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Abstract9

We prove that the power word problem for the solvable Baumslag-Solitar groups BS(1, q) = 〈a, t |10

tat−1 = aq〉 can be solved in TC0. In the power word problem, the input consists of group elements11

g1, . . . , gd and binary encoded integers n1, . . . , nd and it is asked whether gn1
1 · · · g

nd
d = 1 holds.12

Moreover, we prove that the knapsack problem for BS(1, q) is NP-complete. In the knapsack problem,13

the input consists of group elements g1, . . . , gd, h and it is asked whether the equation gx1
1 · · · g

xd
d = h14

has a solution in Nd.15
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1 Introduction22

The power word problem The study of multiplicative identities and equations has a long23

tradition in computational algebra, and has recently been extended to the non-abelian case.24

Here, the multiplicative identities we have in mind have the form gn1
1 gn2

2 · · · g
nd

d = 1, where25

g1, . . . , gd are elements of a group G and n1, n2, . . . , nd ∈ N are non-negative integers (we26

may also allow negative ni, but this makes no difference, since we can replace a gi by its27

inverse g−1
i ). Typically, the numbers ni are given in binary representation, whereas the28

representation of the group elements gi depends on the underlying group G. Here, we29

consider the case where G is a finitely generated (f.g. for short) group, and elements of G30

are represented by finite words over a fixed generating set Σ (the concrete choice of Σ is31

not relevant). In this setting, the question whether gn1
1 gn2

2 · · · g
nd

d = 1 is a true identity has32

been recently introduced as the power word problem for G [27]. It extends the classical word33

problem for G (does a given word over the group generators represent the group identity?)34

in the sense that the word problem trivially reduces to the power word problem (take an35

identity w1 = 1). Recent results on the power word problem in specific f.g. groups are:36

For every f.g. free group the power word problem belongs to deterministic logspace [27].37

For the following groups the power word problem belongs to the circuit complexity class38

TC0:1 f.g. nilpotent groups [27], iterated wreath products of f.g. free abelian groups and39

(as a consequence of the latter) free solvable groups [11].40

1 In this paper, TC0 always refers to the DLOGTIME-uniform version.
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63:2 Knapsack and the power word problem in solvable Baumslag-Solitar groups

If G is a so-called uniformly efficiently non-solvable group (this is a large class of non-41

solvable groups that was recently introduced in [3] and that includes all finite non-solvable42

groups and f.g. free non-abelian groups) then the power word problem for the wreath43

product G o Z is coNP-hard [11].44

Historically, the power word problem appeared earlier in the area of computational (commut-45

ative) algebra. Ge [16] proved that one can check in polynomial time whether an identity46

αn1
1 αn2

2 · · ·α
nd

d = 1, where the ni are binary encoded integers and the αi are from an algebraic47

number field (and suitable encoded), holds.48

In this paper we investigate the power word problem for the solvable Baumslag-Solitar49

group BS(1, q) for q ≥ 2 an integer. This group is usually defined as the finitely presented50

group BS(1, q) = 〈a, t | tat−1 = aq〉. It has a nice matrix representation as the group of all51

matrices of the form52 (
qk u

0 1

)
(1)53

with k ∈ Z and u ∈ Z[1/q] a rational number with a finite q-ary expansion. Our first54

main result is that the power word problem for BS(1, q) belongs to TC0. This generalizes55

a corresponding result for the word problem of BS(1, q) from [35]; see also [22, 37]. Via56

the above matrix embedding our result for the power word problem for BS(1, q) is directly57

related to recent results on matrix powering problems [1, 14]. These problems can be quite58

difficult to analyze. For instance, it is not known whether a certain bit of the (0, 0)-entry of59

a matrix power An can be computed in polynomial time, when n is given in binary notation60

and A is a (2× 2)-matrix over Z. The related problem of checking whether the (0, 0)-entry61

(or any other entry) of An is positive can be solved in polynomial time by [14].62

The knapsack problem If one replaces in the power word problem the exponents ni by63

pairwise different variables xi and the right-hand side 1 by an arbitrary group element h ∈ G,64

one obtains a so-called knapsack equation gx1
1 gx2

2 · · · g
xd

d = h. The question, whether such65

an equation has a solution in Nd is known as the knapsack problem for G. In the general66

context of finitely generated groups the knapsack problem has been introduced by Myasnikov,67

Nikolaev, and Ushakov [33]. As for the power word problem, this problem has been studied68

in the commutative setting before. For the case G = Z one obtains a variant of the classical69

NP-complete knapsack problem; a proof of the NP-hardness of our variant of the knapsack70

problem for the integers can be found in [18]. For this hardness result it is important that71

integers are represented in binary notation. For unary encoded integers the complexity of72

the knapsack problem goes down to TC0. For the case that the gi are commuting matrices73

over an algebraic number field, the knapsack problem has been studied in [2, 8].74

For the case of (in general) non-commutative groups, the knapsack problem has been75

studied in [9, 11, 13, 15, 23, 26, 29, 33]. In these papers, group elements are usually represented76

by finite words over the generators (although in [29] a more succinct representation by so-77

called straight-line programs is studied as well). Note that for the group Z this corresponds to78

a unary representation of integers. Hyperbolic groups (which are of fundamental importance79

in the area of geometric group theory) are an important class of groups where knapsack can80

be decided in polynomial time (and even in LogCFL). This result can be extended to the class81

of all groups that can be built from hyperbolic groups by the operations of (i) direct products82

with Z and (ii) free products [29]. On the other hand, for many groups the knapsack problem83

is NP-complete. Examples are certain right-angled Artin groups (like the direct product of84

two free groups of rank two [29]), wreath products (e.g. the wreath product Z o Z [15]) and85
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free solvable groups [11]. For wreath products G o Z, where G is finite non-solvable or free of86

rank at least two, the knapsack problem is Σp2-complete [11]. Finally, for finitely generated87

nilpotent groups, the knapsack problem is in general undecidable [15, 32].88

Our second main result is that for the Baumslag-Solitar groups BS(1, q) with q ≥ 2 the89

knapsack problem is NP-complete. This extends a result from [9], where decidability (without90

any complexity bound) was shown for a restriction of the knapsack problem for BS(1, q).91

In this restriction, all group elements gi must have the form (1) with k 6= 0. Showing92

NP-hardness of the knapsack problem for BS(1, q) is easy (based on the result that knapsack93

for Z with binary encoded integers is NP-hard). For membership in NP we use a recent result94

of Guépin, Haase, and Worrell [17] according to which the existential fragment of Büchi95

arithmetic (an extension of Presburger arithmetic) belongs to NP. The NP-membership of96

the knapsack problem for BS(1, q) is a bit of a surprise, since one can show that minimal97

solutions of knapsack equations over BS(1, q) can be of size doubly exponential in the length98

of the equation, see Theorem 4.2. This rules out a simple guess-and-verify strategy.99

2 Preliminaries100

For a, b ∈ Z we write a | b if b = ka for some k ∈ Z. We denote with [a, b] the interval101

{z ∈ Z | a ≤ z ≤ b}. With Z[1/q] we denote the set of all rational numbers that have finite102

expansion in base q, i.e., the set of all numbers
∑
a≤i≤b riq

i with ri ∈ [0, q − 1] and a, b ∈ Z.103

If u =
∑
−k≤i≤` riq

i 6= 0 with k, ` ≥ 0 and `+ k minimal, we define ‖u‖q = `+ k. Under the104

assumption that q is a constant (which will be always the case in this paper), ‖u‖q is the105

length of a suitable q-ary representation of u.106

A Laurent polynomial is an ordinary polynomial that may also contain powers xk with107

k < 0. Formally, a Laurent polynomial over Z is an expression P (x) =
∑
i∈Z aix

i with ai ∈ Z108

such that only finitely many ai are non-zero. With Z[x, x−1] we denote the set of all Laurent109

polynomials over Z; it is a ring with the natural addition and multiplication operations.110

Complexity. We assume basic knowledge in complexity theory. We deal with the circuit111

complexity class TC0. It contains all problems that can be solved by a family of threshold112

circuits of polynomial size and constant depth. In this paper, TC0 always refers to the113

DLOGTIME-uniform version of TC0. In this variant, TC0 is contained in deterministic114

logspace. A precise definition of (DLOGTIME-uniform) TC0 is not needed for our work; see115

[36] for details. All we need is that the following problems can be solved in TC0:116

1. iterated addition and multiplication of binary encoded numbers and polynomials [10, 19],117

2. division with remainder of binary encoded numbers [19],118

3. computing the number |w|a of occurrences of a letter a in a word w,119

4. computing an image h(w) where h : Σ∗ → Γ∗ is a homomorphism [24].120

The results on binary numbers hold for any basis, since one can transform between binary121

representation and q-ary representation; this is a consequence of the first two points.122

Groups. We assume that the reader is familiar with the basics of group theory. Let G be a123

group. We always write 1 for the group identity element. We say that G is finitely generated124

(f.g.) if there is a finite subset Σ ⊆ G such that every element of G can be written as a125

product of elements from Σ; such a Σ is called a (finite) generating set for G. We always126

assume that a ∈ Σ implies a−1 ∈ Σ; such a generating set is also called symmetric. We write127

G = 〈Σ〉 if Σ is a symmetric generating set for G. In this case, we have a canonical morphism128

h : Σ∗ → G that maps a word over Σ to its product in G. If h(w) = 1 we also say that w = 1129

MFCS 2020
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in G. On Σ∗ we can define a natural involution ·−1 by (a1a2 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 for130

a1, a2, . . . , an ∈ Σ.131

Baumslag-Solitar groups. For p, q ∈ Z\{0}, the Baumslag-Solitar group BS(p, q) is defined132

as the finitely presented group BS(p, q) = 〈a, t | tapt−1 = aq〉. We can w.l.o.g. assume that133

q ≥ 1. Of particular interest are the Baumslag-Solitar groups BS(1, q) for q ≥ 2. They are134

solvable and linear. It is well-known (see e.g. [39, III.15.C]) that BS(1, q) is isomorphic to135

the subgroup T (q) of GL(2,Q) consisting of the upper triangular matrices136 (
qk u

0 1

)
(2)137

with k ∈ Z and u ∈ Z[1/q]. This means we have the multiplication138 (
qk u

0 1

)(
q` v

0 1

)
=
(
q`+k u+ v · qk

0 1

)
. (3)139

Let us define the morphism h : {a, a−1, t, t−1}∗ → T (q) by140

h(a) =
(

1 1
0 1

)
and h(t) =

(
q 0
0 1

)
(4)141

and h(a−1) = h(a)−1, h(t−1) = h(t)−1. Then h(w) is the identity matrix if and only if w = 1142

in BS(1, q).143

I Lemma 2.1. Given a word w ∈ {a, a−1, t, t−1}∗ we can compute in TC0 the matrix h(w)144

with matrix entries given in q-ary encoding. Vice versa, given a matrix A ∈ T (q) with q-ary145

encoded entries, we can compute in TC0 a word w ∈ h−1(A).146

Proof. First consider a word w ∈ {a, a−1, t, t−1}∗ and let h(w) be the matrix in (2). Then k =147

|w|t−|w|t−1 , which can be computed in TC0. It remains to compute the q-ary representation148

of u. Let w1a
ε1 , . . . , wla

εl be all prefixes of w that end with a or a−1 (ε1, . . . , εl ∈ {−1, 1}). Let149

ki = |wi|t−|wi|t−1 , which can be computed in TC0 in unary notation. Then, u =
∑l
i=1 εiq

ki ,150

which can be easily computed in q-ary notation.151

The inverse transformation is straightforward using the q-ary representation of a matrix152

of the form (2): Note that since qk is given in q-ary representation, the integer k is implicitly153

given in unary representation. A matrix of the form
( 1 qz

0 1
)
(for a unary encoded z) can be154

produced by the word tzat−z. By concatenating such words (which is possible in TC0 by155

point 4 from page 3), one can produce from a given q-ary encoded number u ∈ Z[1/q] a word156

for the matrix ( 1 u
0 1 ). Finally, one has to concatenate tk on the right in order to get (2). J157

By the previous lemma, we can represent elements of BS(1, q) either as words over the158

alphabet {a, a−1, t, t−1} or by matrices from T (q) with q-ary encoded entries. For the matrix159

A ∈ T (q) in (2) we define ‖A‖ = |k|+ ‖u‖q. Hence ‖A‖ is the length of the encoding of A.160

A group that is closely related to BS(1, q) is the restricted wreath product Z o Z. It is161

isomorphic to the group of all matrices162 (
xk P (x)
0 1

)
(5)163

where k ∈ Z and P (x) ∈ Z[x, x−1] (see e.g. [31, Section 2.2]). It can be generated by164

a =
(

1 1
0 1

)
and t =

(
x 0
0 1

)
.165

In contrast to BS(1, q), the group is Z o Z not finitely presented [4]. Obviously we have:166
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I Lemma 2.2. The mapping φq :
(
xc P (x)
0 1

)
7→
(
qc P (q)
0 1

)
is a surjective homomorphism167

φq : Z o Z→ T (q) ∼= BS(1, q).168

With our choice of generators a, t for Z o Z and BS(1, q) = 〈a, t | tat−1 = aq〉, the above169

homomorphism φq satisfies φq(a) = a and φq(t) = t.170

Knapsack and the power word problem Let G = 〈Σ〉 be a f.g. group. Moreover, let171

x1, x2, . . . , xd be pairwise distinct variables. A knapsack expression over G is an expression of172

the form E = v0u
x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗ and non-empty words173

u1, . . . , ud ∈ Σ∗. A tuple (n1, . . . , nd) ∈ Nd is a G-solution of E if v0u
n1
1 v1u

n2
2 v2 · · ·und

d vd = 1174

in G. With solG(E) we denote the set of all G-solutions of E. The size of E is defined as175

|E| =
∑d
i=1 |ui|+ |vi|. The knapsack problem for G, Knapsack(G) for short, is the following176

decision problem:177

Input A knapsack expression E over G.178

Question Is solG(E) non-empty?179

It is easy to observe that the concrete choice of the generating set Σ has no influence on180

the decidability/complexity status of Knapsack(G). W.l.o.g. we can restrict to knapsack181

expressions of the form ux1
1 ux2

2 · · ·u
xd

d v: for E = v0u
x1
1 v1u

x2
2 v2 · · ·uxd

d vd and182

E′ = (v0u1v
−1
0 )x1(v0v1u2v

−1
1 v−1

0 )x2 · · · (v0 · · · vd−1udv
−1
d−1 · · · v

−1
0 )xdv0 · · · vd−1vd183

we have solG(E) = solG(E′).184

A power word (over Σ) is a tuple (u1, k1, u2, k2, . . . , ud, kd) where u1, . . . , ud ∈ Σ∗ are185

words over the group generators and k1, . . . , kd ∈ Z are integers that are given in binary186

notation. Such a power word represents the word uk1
1 uk2

2 · · ·u
kd

d . Quite often, we will identify187

the power word (u1, k1, u2, k2, . . . , ud, kd) with the word uk1
1 uk2

2 · · ·u
kd

d . The power word188

problem for the f.g. group G, PowerWP(G) for short, is defined as follows:189

Input A power word (u1, k1, u2, k2, . . . , ud, kd).190

Question Does uk1
1 uk2

2 · · ·u
kd

d = 1 hold in G?191

Due to the binary encoded exponents, a power word can be seen as a succinct description of192

an ordinary word. The size of the above power word w is
∑d
i=1 |ui|+ dlog2 kie which is the193

length of the binary encoding of w.194

3 Power word problem for BS(1,q)195

In this section we prove our first main result:196

I Theorem 3.1. For every q ∈ N with q ≥ 2, PowerWP(BS(1, q)) belongs to TC0.197

For the proof we will first work in the wreath product Z o Z. Recall the homomorphism φq198

from Lemma 2.2. The evaluation of a given power word over the group Z oZ leads to periodic199

Laurent polynomials, which we consider first.200

Periodic Laurent polynomials. Consider a Laurent polynomial P (x) =
∑
i∈Z aix

i ∈201

Z[x, x−1]. We define its support supp(P ) = {i ∈ Z | ai 6= 0}. For f ≥ 1 we say that202

P (x) is f-periodic on the interval [k, `] ⊆ Z if supp(P ) ⊆ [k, `] and ai = ai−f for all203

k + f ≤ i ≤ `. Then we have204

(1− xf ) · P (x) =
∑̀
i=k

(aixi − aixi+f ) =
k+f−1∑
i=k

aix
i −

`+f∑
i=`+1

ai−fx
i. (6)205

MFCS 2020
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We have to work with periodic Laurent polynomials that consist of exponentially (with206

respect to the size of the input power word) many monomials but where the period f is207

polynomially bounded in the input size. Such a Laurent polynomial can be represented by208

the first f coefficients together with the period f (in unary representation). We will always209

use this representation when dealing with periodic Laurent polynomials.210

I Lemma 3.2. Let k, ` ∈ Z and P1(x), . . . , Pm(x) ∈ Z[x, x−1] be Laurent polynomials such211

that Pi is fi-periodic on [k, `] and let f :=
∑

1≤i≤m fi. Then we can compute in TC0 Laurent212

polyomials S(x), L(x) and R(x) with the following properties:213

S(x) ·
∑m
i=1 Pi(x) = L(x) +R(x),214

supp(S) ⊆ [0, f ] (hence, S is an ordinary polynomial of degree at most f),215

supp(L) ⊆ [k, k + f − 1],216

supp(R) ⊆ [`+ 1, `+ f ], and217

S(q) 6= 0 for every q ∈ N \ {1}.218

Proof. By (6) there exist polynomials Li(x) and Ri(x) such that for all i ∈ [1,m]:219

(1− xfi) · Pi(x) = Li(x) +Ri(x),220

supp(Li) ⊆ [k, k + fi − 1], and221

supp(Ri) ⊆ [`+ 1, `+ fi].222

Moreover, the Li(x) and Ri(x) are clearly computable in TC0 from the Pi(x). With S(x) :=223 ∏
1≤i≤m(1− xfi) and S̃i(x) :=

∏
j 6=i(1− xfj ) we get224

S(x) ·
m∑
i=1

Pi(x) =
m∑
i=1

S(x) · Pi(x) =
m∑
i=1

S̃i(x)Li(x) +
m∑
i=1

S̃i(x)Ri(x).225

Let us set L(x) =
∑m
i=1 S̃i(x)Li(x) and R(x) =

∑m
i=1 S̃i(x)Ri(x). We then get supp(S) ⊆226

[0, f ], supp(L) ⊆ [k, k + f − 1], and supp(R) ⊆ [` + 1, ` + f ]. Since iterated addition and227

multiplication of polynomials is in TC0, we can compute the polynomials L(x) and R(x) in228

TC0. The fact that we are dealing with Laurent polynomials does not cause any problems here.229

Formally, one can multiply all polynomials by suitable powers of x in order to get ordinary230

polynomials, then add/multiply all polynomials and finally multiply by the appropriate231

negative power of x. J232

Proof sketch of Theorem 3.1. Let us now consider a Baumslag-Solitar group BS(1, q)233

with q ≥ 2 and the surjective homomorphism φq : Z o Z → BS(1, q). Let us write234

χ : {a, a−1, t, t−1}∗ → Z o Z for the canonical monoid morphism that maps a word w ∈235

{a, a−1, t, t−1}∗ to the group element of Z o Z represented by w.236

Consider a power word w = uz1
1 u

z2
2 · · ·u

zd

d with ui ∈ {a, a−1, t, t−1}∗ and let n be the size237

of w. In the first step we compute a suitable representation of the group element χ(w) ∈ Z oZ.238

Based on this representation we check in the second step whether φq(χ(w)) = 1 in BS(1, q).239

Step 1. The first step follows [27, 28], where it was shown that PowerWP(Z o Z) is in240

TC0. Let241

χ(w) =
(
xc P (x)
0 1

)
.242

The integer c can be computed in TC0; this is just iterated addition. If c 6= 0, then243

φq(χ(w)) 6= 1 and we can reject. Hence, let us assume that c = 0. Clearly, we cannot244

compute the Laurent polynomial P (x) in polynomial time; it could be a sum of exponentially245

many monomials. Nevertheless we can compute a certain implicit representation of P (x). In246
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more detail, we compute from the power word w in TC0 polynomially many binary-encoded247

integers c0 < c1 < · · · < cm with m odd such that supp(P ) ⊆ [c0, cm−1]. Hence, the Laurent248

polynomial P (x) can be written as249

P (x) =
∑

c0≤i<cm

aix
i.250

By conjugating the power word w with a large enough power of t, we can assume that c0 = 0.251

Hence P (x) ∈ Z[x]. Moreover, if we define the polynomials252

Pj(x) =
∑

cj≤i<cj+1

aix
i

253

(so that P (x) = P0(x) + P1(x) + · · ·+ Pm−1(x)) then we get the following from [28]:254

For every even j, the polynomial Pj can be computed explicitly in TC0. In particular,255

this means that cj+1 − cj must be bounded by poly(n). The coefficients of Pj are of256

magnitude exp(n), hence they will be computed in binary notation.257

For every odd j, the polynomial Pj is a sum of at most d polynomials Pj,1, . . . , Pj,dj
,258

where for all 1 ≤ ` ≤ dj , Pj,` is fj,`-periodic on the interval [cj , cj+1 − 1] for some259

fj,` ≤ n. All coefficients of Pj,` are bounded by n too. We can then compute in TC0 for260

all 1 ≤ ` ≤ dj the period fj,` (in unary notation) and the fj,` first coefficients of Pj,`.261

These data uniquely represent Pj .262

We refer to the full version [30] for a brief summary of the arguments from [28].263

Step 2. Using the data that was computed in the first step, it remains to verify in TC0
264

that P (q) =
∑m−1
i=0 Pi(q) = 0. From the polynomials Pj,` and their periods fj,` we can by265

Lemma 3.2 compute in TC0 for every odd j polyomials Sj(x), Lj(x) and Rj(x) with the266

following properties, where fj =
∑dj

`=1 fj,`:267

Sj(x) · Pj(x) = Lj(x) +Rj(x),268

supp(Sj) ⊆ [0, fj ]269

supp(Lj) ⊆ [cj , cj + fj − 1],270

supp(Rj) ⊆ [cj+1, cj+1 + fj − 1], and271

Sj(q) 6= 0.272

Let pj = q−cjPj(q) (an integer) for j ∈ [0,m − 1] and sj = Sj(q) (a non-zero integer) for273

every odd j ∈ [1,m− 2]. We can compute in TC0 for every odd j ∈ [1,m− 2] the integer sj274

as well as the integers `j = q−cjLj(q) and rj = q−cj+1Rj(q) in binary representation. For275

every even j ∈ [0,m− 1] we can compute in TC0 the binary representation of the integer pj .276

For all odd j we have277

qcjsjpj = qcj `j + qcj+1rj . (7)278

To streamline the presentation, we define r−1 = `m = 0 and s−1 = sm = 1. We can also279

compute an upper bound e ∈ N for the absolute value of the coefficients ai in the polynomial280

P (x). This number e is of size exp(n) and we can compute in TC0 its binary representation.281

For a position i ∈ [0, cm] let carry(i) be the carry that arrives in position i when we282

compute the q-ary expansion of P (q). Formally, it can be defined by283

carry(i) =
⌊ ∑

0≤j<i
ajq

j−i
⌋
· qi.284
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Clearly, carry(0) = 0. Moreover, we can bound the absolute value |carry(i)| by285

|carry(i)| =
∣∣∣∣⌊ ∑

0≤j<i
ajq

j−i
⌋
· qi
∣∣∣∣ ≤ e · ∑

0≤j<i
qj < e · qi.286

Let us write carry(cj) = qcjγj for an integer γj satisfying |γj | < e. Then for every odd287

j ∈ [1,m− 2] we get from (7)288

(qcjpj + carry(cj)) · sj = qcj `j + carry(cj)sj + qcj+1rj = qcj (`j + γj · sj) + qcj+1rj . (8)289

The following claim follows directly from the definition of the carries:290

Claim 1. P (q) = 0 if and only if the following two properties hold:291

(A) qcj+1 | (qcjpj + carry(cj)) for all 0 ≤ j ≤ m− 1, and292

(B) carry(cm) = 0.293

Hence, for every 0 ≤ j ≤ m − 1 we have to compute pj + q−cj carry(cj) = pj + γj , whose294

absolute value is bounded by |pj |+ e. There are two problems: If j is odd then we cannot295

compute pj explicitly (it may have exponentially many bits). Moreover, we do not know296

carry(cj). In order to solve these problems, we start with some preprocessing.297

Preprocessing. We merge an interval [cj , cj+1−1] with j odd with the neighboring (polyno-298

mially long) intervals [cj−1, cj−1] and [cj+1, cj+2−1] (if they exist) in case the interval length299

cj+1−cj satisfies qcj+1−cj ≤ |`j |+e · |sj |. Note that this implies cj+1−cj ≤ logq(|`j |+e · |sj |)300

which is of size poly(n). Hence, we can compute in TC0 the polynomial Pj(x) explicitly,301

which allows us to add to Pj(x) the neighboring polynomials Pj−1(x) and Pj+1(x) (that302

have been computed explicitly before). In fact this merging might happen for a block of303

more than three consecutive polynomials Pj(x).304

After this preprocessing, we can assume that for every odd j ∈ [1,m− 2] we have qcj+1−cj >305

|`j |+ e · |sj |. For the absolute value of the term qcj · (`j + γj · sj) in (8) we then obtain306

qcj · |`j + γj · sj | ≤ qcj · (|`j |+ |γj | · |sj |) < qcj · (|`j |+ e · |sj |) < qcj+1 . (9)307

With (8), this implies that if `j + γj · sj 6= 0 then (qcjpj + carry(cj)) · sj is not a multiple of308

qcj+1 . Hence, also qcjpj + carry(cj) is not a multiple of qcj+1 , which implies P (q) 6= 0 by (A).309

In summary, the preprocessing makes the term `j + γj · sj in (8) vanish for odd j ≥ 1 in case310

P (q) = 0. In particular, this lets us express qcjpj + carry(cj) in terms of qcj+1 , rj , and sj .311

We now state the following main claim, which directly implies that P (q) = 0 can be312

checked in TC0 (for this, we use the seminal result of Hesse et al. [19] according to which313

integer division is in TC0).314

Claim 2. P (q) = 0 if and only if the following conditions hold.315

(a) sj | rj for every odd 1 ≤ j ≤ m− 2 (for j = −1 this holds by definition of r−1 and s−1),316

(b) qcj+2−cj+1 | (pj+1 + rj/sj) for every odd −1 ≤ j ≤ m− 2,317

(c) `j+2 + qcj+1−cj+2(pj+1 + rj/sj)sj+2 = 0 for every odd −1 ≤ j ≤ m− 2,318

The proof is based on equations (8) and (9). For the only-if-direction (where we start with319

P (q) = 0) we must have `j + γj · sj = 0 for all odd j ≥ 1 by the remark after (9). From this320

and Claim 1 one can easily deduce properties (a)–(c). Vice versa, from (a)–(c) one can show321

Claim 1(A) by induction over j ≥ 0. For this one proves simultaneously over j the following322

auxiliary statements:323
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(C) carry(cj) = qcjrj−1/sj−1 for even j ∈ [0,m− 1],324

(D) carry(cj) = qcj−1(pj−1 + rj−2/sj−2) for odd j ∈ [1,m].325

Claim 1(B) then follows directly from (c) (for j = m− 2) and (D) (for j = m). Full details326

can be found in the long version [30]. J327

4 Knapsack for BS(1,q)328

Whether the knapsack problem is decidable for BS(1, q) was left open in [9]. Our second329

main result gives a positive answer and also settles the computational complexity:330

I Theorem 4.1. For every q ≥ 2, Knapsack(BS(1, q)) is NP-complete.331

Let us first remark that BS(1, q) is unusual in terms of its knapsack solution sets. In almost332

all groups where knapsack is known to be decidable, knapsack equations have semilinear333

solution sets [11, 12, 15, 23, 26, 29]. After the discrete Heisenberg group [23], the groups334

BS(1, q) are only the second known example where this is not the case: The knapsack335

equation t−x1ax2tx3 = a has the non-semilinear solution set {(k, qk, k) | k ∈ N}.336

Another unusual aspect is that knapsack is in NP although there are knapsack equations337

over BS(1, 2) whose solutions are all at least doubly exponential in the size of the equation:338

I Theorem 4.2. There is a family Ek = Ek(x, y, z), k ≥ 1, of solvable knapsack expressions339

over BS(1, 2) such that |Ek| = Θ(k) and z ≥ (22·3k−1 −1)/3k−1 for every solution of Ek = 1.340

Proof. It is a well-known fact in elementary number theory that 2 is a primitive root341

modulo 3k for every k ≥ 1. See, for example, Theorem 3.6 and the remarks before Theorem 3.8342

in [34]. Consider the knapsack equation343 (
2 0
0 1

)x(1 1
0 1

)(
2−1 0
0 1

)y (1 −3k
0 1

)z
=
(

1 3k + 1
0 1

)
(10)344

in BS(1, 2). In the top-left entry, it implies 2x2−y = 20. Therefore, we must have x = y in345

every solution. In this case, the left-hand side of Equation (10) is346 (
2x 0
0 1

)(
1 1
0 1

)(
2−x 0

0 1

)(
1 −z3k
0 1

)
=
(

1 2x − z · 3k
0 1

)
.347

Therefore, Equation (10) is equivalent to x = y and 2x − z · 3k = 3k + 1. Since some348

non-zero power of 2 is congruent to 1 modulo 3k, Equation (10) has a solution. Moreover,349

any solution must satisfy 2x ≡ 1 (mod 3k). Since 2 is a primitive root modulo 3k, i.e.,350

2 generates the group (Z/3kZ)∗ (the group of units of Z/3kZ), x must be a multiple of351

|(Z/3kZ)∗| = ϕ(3k) = 2 · 3k−1 (here, ϕ is Euler’s phi-function). Moreover, x must be352

non-zero, because 1− z · 3k = 3k + 1 is not possible for z ∈ N. We obtain x ≥ 2 · 3k−1. Since353

2x − z · 3k = 3k + 1, this yields z = (2x − 3k − 1))/3k ≥ (22·3k−1 − 1)/3k − 1. J354

I Remark 4.3. Subject to Artin’s conjecture on primitive roots [20], a similar doubly-355

exponential lower bound results for every BS(1, q) where q ≥ 2 is not a perfect square.356

Moreover, Theorem 4.2 holds even if the variables x, y, z range over Z. For this, one replaces357

3k + 1 with the inverse of 2 in (Z/3kZ)∗.358

Theorem 4.2 rules out a simple guess-and-verify strategy to show Theorem 4.1. If one has359

an exponential upper bound (in terms of input length) on the size of a smallest solution360

of a knapsack equation, then one can guess the binary representation of a solution and361
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verify, using the power word problem, whether the guess is indeed a solution. The second362

step (verification of a solution using the power word problem) would work for BS(1, q) in363

polynomial time due to Theorem 3.1, but the first step (guessing a binary encoded candidate364

for a solution) does not work for BS(1, 2) due to Theorem 4.2.365

Our main tool for the proof of Theorem 4.1 is a recent result from [17] concerning the366

existential fragment of Büchi arithmetic.367

Büchi arithmetic. Büchi arithmetic [7] is the first-order theory of (Z,+,≥, 0, Vq). Here, Vq368

is the function that maps n ∈ Z to the largest power of q that divides n. It is well-known369

that Büchi arithmetic is decidable (this was first claimed in [7]; a correct proof was given370

in [5]). We will rely on the following recent result of Guépin, Haase, and Worrell [17]:371

I Theorem 4.4 (c.f. [17]). The existential fragment of Büchi arithmetic belongs to NP. 2
372

We will also make use of the following simple lemma:373

I Lemma 4.5. Given the q-ary representation of a number r ∈ Z[1/q] we can construct in374

polynomial time an existential Presburger formula over (Z,+) of size O(‖r‖q) which expresses375

y = r · x for x, y ∈ Z.376

Proof. Let r =
∑
−k≤i≤` aiq

i with k, ` ≥ 0 and 0 ≤ ai < q for −k ≤ i ≤ `. We have y = rx377

if and only if qky = r′x for r′ =
∑k+`
i=0 ai−kq

i ∈ Z. Using iterated multiplication with the378

constant q (which can be replaced by addition) we can easily define from x and y the integers379

qky and r′x by Presburger formulas of size O(k + `) = O(‖r‖q). J380

Proof of Theorem 4.1. We start with the lower bound. The multisubset sum problem381

asks for integers a1, . . . , ad, b ∈ Z given in binary, whether there exist natural numbers382

x1, . . . , xd ≥ 0 with x1a1 + · · ·+ xdad = b. It is known to be NP-complete [18]. Since the383

knapsack equation384 (
1 a1
0 1

)x1

· · ·
(

1 ad
0 1

)xd

=
(

1 b

0 1

)
385

is equivalent to x1a1 + · · · + xdad = b, we obtain NP-hardness of knapsack over BS(1, q).386

Note that computing the q-ary representation of ai from the binary representation is possible387

in logspace (even in TC0).388

For the upper bound we reduce Knapsack(BS(1, q)) to the existential fragment of Büchi389

arithmetic, which belongs to NP by Theorem 4.4. We proceed in three steps.390

Step 1: Expressing Mg and M∗g using S`. We first express a particular set of binary391

relations using existential first-order formulas over (Z,+,≥, 0, Vq, (S`)`∈Z). Here, for ` ∈ Z,392

S` is the binary predicate with393

xS`y ⇐⇒ ∃r ∈ N ∃s ∈ N : x = qr ∧ y = qr+`·s.394

Let TZ(q) denote the subset of matrices in T (q) that have entries in Z. We represent the395

matrix (m n
0 1 ) ∈ TZ(q) by the pair (m,n) ∈ Z× Z (note that we must have m ∈ N). Observe396

2 The paper [17] shows an NP upper bound for the structure (N, +, 0, Vq), but an existential sentence
over the structure (Z, +,≥, 0, Vq) easily translates into one over (N, +, 0, Vq).
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that we can define the set of pairs (m,n) ∈ Z such that (m n
0 1 ) ∈ TZ(q), because this is397

equivalent to m being a power of q, which is expressed by 1S1m.398

A key trick is to express solvability of a knapsack equation gx1
1 · · · g

xd

d = g without399

introducing variables in the logic for x1, . . . , xd. Instead, we employ the binary relations Mg400

and M∗g on TZ(q), which allow us to express existence of powers implicitly. For g ∈ T (q) and401

x, y ∈ TZ(q), we have:402

xMgy ⇐⇒ y = xg,403

xM∗g y ⇐⇒ ∃s ∈ N : y = xgs.404

We construct existential formulas of size polynomial in ‖g‖ over (Z,+,≥, 0, Vq, (S`)`∈Z),405

which define the relations Mg and M∗g . Let g =
(
q` v
0 1

)
.406

Note that the relation Mg is easily expressible because we can express multiplication407

with q` and v by Presburger formulas of length ‖g‖, see Lemma 4.5. We now focus on the408

relations M∗g . Observe that for ` 6= 0, we have409 (
qk u

0 1

)(
q` v

0 1

)s
=
(
qk u

0 1

)(
q`s v + q`v + · · ·+ q(s−1)`v

0 1

)
410

=
(
qk u

0 1

)(
q`s v q

`s−1
q`−1

0 1

)
=
(
qk+`s u+ v q

k+`s−qk

q`−1
0 1

)
.411

412

Therefore,
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
is equivalent to413

∃x ∈ Z ∃s ∈ N : qm = qk+`s ∧ w = u+ vx ∧ (q` − 1)x = qm − qk.414

Here, we can quantify x over Z, because qk+`s−qk

q`−1 is always an integer. Note that since we415

can express multiplication with v and q` by Presburger formulas of size O(‖g‖) (Lemma 4.5),416

we can also express w = u+ vx and (q` − 1)x = qm − qk by formulas of size O(‖g‖). Finally,417

we can express ∃s ∈ N : qm = qk+`s using qkS`qm.418

It remains to express
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
in the case ` = 0. Note that gs = ( 1 sv

0 1 ) in419

this case. Therefore, we have
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
if and only if (i) there exists s ∈ N with420

w = u+ qk · s · v and (ii) qm = qk. Note that condition (i) is equivalent to ∃t ∈ N : Vq(t) ≥421

qk ∧w = u+ v · t. This is because choosing t = qk · s yields (i). By Lemma 4.5, w = u+ v · t422

can be expressed by a formula of size O(‖g‖).423

Step 2: Expressing S` using Vq. In our second step, we show that the binary relations Mg424

and M∗g can be expressed using existential formulas over (Z,+,≥, 0, Vq) of size poly(‖g‖).425

As shown above, for this it suffices to define S` by an existential formula over (Z,+,≥, 0, Vq)426

of size poly(`) (note that the relations S` occur only positively in the formulas from Step 1).427

For m ∈ N, let Pm be the predicate where Pm(x) states that x is a power of m. We first428

claim that for each ` ≥ 0, we can express Pq` using an existential formula of size polynomial429

in ` over (Z,+,≥, 0, Vq). The case ` = 0 is clear and Pq(x) is just Vq(x) = x. The following430

observation is from the proof of Proposition 7.1 in [6].431

B Fact 4.6. For all ` ≥ 1, Pq`(x) if and only if Pq(x) and q` − 1 divides x− 1.432

Proof. If x is a power of q`, then x = q`·s for some s ≥ 0. So, x is a power of q. Moreover,433

(x− 1)/(q` − 1) = (q`·s − 1)/(q` − 1) =
∑s−1
i=0 q

i` is an integer.434

Conversely, suppose x is a power of q and q` − 1 divides x − 1. Write x = q`·s+r with435

0 ≤ r < `. Observe that x− 1 = qs`+r − 1 = qr(qs` − 1) + (qr − 1). Since q` − 1 divides x− 1436
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as well as qs` − 1, we conclude that q` − 1 divides qr − 1. As 0 ≤ r < `, this is only possible437

with r = 0. This shows the above fact. J438

Using the predicates Pq` , we can now express S`. Note that for ` ≥ 0, we have xS`y if and439

only if y ≥ x ∧
∨`−1
i=0 Pq`(qix) ∧ Pq`(qiy). Furthermore, for ` < 0, we have xS`y if and only if440

yS|`|x. Therefore, we can express each S` using an existential formula of size polynomial in `441

over (Z,+,≥, 0, Vq). Hence, we can express Mg and M∗g using existential formulas of size442

poly(‖g‖) over (Z,+,≥, 0, Vq).443

Step 3: Expressing solvability of knapsack. In the last step, we express solvability of444

a knapsack equation by an existential first-order sentence over (Z,+,≥, 0, Vq), using the445

predicates Mg and M∗g . We claim that gx1
1 · · · g

xd

d = g has a solution (x1, . . . , xd) ∈ Nd if and446

only if there exist h0, . . . , hd ∈ TZ(q) with447

h0M
∗
g1
h1 ∧ h1M

∗
g2
h2 ∧ · · · ∧ hd−1M

∗
gd
hd ∧ h0Mghd. (11)448

Clearly, the claim implies that solvability of knapsack equations can be expressed in existential449

first-order logic over (Z,+,≥, 0, Vq).450

If such h0, . . . , hd exist, then for some x1, . . . , xd ∈ N, we have hi = hi−1g
xi
i and hd = h0g,451

which implies gx1
1 · · · g

xd

d = g. For the converse, we observe that for each matrix A ∈ T (q),452

there is some large enough k ∈ N such that
(
qk 0
0 1

)
A has integer entries. Therefore, if453

gx1
1 · · · g

xd

d = g, then there is some large enough k ∈ N so that for every i = 1, . . . , d, the454

matrix
(
qk 0
0 1

)
gx1

1 · · · g
xi
i has integer entries. With this, we set h0 =

(
qk 0
0 1

)
and hi = hi−1g

xi
i455

for i = 1, . . . , d. Then we have h0, . . . , hd ∈ TZ(q) and Equation (11) is satisfied. J456

5 Open problems457

Several open problems arise from our work:458

What is the complexity/decidability status of the power word/knapsack problem for459

Baumslag-Solitar groups BS(p, q) = 〈a, t | tapt−1 = aq〉 for p > 1? Decidability of460

knapsack in case gcd(p, q) = 1 was shown in [9], but the complexity as well as the461

decidability in case gcd(p, q) > 1 are open. Since the word problem for BS(p, q) can be462

solved in logspace [38], one can easily show that the power word problem for BS(p, q)463

belongs to PSPACE. By using techniques from [27] one might try to find a logspace464

reduction from the power word problem for BS(p, q) to the word problem for BS(p, q) (the465

same was done for a free group in [27]); this would show that the power word problem466

for BS(p, q) can be solved in logspace.467

Baumslag-Solitar groups BS(1, q) are examples of f.g. solvable linear groups. In [22] it468

was shown that for every f.g. solvable linear group the word problem can be solved in469

TC0. This leads to the question whether for every f.g. solvable linear group the power470

word problem belongs to TC0.471

The power word problem is a restriction of the compressed word problem, where it is asked472

whether the word produced by a so-called straight-line program (a context-free grammar473

that produces a single word) represents the group identity; see [25]. The compressed474

word problem for BS(1, q) belongs to coRP (the complement of randomized polynomial475

time); this holds in fact for every f.g. linear group [25]. No better complexity bound is476

known for the compressed word problem for BS(1, q).477
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Let us define an exponent expression over a f.g. group G = 〈Σ〉 as a formal expression E =478

v0u
x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗, non-empty words u1, . . . , ud ∈479

Σ∗, and variables x1, . . . , xd. In contrast to knapsack expressions, we allow xi = xj for480

i 6= j in an exponent expression. The set of solutions solG(E) for the exponent expression481

E can be defined analogously to knapsack expressions. We define solvability of exponent482

equations over G, ExpEq(G) for short, as the following decision problem:483

Input A finite list of exponent expressions E1, . . . , En over G.484

Question Is
⋂n
i=1 solG(Ei) non-empty?485

This problem has been studied for various groups [11, 15, 26, 29]. Our algorithm for the486

knapsack problem in BS(1, q) cannot be extended to solvability of exponent equations (not487

even to solvability of a single exponent equation). Recently, it has been shown that the488

Diophantine theory (or, equivalently, solvability of systems of word equations) is decidable489

for BS(1, q) [21]. Since every element of BS(1, q) can be written in the form txaytz for490

x, y, z ∈ Z, one can easily reduce the Diophantine theory of BS(1, q) to solvability of491

exponent equations for BS(1, q). But it is not clear at all, whether a reduction in the492

opposite direction exists as well.493
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