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Abstract

Online fault-diagnosis is applied to various systems to enable an automatic monitoring and, if applicable, the recovery from faults to
prevent the system from failing. For a sound decision on occurred faults, typically a large amount of sensor measurements and state
variables has to be gathered, analyzed and evaluated in real-time. Due to the complexity and the nature of distributed systems all
this data needs to be communicated among the network, which is an expensive affair in terms of communication resources and time.
In this paper we present compression strategies that utilize the fact that many of these data streams are highly correlated and can
be compressed simultaneously. Experimental results show that this can lead to better compression ratios compared to an individual
compression of the data streams. Moreover, the algorithms support real-time constraints for time-triggered architectures and enable
the data to be transmitted by means of shorter messages, leading to a reduced communication time and improved scheduling results.
With an example data set we show that, depending on the parameters of the compression algorithm, more than one third of the bits
(34.3 %) in the data communication can be saved while only on about 0.2 % of all data values a slight loss of accuracy occurs. This
means 99.8 % of the data values can be correctly delivered without any loss but with a significant reduction of bandwidth demands.
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1. Introduction

It is the goal of online fault-diagnosis to detect, diagnose and,
especially in safety-critical application domains, overcome sys-
tem faults at run time, e.g., through reconfigurations, in order to
provide the required services with a very high reliability. Typ-
ical faults are faults in the design of a component or a system,
transient or permanent hardware faults or erroneous user opera-
tions amongst others. As faults cannot be prevented at all times
it is of uttermost importance to equip the system with powerful
diagnostic algorithms able to process, analyze and store the of-
ten huge amount of raw data of a variety of sensors as well as
system input and output parameters necessary for correct and
fast decisions on fault detection and identification [1, 2].

The quality of diagnostic decisions highly depends on the
available amount of data. Especially in distributed systems
where the diagnostic inference process is temporally and spa-
tially decomposed to multiple processing units, a limited stor-
age capacity of local real-time databases may narrow the perfor-
mance of diagnostic decisions, e.g., of long term trend analyses.
Consider for example distributed sensor networks as introduced
in [3]. Likewise, limited communication resources or bottle-
necks may require data to be discarded or may lead to commu-
nication delays, which are also disadvantageous with respect to
the time needed to conclude a specific fault from a first symp-
tom. This, however, is a quality characteristic of a diagnostic
architecture. There is also a trend towards the application of
neural networks and deep learning for fault-diagnosis, where
especially architectures with multiple neural networks might be
optimally executed on distributed systems, see e.g., [4, 5].

Since a distributed diagnostic process requires both, the stor-
age and the fast exchange of a huge amount of data within a
network, the DAKODIS1 project deploys data compression for
online fault-diagnosis in a time-triggered architecture. In [6] it
is shown that data compression is a feasible instrument to save
bandwidth and consequently provide stronger real-time guaran-
tees or save communication resources (see [7] for an introduc-
tion into the wide area of data compression). Especially sys-
tems with limited resources may require data compression to
actually make fault-diagnosis possible or keep a diagnosis sys-
tem alive if more and more traffic is scheduled to the existing
communication channels.

The majority of compression algorithms such as entropy-
based compressors or dictionary-based compressors (see
e.g., [7]) are not suitable for time-triggered systems, as they
do not guarantee a fixed compression ratio; see also Section 2.
This was overcome in [6], where a simple cache-based com-
pression algorithm was presented that allows the loss of a small
ratio of the input data values. It works especially well if the
input data stream shows a temporal locality in the sense that
consecutive data values are close with high probability. Physi-
cal sensor signals typically show this behavior.

In [6], only the compression of a single data stream is ad-
dressed. On the other hand, diagnostic data streams within
distributed networks are often highly correlated. For instance,

1DAKODIS – Data compression for online-diagnosis systems. The primary
objective of this research project is an increased efficiency and the reduction of
overhead for online-diagnosis in open embedded systems using data compres-
sion. (see https://networked-embedded.de/es/index.php/dakodis.

html)
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multiple redundant sensors measure the same physical quan-
tities, or measurements of interdependent components or sub-
systems show other kinds of characteristic dependencies. These
correlations yield the potential for further compression. In time-
triggered architectures all routes for the messages are predeter-
mined. In [8] it is demonstrated that if messages of multiple
data streams that take the same routes can be compressed to one
combined sample, scheduling results can be improved. How-
ever, no real-time compression algorithms for such a scenario
have been introduced so far. In this paper we close this gap
and extend the work from [6] to the simultaneous compression
of multiple data streams. We evaluate the resulting compressor
with voltage and current measurement signals from a DCDC
converter and demonstrate that the simultaneous compression
of multiple correlated data streams leads to a better compres-
sion ratio without increasing the overall number of lost data
values. The proposed compressors support real-time constraints
for time-triggered architectures by maintaining a constant com-
pression ratio. For the identification of potential candidates for
a combined compression, a pre-analysis of the available data
streams (and their source and destination) in the system is con-
ducted. However, the compression algorithm itself has no a-
priori knowledge about the signal behaviors. The results of the
compression algorithm provide a scheduler with meaningful in-
formation to plan the most beneficial task allocations and mes-
sage combinations.

This paper is an extended version of our DSD 2019 confer-
ence paper [9]. The new contributions include improvements to
the introduced online compression algorithm, which now sup-
ports an automatic detection of changes of signal characteris-
tics, and thus, offers a significantly improved ability to exploit
multiple correlated signals for a combined compression and
transmission. Moreover, we show that the selection of suitable
signals for the combined compression can now be automatically
handled by the algorithm, which allows to optimally set up the
compression parameters without manual intervention of system
operators.

The paper is organized as follows: In Section 2 we refer to
the overall system architecture and the specific requirements
for the compression algorithm. Section 3 then focuses on the
principles and implementations of the proposed compression
algorithm. The evaluation is conducted in Section 4 by means
of an example model and signals. The paper closes with a future
work section and a conclusion in Sections 5 and 6, respectively.

2. Model

An architecture for time-triggered real-time systems is de-
fined in [6]. The three core aspects of the model are (1) logical
modeling of diagnostic processing tasks, (2) intertask commu-
nication procedure modeling supporting data compression and
(3) task scheduling to map the processing tasks to computation
nodes of a physical network infrastructure, and thus, establish-
ing a time-triggered architecture (see [10] for an introduction
to timing-predictable embedded systems). Within this envi-
ronment, specific requirements for the compression algorithm
arise:

• Compression and decompression underlie hard real time
constraints.

• Only online (one-pass) compression algorithms can be
used that compress every arriving data value before the
next data value arrives.

• No statistical information concerning the probability dis-
tribution of the data values is available.

• In order to utilize compression for the scheduling pro-
cess, the compressor should guarantee a certain worst-case
compression ratio below one.

• Compression should be lossless (after an initial quantiza-
tion phase for sensor data), with the exception that occa-
sionally data values can be completely lost. This means
that every data value is either transformed by the sender
into a compressed representation that can be exactly recov-
ered by the receiver, or it is transformed into an indication
value that tells the receiver that the original data value is
lost and can only be reconstructed with a lower accuracy.
Losing some data values is unavoidable if we want to guar-
antee a worst-case compression ratio below one. A small
probability for losing data values is tolerable in our con-
text, since diagnosis is typically not dependent on single
data values.

These requirement rule out most of the classical compressors,
e.g., lossy compressors based on transform coding, as they are
inherently lossy and do not allow to recover data values without
error and also lossless compressors (e.g., entropy-based coders,
or arithmetic coding) as they cannot guarantee a fixed compres-
sion ratio. For a detailed overview on classical compression
techniques see [7].

For our scenario we assume the data communication to be
error free, i.e., a data value is received exactly as it was sent.
Under challenging conditions, forward error correction is a fea-
sible instrument to ensure this.

3. Compression

The compression schemes proposed in this paper are based
on the work of [6], where the overall system architecture as
well as the compression model is addressed in detail. There-
fore, Section 3.1 briefly summarizes the working principles of
the cache-based online data compression algorithm before the
subsequent sections deal with the extension to the compression
of multiple correlated data streams.

3.1. Compression of individual data streams

The goal is to compress a sequence of n-bit data values (for a
fixed n), which are produced by a sensor measuring a physical
quantity. It is assumed that the data values exhibit some locality.
For the compression every n-bit data value is split into a block
of s high-order bits (called the head) and the remaining t =

n − s low-order bits (called the tail). Due to the locality of
consecutive data values, the heads of consecutive data values

2



are expected to only show a small variation over time. The
n = s + t bits in a data value are compressed to r + t bits (for
some r < s). For this, the algorithm transmits the t bits from
the tail uncompressed and compresses the s bits from the head
to r bits. To achieve the latter, a dictionary D stores the 2r − 1
most recently seen heads at dictionary entries D[p], where the
dictionary index p is an r-bit code different from the reserved
sequence 0r (r 0-bits). Let the next n-bit data value be x = uv,
where u ∈ {0, 1}s is the head and v ∈ {0, 1}t is the tail. If the
head u is in the dictionary and stored at entry D[p] then the
(r + t)-bit code pv is transmitted. Otherwise, a so called miss
occurs which is indicated to the receiver by the bit sequence
0r. The sender then transmits the bit sequence 0ru (recall that
s ≤ t so 0ru fits into r + t bits). Moreover, sender and receiver
update their dictionaries by computing a dictionary index p =

fresh(D) and setting D[p] := u. Here fresh(D) is the index
of a free dictionary entry, or, if the dictionary is completely
filled, an index that is computed by some replacement strategy
(we use the least-recently-used strategy, LRU for short). The
remaining t − s bits following 0ru can be used to transmit the
t−s most significant bits (MSBs) of the tail v to achieve a higher
accuracy. Due to locality in the data values we expect a small
number of misses over time. Note that sender and receiver can
keep their dictionaries synchronized. The main features of the
compression algorithm are:

• A fixed compression ratio of (r + t)/(s + t) < 1 is achieved
for every data value. This is contrary to classical loss-
less compression, where only statements about the average
compression ratio are possible. However, a fixed compres-
sion ratio is important for time-triggered architectures.

• To make a fixed compression ratio < 1 possible, we have
to accept occasional losses of data values. A small number
of lost data values is acceptable for many online-diagnosis
applications. Moreover, even in the case of a miss, an ap-
proximation in form of the t MSBs of the data value is
transmitted.

• Those data values that are not lost are transmitted without
any loss in accuracy, which is in contrast to classical lossy
compression.

Related work from data compression. The idea of using local-
ity in the data values for compression can be found in many
works. One of the simplest ways of exploiting locality is delta-
coding, where differences between consecutive data values are
transmitted. These differences are typically small and can be
further compressed with an entropy encoder. In the context of
wireless sensor networks this idea is implemented in the LEC-
compressor from [11, 12]. In contrast to our method, the LEC-
compressor is a lossless entropy-based encoder, which does not
show a fixed compression rate. In lossy compression, differ-
ential encoding [7, Chapter 11] exploits correlation between
successive data values by transmitting the differences between
a prediction of the next data value and the actual data value.
In the area of information theory the problem of compressing
correlated data streams is known as distributed source coding,
see [13].

3.2. Simultaneous compression of multiple data streams
The cache-based compression algorithm introduced in Sec-

tion 3.1 handles each data stream individually. For the com-
pression it utilizes the fact that measurements of physical quan-
tities can be often covered by just a part of the overall code
word space for certain time intervals. With a view to the over-
all system architecture, many data streams for monitoring and
diagnostic purposes (e.g., voltage, current or vibration measure-
ments) of complex mechatronic systems are gathered and pro-
cessed at different locations and need to be exchanged via a dis-
tributed network. Often, many of these data streams are highly
correlated due to redundant measurements or physical relations
of the measured signals. The enhanced compression scheme
presented in the following takes advantage of both facts, the
neighborhood assumption and the signal correlations. Since
the overall data traffic needs to be scheduled in time-triggered
architectures, the transmission routes are predetermined. Es-
pecially when the source and the destination nodes of two or
more data streams are located close to each other or are the
same, the overall message size for transmitting the data can
be reduced, leading to advantageous scheduling results (e.g.,
a shorter makespan).

To exploit correlations of data streams we adapt the cache-
based encoding scheme to encode multiple data streams at once.
Assume that we have d data streams. Let xi (1 ≤ i ≤ d) be the
current data value of the i-th stream. We further assume that xi

is an ni-bit data value. For every i ∈ [1, d] we fix a partition
ni = si + ti and split xi into xi = uivi with |ui| = si and |vi| = ti.
The bit sequence ui (resp., vi) is the current head (resp., tail) of
the i-th stream. We do not assume si = s j or ti = t j for i , j. Let
s =
∑d

i=1 si and t =
∑d

i=1 ti for the rest of the section. One could
apply the compression scheme from Section 3.1 to each of the d
data streams separately by choosing numbers ri < si and main-
taining a dictionary of size 2ri − 1 for every 1 ≤ i ≤ d. This
leads to an overall compression ratio of (

∑d
i=1 ri + t)/(s + t). On

the other hand, due to correlations between the data streams, the
tuples of data values (x1, . . . , xd) will be scattered around a low
dimensional subspace of the d-dimensional product space. If,
for instance, d = 2 and x2 = f (x1) for a function f then all tu-
ples belong to a one-dimensional curve in the two-dimensional
plane. In such a case we can obtain a better compression ratio
of (r + t)/(s + t) by using a single dictionary of size 2r − 1 for
some r <

∑d
i=1 ri that stores tuples of heads u = (u1, . . . , ud),

which need s bits. The compressed data value then consists of
the dictionary index p ∈ {0, 1}r, where u is stored and the con-
catenation v1v2 · · · vd of the current tails. In case of a miss we
transmit 0r followed by u. This leaves t − s unused bits. Like-
wise to the original approach we use them to transmit parts of
the tails. In the multidimensional case there are several possi-
bilities:

• Transmit as many tails as possible completely and fill the
remaining bits with the MSBs of the next tail,

• transmit equally many MSBs for each tail,

• transmit MSBs for each tail; the number of MSBs is
weighted by the complete tail length.
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Note that in this approach all d data values from (x1, . . . , xd) are
lost in case of a miss. In consequence, this method is a trade-
off between a better (i.e., lower) compression ratio and a higher
number of lost data values. Its implementation with a variable
number d of streams can be found on our project website.

Algorithm 1 Cache-based algorithm for d streams
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: initialize dictionary D as empty hash table of size 2r − 1
4: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d
5: if there is p with D[p] = (u1, . . . , ud) then
6: send pv1v2 · · · vd to the receiver
7: else
8: send 0ru1u2 · · · ud to the receiver
9: p := fresh(D)

10: D[p] := (u1, . . . , ud)
11: end if

3.3. Dynamic simultaneous compression of multiple data
streams

It turns out that one can reduce the number of misses by
adding some flexibility using offsets in the dictionary entries.
Consider a sequence of values S = a1, a2, . . . , ak on a single
stream such that for all 1 ≤ i < k, |ai − ai+1| < 2t−1 but
bai/2tc , bai+1/2tc (s and t are the size of the head and tail,
respectively). If one compresses S using the cache-based com-
pression algorithm from Section 3.1 with a dictionary of size 1
(i.e., r = 2), then this results in k misses, since there are no con-
secutive values in S with the same head. To handle this case,
Jo et al. proposed a dynamic cache-based algorithm [6]. In this
algorithm, every dictionary entry D[p] is a pair (u, δ) of a head
u ∈ {0, 1}s and an offset δ ∈ [−2t−1, 2t−1 − 1]. We define a cor-
responding interval I[p] = [u2t + δ, u2t + δ + 2t − 1]. Here and
in the following we identify heads (resp., tails) with numbers
from the interval [0, 2s − 1] (resp., [0, 2t − 1]) using their binary
representation. We say that p covers the data values in the in-
terval I[p]. The cache-based compression algorithm from Sec-
tion 3.1 can be considered as the special case where δ is always
0. Let us write (u[p], δ[p]) for D[p]. When the sender transmits
a code word x = uv where u (resp. v) is the head (resp., tail)
of x, the sender first checks whether there is a dictionary index
p that covers x. Since δ[p] ∈ [−2t−1, 2t−1 − 1], we must have
u[p] ∈ {u−1, u, u+1}. Now suppose that the dictionary contains
an index p which covers x (otherwise, the sender transmits 0ru
and adds the pair (u, 0) to the dictionary). The sender takes the
smallest such p and transmits pv to the receiver. Then it up-
dates the dictionary in such a way that x becomes the center of
an interval I[q] for some dictionary index q. For this, it first en-
sures that u[q] = u holds for a unique index q. Then, it sets the
offset δ[q] to v − 2t−1. In this way, x becomes the center of the
interval I[q]. The receiver reconstructs x from p and v and up-
dates its dictionary analogously. One easily observes that in the
above example only a1 is lost with this dynamic cache-based
compression algorithm while maintaining a dictionary of size
1.

To compress highly-correlated multiple streams efficiently
when each stream has consecutive data values with small gaps,
we make Algorithm 1 dynamic: Each dictionary entry D[p]
stores a d-tuple (u1, . . . , ud) of heads (ui ∈ {0, 1}si ) and an offset
vector (δ1, . . . , δd) with δi ∈ [−2ti−1, 2ti−1 − 1]. Let us define
u[p, i] = ui, δ[p, i] = δi and the interval

I[p, i] = [ui2ti + δi, ui2ti + δi + 2ti − 1].

We say that p covers the data values in the d-dimensional hy-
percube

H[p] :=
d∏

i=1

I[p, i]. (1)

We call this hypercube an active hypercube and the union
of all active hypercubes is called the set of active data tu-
ples. Now consider the case that the sender transmits a tuple
x = (x1, . . . , xd) of data values from d data streams to the re-
ceiver. Let xi = uivi as in Section 3.2. Then the sender first
checks whether there is a dictionary index p that covers x (oth-
erwise, the sender transmits 0ru1 · · · ud, and adds (u1, . . . , ud)
with the offset vector (0, . . . , 0) to the dictionary). For every
1 ≤ i ≤ d we must have u[p, i] ∈ {ui − 1, ui, ui + 1}. The sender
again takes the first such p and transmits pv1v2 · · · vd to the re-
ceiver. Then it makes the same updates that were described
above for the case d = 1 in every dimension, see Algorithm 2.

Algorithm 2 Dynamic cache-based algorithm
1: input : data values xi ∈ {0, 1}ni (1 ≤ i ≤ d)
2: output : bit string of length at most r + t
3: miss : variable for indicating the event of a miss
4: initialize dictionary D as empty hash table of size 2r − 1
5: let xi = uivi with |ui| = si and |vi| = ti for 1 ≤ i ≤ d.
6: if there is p ∈ {0, 1}r \ {0r} covering (x1, . . . , xd) then
7: let p be the smallest index covering (x1, . . . , xd)
8: send pv1 · · · vd to receiver
9: miss := 0

10: else
11: send 0ru1u2 · · · ud to receiver
12: miss := 1
13: end if
14: if there is no q with u[q] = (u1, . . . , ud) then
15: q := fresh(D)
16: u[q] := (u1, . . . , ud)
17: δ[q] := (0, . . . , 0)
18: end if
19: if miss = 0 then
20: let q be the unique index with u[q] = (u1, . . . , ud)
21: δ[q] := (v1 − 2t1−1, . . . , vd − 2td−1)
22: end if

In the following two subsections we explain the improve-
ments of Algorithm 2 that further reduces the number of lost
data values considerably.
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3.4. Partial misses

When compressing d data streams simultaneously, a miss oc-
curs if there is no p covering x. Consider an example with d = 2
streams where s1 = s2 = 4, t1 = t2 = 8, and r = 2, i.e., the dic-
tionary D is of size 2r − 1 = 3. Table 1 shows an example for
a dictionary; all offsets are assumed to be zero. The dictionary

Table 1: Codebook for two-dimensional stream compression

dictionary index p u[p, 1] u[p, 2]

01 0110 1010

10 0111 1011

11 1001 1100

index 00 is reserved for the indication of the miss case. If the
heads of the current data values x1 and x2 are u1 = 1001 and
u2 = 1101, respectively, there is a miss as the required con-
catenation of heads is not in the dictionary. Hence, the tail bits
are used to send the new head combination u1u2 to the receiver.
Figure 1 illustrates the active hypercubes (here squares) as blue
squares with the missed data value marked as a red cross.

Figure 1: Simultaneous compression of two data streams

In the above situation, both data values x1 and x2 are lost. The
strategy presented in the following overcomes this disadvantage
of the algorithm in many cases and allows to communicate the
current data values corresponding to some of the streams suc-
cessfully. This is realized by reserving an additional dictionary
index (the bit sequence 0r−11) to indicate a so called partial
miss (in contrast to a full miss which is indicated by 0r). Hence,
the dictionary size is reduced to 2r − 2. The number of bits
transmitted per time step is r + t (the length of the dictionary
index plus the length of all tails) as before. In the case of a
partial miss, the bit sequence following 0r−11 is interpreted in
a way different to our previous algorithm. Given the example
of Table 1, D[01] is removed and p = 01 is used to indicate a
partial miss.

If there is no dictionary index p that covers the whole tuple
of data values (x1, . . . , xd), the algorithm seeks for a p that cov-
ers at least some of the data values. For this, we define the set
M[p] = {i ∈ [1, d] | xi < I[p, i]} of those dimensions where
p does not cover the corresponding data value. In our exam-
ple (u1 = 1001 and u2 = 1101) we have M[10] = {1, 2} and
M[11] = {2}.

Our algorithm tries to encode as many entries from the in-
put tuple (x1, . . . , xd) as possible by looping over all dictionary
indices p ∈ {0, 1}r \ {0r, 0r−11}. Consider a specific index p. As-
sume that we tell the receiver p and the set M[p]. This leaves
t − r − d bits from the initial r + t bits (we need r bits for the
partial miss indicator 0r−11, r bits for p and d bits for M[p]).
We can use these t − r − d bits in order to send the following
data to the receiver:

1. All tails vi for i ∈ [1, d] \ M[p]. Note that for i ∈
[1, d] \M[p], the receiver can obtain the head ui of xi (and
consequently the data value xi) from the dictionary entry
D[p] as in Section 3.3. Note that

∑
i∈[1,d]\M[p] ti bits are

needed for these tails.
2. All differences ui − u[p, i] for every dimension i ∈ M[p].

Note that for each difference we need one bit to encode
the sign of the difference. Also note that the differences
ui − u[p, i] (i ∈ M[p]) together with the index p allow to
reconstruct the missed heads ui (i ∈ M[p]) at the receiver
side, which is necessary in order to update the dictionary.

In our example, if p = 11 then M[11] = {2} and the only needed
difference is u2 − u[11, 2] = 1. For the differences in point 2 we
have

h =
∑

i∈M[p]
ti − r − d

bits available. If all the differences from point 2 fit into these
h bits, then p is a valid choice for the algorithm and all data
values xi with i ∈ [1, d] \ M[p] will be correctly transmitted. If
it turns out that there is more than one valid choice for p, then
one could choose that p that allows to transmit the maximal
number of data values. There might also be scenarios where
some of the data streams are more important; then one would
give priority to these streams. If no valid index p is found then
a full miss will be indicated via the bit sequence 0r.

Especially for large dictionary sizes, where r is large, h be-
comes small. However, for a large dictionary (e.g., r > 6) one
has the option to use more than one dictionary index to indicate
a partial miss without increasing the number of misses signifi-
cantly. If we decide to reserve 2k dictionary indices (for some
k < r) to indicate partial misses (which results in the dictionary
size 2r − 1 − 2k), k bits can be additionally assigned to h as
each of the 2k reserved indices now refers to a certain part of
the dictionary which can be encoded with less bits.

3.5. Grouping of active hypercubes

For the cache-based compression algorithm from Section 3.2
(where all offsets are zero) each active hypercube is maintained
individually in terms of its corresponding head tuple in the dic-
tionary, i.e., only in a miss case, the sender and the receiver
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synchronously update the dictionary by replacing the least-
recently-used head tuple by the missed head tuple. The dy-
namic version of the algorithm from Section 3.3 uses an offset
parameter to center an active hypercube around the transmitted
sample to provide a better coverage of the sample’s neighbor-
hood.

The results of [6] show, that at the same compression ratio
smaller dictionaries with larger hypercubes outperform larger
dictionaries with smaller hypercubes, although the latter con-
stellation manages more active values than the former, e.g., in
the paper compare the constellation d = 1, r = 3, and t = 8
((23−1)·28 = 1792 active values) against r = 1 and t = 10 (1024
active values). In many cases a newly inserted small active hy-
percube is not able to cover the next data value, especially if
t is small compared to n (e.g., t = n/2). We overcome this
disadvantage with new strategies for combining multiple adja-
cent active hypercubes to larger active regions that cover more
values around the last transmitted sample. This can be applied
to the individual stream compression and to the simultaneous
compression of multiple data streams. In the latter case, vari-
ous possibilities exist how to form a so called region of active
hypercubes. Such a region is characterized by a subset of active
hypercubes H[p], one of which is defined as the center hyper-
cube. An active region has to be connected in the following
sense: Take the graph, whose vertices are the (d-dimensional)
hypercubes from the region, and where two hypercubes are con-
nected by an edge iff they intersect in a d′-dimensional sub-
hypercube for some 0 ≤ d′ < d. Then this graph has to be
connected. We specify a group of active hypercubes by a set
P ⊆ {0, 1}r \ {0r} of (usually consecutive) dictionary indices, all
having the same offset vector (which we call the offset of the re-
gion): δ[p] = δ[p′] for all p, p ∈ P with p , p′. This means that
if one hypercube is moved (by changing the corresponding off-
set vector) then all other hypercubes from the region are moved
in the same way. Moreover, there is a distinguished pc ∈ P
such that H[pc] is the center hypercube of the region, and we
call u[pc] the center head of the region. The active region cor-
responding to P is

R[P] =
⋃
p∈P

H[p].

We impose the same restriction on the offset vectors as in Sec-
tion 3.3, i.e., offset vectors have to belong to

∏d
i=1[−2ti−1, 2ti−1−

1]. After every successful transmission (successful in the sense
that no miss occurs) we update the heads and the common offset
for the region R[P] that covers the current tuple of data values
x = (x1, . . . , xd) in such a way that x becomes the center of the
center hypercube. Let xi = uivi where ui is the head of xi and
vi is the tail of xi. Assume that x belongs to the region R[P],
i.e., no miss occurs. We then update every head u[p] and off-
set δ[p] for p ∈ P by u[p] := u[p] + (u1, . . . , ud) − u[pc] and
δ[p] := (v1 − 2t1−1, . . . , vd − 2td−1). Some care has to be taken
in case a head u[p] is out the allowed range (e.g., contains a
negative entry).

One may use only one active region (i.e., all dictionary in-
dices contribute to the region) or several regions that can be

Table 2: Head combinations for a two-dimensional region of 7 squares

dictionary index p u[p, 1] u[p, 2]

001 u1 − 1 u2 − 1

010 u1 − 1 u2

011 u1 u2 − 1

100 u1 u2

101 u1 u2 + 1

110 u1 + 1 u2

111 u1 + 1 u2 + 1

moved independently from each other. If the data values are
clustered around several areas then one ideally uses one active
region per cluster. In a miss case, the least-recently-used region
is moved to cover the current tuple of data values.

In the one-dimensional case a region is formed from a certain
number (say k) of adjacent intervals which yields a single inter-
val I = [u2t + δ, u′2t + δ−1] where u, u′ ∈ {0, 1}s, k = u′ −u and
δ is the common offset for the region. The size of this interval
is k2t ≥ 2t. This large interval provides a better coverage of the
current data value and (under the locality assumption) leads to
a higher probability that the next data value is also covered by
I.

The grouping technique shows its full potential for the com-
pression of several correlated data streams. Multiple corre-
lated signals often show a characteristic behavior in the d-
dimensional product space in the sense that they are concen-
trated around a low-dimensional subspace of the overall prod-
uct space. This fact is utilized in multi-stream compression with
grouping and enables us to significantly reduce the number of
lost data values. For instance, data values of two physically re-
lated signals might rise and fall in a similar way. They will be
predominantly covered by regions that cover imaginary slopes
in the two-dimensional product space. The algorithm supports
predefined fixed d-dimensional regions with a different number
of hypercubes for different dictionary sizes. We defined sym-
metric regions based on one center hypercube, e.g., a square or
rectangle in the two-dimensional case, or a cuboid in the three-
dimensional case.

Table 2 shows an example for a dictionary that defines a sin-
gle active two-dimensional region consisting of 7 squares. This
region corresponds to the 7 squares in Figure 5 with the black
perimeter. Darker plotted squares indicate a higher hit rate with
respect to the center of the region. We see that the marked re-
gion is a good choice to cover the majority of all values with a
rather small dictionary.

Comparing the covered region of values with single-stream
compression, one would need to concatenate 3 intervals in each
stream to cover a square that encloses the defined region for the
two-dimensional stream space. For this, the single-stream com-
pression requires more bits (e.g., r1 = r2 = 2, r = r1 + r2 = 4
compared to r = 3 for the combined compression). This effect
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scales for larger regions, making multi-stream compression out-
performing single-stream compression due to its ability to save
bits by limiting the value coverage to the special region of in-
terest.

Let us remark that the grouping technique from this section
can be combined with the partial miss technique from Sec-
tion 3.4. In fact, this combination leads to the smallest num-
ber of lost data values in our experimental evaluation for the
case that manually defined regions are maintained based on a
previous signal analysis.

3.6. Automatic grouping of active hypercubes

Forming a suitable region by grouping active hypercubes ac-
cording to Section 3.5 requires knowledge about the expected
behavior of the correlated signals in the product space. This
can be gained through an analysis of the hit rate of hypercubes
as Figure 5 shows for our test signals. It is obvious that an im-
proper group constellation decreases the algorithm performance
drastically. Furthermore, if the signal behavior changes over
time, an initially optimal group constellation might not capture
the signals well at a later time.

3.6.1. Monitoring the data streams
We introduce a new strategy for our algorithm that auto-

mates the grouping of active hypercubes, and thus, supersedes
the need for a manual signal analysis and design of group con-
stellations. By synchronously monitoring the hit rate of those
hypercubes that cover the samples (hits and misses within a de-
fined subspace of the overall product space) at the sender and
receiver side, the group is formed and maintained automatically
and adapts to the signals if the characteristics change. For this,
the sender and the receiver each maintain two dictionaries of
different size whereof which we denote the smaller one trans-
mission dictionary and the larger one observation dictionary.
The former plays the role of the dictionary D that we have used
so far in Section 3, where the dictionary index p (an r-bit code)
becomes part of the transmitted code word. However, in this
new strategy this dictionary does not store the most recently
seen heads at D[p] but stores some indices that address entries
of the observation dictionary. For clarification, we denote the
transmission dictionary by Dtrans and the observation dictionary
by Dobs from now on.

The dictionary Dobs stores some heads that form a specially
designed static region which we call the observation region.
The hypercubes of this region form a d-dimensional grid with
an odd side length in each dimension. Neighboring hypercubes
in the grid intersect in a (d − 1)-dimensional hypercube. For
simplicity, we choose the same side length for the grid in each
dimension (one could also choose different side lengths). Since
this is an odd number, we can define the center hypercube of
the grid in the obvious way. The maximum side length of this
grid and consequently the number of required entries of the ob-
servation dictionary depends on the size of the active region
(ntrans = 2rtrans − 1) maintained in the transmission dictionary.
Let us call this region the transmission region.

In an extreme case, all hypercubes of the transmission region
are linked in a one-dimensional chain of length ntrans. This de-
fines the maximum side length of the grid forming the obser-
vation region in each dimension. For instance, if d = 2 and
rtrans = 2, the number of hypercubes of the transmission re-
gion is ntrans = 3 and consequently the maximum number of
hypercubes of the observation region is nd

trans = 9. In practice,
it turned out that a smaller observation region is sufficient. Our
experiments showed that the number nobs of hypercubes of the
observation region should satisfy 3 · ntrans ≤ nobs ≤ nd

trans. Then
the observation region is a d-dimensional grid of side length⌈
n1/d

obs

⌉
.

It should be pointed out that the size of the observation dic-
tionary has no influence on the transmitted code word lengths.
Nevertheless, it is advantageous to limit its size for several rea-
sons. Our compression algorithms are especially designed to
compress correlated signals (see Section 3). Hence, an align-
ment of many hypercubes in one dimension is very unlikely.
Moreover, a limitation can help to prevent overfitting of the
transmission region to the signals. This refers to the fact that
short-term signal characteristics are captured well but even
slightest signal changes lead to more misses. Generally, the
algorithm performance decreases if overfitting occurs.

The strategy for the automatic composition of a transmission
region has the goal to select ntrans = 2rtrans − 1 indices from
the observation dictionary. The hypercubes H[p] (see Equa-
tion (1)) that are determined by the selected indices p define
the transmission region; it is a subset of the observation region.
The transmission dictionary will store the selected indices of
the observation dictionary. The observation region behaves as
described in Section 3.5, i.e., after every transmission the tuple
of input data values x lies in the center hypercube of the ob-
servation region. Moreover, the observation dictionary stores
the offset vector. For the above selection process we store a
sliding window consisting of W (for a fixed constant W) ob-
servation dictionary indices. For every new tuple of input data
values we determine the observation dictionary index pobs that
covers x, add pobs to the sliding window and remove the old-
est index from the sliding window. If x does not belong to the
observation region (and hence is not covered by an observa-
tion dictionary index) then the sliding window is not affected.
These operations are performed on the sender and receiver side
in a synchronized way. Note that it may happen that x does not
belong to the transmission region (in which case a miss occurs)
but belongs to the observation region. In this case, sender and
receiver modify the sliding window in the same way.

3.6.2. Static transmission dictionary updates
After a predefined period t1 (e.g., some seconds) the sliding

window is analyzed by counting for every observation dictio-
nary index the number of occurrences in the sliding window.
The ntrans observation dictionary indices p1, . . . , pntrans with the
highest count are determined. The new transmission region fi-
nally is

⋃ntrans
i=1 H[pi]. Accordingly, the transmission dictionary

is updated with the selected indices p1, . . . , pntrans . In this way,
the transmission region reflects the temporal occurrence of data
tuples with respect to their precursors. Initially, a predefined
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Figure 2: Two-dimensional observation region of 3×3 hypercubes for an active
transmission region of 3 hypercubes

transmission region can be implemented at the sender and the
receiver side.

A successful sample transmission is possible if there is
a transmission dictionary index ptrans such that Dtrans[ptrans]
(which is an index of the observation dictionary) covers the cur-
rent tuple of data values x. If such an index ptrans does not exist,
then we have a miss and indicate this via the reserved entry of
the transmission dictionary. Moreover, the observation region
is centered around the approximation of x that is obtained from
the transmitted tuple of heads (which is known to the receiver
as well).

Figure 2 exemplarily illustrates an observation region for the
two-dimensional case with rtrans = 2. Based on the intended
size of the transmission region (here ntrans = 2rtrans − 1 = 3), the
size of the observation region in each dimension is 3 and every
index of the observation dictionary has dlog2(32)e = 4 bits (i.e.,
24 = 16 dictionary entries of which 9 are actually used). The
squares in the figure are named with numbers from 0, . . . , 8 and
represent the 9 entries (i.e., indices) of the observation dictio-
nary. In the shown constellation H[4] forms the center hyper-
cube. Moreover, the figure exemplarily shows the hit count for
all observation dictionary indices as a result of a sliding window
evaluation. We see that in 93.93 % of the cases the data tuple
to be transmitted was covered by the center hypercube. The
active transmission region is consequently formed by the three
hypercubes H[3], H[4] and H[5] with the blue perimeter. The
entries of the transmission dictionary are then set as follows:
Dtrans[01] = 3, Dtrans[10] = 4, and Dtrans[11] = 5. Adding up
all shown percentage values reveals that a certain small portion
of samples was not captured by the observation region.

The time interval t1 in which the transmission region gets re-
newed influences the adaptability to the signals. If a change in
the signal behavior occurs, a short time interval offers the pos-
sibility to quickly adapt. However, a typical problem then is a
low count value for many of the observation dictionary indices
in the sliding window. This might prevent a well-founded com-
position of the transmission region. For instance, if the trans-
mission region is supposed to consist of 31 hypercubes but only
20 different indices show occurrences in the sliding window the

strategy fails to compose the transmission region. Increasing
the length of the sliding window might help, but a longer slid-
ing window potentially includes more outdated information. In
the following we describe a strategy for filling the transmission
region in case if there are not enough observation dictionary
indices with a non-zero count in the sliding window.

The centers of the hypercubes H[p], where p is an index of
the observation dictionary (let us call them observation hyper-
cubes in the following) form a set of points in a d-dimensional
space. Each such point then corresponds to a unique obser-
vation dictionary index. We declare the center of the center
hypercube to be the origin of the above point set. After an anal-
ysis of the sliding window, all those points are replicated with
the number of occurrences of their corresponding observation
dictionary index in the sliding window. In order to determine
the main direction of the signal behavior in the d-dimensional
observation space, which should be covered by the transmis-
sion region, we perform a principal component analysis (PCA;
see e.g., [14, Chapter 8]). Roughly speaking, the algorithm cal-
culates a best fitting line (a vector) through our set of points
such that the average squared distance from a point to the line
is minimized. A next best-fitting line would then have a di-
rection perpendicular to the first. One can repeat this process
to obtain an orthogonal set of basis vectors, which are called
principal components.

Figure 3 shows an example from our test signals. The trans-
mission region is supposed to be formed by 15 hypercubes
(r = 4) but only 13 were selected from the sliding window
analysis (marked in blue color). In the two-dimensional obser-
vation space the first principal component (pc1) highlights the
main direction of the signal behavior (we neglect pc2 as only
one main signal direction is to be expected). It is a good choice
to extend the transmission region in that direction.

Figure 3: Forming a suitable region in case the number of different observation
dictionary indices in the sliding window is insufficient

To determine additional observation hypercubes (or equiva-
lently, the corresponding indices of the observation dictionary)
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to be added to the transmission region, for every point the min-
imal distance to the line (i.e., the first principal component) is
calculated. The minimal distance is computed along a line that
runs from the point and is perpendicular to the target line. The
distance values are sorted in ascending order, i.e., the point clos-
est to the line comes first. Recall that each point corresponds to
a unique observation hypercube. We then fill the transmission
region with observation hypercubes in the sorted order (where,
of course, we only select hypercubes that are not already part
of the transmission region) until the desired size is reached. In
the example in Figure 3 the transmission region is extended by
the two hypercubes drawn in gray color with a red perimeter.

When applying this strategy the shape of the transmission re-
gion depends on the size of the observation region. The larger it
is, the more hypercubes lie close to the line and the final region
becomes wide-stretched. Limiting the observation region to a
reasonable size (recall that 3 · ntrans ≤ nobs ≤ nd

trans) prevents
this behavior.

Furthermore, we propose the following strategy to allow a
fast adaptation in case the signal behavior changes drastically
within a short time interval (also consider the case that a fault
occurs in the system). We define a second time interval t2 that is
shorter than the fixed renewal period t1 for the transmission re-
gion. Whenever possible (a certain number of different indices
is required in the sliding window) the principal components are
processed after t2 time steps. As long as the transmission re-
gion properly reflects the signals, the direction of the first basis
vector (pc1) of two consecutive t2-cycles does not vary much.
However, an abrupt change of the direction indicates a chang-
ing signal behavior such that the formation of a new region can
be triggered in between the normal t1-cycles, which works fine
if the sender and the receiver realize the strategy based on the
same parameters.

3.6.3. Dynamic transmission dictionary updates
The above strategy for updating the transmission region is

based on fixed time intervals (t1 and t2). One can make this up-
date process more flexible once a transmission region has been
formed with the above strategy. For this we monitor the misses
that occur inside the observation region, which occurs if a data
tuple is covered by an observation dictionary index, which how-
ever, is not stored in the transmission dictionary. These misses
frequently occur if the shape of the transmission region does
not cover the data tuples well and might indicate a change in
the signal behavior. In every such miss case, the sliding win-
dow is evaluated (synchronously at the sender and the receiver).
We seek the unique observation dictionary index with the low-
est count, which is part of the transmission dictionary. Let this
be p1 stored at Dtrans[p′]. This count is then compared to the
count of the observation dictionary index where the miss oc-
curred, let this be p2. If p2 occurs more often in the sliding
window than p1, there is a high chance that upcoming data tu-
ples will be covered by p2. We therefore replace p1 in the trans-
mission dictionary by p2 by setting Dtrans[p′] = p2. Otherwise,
the transmission dictionary remains unaffected.

This dynamic update process of the transmission region of-
fers the potential to immediately and smoothly react to changes

in the signal behavior. However, since updates are triggered
by miss events and only refer to a single observation dictionary
index at one time step, it does not offer the forward-looking
character which the strategy based on the principal components
offers. A combination of both strategies is possible. The trans-
mission region then gets completely renewed after the period
t1. In between that time interval, the dynamic renewal process
adapts the transmission region to the signals if required.

In fact, without any prior analysis of the signal behavior in
the d-dimensional product space over time, the strategy of the
automatic grouping of active hypercubes outperforms the other
schemes due to its ability to automatically adapt to the signals
and optimally form new regions.

4. Examples and evaluation

4.1. Simulation model

The recent developments in the fields of automotive and in-
dustrial applications demand highly reliable systems, which are
able to monitor and diagnose themselves from a large number of
sensor data or state variables. In order to guarantee the real-time
requirements of these systems, time-triggered architectures are
utilized, where the complete communication of data streams
is predetermined and scheduled. Fixed compression ratios are
needed for this.

Up-to-date fault-diagnosis techniques are based on machine
learning, neural networks and artificial intelligence and require
the constant processing of large amounts of input data [15]. The
complexity of these systems arises, amongst others, due to the
spatial decomposition, where sensor data are gathered, merged,
and processed at different locations, e.g., processing units or
cloud services. It is our goal to show that a combined com-
pression of multiple data streams is able to reduce the size of
messages compared to an individual stream compression. This
enables a scheduling algorithm to optimize the task allocation
and consequently the makespan.

Typical sensor data used for fault-diagnosis are voltage and
current measurements at electric components which need to be
communicated from their origin at the sensors to the relevant
processing units through a distributed network. For the anal-
yses and evaluation of our compression algorithms we sim-
ulated data with the hybrid-electric vehicle (HEV) Simulink
model [16]. It allows to realistically simulate sensor measure-
ments and state variables at the various included electrical and
mechanical components according to a driving cycle input. A
more detailed introduction to the model can be found in [17].
The experimental results for the simultaneous two-dimensional
data stream compression are based on the voltage and current
measurements at the DCDC converter of the Simulink model
output of a worldwide harmonized light-duty vehicles test pro-
cedure (WLTP)-Class 3 driving cycle simulation [18].

Figure 4 shows the two signals, where the physical quantities
are mapped to the corresponding quantization levels (analog-
to-digital conversion). The signals are suitable for the evalua-
tion as they offer a challenging signal behavior and can be seen
as representatives of signals often to be analyzed in diagnosis
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Figure 4: Quantized voltage and current signals at the DCDC converter.

systems. They include a broad coverage of quantization lev-
els, slowly varying as well as rapidly varying signal sequences.
Each data set contains Ns = 180100 samples, quantized with
n = 16 bits with a sampling frequency of 100 Hz. Moreover,
they show a correlation based on their physical relation, i.e.,
the two signals rise and drop in a similar fashion, often with
different offsets. This correlation can be quantified with the
Pearson correlation coefficient ρ ∈ [−1, 1], which is a suitable
measure for the similarity of two signals as it indicates a linear
correlation. A value of ρ = 1 expresses a total positive linear
correlation, 0 means no linear correlation, and −1 indicates a
total negative linear correlation. Let us denote the two signals
with S c (current) and S v (voltage). For our data we obtain the
Pearson correlation coefficient

ρ(S c, S v) =
cov(S c, S v)
σ(S c) · σ(S v)

≈ 0.8129,

where cov is the covariance and σ is the standard deviation.
The standard deviation of S c is given by

σ(S c) =

√√√
1
Ns

Ns∑
i=1

|S c[i] − µ(S c)|2

(σ(S v) is calculated analogously) and the covariance of two sig-
nals is defined as

cov(S c, S v) =
1
Ns

Ns∑
i=1

(S c[i] − µ(S c)) · (S v[i] − µ(S v)),

(in both equations Bessel’s correction is not considered) where
µ refers to the means of the signals:

µ(S c) =
1
Ns

Ns∑
i=1

S c[i] and µ(S v) =
1
Ns

Ns∑
i=1

S v[i].

In complex systems, numerous voltages and currents are

measured at different locations since they instantly capture sys-
tem changes, in contrast to e.g., temperature measurements
which typically show a more inert behavior. The implemen-
tations can be found on our project website2.

4.2. Evaluation of the loss rate

This section evaluates the performance of the introduced
compression strategies in terms of the achievable loss rate with
respect to the compression ratio.

The definition of a suitable shape of an active region in
the sense of Section 3.5 significantly influences the compres-
sion performance for the simultaneous compression of several
data streams. The heat map in Figure 5 shows a region with
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Figure 5: Heat map (logarithmic scale) of the hitting squares around the center.
The active region consists of 49 hypercubes (here squares).

2https://networked-embedded.de/es/index.php/dakodis.html
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7 × 7 = 49 squares and the relative center u1 = u2 = 0. For the
analysis we set r = 6 and used only 49 out of the available 63
dictionary entries. According to Section 3.3, the region is al-
ways centered around the last transmitted sample. From darker
to lighter colors we see that consecutive samples are covered
by squares lying on a diagonal of the region. This is expected
if two signals rise and fall in a similar fashion. Based on this
analysis, a subset of the shown squares can be used for smaller
dictionary sizes (see Table 2), or more squares can form larger
regions. A white square indicates that no input sample was cov-
ered by that square, meaning that this square is dispensable and
can be removed from the region without increasing the number
of lost data values.

Figure 6 shows the relationship between the loss rate (the
total number of lost data values divided by the total number
of data values in all streams) and the compression ratio for the
combined compression of the two correlated signals with differ-
ent settings for the parameters r and t. All results are calculated
according to the static cache-based algorithm (Section 3.2) ex-
tended by the grouping technique from Section 3.5. For all dic-
tionary sizes one active region is maintained. Moreover, we
highlight the partial miss strategy (Section 3.4), which reduces
the loss rate for all compression ratios, e.g., compare the blue
line with the square markers with the red line with the diamond
markers. Since s ≤ t the lowest possible compression ratio for
the two settings is (r + t1 + t2)/(s1 + s2 + t1 + t2) = (1 + 16)/32 =

0.53125 and (1 + 20)/32 = 0.65625, respectively. In Figures 6
to 10 the values for r are written to the first three data points
of every line; r increases by 1 for every further data point. The
lines between the data points are shown for illustration only.
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Figure 6: Simultaneous compression of two data streams. Comparison of the
cache-based algorithm with its improved version supporting partial misses.

Figure 7 demonstrates the improvements of the simultane-
ous compression of two data streams when the hypercubes in
the dictionary are maintained as one region according to Sec-
tion 3.5. For the tail lengths t1 = t2 = 8 (compare the blue line
with square markers with the red line with diamond markers)
the loss rate drops from 2.2 % to 0.34 % at a compression ratio
of 0.625. Moreover, we see that larger dictionaries with smaller
hypercubes (here squares) enable to better adjust them to the

signal, e.g., at a compression ratio of 0.625, the red line lies
below the purple line.
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Figure 7: Simultaneous compression of two data streams. Comparison of indi-
vidually maintained hypercubes and a region of hypercubes.

In Figure 8 we compare the combined compression of the
two data streams (according to the dynamic cache-based algo-
rithm with the improvements from Sections 3.4 and 3.5) with
the two streams compressed individually (dynamic cache-based
algorithm with d = 1 and grouping according to Section 3.5),
where the loss rate is calculated from the overall number of
lost samples in both streams divided by the overall number of
transmitted samples. To have comparisons for all compression
ratios we performed two simulations for the individual stream
compressions, one where the tail sizes are t1 = t2 = 8 (red line
with diamond markers) and another one with t1 = 8, t2 = 9 (or-
ange line with circles). The results show, that the simultaneous
compression of the two data streams outperforms the individual
stream compression up to compression ratios of about 0.75, as
the blue line with the square markers is the lowest. It is to be
expected that this effect advantageously scales with the combi-
nation of more correlated streams.
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Figure 8: Comparison of the dynamic simultaneous compression of two data
streams with the compression of the individual data streams.
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Figure 9: Comparison of different fixed group constellations with the automatic
group forming strategy for the voltage and current signals.

Figure 9 compares the loss rate of the data transmission of
our test signals for differently shaped fixed regions. In Figures 9
and 10 the values for r are written to the first three data points
of the red lines with the diamond markers. They are valid for
all lines at the corresponding compression ratio. Moreover, the
side lengths of the grid forming the observation region (here
√

nobs) are written in brackets and belong to the orange lines
with the circles. For instance, at a compression ratio 0.5938 we
have r = 3 and the region consists of at most 23 − 1 = 7 squares
in the 2-dimensional product space. Recalling Figure 5, the
signal analysis reveals the 7 squares with the perimeter to be
the best solution to form a region, whereas any other combina-
tion of 7 squares would lead to significantly higher loss rates.
This procedure is analogously applied for all simulated region
sizes. Based on these predefined regions which show an ex-
cellent sample coverage, the blue line with the square mark-
ers is processed according to the dynamic simultaneous com-
pression (Section 3.3) and shows the lowest loss rate. The red
line with the diamond markers stands for a more realistic sce-
nario, where more general forms of regions are applied, which
cover the sample’s neighborhood better in also other then the
predominant directions. There is a benefit in terms of robust-
ness, however, this comes with the cost of a higher loss rate.
Still, certain knowledge is included in the region formations,
i.e., consecutive samples typically describe a movement on the
diagonal from bottom left to top right, and thus, we set the re-
gions to show a symmetry around a line with the slope 1 in
the 2-dimensional product space. If no predominant direction
of the samples in the product space can be expected within a
certain time interval (i.e., no strong dependency between sig-
nals), our compression strategies still work, but cannot offer
their full potential. The orange line with the circle markers is
processed according to the strategy from Section 3.6.2 with the
extension from Section 3.6.3 (automatic grouping of active hy-
percubes supporting dynamic transmission dictionary updates).
This combination shows the best performance, as the dynamic
transmission dictionary updates explicitly help to reduce the
number of lost data values inside the observation region. We

conclude that this method shows a loss rate basically as low as
the manual strategy based on a prior signal analysis, however,
here we do not need any prior knowledge about the expected
signal behavior.

The major advantage of the proposed new strategy (Sec-
tion 3.6) becomes visible in Figure 10. For demonstration pur-
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Figure 10: Comparison of different fixed group constellations with the auto-
matic group forming strategy for the manipulated voltage and current signals.

poses we modified one of our testsignals partly to force a dif-
ferent behavior in the 2-dimensional product space, i.e., we in-
verted the current signal (the red line in Figure 4) for about half
of the time such that the signal correlation is reversed. We also
simulated a transient fault by making a value of a data stream
stuck for a certain time. These signal modifications exemplarily
stand for a changing signal behavior over time. It is apparent
that the previously introduced fixed regions perform substan-
tially worse in this scenario. For instance, comparing Figures 9
and 10 at a compression ratio of 0.75, the loss rate of the blue
curve with the square markers increases from a value close to
0 % to about 0.75 %. The automatically formed regions are able
to adapt to the signal changes such that the orange line with the
circles shows about the same low loss rate for both scenarios.

4.3. Evaluation of consecutive losses
Besides the loss rate (the accumulated number of lost data

values in relation the overall number of values in a certain time
interval), other information about loss occurrences is essential.
Especially the trend of the number of lost data values calculated
from a sliding window might indicate an upcoming change in
the signal behavior, being caused by a normal or even faulty
system condition.

Another important analysis interprets the number of consec-
utively lost data values in a data stream. Recall that in a miss
case the potential range of the correct data value from the i-th
stream has the size 2ti . For many applications this uncertainty
is acceptable if it does not happen too many times in a row. In
turn, if an (online) analysis of loss occurrences monitors such
incidences, the signal behavior might have potentially changed
such that the transmission region became inappropriate. How-
ever, it could also just indicate harsh signal conditions. The
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Figure 11: Occurrences of consecutive losses w.r.t. to all loss cases (in percent).
Comparison of manually defined regions (chart a) with automatically formed
regions (chart b) for the voltage and current signals for r = 4.

Figure 12: Occurrences of consecutive losses w.r.t. to all loss cases (in percent).
Comparison of manually defined regions (chart a) with automatically formed
regions (chart b) for the manipulated voltage and current signals for r = 4.

former case can now be tackled with our proposed new strategy
of the automatic grouping of active hypercubes.

The pie charts in Figure 11 visualize the occurrences of con-
secutive losses with respect to all loss situations and compare
the performance of manually defined regions (chart a) with au-
tomatically formed regions for r = 4 (chart b). Both strategies
have about the same overall loss rate (see the blue curve with
square markers and the orange curve with circles in Figure 9 at
a compression ratio of 0.625). In chart a) (for fixed regions), we
see that in 48 % of the loss cases only one sample is lost before
the region again covers the data (dark blue slice), whereas the
corresponding portion for the strategy with automatic grouping
of active hypercubes is 65 % (chart b). This shows that the auto-
matic grouping strategy shows a better adaptation to the signals
as manually defined fixed regions. The rest of the distribution
is also in favor of the automatic grouping strategy, showing that
in the majority of the loss cases the region covers the signal
again after fewer consecutive lost data values. Looking at the
rare cases where more than 8 consecutive data values are lost,
it is to be mentioned that a lost data value can be reconstructed
with only a slightly lower accuracy, e.g., in our example for
stream 1 with n1 = 16 (bits per data value) and t1 = 8, the un-

certainty of the correct code word is only half of its potential
range of 2t1/2 = 128 values of the overall code word space of
2n1 = 65536 values (if the center value corresponding to the
missed head is reconstructed; a detailed analysis of the proba-
bility of a loss and the reduction of the uncertainty in this case
can be found in [6]). These rare cases might happen if sudden
peaks occur in a signal such that the coverage suffers. Yet, the
main signal characteristics are captured with our compression
algorithm and the loss rate of the analyzed scenario is as low as
about 0.35 % (see Figure 9, the square marker and the circle at
a compression ratio of 0.625).

Figure 12 is analogously prepared to Figure 11 and shows the
analysis for the manipulated voltage and current signals. The
pie charts directly reflect the large difference in the loss rate
of the two strategies (compare the blue curve with the square
markers and the orange curve with circles in Figure 10 at a
compression ratio of 0.625). While our new automatic group-
ing strategy from Section 3.6.2 and Section 3.6.3 performs well
in both situations (compare Figure 11b and 12b), the compari-
son of the pie charts in Figure 11a and 12a reveals a decrease
in single loss occurrences as well as an increase of cases with
more consecutive losses.

The (online) evaluation of (1) the trend of loss occurrences
and (2) the number of consecutive losses can also be included in
the triggering process for the renewal of a region. Currently, our
trigger interprets a variation of the direction of a continuously
processed regression line (in terms of principal components)
through the observation region as described in Section 3.6.2.
This captures the predominant direction of the signals. More-
over, sudden changes in the signal behavior are detected by
monitoring the misses that occur inside the observation region
as described in Section 3.6.3. A triggering strategy based on
these criteria shows the best performance in our experiments.

The automatic adaptation and monitoring capabilities also
form the foundation for an automatic selection of streams that
can be advantageously compressed. With synchronized selec-
tion schemes, the sender and receiver can agree on some new
signals according to predefined evaluation criteria.

5. Future work

In this paper we tackle the challenge for our compression
algorithms to automatically adapt to changes in the signal char-
acteristics. The new strategies now support the utilization of
the compression algorithms in many different applications, also
when only little knowledge about the signals is available. In our
current setups, the parameters s, t and r, which determine the
number and the size of the hypercubes for each stream as well
as the dictionary size and consequently the compression ratio
(with a certain loss rate), are fixed. The number of streams d to
be included in the combined compression is also fixed. As the
trend goes towards open distributed real-time embedded sys-
tems (ODRE), where new services (and thus new data streams)
can join and leave the system, we intend to support the special
requirements in the future by offering possibilities to merge and
split data streams online (during the transmission through the
network) via adaptive synchronized dictionaries.
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As a first step towards this goal we intend to implement
improved monitoring and analysis techniques, that simultane-
ously supervise many data streams, and provide the DAKODIS
scheduling algorithms with meaningful information to opti-
mally plan the processing resources and data communications.

In general, our introduced algorithms are mainly designed
for the compression of multiple correlated data streams of mea-
sured physical quantities, where the data values show a tem-
poral locality. We also want to investigate our algorithms on
different kinds of data which show similar characteristics.

6. Conclusion

In this paper we motivate the usage of data compression in
distributed online-diagnosis systems. We highlight the fact that
diagnostic data streams (e.g., sensor measurements of physical
quantities) are often highly correlated and present compression
algorithms that allow a simultaneous compression of such data
streams utilizing the special signal characteristics. The intro-
duced algorithms support real-time (time-triggered) architec-
tures by guaranteeing a fixed compression ratio. With an ex-
ample we show that, depending on the parameters, more than
one third of the bits (34.3 %) can be saved while still not los-
ing more than 0.2 % of the values (see the fourth data point on
the blue curve in Figure 8). In turn, this means that 99.8 % of
the values are delivered correctly and without any losses but
with a significant reduction of bandwidth demands. The newly
introduced compression schemes automatically adapt to chang-
ing signal conditions over time and show superior compression
results in terms of the lowest loss rate (orange line in Figure 10)
and fewer consecutive losses (Figure 12b).
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