, one sets ρ(v) = δ−1(ρ(v0)ρ(v1)).

It is well known that for every NTTA there exists an equivalent DBTA
accepting the same tree language. On the other hand, there exist NTTAs which
do not have an equivalent DTTA; see [3] for examples.

For a binary tree t with path language P (t) and u ∈ P (t) we define P (t, u) =
{v ∈ {0, 1}∗ | uv ∈ P (t)}. Then P (t, u) is a path language too. The unique
binary tree with path language P (t, u) can be viewed as the subtree of t rooted
in u. We can then define an equivalence relation ≡t on P (t) by u ≡t u

′ if and
only if P (t, u) = P (t, u′). Thus, the index of ≡t is the number of pairwise non-
isomorphic subtrees of t. The minimal DAG (minimal directed acyclic graph)
for a tree t ∈ T2 is obtained by keeping for every equivalence class C of ≡t

only one representative u ∈ C to which all tree edges that point to nodes
from C are redirected (if we keep for every equivalence class C of ≡t at least
one representative we obtain what is called a DAG for t). An example for a
minimal DAG can be found in Figures 2 and 3. The size of the minimal DAG
of t (measured in number of nodes) is exactly the number of pairwise non-
isomorphic subtrees of t. There is a straightforward correspondence between
minimal DAGs and minimal DFAs for the path language:

Lemma 2.1. Let t be a tree. The following statements are equivalent:

1. The minimal DAG for the tree t has n nodes.

2. The minimal DFA for the path language P (t) has n+ 1 states.

Proof. The proof of the lemma is straightforward: consider the minimal DAG
D for the tree t, and let n be its size. It yields a DFA for P (t) with n + 1
states by taking the root node as the initial state, all other nodes as final states
and adding a failure state (note that a DFAs has a totally defined transition
mapping according to our definition). Vice versa, a DFA A for P (t) yields a
DAG for t by removing the failure state of A (the resulting graph is clearly
acyclic).

Largest common prefix tree. Consider a non-empty tree language L ⊆ T2.
The largest common prefix lcp(L) of L is the unique binary tree t such that
P (t) =

⋂
t∈L P (t). For instance, for L = {f(f(a, a), a), f(a, a)} we obtain

lcp(L) = f(a, a).

Lemma 2.2. Assume that B is an NTTA with n states and such that T (B) 6= ∅.
Then every word w ∈ P (lcp(T (B))) =

⋂
t∈T (B) P (t) has length at most n − 1,

i.e., the depth of lcp(T (B)) is at most n− 1.
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Proof. It well-known that B must accept a tree t of depth at most n−1; see e.g.
[3, Corollary 1.2.3]. Hence, |w| ≤ n − 1 for every word w ∈ P (t). This implies
the statement of the lemma.

It is straightforward extend all the notions from this section to labelled
binary trees. A Σ-labelled binary tree can be defined as a pair (P, λ) where
P ⊆ {0, 1}∗ is a path language and λ : P → Σ is the labelling function. Given a
set L of Σ-labelled binary trees, one can define its lcp as the unique tree (P, λ)
where P is the largest (with respect to inclusion) path language such that for
all (P ′, λ′) ∈ L we have: P ⊆ P ′ and λ(u) = λ′(u) for all u ∈ P . All results in
this paper also hold for Σ-labelled binary trees. Since the focus of this paper is
on lower bounds, we decided to restrict our considerations to unlabelled trees.

3. From NTTAs to DFAs

In this and the next section we establish a correspondence between largest
common prefix trees of regular tree languages and finite automata (on words).

Let B = (Q, I, F, δ) be a productive NTTA. Our goal is to come up with a
DFA (working on strings) that recognizes the intersection of all path languages

P (t), where t ranges over all trees accepted byB. For this we extend δ : Q→ 2Q
2

to δ̂ : 2Q → 2Q
2

by setting δ̂(Q′) =
⋃

p∈Q′ δ(p) for Q′ ⊆ Q. For a state pair

p0p1 ∈ Q2 and i ∈ {0, 1} we define the projection πi(p0p1) = pi. For a set
S ⊆ Q2 and i ∈ {0, 1} we define πi(S) = {πi(pq) | pq ∈ S}.

We fix a fresh state qf that does not belong to Q and define the DFA Bs (s
for string) by

Bs = (2Q \ {∅} ] {qf}, {0, 1}, I, 2Q \ {∅}, δs)

(] denotes disjoint union) where for all Q′ ⊆ Q with Q′ 6= ∅ and i ∈ {0, 1} we
set

δs(Q′, i) =

{
πi(δ̂(Q

′)) if Q′ ∩ F = ∅
qf if Q′ ∩ F 6= ∅.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The state qf is called the failure state
of Bs. Note that if Q′ ∩ F = ∅ for Q′ 6= ∅, then the productivity of B implies
that δ̂(Q′) 6= ∅. In particular, we have πi(δ̂(Q

′)) 6= ∅ if Q′ 6= ∅, which implies
that δs is well-defined.

Lemma 3.1. Let B be a productive NTTA. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).

Proof. Consider a word w = a1a2 · · · an with a1, . . . , an ∈ {0, 1}. Let us first
assume that w ∈ L(Bs) and let t ∈ T (B). We have to show that w ∈ P (t). In
order to get a contradiction, assume that w /∈ P (t). Let v be a longest prefix of
w that belongs to P (t). Since ε ∈ P (t), v is well-defined. Clearly, v is a proper
prefix of w and v is a leaf of t. Thus, we can write v as v = a1a2 · · · ak for k < n.
Fix a run ρ of B on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · ai) for 0 ≤ i ≤ k.
Since v is a leaf of t we have qk ∈ F . Since w ∈ L(Bs) there exists a path

I = Q0
a1−→ Q1

a2−→ Q2
a3−→ · · · an−−→ Qn,
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where, for 0 ≤ i ≤ n, Qi ⊆ Q and Qi 6= ∅, and for 0 ≤ i ≤ n − 1, Qi ∩ F = ∅
and Qi+1 = πai

(δ̂(Qi)). The latter point implies by induction on i that qi ∈ Qi

for 0 ≤ i ≤ k. Since Qk ∩F = ∅, we must have qk /∈ F , which is a contradiction.
Now assume that w /∈ L(Bs). Hence, the unique run of Bs on w ends in the

failure state qf . Thus, there must exist a proper prefix v = a1 · · · ak of w such
that k < n and the run of Bs on w has the form

I = Q0
a1−→ Q1

a2−→ · · · ak−→ Qk
ak+1−−−→ qf

ak+2−−−→ · · · an−−→ qf .

where Qi ⊆ Q and Qi 6= ∅ for 0 ≤ i ≤ k, Qi ∩ F = ∅ and Qi+1 = πai
(δ̂(Qi)) for

0 ≤ i ≤ k − 1, and Qk ∩ F 6= ∅. Let qk ∈ Qk ∩ F .
We have to construct a tree t ∈ T (B) such that w /∈ P (t). For this we choose

states qi ∈ Qi for 0 ≤ i ≤ k. The state qk ∈ Qk ∩ F has already been chosen
in the last paragraph. Assume that qi+1 ∈ Qi+1 has been defined for some
0 ≤ i ≤ k−1. To define qi note that qi+1 ∈ πai

(δ̂(Qi)). Hence, there exist states
p ∈ Qi and q′i+1 ∈ Q such that the following holds: if ai = 0 then qi+1q

′
i+1 ∈ δ(p)

and if ai = 1 then q′i+1qi+1 ∈ δ(p). We set qi = p. By the productivity of B there
exist trees t′i ∈ T (B, q′i) for 1 ≤ i ≤ k. Moreover, since qk ∈ Qk∩F , the one-node
tree a belongs to T (B, qk). From the trees t′1, . . . , t

′
k, a we can now construct a

tree t ∈ T (B) such that v = a1 · · · ak is a leaf of t (and hence w /∈ P (t)). For
instance, if v = 1k then we take t = f(t′1, f(t′2, f(t′3, · · · f(t′k, a) · · · ))). For the
general case, we define trees t0, t1, . . . , tk inductively as follows:

• tk = a,

• ti = f(ti+1, t
′
i+1) if 0 ≤ i ≤ k − 1 and ai+1 = 0, and

• ti = f(t′i+1, ti+1) if 0 ≤ i ≤ k − 1 and ai+1 = 1.

Finally, let t = t0. Then t has the desired properties.

Note that the size of the above DFA Bs is exponential in the size of B. In the
case where we start with a DTTA, we can easily modify the above construction
in order to construct in linear time a DFA (of linear size). Hence, let us redefine
for a DTTA B = (Q, q0, F, δ) the DFA Bs = (Q ] {qf}, {0, 1}, q0, Q, δs) by
setting for all q ∈ Q and i ∈ {0, 1}:

δs(q, i) =

{
πi(δ(q)) if q /∈ F
qf if q ∈ F.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The proof of the following lemma is similar
to the proof for Lemma 3.1.

Lemma 3.2. Let B be a DTTA with T (B) 6= ∅. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).

4. From NFAs to NTTAs

We now consider NFAs that generate languages L over {0, 1} such that the
complement of L is a finite path language. An NFA A = (Q, {0, 1}, I, F, δ) is
well-behaved if there are two different states qe, qf ∈ Q such that
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1. F = {qf} and qf /∈ I,

2. δ(q, a) 6= ∅ for all q ∈ Q and all a ∈ {0, 1},

3. qf /∈ δ(q, a) for all q ∈ Q \ {qe, qf} and all a ∈ {0, 1},

4. δ(qe, 0) = δ(qe, 1) = δ(qf , 0) = δ(qf , 1) = {qf},

5. the NFA obtained from A by removing the state qf is acyclic, and

6. all states are reachable from I.

In a well-behaved NFA A every path of length at least |Q| − 1 that starts in
a state q 6= qf must visit qe (this follows from points 2 and 5). Moreover, the
complement {0, 1}∗ \ L(A) is a path language.

From a well-behaved NFA A = (Q, {0, 1}, I, {qf}, δ) we construct the NTTA
At = (Q \ {qf}, I, {qe}, δt) (t for tree) with

• δt(q) = {q1q2 | q1 ∈ δ(q, 0), q2 ∈ δ(q, 1)} for q ∈ Q \ {qe, qf}, and

• δt(qe) = ∅.

Note that for every well-behaved NFA A, the NTTA At is productive.

Lemma 4.1. Let A be a well-behaved NFA. Then P (lcp(T (At))) = {0, 1}∗ \
L(A).

Proof. Let A = (Q, {0, 1}, I, {qf}, δ). We first assume that w ∈ L(A) and show
that w /∈ P (lcp(T (At))). For this, we have to prove that there exists a tree
t ∈ T (At) such that w /∈ P (t). Since w ∈ L(A) we can write w = uv with v 6= ε
such that in A there exists a u-labeled path from q0 ∈ I to qe. Let us write this
path as

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe,

where u = a1a2 · · · an and a1, . . . , an ∈ {0, 1}. Note that q0, . . . , qn−1 ∈ Q \
{qe, qf}. For 1 ≤ i ≤ n let us choose any state q′i ∈ δ(qi−1, āi) (where 0̄ = 1 and
1̄ = 0). Such a state q′i must exist since A is well-behaved. Moreover, choose
for every 1 ≤ i ≤ n a tree ti ∈ T (At, q′i). Finally let t be the unique tree with

P (t) = {u} ∪
n⋃

i=1

{a1 · · · ai−1āiu′ | u′ ∈ P (ti)}.

From the construction of At it follows that t ∈ T (At). Moreover, since w = uv
with v 6= ε we get w /∈ P (t). This concludes the first part of the proof.

Now assume that w /∈ P (lcp(T (At))). We have to show that w ∈ L(A).
Since w /∈ P (lcp(T (At))), there exists t ∈ T (At) such that w /∈ P (t). We can
factorize w = uv with v 6= ε, where u = a1 · · · an is the longest prefix of w with
u ∈ P (t). Hence, u leads in the tree t to a leaf. Since t ∈ T (At), there exists a
run ρ of At on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · an) for 0 ≤ i ≤ n. Since u
leads to a leaf of t we must have qn = qe. Then

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe

is a u-labeled path inA from q0 ∈ I to qe. Since v 6= ε we get w = uv ∈ L(A).
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In general, the NTTA At is not a DBTA. For this, we need an additional
assumption on A: We say that an NFA A = (Q, {0, 1}, I, F, δ) is weakly injective
if

• |δ(q, a)| = 1 for all q ∈ Q and a ∈ {0, 1}, and

• for all p, q ∈ Q \ {qf} with p 6= q we have δ(p, 0) 6= δ(q, 0) or δ(p, 1) 6=
δ(q, 1).

In a weakly injective NFA we can view the transition function δ as a mapping
δ : Q×{0, 1} → Q (nondeterminism only comes from the fact that there can be
several initial states).

Lemma 4.2. If A is a well-behaved weakly injective NFA then At is a DBTA.

Proof. The lemma follows immediately from the definition of a weakly injective
NFA and the fact that At has the unique final state qe.

5. Incompressibility of Largest Common Prefix Trees

5.1. Incompressibility by DAGs

In this section we present our first main result, which shows that there is a
family of DBTA such that the size of the minimal DAG of the corresponding
largest common prefix tree is exponential in the automaton size. Before we go
into the details of the construction, let us first briefly sketch the idea. Below,
we construct a family of regular languages Ln ⊆ {0, 1}∗ (n ≥ 1) such that (i)
the complement of Ln is a path language, (ii) Ln can be accepted by a well-
behaved weakly injective NFA An with Θ(n) states and (iii) every DFA for the
complement of Ln has at least 2n states. Then the family of DBTA At

n (n ≥ 1)
obtained from Lemma 4.2 has the desired properties.

For n ≥ 1 we define the language Ln by:

Ln = {0, 1}2n+3{0, 1}∗ ∪
n−1⋃
i=0

(
{0, 1}i0{0, 1}n0{0, 1}+

)
.

Let us first establish that the complement

Vn = {0, 1}∗ \ Ln (1)

is a path language. Since Ln is a right ideal, the complement Vn is prefix
closed. Since all words of length at least 2n + 3 belong to Ln, the language
Vn is finite. Finally, w0 ∈ {0, 1}2n+3{0, 1}∗ iff |w0| ≥ 2n + 3 iff |w1| ≥
2n + 3 iff w1 ∈ {0, 1}2n+3{0, 1}∗ and w0 ∈ {0, 1}i0{0, 1}n0{0, 1}+ iff w1 ∈
{0, 1}i0{0, 1}n0{0, 1}+. Hence, w0 ∈ Ln if and only if w1 ∈ Ln, and the same
property must hold for the complement Vn of Ln. Thus, Vn is a path language.
The corresponding tree has depth 2n + 2. For n = 2 this tree is shown in Fig-
ure 2 (edges to a left/right child should be labelled with 0/1). Its minimal DAG
is shown in Figure 3.

Lemma 5.1. The minimal DFA A for Vn has at least 2n states.
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Figure 2: The tree with path language V2; see (1).

Figure 3: The minimal DAG for the tree from Figure 2.

Proof. Let A = (Q, {0, 1}, δ, q0, F ). Consider the extension δ : Q× {0, 1}∗ → Q
with δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a) for u ∈ {0, 1}∗, a ∈ {0, 1}. We claim
that δ(q0, u) 6= δ(q0, v) for every u, v ∈ {0, 1}n with u 6= v, which implies that
A has at least 2n states (and hence size at least 2n). Assume by contradiction
that δ(q0, u) = δ(q0, v) for some u, v ∈ {0, 1}n with u 6= v. We can write u
and v as u = x0y and v = x1z (or vice versa) for some x, y, z ∈ {0, 1}∗. Note
that 0 ≤ |x| ≤ n − 1 and |y| = |z|. We define the words u′ = x0y1n−|y|01 =
u1n−|y|01 and v′ = x1z1n−|z|01 = v1n−|y|01. Since δ(q0, u) = δ(q0, v) we have
δ(q0, u

′) = δ(q0, v
′). It should be clear that u′ ∈ Ln = {0, 1}∗ \ Vn. Hence,

in order to get a contradiction, it suffices to show v′ 6∈ Ln. First, note that
|v′| = 2n− |y|+ 2 ≤ 2n+ 2. This implies that if v′ ∈ Ln, then it must belong to
{0, 1}i0{0, 1}n0{0, 1}+ for some 0 ≤ i ≤ n− 1. But the word v′ = x1z1n−|z|01
contains no factor from 0{0, 1}n0 (note that x1z has length n and hence cannot
contain such a factor).

Figure 4 shows a well-behaved weakly injective NFA An with Θ(n) states for
the language Ln. Let Bn := At

n; it is a DBTA by Lemma 4.2. Moreover, Bn has
4n+5 states and satisfies P (lcp(T (Bn))) = {0, 1}∗ \L(An) = Vn by Lemma 4.1.
From Lemma 2.1 and 5.1 it follows that the minimal DAG for lcp(T (At

n)) has
at least 2n − 1 nodes. We have shown:

Theorem 5.2. For every n there is a DBTA Bn with Θ(n) states such that the
minimal DAG for the tree lcp(T (Bn)) has at least 2n − 1 nodes.

9



qe qf
0,1 0,1

· · ·
0,1 0

1

0,1
· · ·

0,1 0

1

0,1

0,1

0,1 0,1 · · · 0,1

0,1

n− 1 transitions n transitions

2n+ 1 transitions

Figure 4: The well-behaved weakly injective NFA An recognizing the language Ln. Edges
having no source node point to initial states.

Remark 5.3. The bound 2n − 1 in Theorem 5.2 is optimal up to constant
factors in the exponent even for NTTAs: If B is an NTTA with n states then
by Lemma 2.2, lcp(T (B)) has depth at most n − 1 and hence at most 2n − 1
nodes.

Remark 5.4. Recall that by Lemma 2.1, the minimal DFA for the path lan-
guage Vn = P (lcp(T (Bn))) has at least 2n states. We can also show that the
every NFA for P (lcp(T (Bn))) has at least 2n states. For this, we use the ex-
tended fooling set technique from [1]: Let L be a regular language and assume
that there exists a finite set S ⊆ Σ∗ × Σ∗ such that:

• for all (x, y) ∈ S, xy ∈ L holds, and

• for all (x, y), (x′, y′) ∈ S with (x, y) 6= (x′, y′) ∈ S, xy′ /∈ L or x′y /∈ L
holds (in particular, we must have x 6= x′ and y 6= y′).

Then every NFA for L must have at least |S| states.
We apply the extended fooling set technique to the finite language Vn. For

this we define the set

Sn = {(x1, x1) | x ∈ {0, 1}n}

where x results from x by replacing every 0 (resp., 1) by 1 (resp., 0). We obtain
the following properties:

• for all x ∈ {0, 1}n, x1x1 ∈ Vn;

• for all x, y ∈ {0, 1}n with x 6= y, we have x1y1 /∈ Vn or y1x1 /∈ Vn.

Hence, every NFA for Vn has at least |Sn| = 2n states.

5.2. Incompressibility by tree straight-line programs

So far we considered the compression of trees by DAGs. Let us now consider
the more general formalism of tree straight-line programs (TSLPs) [6, 9].1 In

1We define here monadic TSLPs in normal form [9], which makes no difference with respect
to succinctness; see [9].
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the following, it is useful to consider binary trees as expressions over the leaf
symbol a and the binary symbol f as explained in Section 2.

A tree straight-line program is a so-called monadic linear context-free tree
grammar that produces a single tree. Such a tree grammar has two types of
variables (or nonterminals): variables of rank zero that produce binary trees
and variables of rank one that produce binary trees in which a unique leaf is
marked. Trees with marked leaves allow to define a concatenation operation
similar to strings: a tree s with a marked leaf and a second tree t (which
may or may not contain a marked leaf) can be concatenated to a tree s[t]
that is obtained by replacing in s the marked leaf by the tree t. In a tree
straight-line program this kind of tree concatenation is used in the same way
as string concatenation in ordinary (string) context-free grammars. In order
to ensure that a tree straight-line program produces a single tree, one imposes
the syntactic restriction that every variable is the left-hand side of a unique
production. Moreover, one requires the grammar to be acyclic.

Formally, a TSLP is a 4-tuple G = (V0, V1, ρ, S) where V0 (variables of rank
zero) and V1 (variables of rank one) are finite disjoint sets of variables, S ∈ V0
is the start nonterminal, and ρ is a function that assigns to each variable A
a formal expression (the right-hand side of A) such that one of the following
conditions holds:

(a) A ∈ V0 and ρ(A) = a,

(b) A,B,C ∈ V0 and ρ(A) = f(B,C),

(c) A,C ∈ V0, B ∈ V1 and ρ(A) = B(C),

(d) A,B,C ∈ V1 and ρ(A) = B(C),

(e) A ∈ V1, B ∈ V0 and ρ(A) = f(B, x),

(f) A ∈ V1, B ∈ V0 and ρ(A) = f(x,B).

We require that the binary relation E(G) = {(B,A) | B occurs in ρ(A)} is
acyclic. We can therefore define a partial order ≤G as the reflexive transitive
closure of E(G). The idea is that with the above rules, every variable A ∈ V0
evaluates to a unique binary tree JAKG , whereas every variable A ∈ V1 evaluates
to a unique binary tree JAKG with a marked leaf. This marked leaf is denoted by
the special symbol x. For instance, f(f(a, x), f(a, a)) would be such a tree. We
let T2,x denote the set of all such trees. For s ∈ T2,x and t ∈ T2,x ∪T2 we let s[t]
denote the result of replacing in s the unique occurrence of x by t. For instance,
for s = f(f(a, x), f(a, a)) and t = f(a, x) we have s[t] = f(f(a, f(a, x)), f(a, a)).
Here are the formal inductive rules for the evaluation of variables. In all cases
tB := JBKG and tC := JCKG are already defined by induction.

• if A ∈ V0 and ρ(A) = a, then JAKG = a,

• if A,B,C ∈ V0 and ρ(A) = f(B,C), then JAKG = f(tB , tC),

• if A,C ∈ V0, B ∈ V1 and ρ(A) = B(C), then JAKG = tB [tC ],

• if A,B,C ∈ V1 and ρ(A) = B(C), then JAKG = tB [tC ],

• if A ∈ V1, B ∈ V0 and ρ(A) = f(B, x), then JAKG = f(tB , x),
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• if A ∈ V1, B ∈ V0 and ρ(A) = f(x,B), then JAKG = f(x, tB).

Finally, we define JGK = JSKG ∈ T2.
Note that a DAG corresponds to a TSLP where only variables of the above

types (a) and (b) are present. In contrast to DAGs, TSLPs can also compress
deep narrow trees, such as caterpillar trees, for example.

Example 5.5. Let G = ({A0, A2, A3, A5}, {A1, A4}, ρ, A0) be the TSLP with

• ρ(A0) = A1(A2),

• ρ(A1) = f(x,A3),

• ρ(A2) = A4(A3),

• ρ(A3) = A4(A5),

• ρ(A4) = f(x,A5),

• ρ(A5) = a.

We have JGK = f(f(f(a, a), a), f(a, a)).

Lemma 5.6. Let G = (V0, V1, ρ, S) be a TSLP with t = JGK and let d be the
depth of t. Then the minimal DAG for t has at most |V0| · d nodes.

Proof. We count the number of pairwise non-isomorphic subtrees of t. Consider
a specific subtree s ∈ T2 of t. By walking down from the start variable S ∈ V0
we can determine the smallest variable A (with respect to ≤G) such that s is a
subtree of JAKG . Let us consider the cases (a)–(f) for the right-hand side ρ(A).

If (a) or (b) holds, then we must have s = JAKG . The cases (e) and (f) cannot
occur (in both cases s would be a subtree of JBKG). Similarly, (d) cannot occur
since s would be a subtree of either JBKG or JCKG . Finally in case (c), since s is
neither a subtree of JBKG nor JCKG , the subtree s must be rooted at one of the
nodes on the path leading from the root of JAKG to the position of the symbol
x in JBKG (excluding the position of x). There are at most d such nodes. It
follows that JGK contains at most |V0| · d different subtrees.

Theorem 5.7. For every n there is an DBTA Bn with Θ(n) states such that
the smallest TSLP for the tree lcp(T (Bn)) has Ω(2n/n) variables.

Proof. We take the tree automata family from Theorem 5.2. Assume that G =
(V0, V1, ρ, S) is a TSLP for the tree lcp(T (Bn)) from Theorem 5.2. The minimal
DAG for lcp(T (Bn)) has at least 2n − 1 nodes. Recall that P (lcp(T (Bn))) =
Vn = {0, 1}∗ \Ln. Since Ln contains all word of length at least 2n+ 3, the path
language Vn contains only words of length at most 2n + 2. Thus, the depth
of the tree lcp(T (Bn)) is at most 2n + 2. With Lemma 5.6 it follows that the
smallest TSLP for lcp(T (Bn)) has at least (2n − 1)/(2n+ 2) variables.

The upper bound Ω(2n/n) for NTTAs in Theorem 5.7 cannot be improved
much: As remarked before, if an NTTA B has n states then the tree lcp(T (B))
has at most 2n nodes. By [6], lcp(T (B)) has a TSLP with O(2n/n) variables.

From a TSLP for a tree t with m variables one can easily construct a context-
free grammar for P (t) of size O(m) (where the size of a context-free grammar
is the total length of all right-hand sides of productions). We conjecture that
the smallest context-free grammar for the language Vn has size Ω(2n/n). This
would yield an alternative proof for Theorem 5.7. One might try to apply the
technique from [5] to prove the above conjecture.
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0
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1

0
1
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1

Figure 5: The construction from the proof of Theorem 6.3 for the 3-SAT formula C = C1∧C2

with C1 = (¬x1 ∨ x2 ∨ ¬x3) and C2 = (x2 ∨ x3 ∨ x4) (so n = 4 and m = 2).

6. Checking Equality of Largest Common Prefixes

We now deal with the problem of checking whether two tree languages yield
the same lcp (or whether one lcp is contained in the other lcp). For DTTAs this
is possible in polynomial time, whereas the problem becomes coNP-complete
for DBTAs.

Theorem 6.1. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for
two given DTTAs B1 and B2 can be solved in polynomial time.

Proof. We compute the DFAs Bs
1 and Bs

2 from Section 3. Since B1 and B2

are DTTAs, these DFAs can be computed in polynomial time. By Lemma 3.2
we have P (lcp(T (B1))) ⊆ P (lcp(T (B2))) if and only if L(Bs

1) ⊆ L(Bs
2). The

theorem follows because inclusion of DFAs can be checked in polynomial time.

Theorem 6.2. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for
two given NTTAs B1 and B2 belongs to coNP.

Proof. We show that there exists a nondeterministic polynomial time machine
that checks whether there exists u ∈ P (lcp(T (B1))) with u /∈ P (lcp(T (B2))).
W.l.o.g. we can assume that B1 and B2 are productive. Let m be the number
of states of B1. By Lemma 2.2 we know that P (lcp(T (B1))) only contains
words of length at most m − 1. Hence, we can nondeterministically guess a
word u of length at most m−1 and then verify whether u ∈ P (lcp(T (B1))) and
u /∈ P (lcp(T (B2))). For this we use the DFAs Bs

1 and Bs
2 from Lemma 3.1 and

check whether u ∈ L(Bs
1) and u /∈ L(Bs

2). For this, we do not have to construct
the DFAs Bs

1 and Bs
2 explicitly (they have exponential size); it suffices to run

Bs
1 and Bs

2 on the fly on the word u (recall that u has polynomial length).

Theorem 6.3. The problem of checking lcp(T (B1)) = lcp(T (B2)) for two given
NTTAs B1 and B2 is coNP-complete. The coNP lower bound already holds
for the case that B1 and B2 are DBTAs.

Proof. Since coNP is closed under intersection, we obtain the upper bound from
Theorem 6.2. Let us now show coNP-hardness for DBTAs by a reduction from
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the complement of 3-SAT. Consider a 3-SAT formula C =
∧m

i=1 Ci where every
Ci is a disjunction of three literals (possibly negated variables). Let x1, . . . , xn
be the variables that occur in C. W.l.o.g. we can assume that n ≥ m (we can
add dummy variables if necessary) and that there is no clause Ci and variable
xj such that xj and ¬xj both belong to Ci. Given a bit string w = a1a2 · · · an
with ai ∈ {0, 1} we write w |= Ci (resp., w |= C) if Ci (resp., C) becomes true
when every variable xi gets the truth value ai.

We first construct an (incomplete) acyclic DFA Ai for the language {w0 |
w ∈ {0, 1}n, w 6|= Ci}. The states of Ai are q0,i, q1,i, . . . , qn,i, qn+1,i, q0,i is the
initial state, qn+1,i is the final state, and the transitions are defined as follows,
where 1 ≤ j ≤ n:

• qj−1,i
0−→ qj,i if xj belongs to Ci,

• qj−1,i
1−→ qj,i if ¬xj belongs to Ci,

• qj−1,i
0,1−−→ qj,i if neither xj nor ¬xj belongs to Ci,

• qn,i
0−→ qn+1,i.

By taking the disjoint union of the DFAs Ai, we obtain an NFA A with

L(A) =

n⋃
i=1

L(Ai)

=

n⋃
i=1

{w0 | w ∈ {0, 1}n, w 6|= Ci}

= {w0 | w ∈ {0, 1}n, w 6|= C}.

Hence, we have L(A) = {0, 1}n0 if and only if C is not satisfiable. Note that
the initial states of A are the states q0,1, . . . , q0,m.

We finally construct a well-behaved NFA A1 from A as follows (an example
is shown in Figure 5):

• Merge the final states qn+1,i (1 ≤ i ≤ m) into a single non-final state qe.

• Add states q0, q1, . . . , qn+1, qf , where q0 is an initial state (hence, the initial
states of A1 are q0, q0,1, . . . , q0,m) and qf is the unique final state of A1.

• Add the transitions qj
0,1−−→ qj+1 for 0 ≤ j ≤ n, qn+1

0,1−−→ qe
0,1−−→ qf

0,1−−→ qf .

• If some state qj−1,i (1 ≤ i ≤ m, 1 ≤ j ≤ n) has no outgoing a-transition
for a ∈ {0, 1} (this happens if a = 0 and ¬xj belongs to Ci or a = 1 and

xj belongs to Ci) then add the transition qj−1,i
a−→ q0 to A1.

• For every 1 ≤ i ≤ m we add a 1-transition from qn,i to one of the states
q0, . . . , qn+1 in such a way that no two such 1-transitions enter the same
state. Since m ≤ n+ 2, this is possible.

The automaton A1 satisfies L(A1) = L(A){0, 1}{0, 1}∗ ∪{0, 1}n+3{0, 1}∗ and is
is well-behaved and weakly injective. Hence, by Lemma 4.2, At

1 is a DBTA.
It is straightforward to construct a well-behaved weakly injective NFA A2

such that L(A2) = {0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗ (one can make the
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above construction with an unsatisfiable 3-SAT formula). We get the following
equivalences:

C is unsatisfiable ⇔ L(A) = {0, 1}n0

⇔ L(A1) = {0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗

⇔ L(A1) = L(A2)

⇔ {0, 1}∗ \ L(A1) = {0, 1}∗ \ L(A2)

⇔ P (lcp(T (At
1))) = P (lcp(T (At

2)))

⇔ lcp(T (At
1)) = lcp(T (At

2)).

This concludes the proof of the theorem.

7. Conclusion

We presented a family of tree automata of size n such that the size of the
largest common prefix (lcp) tree of all accepted trees is exponential in n and
basically incompressible with respect to DAGs (directed acyclic graphs) and
tree straight-line programs. Moreover, we proved that the problem whether
the largest common prefix trees of two regular tree languages (that are either
specified by non-deterministic tree automata or deterministic bottom-up tree
automata) is coNP-complete.

Our results are mainly negative; only for the very restricted class of deter-
ministic top-down tree automata we obtain positive results with respect to com-
pressibility and the complexity of the equivalence problem for lcp trees (which
goes down to polynomial time). This leads to the question whether these pos-
itive results can be extended to some interesting class of tree automata that
properly includes the class of deterministic top-down tree automata.

Another question is whether a good enough approximation (in a sense that
has to be made precise) of the largest common prefix tree of a regular tree
language allows some non-trivial compression with DAGs or tree straight-line
programs.

Finally, from a theoretical side, one might also study larger classes of tree lan-
guages, e.g. context-free tree languages. It is not clear whether the equivalence
problem for the lcp trees of two given context-free tree languages is decidable.
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