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Abstract. We study the space complexity of the following problem: For a
fixed regular language L, we receive a stream of symbols and want to test

membership of a sliding window of size n in L. For deterministic streaming
algorithms we prove a trichotomy theorem, namely that the (optimal) space
complexity is either constant, logarithmic or linear, measured in the window size

n. Additionally, we provide natural language-theoretic characterizations of the
space classes. We then extend the results to randomized streaming algorithms
and we show that in this setting, the space complexity of any regular language is

either constant, doubly logarithmic, logarithmic or linear. Finally, we introduce
sliding window testers, which can distinguish whether a sliding window of size
n belongs to the language L or has Hamming distance > εn to L. We prove
that every regular language has a deterministic (resp., randomized) sliding
window tester that requires only logarithmic (resp., constant) space.

1. Introduction

1.1. The sliding window model. Streaming algorithms process a data stream
a1a2a3 · · · of elements ai from left to right and have at time t only direct access
to the current element at. In many streaming applications, elements are outdated
after a certain time, i.e., they are no longer relevant. The sliding window model is
a simple way to model this. A sliding window algorithm computes for each time
instant t a value that only depends on the relevant past (the so-called active window)
of a1a2 · · · at. There are several formalizations of the relevant past. One way to
do this is to fix a window size n. Then the active window consists at each time
instant t of the last n elements at−n+1at−n+2 · · · at (here we assume that ai is a
fixed padding symbol if i 6 0). In the literature this is also called the fixed-size
model. Another sliding window model that can be found in the literature is the
variable-size model; see e.g. [7]. In this model, the arrival of new elements and the
expiration of old elements can happen independently, which means that the window
size can vary.1 This allows to model for instance time-based windows, where data
items arrive at irregular time instants and the active window contains all data items
that arrive in the last n seconds for a fixed n. The special case of the variable-size
model, where old symbols do not expire, is the classical streaming model.

A general goal in the area of sliding window algorithms is to avoid the explicit
storage of the active window, which would require Ω(n) space for a window size
n, and, instead, to work in considerably smaller space, e.g. polylogarithmic space
with respect to the window size n. A detailed introduction into the sliding window
model can be found in [1, Chapter 8].

The (fixed-size) sliding window model was introduced in the seminal paper of
Datar et al. [26] where the authors considered the basic counting problem: Given a
window size n and a stream of bits, maintain a count of the number of 1’s in the
window. One can easily observe that an exact solution would require Θ(n) bits.

1The reader can also think of a queue data structure, where letters can be added to the right
and removed at the left, the latter without retrieving the identity of the letter.
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Intuitively, the reason is that the algorithm cannot see the bit which is about to
expire (the n-th most recent bit) without storing it explicitly; this is in fact the
main difficulty in most sliding window algorithms. However, Datar et al. show that
with O( 1

ε · log2 n) bits one can maintain an approximate count up to a multiplicative
factor of 1 ± ε. In Section 1.3.6 below we briefly discuss further work on sliding
window algorithms.

A foundational problem that has been surprisingly neglected so far is the language
recognition problem over sliding windows: Given a language L ⊆ Σ∗ and a stream
of symbols over a finite alphabet Σ, maintain a data structure which allows to
query membership of the active window in L. In other words, we want to devise a
streaming algorithm which, after every input symbol, either accepts if the current
active window belongs to L, or rejects otherwise. This problem finds applications
in complex event processing, where the goal is to detect patterns in data streams.
These patterns are usually described in some language based on regular expressions;
see e.g. [25, 89] for more details. For the standard streaming model, where input
symbols do not expire, some work on language recognition problems has been done;
see Section 1.3.7 below.

Example 1.1. Consider the analysis of the price of a stock in order to identify short-
term upward momentum. The original stream is a time series of stock prices, and it
is pre-processed in the following way: over a sliding window of 5 seconds compute
the linear regression of the prices and discretize the slope into the following values:
P2 (high positive), P1 (low positive), Z (zero), N1 (low negative), N2 (high negative).
This gives rise to a derived stream of symbols in the alphabet Σ = {P2,P1,Z,N1,N2},
over which we describe the upward trend pattern: (i) no occurrence of N2, (ii) at
most two occurrences of N1, (iii) and any two occurrences of Z or N1 are separated
by at least three positive symbols. The upward trend pattern can be described as
the intersection of the language defined by the following regular expression eii and
the complement of the language defined by ei:

ei = Σ∗ · N1 · Σ∗ · N1 · Σ∗ · N1 · Σ∗

eii = (P2 + P1)∗ ·
(
(Z + N1) · (P2 + P1)[3,∞)

)∗ · (ε+ Z + N1) · (P2 + P1)∗

We want to monitor continuously whether the window of the last hour matches the
upward trend pattern, as this is an indicator to buy the stock and ride the upward
momentum. Our results will show that there is a space efficient streaming algorithm
for this problem, which can be synthesized from the regular expressions ei and eii.

In this paper we focus on querying regular languages over sliding windows.
Unfortunately, there are simple regular languages which require Ω(n) space in the
sliding window model, i.e., one cannot avoid maintaining the entire window explicitly.
However, for certain regular languages, such as for the upward trend pattern from
above, we present sublinear space streaming algorithms. Before we explain our
results in more detail, let us give examples of sliding window algorithms for simple
regular languages.

Example 1.2. Let Σ = {a, b} be the alphabet. In the following examples we refer to
the fixed-size sliding window model.

(i) Let L = Σ∗a be the set of all words ending with a. A streaming algorithm
can maintain the most recent symbol of the stream in a single bit, which
is also the most recent symbol of the active window. Hence, the space
complexity of L is O(1) in the sliding window model.

(ii) Let L = Σ∗aΣ∗ be the set of all words containing a. If n ∈ N is the window
size, then a streaming algorithm can maintain the position 1 6 i 6 n (from
right to left) of the most recent a-symbol in the active window or set i =∞
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if the active window contains no a-symbols. Let us assume that the initial
window is bn and initialize i :=∞. On input a we set i := 1 and on input b
we increment i and then set i :=∞ if i > n. The algorithm accepts if and
only if i 6 n. Since the position i can be stored using O(log n) bits, we have
shown that L has space complexity O(log n) in the sliding window model.

(iii) Let L = aΣ∗ be the set of all words starting with a. We claim that any
(deterministic) sliding window algorithm for L and window size n ∈ N (let
us call it Pn) must store at least n bits, which matches the complexity of
the trivial solution where the window is stored explicitly. More precisely,
the claim is that Pn reaches two distinct memory states on any two distinct
words x = a1 · · · an ∈ Σn and y = b1 · · · bn ∈ Σn. Suppose that ai 6= bi.
Then we simulate Pn on the streams xbi−1 and ybi−1, respectively. The
suffixes (or windows) of length n for the two streams are ai · · · anbi−1

and bi · · · bnbi−1. Since exactly one of the two windows belongs to L, the
algorithm Pn must accept exactly one of the streams xbi−1 and ybi−1. In
particular, Pn must reach two distinct memory states on the words xbi−1

and ybi−1, and therefore Pn must have also reached two distinct memory
states on the prefixes x and y, as claimed above. Therefore, Pn must have
at least |Σn| = 2n memory states, which require n bits of memory.

1.2. Results. Let us now present the main results of this paper. The precise
definitions of all used notions can be found in the main part of the paper. We denote
by FL(n) (resp., VL(n)) the space complexity (measured in bits) of an optimal
sliding window algorithm for the language L in the fixed-size (resp., variable-size)
sliding window model. Here, n denotes the fixed window size for the fixed-size
model, whereas for the variable-size model n denotes that maximal window size
among all time instants when reading an input stream.

Our first result is a trichotomy theorem for the sliding window model, stating
that the deterministic space complexity is always either constant, logarithmic, or
linear. This holds for both the fixed- and the variable-size model. Furthermore, we
provide natural characterizations for the three space classes. For this, we need the
following language classes:

• Reg is the class of all regular languages.
• Len is the class of all regular length languages, i.e., regular languages
L ⊆ Σ∗ such that for every n > 0, either Σn ⊆ L or Σn ∩ L = ∅.
• ST is the class of all suffix testable languages [79, Section 5.3], i.e., finite

Boolean combinations of languages of the form Σ∗w where w ∈ Σ∗ (note
that these languages are regular).2

• LI is the class of all regular left ideals, i.e., languages of the form Σ∗L for
L ⊆ Σ∗ regular.

We emphasize that the three defined language properties only make sense with respect
to an underlying alphabet. If L1, . . . ,Ln are classes of languages over some alphabet
Σ, then 〈L1, . . . ,Ln〉 denotes the Boolean closure of the classes L1, . . . ,Ln, which
is the class of all finite Boolean combinations of languages L ∈

⋃n
i=1 Li. We also

use the following asymptotic notation in our results: For functions f, g : N→ R>0,
f(n) = Ω∞(g(n)) holds if f(n) > c · g(n) for some c > 0 and infinitely many n ∈ N.
Furthermore, f(n) = Θ∞(g(n)) holds if f(n) = O(g(n)) and f(n) = Ω∞(g(n)). Now
we can state our first main result.

2For the results presented in this section, one could equivalently define ST as the class of all
languages Σ∗w without taking the Boolean closure.
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Theorem 1.3. Let L ⊆ Σ∗ be regular. The space complexity FL(n) is either Θ(1),
Θ∞(log n), or Θ∞(n). Moreover, we have:

FL(n) = Θ(1) ⇐⇒ L ∈ 〈ST,Len〉
FL(n) = Θ∞(log n) ⇐⇒ L ∈ 〈LI,Len〉 \ 〈ST,Len〉
FL(n) = Θ∞(n) ⇐⇒ L ∈ Reg \ 〈LI,Len〉

The space complexity VL(n) is either Θ(1), Θ(log n), or Θ(n). Moreover, we have:

VL(n) = Θ(1) ⇐⇒ L ∈ {∅,Σ∗}
VL(n) = Θ(log n) ⇐⇒ L ∈ 〈LI,Len〉 \ {∅,Σ∗}
VL(n) = Θ(n) ⇐⇒ L ∈ Reg \ 〈LI,Len〉

Theorem 1.3 describes which regular patterns can be queried over sliding windows
in sublinear space: Regular left ideals over a sliding window express statements of the
form “recently in the stream some regular event happened”. Dually, complements
of left ideals over a sliding window express statements of the form “at all recent
times in the stream some regular event happened”.

Most papers on streaming algorithms make use of randomness. For many prob-
lems, randomized streaming algorithms are more space efficient than deterministic
streaming algorithms; see e.g. [3] and the remarks at the beginning of Section 4. So,
it is natural to consider randomized sliding window algorithms for regular languages.
Our randomized sliding window algorithms have a two-sided or one-sided error of
1/3 (any constant error probability below 1/2 would yield the same results). For a
one-sided error we obtain exactly the same space trichotomy for regular languages
as for deterministic algorithms (Theorem 4.18). This changes if we allow a two-sided
error. With Fr

L(n) we denote the optimal space complexity of a randomized sliding
window algorithm for L in the fixed size model and with two-sided error. Our second
main result says that the functions Fr

L(n) for L regular fall into four randomized
space complexity classes: constant, doubly logarithmic, logarithmic, and linear
space. A language L is suffix-free if xy ∈ L and x 6= ε implies y /∈ L. We denote by
SF the class of all regular suffix-free languages.

Theorem 1.4. Let L ⊆ Σ∗ be regular. The randomized space complexity Fr
L(n) of

L in the fixed-size sliding window model is either Θ(1), Θ∞(log log n), Θ∞(log n),
or Θ∞(n). Furthermore:

Fr
L(n) = Θ(1) ⇐⇒ L ∈ 〈ST,Len〉

Fr
L(n) = Θ∞(log log n) ⇐⇒ L ∈ 〈ST,SF,Len〉 \ 〈ST,Len〉

Fr
L(n) = Θ∞(log n) ⇐⇒ L ∈ 〈LI,Len〉 \ 〈ST,SF,Len〉

Fr
L(n) = Θ∞(n) ⇐⇒ L ∈ Reg \ 〈LI,Len〉

Figure 1 compares the deterministic and the randomized space complexity in
the fixed-size model (we only show the upper bounds in order to not overload the
figure). We also consider randomized algorithms in the variable-size model. In this
setting we obtain again the same space trichotomy for regular languages as for the
deterministic case; see Lemma 4.21.

By Theorems 1.3 and 1.4, some (simple) regular languages (e.g. a{a, b}∗) do not
admit sublinear space (randomized) algorithms. This gives the motivation to seek
for alternative approaches in order to achieve efficient algorithms for all regular
languages. We take our inspiration from the property testing model introduced by
Goldreich et al. [61]. In this model, the task is to decide (with high probability)
whether the input has a particular property P , or is “far” from any input satisfying P ,
while querying as few symbols of the input as possible. Alon et al. prove that
every regular language has a property tester making only O(1) many queries [2].
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Figure 1. The space complexity of regular languages in the fixed-
size sliding window model. Reg: regular languages, LI: regular
left ideals, ST: suffix testable languages, SF: regular suffix-free
languages, Len: regular length languages. The angle brackets 〈·〉
denote Boolean closure.

The idea of property testing was also combined with the streaming model, yielding
streaming property testers, where the objective is not to minimize the number of
queries but the required memory [34, 38]. We define sliding window testers, which,
using as little space as possible, must accept if the window (of size n) belongs to
the language L and must reject if the window has Hamming distance at least γ(n)
from every word in L. Here γ(n) 6 n is a function that is called the Hamming gap
of the sliding window testers. We focus on the fixed-size model.

Two of our main results concerning sliding window testers that we show in
Section 5 are the following:

Theorem 1.5. Let L ⊆ Σ∗ be regular.

(i) There exists a deterministic sliding window tester for L with constant
Hamming gap that uses space O(log n).

(ii) For every ε > 0 there exists a randomized sliding window tester for L with
two-sided error and Hamming gap εn that uses space O(1/ε).

Section 5 contains additional results that give a rather precise tradeoff between
space complexity and the Hamming gap function γ(n). In addition we also study
sliding window testers with a one-sided error and prove optimality for most of
our results by providing matching lower bounds. See Section 5.2 for a complete
discussion of our results for sliding window testers.

1.3. Related work. This paper builds on four conference papers [43, 44, 45, 47]. To
keep this paper coherent, we decided to omit some of the results from [43, 44, 45, 47].
In this section, we briefly discuss these results as well as other related work.

1.3.1. Uniform setting. In all our results we assume a fixed regular language L.
The space complexity is only measured with respect to the window size. It is
a natural question to ask how the space bounds depend on the size of a finite
automaton (deterministic or nondeterministic) for L. This question is considered
in [43]. It is shown that, if A is a DFA (resp., NFA) with m states for a language
L ∈ 〈LI,Len〉, then VL(n) = O(2m · m · log n) (resp., VL(n) = O(4m · log n)).
Furthermore, for every k > 1 there exists a language Lk ⊆ {0, . . . , k}∗ recognized
by a deterministic automaton with k + 3 states such that Lk ∈ 〈LI,Len〉 and
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FLk
(n) > (2k − 1) · (log n − k). A binary encoding of the words in Lk yields a

subexponential lower bound over a fixed alphabet [41, Theorem 4.45]. Further
results on the uniform space complexity for languages in 〈LI,Len〉 as well as in
〈ST,Len〉 can be found in [41, Section 4.3].

1.3.2. Membership in the space classes. In view of Theorem 1.3 it is natural to ask
for the complexity of checking whether a given (non)deterministic finite automaton
accepts a language from 〈ST,Len〉 or 〈LI,Len〉, respectively. Both problems are
shown in [43] to be NL-complete for deterministic automata and Pspace-complete
for nondeterministic automata. We remark that for the class 〈ST,SF,Len〉 from
Theorem 1.4 the complexities of the corresponding membership problems are open.

1.3.3. Other models of randomness. In Section 1.2 we did not specify the underlying
model of randomized sliding window algorithms (that is used in Theorem 1.4) in a
precise way. Let us be a bit more specific: we require that a randomized sliding win-
dow algorithm for a language L running on an input stream s outputs at every time
instant a correct answer on the question whether the current window belongs to L or
not with high probability (say at least 2/3). This is not the only model of randomized
sliding window algorithms that can be found in the literature. A stronger model
requires that with high probability the randomized sliding window algorithm outputs
at every time instant a correct answer. So the difference is between “∀ time in-
stants: Pr[answer correct] > 2/3” and “Pr[∀ time instants: answer correct] > 2/3”.
A randomized sliding window algorithm that fulfills the latter (stronger) correctness
criterion is called strictly correct in [46]. This model is for instance implicitly used
in [13, 26]. In [46] it is shown that every strictly correct randomized sliding window
algorithm can be derandomized without increasing the space complexity. This result
is shown in a very general context for arbitrary approximation problems. The proof
in [46] needs input streams of length doubly exponential in the window size for the
derandomization. In contrast, if one restricts to input streams of length polynomial
in the window size then strictly correct randomized sliding window algorithms can be
more space efficient than ordinary randomized sliding window algorithms (as defined
in this paper) [46]. The intermediate case of exponentially long input streams is
open.

Finally, we emphasize that our randomized sliding window algorithms are not nec-
essarily adversarially robust, i.e., an adversary may fool the algorithm by observing
the internal memory state and picking the input symbols adaptively.

1.3.4. Context-free languages. It is natural to ask to which extent our results hold
for context-free languages. This question is considered in [49, 42]. Let us briefly
discuss the results. In [49] it is shown that if L is a context-free language with
FL(n) 6 log n− ω(1) then L must be regular and FL(n) = Θ(1). Hence, the gap
between constant space and logarithmic space for regular languages also exists for
context-free languages. In contrast, the gap between logarithmic space and linear
space for regular languages does not extend to all context-free languages. In [49],
the authors construct examples of context-free languages L with FL(n) = Θ∞(n1/c)
and VL(n) = Θ(n1/c) for every natural number c > 2. These languages are not
deterministic context-free, but [49] also contains examples of deterministic one-turn
one-counter languages L and L′ with FL(n) = Θ∞(log2 n) and VL′(n) = Θ(log2 n).
In [42], the author studies the space complexity of visibly pushdown languages
(a language class strictly in-between the regular and deterministic context-free
languages with good closure and decidability properties [5]). It is shown that for
every visibly pushdown language the space complexity in the variable-size sliding
window model is either constant, logarithmic or linear in the window size. Hence,
the space trichotomy that we have seen for regular languages also holds for visibly
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pushdown languages in the variable-size model. Whether the visibly pushdown
languages also exhibit the space trichotomy in the fixed-size model is open.

1.3.5. Update times. In this paper, we only considered the space complexity of
sliding window algorithms. Another important complexity measure is the update
time of a sliding window algorithm, i.e., the worst case time that is spent per
incoming symbol for updating the internal data structures. In [88], it is shown that
for every regular language L there exists a deterministic sliding window algorithm
(for the fixed-size model) with constant update time. The underlying machine
model of the sliding window algorithm is the RAM model, where basic arithmetic
operations on registers of bit length O(log n) (with n the window size) need constant
time. In fact, the algorithm in [88] is formulated in a more general context for any
associative aggregation function. The case of a regular language L is obtained by
applying the algorithm from [88] for the syntactic monoid of L. In [48] the result of
[88] is extended to visibly pushdown languages.

1.3.6. Further work on sliding windows. We have already mentioned the seminal work
of Datar et al. on the sliding window model [26], where the authors considered the
problem of estimating the number of ones in the sliding window. In the same paper,
Datar et al. extend their result for the basic counting problem to arbitrary functions
which satisfy certain additivity properties, e.g. Lp-norms for p ∈ [1, 2]. Braverman
and Ostrovsky introduced the smooth histogram framework [17], to compute so-
called smooth functions over sliding windows, which include all Lp-norms and
frequency moments. Further work on computing aggregates, statistics and frequent
elements in the sliding window model can be found in [7, 9, 12, 13, 16, 27, 35, 55, 56].
The problem of sampling over sliding windows was first studied in [8] and later
improved in [18]. As an alternative to sliding windows, Cohen and Strauss consider
the problem of maintaining stream aggregates where the data items are weighted by
a decay function [24].

1.3.7. Language recognition in the classical streaming model. Whereas language
recognition in the sliding window model has been neglected prior to our work, there
exists some work on streaming algorithms for formal languages in the standard
setting, where the streaming algorithm reads an input word w and at the end has
to decide whether w belongs to some language. Clearly, for regular languages, this
problem can be solved in constant space. Streaming algorithms for various subclasses
of context-free languages have been studied in [10, 38, 63, 69, 72]. Related to this is
the work on querying XML documents in the streaming model [11, 67, 85].

1.3.8. Streaming pattern matching. Related to our work is the problem of streaming
pattern matching, where the goal is to find all occurrences of a pattern (possibly
with some bounded number of mismatches) in a data stream; see e.g. [66, 82, 57,
54, 19, 20, 21, 22, 23, 58, 60, 59, 80, 86] and search of repetitions in streams [33, 31,
32, 53, 52, 73, 74].

1.3.9. Dynamic membership problems for regular languages. A sliding window al-
gorithm can be viewed as a dynamic data structure that maintains a dynamic
string w (the window content) under very restricted update operations. Dynamic
membership problems for more general updates that allow to change the symbol at
an arbitrary position have been studied in [6, 39, 40]. As in our work, a trichotomy
for the dynamic membership problem of regular languages has been obtained in [6]
(but the classes appearing the trichotomy in [6] are different from the classes that
appear in our work).
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1.4. Outline. The outline of the paper is as follows: In Section 2 we give preliminary
definitions and introduce the fixed-size sliding window model and the variable-size
sliding window model. In Section 3 we study deterministic sliding window algorithms
for regular languages and prove the space trichotomy and the characterizations of
the space classes (Theorem 1.3). In Section 4 we turn to randomized sliding window
algorithms and prove the space tetrachotomy (Theorem 1.4). Finally, in Section 5
we present deterministic and randomized sliding window property testers for regular
languages (Theorem 1.5).

2. Preliminaries

2.1. Words and languages. An alphabet Σ is a nonempty finite set of symbols. A
word over an alphabet Σ is a finite sequence w = a1a2 · · · an of symbols a1, . . . , an ∈ Σ.
The length of w is the number |w| = n. The empty word is denoted by ε whereas the
lunate epsilon ε denotes small positive numbers. The concatenation of two words
u, v is denoted by u · v or uv. The set of all words over Σ is denoted by Σ∗. A subset
L ⊆ Σ∗ is called a language over Σ.

Let w = a1 · · · an ∈ Σ∗ be a word. Any word of the form a1 · · · ai is a prefix of w,
a word of the form ai · · · an is a suffix of w, and a word of the form ai · · · aj is a factor
of w. The concatenation of two languages K,L is KL = {uv | u ∈ K, v ∈ L}. For a
language L we define Ln inductively by L0 = {ε} and Ln+1 = LnL for all n ∈ N.
The Kleene-star of a language L is the language L∗ =

⋃
n∈N L

n. Furthermore, we

define L6n =
⋃

06k6n L
k and L<n =

⋃
06k<n L

k.
Let L ⊆ Σ∗ be a language. We say that L separates two words x, y ∈ Σ∗ with

x 6= y if |{x, y} ∩ L| = 1. We say that L separates two languages K1,K2 ⊆ Σ∗ if
K1 ⊆ L and K2 ∩ L = ∅, or K2 ⊆ L and K1 ∩ L = ∅.

2.2. Automata and regular languages. For good introductions to the theory of
formal languages and automata we refer to [15, 62, 68].

The standard description for regular languages are finite automata. Let Σ be a
finite alphabet. A nondeterministic finite automaton (NFA) is a tuple

A = (Q,Σ, I,∆, F ),

where Q is the finite set of states, I ⊆ Q is the set of initial states, ∆ ⊆ Q× Σ×Q
is the set of transitions, and F ⊆ Q is the set of final states. A run of A on a word
w = a1 · · · an ∈ Σ∗ is a finite sequence π = q0a1q1a2q2 · · · qn−1anqn ∈ Q(ΣQ)∗ such
that (qi−1, ai, qi) ∈ ∆ for all 1 6 i 6 n. We call π successful if q0 ∈ I and qn ∈ F .
The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | there exists a successful run of A on w}.

A language L ⊆ Σ∗ is regular if it is accepted by some NFA. The size |A| is defined
as the number of states.

A (left-)deterministic finite automaton (DFA) is an NFA A = (Q,Σ, I,∆, F ),
where I = {q0} has exactly one initial state q0, and for all p ∈ Q and a ∈ Σ there
exists exactly one transition (p, a, q) ∈ ∆. We view ∆ as a transition function
δ : Q × Σ → Q and write A in the format A = (Q,Σ, q0, δ, F ). The transition
function δ can be extended to a right action · : Q× Σ∗ → Q of the free monoid Σ∗

on the state set Q by setting q · ε = q and defining inductively q · ua = δ(q · u, a) for
all q ∈ Q, u ∈ Σ∗, and a ∈ Σ. We write A(w) instead of q0 · w. It is known that
any NFA can be turned into an equivalent DFA by the power set construction.

We also consider automata with (possibly) infinitely many states as our formal
model for streaming algorithms. A deterministic automaton A has the same format
A = (Q,Σ, q0, δ, F ) as a DFA but we drop the condition that Q must be finite. We
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use the notations from the previous paragraph for general deterministic automata
as well.

It is well-known that for every regular language L there exists a minimal DFA AL
for L, which is unique up to isomorphism and whose states are the Myhill-Nerode
classes of L. This construction can be carried out for every language L and yields
a deterministic automaton AL for L such that for every deterministic automaton
B for L, we have that B(x) = B(y) implies AL(x) = AL(y) for all x, y ∈ Σ∗ [30,
Chapter III, Theorem 5.2]. We call this automaton the minimal deterministic
automaton for L.

2.3. Streaming algorithms. A stream is a finite sequence of elements a1 · · · am,
which arrive element by element from left to right. So, it is just a finite word over
some alphabet. In this paper, the elements ai are always symbols from a finite
alphabet Σ. A streaming algorithm reads the symbols of the input stream from
left to right. At time instant t the algorithm only has access to the symbol at and
the internal storage, which is encoded by a bit string. The goal of the streaming
algorithm is to compute a function ϕ : Σ∗ → Y , where Σ is a finite alphabet and
Y is a set of output values. For the remainder of this paper, we only consider the
Boolean case, i.e., Y = {0, 1}; in other words, ϕ is the characteristic function of
a language L. Furthermore, we abstract away the actual computation and only
analyze the memory requirement.

Formally, a deterministic streaming algorithm is the same as a deterministic
automaton P and we say that P is a streaming algorithm for the language L(P).
The letter P stands for program. If P = (M,Σ,m0, δ, F ) then the states from M are
usually called memory states. We require M 6= ∅ but allow M to be infinite. The
space of P (or number of bits used by P) is given by s(P) = log |M | ∈ R>0 ∪ {∞}.
Here and in the rest of the paper, we denote with log the logarithm with base two,
i.e., we measure space in bits. If s(P) = ∞ we will measure the space restricted
to input streams where some parameter is bounded (namely the window size); see
Section 2.5.

We remark that many streaming algorithms in the literature only produce a
single answer after completely reading the entire stream. Also, the length of the
stream is often known in advance. However, in the sliding window model we rather
assume an input stream of unbounded and unknown length, and need to compute
output values for every window, i.e., at every time instant.

In the following, we introduce the sliding window model in two different variants:
the fixed-size sliding window model and the variable-size sliding window model.

2.4. Fixed-size sliding window model. We fix an arbitrary padding symbol
� ∈ Σ. Given a stream x = a1a2 · · · am ∈ Σ∗ and a window size n ∈ N, we define
lastn(x) ∈ Σn by

lastn(x) =

{
am−n+1am−n+2 · · · am, if n 6 m,

�n−ma1 · · · am, if n > m,

which is called the window of size n, or the active or current window. In other words,
lastn(x) is the suffix of length n, padded with �-symbols on the left. We view �n

as the initial window; its choice is completely arbitrary.
Let L ⊆ Σ∗ be a language. The sliding window problem SWn(L) for L and

window size n ∈ N is the language

SWn(L) = {x ∈ Σ∗ | lastn(x) ∈ L}.

Note that for every L and every n, SWn(L) is regular. A sliding window algorithm
(SW-algorithm) for L and window size n ∈ N is a streaming algorithm for SWn(L).
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The function FL : N→ R>0 is defined by

(1) FL(n) = inf{s(Pn) | Pn is an SW-algorithm for L and window size n}.
It is called the space complexity of L in the fixed-size sliding window model. Note
that FL(n) <∞ since SWn(L) is regular. A subtle point is that the space complexity
FL(n) of a language L in general depends on the underlying alphabet. A simple
example is L = a∗ which has complexity FL(n) = O(1) over the singleton alphabet
{a} whereas it has complexity FL(n) = Θ(log n) over the alphabet {a, b} (the latter
follows from our results). Here, it is also important that the padding symbol �
belongs to the alphabet Σ over which the language L is defined. An alternative
definition would be to take a fresh padding symbol � /∈ Σ and define lastn(x) and
SWn(L) as above. For instance, for L = a∗ we would obtain SWn(L) = {ai | i > n},
whose minimal DFA has n+ 1 states. Thus, the space complexity would be Ω(log n)
instead of O(1). Note that these differences only concern the space complexity
during the first n steps (until the window is filled up). Sliding window algorithms
are usually used for streams that are much longer than the window size. So it might
be acceptable, if during a short initial phase the space complexity is higher than for
the rest of the stream.

We draw similarities to circuit complexity, where a language L ⊆ {0, 1}∗ is
recognized by a family of circuits (Cn)n∈N in the sense that Cn recognizes the slice
L ∩ {0, 1}n. Similarly, the sliding window problem SWn(L) is solely defined by the
slice L ∩ Σn. If we speak of an SW-algorithm for L and omit the window size n,
then this parameter is implicitly universally quantified, meaning that there exists a
family of streaming algorithms (Pn)n∈N such that every Pn is an SW-algorithm for
L and window size n.

Lemma 2.1. For any language L we have FL(n) = O(n).

Proof. A trivial SW-algorithm Pn for L explicitly stores the active window of size n
in a queue so that the algorithm can always test whether the window belongs to L.
Formally, the state set of Pn is Σn and it has transitions of the form (bu, a, ua) for
a, b ∈ Σ, u ∈ Σn−1. Viewed as an edge-labeled graph this automaton is also known
under the name de Bruijn graph [28]. Since every word w ∈ Σn can be encoded
with O(log |Σ| · n) bits and |Σ| is a constant, the algorithm uses O(n) bits. �

Depending on the language L there are more space efficient solutions. Usually,
sliding window algorithms are devised in the following way:

• Specify some information or property I(w) of the active window w and show
that it can be maintained by a streaming algorithm. This means that given
I(bu) and a ∈ Σ one can compute I(ua).

• Show that one can decide w ∈ L from the information I(w).

Notice that the complexity function FL(n) is not necessarily monotonic. For in-
stance, let L be the intersection of aΣ∗ and the set of words with even length. By
Example 1.2(iii), we have FL(2n) = Θ(n) but clearly we have FL(2n+ 1) = O(1)
since for odd window sizes the algorithm can always reject. Therefore, we can only
show FL(n) = Θ∞(n) (instead of FL(n) = Θ(n) which is false here), where Θ∞(g(n))
was defined in the introduction.

Note that the fixed-size sliding window model is a nonuniform model: for every
window size we have a separate streaming algorithm and these algorithms do not
have to follow a common pattern. Working with a nonuniform model makes lower
bounds stronger. In contrast, the variable-size sliding window model that we discuss
next is a uniform model in the sense that there is a single streaming algorithm that
works for every window size. Let us remark that all presented upper bounds for the
fixed-size model will be realized by uniform families of algorithms.
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2.5. Variable-size sliding window model. For an alphabet Σ we define the
extended alphabet Σ↓ = Σ ∪ {↓}. In the variable-size model the active window
wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗↓ is defined as follows, where a ∈ Σ:

wnd(ε) = ε wnd(u↓) = ε, if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v, if wnd(u) = av

The symbol ↓ represents the pop operation. We emphasize that a pop operation
on an empty window leaves the window empty. The variable-size sliding window
problem SW(L) of a language L ⊆ Σ∗ is the language

(2) SW(L) = {u ∈ Σ∗↓ | wnd(u) ∈ L}.
Note that in general, SW(L) is not a regular language (even if L is regular). A
variable-size sliding window algorithm (variable-size SW-algorithm) P for L is a
streaming algorithm for SW(L).

There are various possible definitions for the space complexity of a variable-size
SW-algorithm. Here, we measure the space complexity as a function in the maximum
window size over all read prefixes. This definition enjoys the property that every
language L has a variable-size SW-algorithm with smallest complexity among all
variable-size SW-algorithms for L. If one would measure the space complexity in
the current window size instead, this does not hold anymore, since the memory
state encodings of any SW-algorithm can be permuted to yield an algorithm whose
complexity is incomparable to the original one.

To be more formal, for a stream u = a1 · · · am ∈ Σ∗↓ let

mwl(u) = max{|wnd(a1 · · · ai)| | 0 6 i 6 m}
be the maximum window size of all prefixes of u. If P = (M,Σ,m0, δ, F ) is a
streaming algorithm over Σ↓ we define

(3) Mn = {P(w) | w ∈ Σ∗↓, mwl(w) = n}.
and M6n =

⋃
06k6nMk. The space complexity of P in the variable-size sliding

window model is
v(P, n) = log |M6n| ∈ R>0 ∪ {∞}.

In other words: when we say that the space complexity of a variable-size SW-
algorithm is bounded by f(n), we mean that the algorithm never has to store more
than f(n) bits when it processes a stream u ∈ Σ∗↓ such that for every prefix of u the
size of the active window never exceeds n.

Notice that v(P, n) is a monotonic function. To prove upper bounds above log n
for the space complexity of P it suffices to bound log |Mn| as shown in the following.

Lemma 2.2. If s(n) > log n is a monotonic function and log |Mn| = O(s(n)) then
v(P, n) = O(s(n)).

Proof. Since M6n = M0 ∪M1 ∪ · · · ∪Mn, we have

log |M6n| = log

n∑
i=0

|Mi|

6 log

(
(n+ 1) · max

06i6n
|Mi|

)
= log(n+ 1) + max

06i6n
log |Mi|

6 log(n+ 1) + max
06i6n

O(s(i))

6 log(n+ 1) +O(s(n)) = O(s(n)),

which proves the statement. �
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Lemma 2.3. For every language L ⊆ Σ∗ there exists a space-optimal variable-size
SW-algorithm P, i.e., v(P, n) 6 v(Q, n) for every variable-size SW-algorithm Q for
L and every n ∈ N.

Proof. Let P be the minimal deterministic automaton ASW(L) for SW(L). If Q is
any deterministic automaton for SW(L) then Q(x) = Q(y) implies P(x) = P(y).
Then, we obtain

v(P, n) = log |{P(w) | w ∈ Σ∗↓, mwl(w) 6 n}|
6 log |{Q(w) | w ∈ Σ∗↓, mwl(w) 6 n}| = v(Q, n),

which proves the statement. �

One could also define the space complexity v(P, n) as the number of bits required
to encode a state of P where the current window size is n. It is not difficult to see
that Lemma 2.3 fails for this definition.

We define the space complexity of L in the variable-size sliding window model by
VL(n) = v(P, n) where P is a space-optimal variable-size SW-algorithm for SW(L)
from Lemma 2.3. It is a monotonic function.

Lemma 2.4. For any language L ⊆ Σ∗ and n ∈ N we have FL(n) 6 VL(n).

Proof. If P is a space-optimal variable-size SW-algorithm for L then one obtains an
SW-algorithm Pn for window size n ∈ N as follows. Let us assume n > 1 (for n = 0
we use the trivial SW-algorithm). First one simulates P on the initial window �n.
For every incoming symbol a ∈ Σ we perform a pop operation ↓ in P, followed by
inserting a. Since the maximum window size is bounded by n on any stream, the
space complexity is bounded by v(P, n) = VL(n). �

The following lemma states that in the variable-size model one must at least
maintain the current window size if the language is neither empty nor universal.
The issue at hand is performing a pop operation on an empty window.

Lemma 2.5. Let P be a variable-size SW-algorithm for a language ∅ ( L ( Σ∗.
Then, P(x) determines3 |wnd(x)| for all x ∈ Σ∗↓ and therefore VL(n) > log(n+ 1).

Proof. Let y ∈ Σ+ be a length-minimal nonempty word such that |{ε, y} ∩ L| = 1.
Consider streams x1, x2 ∈ Σ∗↓ with |wnd(x1)| < |wnd(x2)| = m and assume P(x1) =

P(x2). Then, we also have P(x1y↓m) = P(x2y↓m). But wnd(x2y↓m) = y whereas
wnd(x1y↓m) is a proper suffix of y. Now, by the choice of y one these two words
belongs to L whereas the other does not, which contradicts P(x1y↓m) = P(x2y↓m).

For the second statement: if the algorithm reads any stream a1 · · · an ∈ Σn it
must visit n+ 1 pairwise distinct memory states and hence v(P, n) > log(n+ 1). �

Alternative definitions of the variable-size model are conceivable, e.g. one could
neglect streams where the popping of an empty window occurs, or assume that the
window size is always known to the algorithm. Then the statement of Lemma 2.5
no longer holds.

Lemma 2.6. Let Σ be a finite alphabet. For any function s(n) and X ∈ {F,V}, the
class {L ⊆ Σ∗ | XL(n) = O(s(n))} forms a Boolean algebra.

Proof. Let L ⊆ Σ∗ be a language. Given a SW-algorithm for L for some fixed
window size n or in the variable-size model, we can turn it into an algorithm for the
complement Σ∗ \L by negating its output. Clearly, it has the same space complexity
as the original algorithm.

3In other words, for all x1, x2 ∈ Σ∗↓, if P(x1) = P(x2) then |wnd(x1)| = |wnd(x2)|.
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Let L1, L2 ⊆ Σ∗ be two languages. Let P1,P2 be SW-algorithms for L1, L2,
respectively, either for some fixed window size n or in the variable-size model. Define
P to be the product automaton of P1 and P2 which outputs the disjunction of the
outputs of the Pi.

In the case of a fixed window size n, P has 2s(P1) · 2s(P2) = 2s(P1)+s(P2) many
states and hence s(P) = s(P1) + s(P2). This implies FL1∪L2

(n) 6 FL1
(n) + FL2

(n).
For the variable-size model, notice that 2v(P,n) 6 2v(P1,n) ·2v(P2,n) = 2v(P1,n)+v(P2,n).
Therefore, VL1∪L2

(n) 6 VL1
(n) + VL2

(n). �

Remark 2.7. Before we start our investigation of the space complexity of regular
languages in the sliding window model, we would like to discuss an aspect of our
definition of the space complexities FL(n) and VL(n). Both complexity measures do
not include the space needed for internal computations, i.e., the space needed for
computing the memory updates of the streaming algorithm. Let us explain this in
more detail for the variable-size model (the same arguments apply to the fixed-size
model). Take the space-optimal variable-size SW-algorithm P for a language L; see
Lemma 2.3. The function VL(n) measures the number of bits needed to encode the
states in the set M6n (see the line after (3)). But the transition function of P may
be difficult to compute. In other words: if we have two memory states p, q ∈M6n

(both encoded by bit strings of length VL(n)) and an a-labelled transition from
p to q in P then additional memory is needed in general in order to compute q
from p and a. This memory is what we mean by the space needed for internal
computations. Our definition of VL(n) does not include this space. One reason for
this is that if we would include the space needed for internal computations in the
total space bound, then it would be difficult to obtain lower bounds that match
the upper bounds. In particular, techniques based on communication complexity
that we use in the randomized setting (see Section 4) are not able to take space for
internal calculations into account. In our setting, these techniques only allow to
prove lower bounds on the number of memory states of a (randomized) streaming
algorithm and therefore are not sensitive with respect to the space needed to go
from one memory state to the next memory state.

3. Deterministic sliding window algorithms

In this section, we will show that the space complexity of every regular language in
both sliding window models is either constant, logarithmic or linear. In Example 1.2
we have already seen prototypical languages with these three space complexities,
namely Σ∗a (constant), Σ∗aΣ∗ (logarithmic) and aΣ∗ (linear) for Σ = {a, b}.
Intuitively, for languages of logarithmic space complexity it suffices to maintain
a constant number of positions in the window. For languages of constant space
complexity it suffices to maintain a constant-length suffix of the window. Moreover,
we describe the languages with logarithmic and constant space complexity as finite
Boolean combinations of simple atomic languages.

3.1. Right-deterministic finite automata. It turns out that the appropriate
representation of a regular language for the analysis in the sliding window model
are deterministic finite automata which read the input word, i.e., the window, from
right to left. Such automata are called right-deterministic finite automata (rDFA)
in this paper. The reason why we use rDFAs instead of DFAs can be explained
intuitively for the variable-size sliding window model as follows. The variable-size
model contains operations in both “directions”: On the one hand a variable-size
window can be extended on the right, and on the other hand the window can be
shortened to an arbitrary suffix. For regular languages the extension to longer
windows is “tame” because the Myhill–Nerode right congruences have finite index.
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Hence, it remains to control the structure of all suffixes with respect to the regular
language, which is best captured by an rDFA for the language.

Formally, a right-deterministic finite automaton (rDFA) B = (Q,Σ, F, δ, q0)
consists of a finite state set Q, a finite alphabet Σ, a set of final states F ⊆ Q, a
transition function δ : Σ×Q→ Q, and an initial state q0 ∈ Q. The transition function
δ extends to a left action · : Σ∗×Q→ Q by ε · q = q and (aw) · q = δ(a,w · q) for all
a ∈ Σ, w ∈ Σ∗, q ∈ Q. The language accepted by B is L(B) = {w ∈ Σ∗ | w · q0 ∈ F}.

A run of B on a word w = a1 · · · an ∈ Σ∗ from pn to p0 is a finite sequence

π = p0a1p1a2p2 · · · pn−1anpn ∈ Q(ΣQ)∗

such that pi−1 = ai · pi for all 1 6 i 6 n. Quite often we write such a run in the
following way

π : p0
a1←− p1

a2←− p2 · · · pn−1
an←−− pn.

If the intermediate states p1, . . . , pn−1 are not important we write this run also as

π : p0
a1a2···an←−−−−−− pn.

The state pn is also called the starting state of the above run π. The run π is
accepting if p0 ∈ F (note that we do not require pn = q0) and otherwise rejecting.
Its length |ρ| is the length |w| of w. A run of length zero is called empty; note
that it consists of a single state. A run of length one is also called a transition.
If π = p0a1p1 · · · anpn and ρ = r0b1r1 · · · b`r` are runs such that pn = r0 then
their composition πρ is defined as πρ = p0a1p1 · · · anr0b1r1 · · · b`r`; it is a run on
a1 · · · anb1 · · · b`. This definition allows us to factorize runs in Section 3.3. We call a
run π a P -run for a subset P ⊆ Q if all states occurring in π are contained in P .

A state q ∈ Q is reachable from p ∈ Q if there exists a run from p to q, in
which case we write q �B p. We say that q is reachable if it is reachable from the
initial state q0. A set of states P ⊆ Q is reachable if all p ∈ P are reachable. The
reachability relation �B is a preorder on Q, i.e., it is reflexive and transitive. Two
states p, q ∈ Q are strongly connected if p �B q �B p. This yields an equivalence
relation on Q whose equivalence classes are the strongly connected components
(SCCs) of B. A subset P ⊆ Q is strongly connected if it is contained in a single SCC,
i.e., all p, q ∈ P are strongly connected.

3.2. Space trichotomy. In this section, we state two technical results which
directly imply Theorem 1.3. Let B = (Q,Σ, F, δ, q0) be an rDFA. A set of states
P ⊆ Q is well-behaved if for any two P -runs π1, π2 which start in the same state and
have equal length, either both π1 and π2 are accepting or both are rejecting. If every
reachable SCC in B is well-behaved then B is called well-behaved. A state q ∈ Q
is transient if x · q 6= q for all x ∈ Σ+. Every transient state in B forms an SCC of
size one (a transient SCC); however, not every SCC of size one is transient (there
can be a loop at the unique state of the SCC). Let U(B) ⊆ Q be the set of states
q ∈ Q for which there exists a nontransient state p ∈ Q such that q is reachable
from p and p is reachable from the initial state q0. Notice that q ∈ U(B) if and
only if there exist runs of unbounded length from q0 to q (hence the symbol U for
unbounded). Moreover, if U(B) is well-behaved then B must be well-behaved. This
follows directly from the above definition and it is also a consequence of Theorem 3.2
below.

Example 3.1. Consider the rDFA A in Figure 2. It consists of three SCCs, namely
the green SCC {p}, the blue SCC {q} and the red SCC {r, s, t}. The red SCC is
well-behaved since any run starting in r ends in a final state if and only if its length
is even. The other SCCs are also well-behaved and therefore, the entire automaton
is well-behaved. State p is a transient state and U(A) = {q, r, s, t}.
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a, bb
a, bb

a, b a

Figure 2. A well-behaved rDFA consisting of three SCCs.
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b

b
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a, b

Figure 3. Another rDFA partitioned into two SCCs.

Theorem 3.2. Let L ⊆ Σ∗ be regular and B be any rDFA for L.

(1) If B is well-behaved then VL(n) = O(log n) and FL(n) = O(log n).
(2) If B is not well-behaved then VL(n) = Ω(n) and FL(n) = Ω∞(n).
(3) If U(B) is well-behaved then FL(n) = O(1).
(4) If U(B) is not well-behaved then FL(n) = Ω∞(log n).
(5) If L ∈ {∅,Σ∗} then VL(n) = O(1).
(6) If L /∈ {∅,Σ∗} then VL(n) = Ω(logn).

Theorem 3.2 implies that FL(n) is either Θ(1), Θ∞(log n), or Θ∞(n), and VL(n) is
either Θ(1), Θ(log n), or Θ(n). For the characterizations in Theorem 1.3 it remains
to prove:

Theorem 3.3. Let L ⊆ Σ∗ be regular.

(i) FL(n) = O(1) ⇐⇒ L ∈ 〈ST,Len〉.
(ii) FL(n) = O(log n) ⇐⇒ L ∈ 〈LI,Len〉.

In the rest of Section 3 we prove Theorem 3.2 and Theorem 3.3. We start with
the path summary algorithm, which is our main deterministic SW-algorithm for the
variable-size model.

3.3. The path summary algorithm. In the following, let B = (Q,Σ, F, δ, q0)
be a right-deterministic finite automaton. We call a run π internal if π is a P -
run for some SCC P . The SCC-factorization of π is the unique factorization
π = πkτk−1 · · · τ2π2τ1π1, where every πi is an internal (possibly empty) run but
cannot be extended to an internal run. The τi are single transitions (i.e., runs from
QΣQ) connecting distinct SCCs. Let pk, . . . , p1 ∈ Q be the starting states of the
runs πk, . . . , π1. Then, the path summary of π is defined as

ps(π) = (|πk|, pk)(|τk−1πk−1|, pk−1) · · · (|τ2π2|, p2)(|τ1π1|, p1),

which is a sequence of pairs from N×Q. It specifies the first state that is visited
in an SCC, and the length of the run until reaching the next SCC or the end of
the word, respectively. The leftmost length |πk| can be zero but all other lengths
|τiπi| = 1 + |πi| are strictly positive. We define πw,q to be the unique run of B on a
word w ∈ Σ∗ starting from q, and PSB(w) = {ps(πw,q) | q ∈ Q}.

Example 3.4. Consider the rDFA B in Figure 3. For the moment, the final states
are irrelevant. It consists of two SCCs, namely the blue SCC {p, q} and the red
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SCC {r}. All its runs on the word w = aababb are listed here:

r
a←− r

a←− q
b←− p

a←− p
b←− q

b←− p

r
a←− r

a←− r
b←− r

a←− q
b←− p

b←− q

r
a←− r

a←− r
b←− r

a←− r
b←− r

b←− r

Then, PSB(w) contains the path summaries (1, r)(5, p), (3, r)(3, q) and (6, r).

The path summary algorithm for B is a streaming algorithm over Σ↓ described in
Algorithm 1. The data structure at time instant t is denoted by St. The acceptance
condition will be defined later.

Lemma 3.5. Algorithm 1 correctly maintains PSB(w) for the active window w ∈ Σ∗.

Proof. Initially PSB(ε) contains the path summary of every empty run from every
state, which is formally {0} ×Q.

Assume St−1 = PSB(w) for some window w ∈ Σ∗ and that a ∈ Σ is the incoming
symbol. The claim is that the algorithm computes St = PSB(wa) from St−1. Suppose
that π′ is a run in B on wa. It can be factorized as π′ = π p1a p0 with ps(π) ∈ St−1.
Let π = πkτk−1πk−1 · · · τ2π2τ1π1 be the SCC-factorization of π. If p0 and p1 are
strongly connected then the SCC-factorization of π′ is π′ = πkτk−1πk−1 · · · τ2π2τ1π

′
1

where π′1 = π1 p1a p0, and otherwise π′ = πkτk−1πk−1 · · · τ2π2τ1π1 p1a p0. In this
way the algorithm computes ps(π′) from ps(π).

Now, consider the case a = ↓. We have w = ε if and only if PSB(w) = {0}×Q, and
in this case the set of path summaries is unchanged, i.e., we set St = St−1. Otherwise
assume w = bv for some b ∈ Σ. We claim that the algorithm computes St = PSB(v)
from St−1. Suppose that π′ is a run in B on v which ends in state p ∈ Q. If q = δ(b, p)
in B then let π = q b p π′. We have ps(π) ∈ St−1. Let π = πkτk−1πk−1 · · · τ2π2τ1π1

be the SCC-factorization of π. If |πk| > 1 then π′ = π′kτk−1πk−1 · · · τ2π2τ1π1 is the
SCC-factorization of π′ where πk = q b p π′k. Otherwise πk is empty and τk−1 = q b p.
Therefore, π′ = πk−1 · · · τ2π2τ1π1 is the SCC-factorization of π′. In this way the
algorithm computes ps(π′) from ps(π). �

Observe that Algorithm 1 cannot be directly adapted to work for (left-)DFA:
For a pop operation, one would need to remove the first transition from each path
summary, which is generally not possible since a path summary does not store its
second state.

3.4. Proof of Theorem 3.2(1). Using the path summary algorithm we can prove
Theorem 3.2(1):

Proposition 3.6. If B is well-behaved then the regular language L = L(B) has space
complexity VL(n) = O(|B|2 · log n), which is O(log n) for a fixed B.

Proof. Let B be well-behaved. Call a path summary accepting if it is the path
summary of some accepting run. The variable-size sliding window algorithm for
L is the path summary algorithm for B where the algorithm accepts if the path
summary starting in q0 is accepting.

For the correctness of the algorithm it suffices to show that any run π starting
in q0 is accepting if and only if ps(π) is accepting. The direction from left to right
is immediate by definition. For the other direction, consider the path summary
ps(π) = (`k, pk) · · · (`1, p1) and the SCC-factorization π = πkτk−1 · · · τ2π2τ1π1. Since
ps(π) is accepting, there is an accepting run π′k that starts in pk and has length
`k. Since B is well-behaved, the SCC of pk is well-behaved. Therefore, since π′k is
accepting and |πk| = |π′k| = `k, πk must also be accepting and thus π is accepting.
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Algorithm 1: The path summary algorithm

Input: sequence of operations a1a2a3 · · · ∈ Σω↓
S0 = {0} ×Q;

foreach t > 1 do
St = ∅;
if at ∈ Σ then

for p0 ∈ Q do
let p1 = at · p0 and (`k, pk) · · · (`1, p1) ∈ St−1;

if p0 and p1 are strongly connected then
add (`k, pk) · · · (`2, p2)(`1 + 1, p0) to St;

else
add (`k, pk) · · · (`1, p1)(1, p0) to St;

if at = ↓ then
if St−1 = {0} ×Q then

St = St−1;

else
for (`k, pk) · · · (`1, p1) ∈ St−1 do

if `k > 1 then
add (`k − 1, pk)(`k−1, pk−1) · · · (`1, p1) to St;

else
add (`k−1 − 1, pk−1)(`k−2, pk−2) · · · (`1, p1) to St;

We claim that the space complexity of the path summary algorithm is bounded
by O(|B|2 · (log n + log |B|)). Observe that PSB(w) contains |B| path summaries,
and a single path summary ps(π) consists of a sequence of at most |B| states and a
sequence (`k, . . . , `1) of k 6 |B| numbers up to |π|. Hence, the path summary ps(π)
can be encoded using O(|B| · (log |B|+ log |π|)) bits, which yields the total space
complexity O(|B|2 · (log n+ log |B|)).

To reduce the space complexity toO(|B|2·log n) we need to make a case distinction.
The algorithm maintains the window size n ∈ N and the maximal suffix of the
window of length up to |B| (explicitly) using O(log n+ |B|) bits. If n 6 |B| then this
information suffices to test membership of the window to L. As soon as n exceeds |B|
we initialize PSB(w) and use the path summary algorithm as described above. If
n > |B| then its space complexity is O(|B|2 · (log n+ log |B|)) ⊆ O(|B|2 · log n). �

Observe that the path summary algorithm only stores O(log n) bits where n is
the current (not the maximum) window size.

Before we continue with the proof of the other points from Theorem 3.2, we
discuss some implementation details for our logspace SW-algorithm.4 To implement
the path summary algorithm on a realistic computation model, we have to be able
to efficiently determine whether a path summary is accepting. Given a number
d > 1, a set of natural numbers X ⊆ N is d-periodic if we have x ∈ X if and only if
x+ d ∈ X.

Lemma 3.7. Let P ⊆ Q be a well-behaved subset in B and p0 ∈ P be nontransient.
Then Acc(P, p0) := {|π| : π is an accepting P -run starting in p0 } is d-periodic for
some d 6 |Q|.

4These details are not needed for the proof of Proposition 3.6 since we abstract from internal
computations in our sliding window model; see Remark 2.7.
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Proof. Let π0 be any nonempty run from p0 to p0, which exists because p0 is
nontransient. Furthermore, we can choose π0 such that its length d := |π0| is at
most |Q|.

If ` ∈ Acc(P, p0), then there exists an accepting P -run π starting in p0 of length
`. Then ππ0 is also an accepting P -run and we conclude |ππ0| = `+ d ∈ Acc(P, p0).

Now we need to show that ` /∈ Acc(P, p0) implies `+ d /∈ Acc(P, p0). Towards a
contradiction assume that ` /∈ Acc(P, p0) and `+ d ∈ Acc(P, p0), i.e., there exists
an accepting P -run π starting in p0 of length ` + d. Factorize π = π1π2 where
|π2| = `. Now π2 must be rejecting since ` /∈ Acc(P, p0). But then π2π0 is a
rejecting P -run of length `+ d, which contradicts the well-behavedness of P since
`+ d ∈ Acc(P, p0). �

In the following we describe how to implement the algorithm from Proposition 3.6.
We do the following preprocessing on the well-behaved rDFA B. Using depth-first
search we compute all SCCs in B. For every SCC P we pick a state p ∈ P and
compute the distance dist(p, q) from p to all states q ∈ P using any shortest path
algorithm. Furthermore let d be the minimal length of a nonempty run from p to p
itself, which is the period d from Lemma 3.7. If no such run exists then we store
the information that p is transient. Otherwise we assign to each state q ∈ P the
distance from p modulo d. By traversing an arbitrary P -run of length d from p
we can compute a bit vector of length d which represents Acc(P, p0). Using this
information we can easily answer whether a path summary (`k, pk) · · · (`1, p1) is
accepting: it is accepting if and only if either pk is transient, `k = 0 and pk ∈ F , or
dist(p0, pk) + `k mod d belongs to Acc(P, p0) where P is the SCC of pk and p0 is
the picked state in P .

3.5. Proof of Theorem 3.2(2). We continue with proving a linear lower bound
for rDFA which are not well-behaved.

Lemma 3.8. If B is not well-behaved then there exist words u1, u2, v1, v2, z ∈ Σ∗

where |ui| = |vi| for i ∈ {1, 2} such that L = L(B) separates u2{u1u2, v1v2}∗z and
v2{u1u2, v1v2}∗z.

Proof. The automaton structure is illustrated in Fig. 4. Since B = (Q,Σ, F, δ, q0) is
not well-behaved, there is a reachable SCC S that is not well-behaved. Take a state
p ∈ S and a word z ∈ Σ∗ with

p
z←− q0.

Moreover, since S is strongly connected and not well-behaved there are states
q ∈ S ∩ F , r ∈ S \ F and nonempty words u2, v2 ∈ Σ∗ such that |u2| = |v2| and

q
u2←− p z←− q0 and r

v2←− p z←− q0.

Finally, since S is strongly connected, there are words u1, v1 ∈ Σ∗ such that

p
u1←− q u2←− p z←− q0 and p

v1←− r v2←− p z←− q0.

We can ensure that |u1| = |v1| and hence also |u| = |v| for u = u1u2, v = v1v2. If
k = |u| and ` = |v| we replace u1 by u`−1u1 and v1 by vk−1v1 (note that k > 0 and
` > 0 since u and v are nonempty), which preserves all properties above. Then,
u2{u, v}∗z and v2{u, v}∗z are separated by L. �

We can now show Theorem 3.2(2):

Proposition 3.9. If B is not well-behaved then the language L = L(B) satisfies
FL(n) = Ω∞(n) and VL(n) = Ω(n).
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Figure 4. Forbidden pattern for well-behaved rDFAs where |u1| =
|v1| and |u2| = |v2|.

Proof. Let u1, u2, v1, v2, z ∈ Σ∗ be the words from Lemma 3.8 and let u = u1u2

and v = v1v2. Now, consider an SW-algorithm Pn for L and window size n =
|u2|+ |u| · (m− 1) + |z| for some m > 1. We prove that Pn has at least 2m many
states by showing that Pn(x) 6= Pn(y) for any x, y ∈ {u, v}m with x 6= y. Notice
that |{u, v}m| = 2m since u 6= v and |u| = |v|.

Read two distinct words x, y ∈ {u, v}m into two instances of Pn. Consider the
right most {u, v}-block where x and y differ. Without loss of generality assume
x = x′us and y = y′vs for some x′, y′, s ∈ {u, v}∗ with |x′| = |y′|. By reading x′z
into both instances the window of the x-instance becomes lastn(xx′z) = u2sx

′z and
the window of the y-instance becomes lastn(yx′z) = v2sx

′z. By Lemma 3.8 the two
windows are separated by L, and therefore the algorithm Pn must accept one of
the streams xx′z and yx′z, and reject the other. In conclusion Pn(x) 6= Pn(y) and
hence Pn must use at least m = Ω(n) bits. This holds for infinitely many n, namely
all n of the form |u2|+ |z|+ |u| · (m− 1) for some m > 1.

The argument above shows that there exist numbers c, d ∈ N such that for all
m > 1 we have VL(cm+d) > FL(cm+d) = Ω(m). If n > d then m = b(n−d)/cc =
Ω(n) satisfies cm+ d 6 n. Therefore, VL(n) > VL(cm+ d) = Ω(m) by monotonicity
of VL and hence VL(n) = Ω(n). �

From Proposition 3.6 and Proposition 3.9 we obtain:

Corollary 3.10. Let X ∈ {F,V}. A regular language L ⊆ Σ∗ satisfies XL(n) =
O(log n) if and only if L is recognized by a well-behaved rDFA.

3.6. Proof of Theorem 3.2(3)–(6). Next, we study which regular languages have
sublogarithmic complexity. Recall that in the variable-size model any such language
must be empty or universal because the algorithm must at least maintain the current
window size by Lemma 2.5.

Corollary 3.11. The empty language L = ∅ and the universal language L = Σ∗

satisfy VL(n) = O(1). All other languages satisfy VL(n) = Ω(log n).

This proves points (5) and (6) in Theorem 3.2. Now, we can turn to the fixed-size
model and prove the points (3) and (4). Point (3) follows from:

Proposition 3.12. If U(B) is well-behaved then L = L(B) has space complexity
FL(n) = O(|B|), which is O(1) when B is fixed.

Proof. Let k = |B|. The SW-algorithm Pn for SWn(L) maintains lastk(x) for an
input stream x ∈ Σ∗ using O(k) bits. If n 6 k then lastn(x) is a suffix of lastk(x)
and hence Pn can determine whether lastn(x) ∈ L. If n > k then lastk(x) is a
suffix of lastn(x), say lastn(x) = s lastk(x). We can decide if lastn(x) ∈ L as follows:
Consider the run of B on lastn(x) starting from the initial state:

r
s←− q lastk(x)←−−−−− q0.
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By the choice of k some state p ∈ Q must occur twice in the run q
lastk(x)←−−−−− q0.

Therefore, p is nontransient and all states in the run r
s←− q belong to U(B). Since

U(B) is well-behaved, r is final if and only if some run of length |s| = n− k starting
in q is accepting. This information can be precomputed for each state q in the
fixed-size model. �

For the lower bound in Theorem 3.2(4) we need the following lemma:

Lemma 3.13. If U(B) is not well-behaved then there exist words x, y, z ∈ Σ∗ where
|x| = |y| such that L = L(B) separates xy∗z and y∗z.

Proof. Since U(B) is not well-behaved, there are U(B)-runs π and ρ from the same
starting state q ∈ U(B) such that |π| = |ρ| and exactly one of the runs π and ρ is
accepting. By definition of U(B) the state q is reachable from a nontransient state

p via some run σ such that p is reachable from the initial state q0, say p
z0←− q0. We

can replace π by πσ and ρ by ρσ preserving the properties of being U(B)-runs and
|π| = |ρ|. Assume that π and ρ are runs on words v ∈ Σ∗ and w ∈ Σ∗, respectively.
Since p is nontransient, we can construct runs from p to p of unbounded lengths.

Consider such a run p
u←− p of length |u| > |v| = |w|. Then, L separates vu∗z0 and

wu∗z0. Factorize u = u1u2 so that |u2| = |v| = |w|. Notice that all words in u2u
∗z0

reach the same state in B and hence u2u
∗z0 is either contained in L or disjoint from

L. Then, L separates either u2u
∗z0 and vu∗z0, or u2u

∗z0 and wu∗z0. Hence, L also
separates (u2u1)∗u2z0 from either vu1(u2u1)∗u2z0 or from wu1(u2u1)∗u2z0. This
yields the words z = u2z0, y = u2u1 and x = vu1 or x = wu1 with the claimed
properties. �

Proposition 3.14. If U(B) is not well-behaved then L = L(B) satisfies FL(n) >
log n−O(1) for infinitely many n. In particular, FL(n) = Ω∞(log n).

Proof. Let x, y, z ∈ Σ∗ be the words from Lemma 3.13. Consider an SW-algorithm
Pn for L and window size n = |x|+|y|·m+|z| for some m > 1. We prove that Pn has
at least m many states by showing that Pn(xyi) 6= Pn(xyj) for any 1 6 i < j 6 m.
Let 1 6 i < j 6 m. Then, we have

lastn(xyiym−iz) = lastn(xymz) = xymz

and

lastn(xyjym−iz) = lastn(xym+j−iz) = ym+1z.

Since exactly one of the words xymz and ym+1z belongs to L, it also holds that
exactly one of the streams xyiym−iz and xyjym−iz is accepted by Pn. This proves
that Pn must reach different memory states on inputs xyi and xyj . In conclusion
Pn must use logm > log n−O(1) bits, and this holds for infinitely many n. �

3.7. Characterization of constant space. Next, we prove that a regular language
L has constant space complexity FL(n) if and only if it is a Boolean combination of
suffix testable languages and regular length languages (Theorem 3.3(i)).

The language L is called k-suffix testable if for all x, y ∈ Σ∗ and z ∈ Σk we have
xz ∈ L if and only if yz ∈ L. Equivalently, L is a Boolean combination of languages
of the form Σ∗w where w ∈ Σ6k. Clearly, a language is suffix testable if and only if
it is k-suffix testable for some k ∈ N. Let us remark that the class of suffix testable
languages corresponds to the variety D of definite monoids [87]. Clearly, every finite
language is suffix testable: If k is the maximum length of a word in L ⊆ Σ∗ then L
is (k + 1)-suffix testable since L =

⋃
w∈L{w} and {w} = Σ∗w \

⋃
a∈Σ Σ∗aw.

We will utilize a distance notion between states in a DFA, which is also studied
in [51]. The symmetric difference of two sets A and B is A4B = (A∪B) \ (A∩B).
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We define the distance d(K,L) of two languages K,L ⊆ Σ∗ by

d(K,L) =

{
supu∈K4L |u|+ 1, if K 6= L,

0, if K = L.

Notice that d(K,L) <∞ if and only if K4L is finite. For a DFA A = (Q,Σ, q0, δ, F )
and a state p ∈ Q, we define Ap = (Q,Σ, p, δ, F ). Moreover, for two states p, q ∈ Q,

we define the distance d(p, q) = d(L(Ap), L(Aq)). If we have two runs p
u−→ p′ and

q
u−→ q′ where p′ ∈ F , q′ /∈ F and |u| > |Q|2 then some state pair occurs twice in

the runs and we can pump the runs to unbounded lengths. Therefore, d(p, q) <∞
implies d(p, q) 6 |Q|2. In fact d(p, q) <∞ implies d(p, q) 6 |Q| by [51, Lemma 1].

Lemma 3.15. Let L ⊆ Σ∗ be regular and A = (Q,Σ, q0, δ, F ) be its minimal DFA.
We have:

(i) for all p, q ∈ Q, d(p, q) 6 k if and only if ∀z ∈ Σk : p · z = q · z,
(ii) L is k-suffix testable if and only if d(p, q) 6 k for all p, q ∈ Q,

(iii) if there exists k > 0 such that L is k-suffix testable, then L is |Q|-suffix
testable.

Proof. The proof of (i) is an easy induction. If k = 0, the statement is d(p, q) = 0 if
and only if p = q, which is true because A is minimal. For the induction step, we
have d(p, q) 6 k + 1 if and only if d(δ(p, a), δ(q, a)) 6 k for all a ∈ Σ if and only if
δ(p, a) · z = δ(q, a) · z for all z ∈ Σk if and only if p · z = q · z for all z ∈ Σk+1.

For (ii), assume that L is k-suffix testable and consider two states p = A(x) and
q = A(y). If z ∈ L(Ap)4L(Aq), then |z| < k because xz ∈ L if and only if yz /∈ L
and L is k-suffix testable.

Now, assume that d(p, q) 6 k for all p, q ∈ Q and consider x, y ∈ Σ∗, z ∈ Σk.
Since we have d(A(x),A(y)) 6 k, (i) implies A(xz) = A(yz), and in particular
xz ∈ L if and only if yz ∈ L. Therefore, L is k-suffix testable.

Point (iii) follows from (ii) and from the above cited [51, Lemma 1]. �

Lemma 3.16. For any L ⊆ Σ∗ and n > 0, the language SWn(L) is 2FL(n)-suffix
testable.

Proof. Let Pn be an SW-algorithm for L and window size n with space complexity
FL(n). Therefore, Pn has at most 2FL(n) states. The definition of SWn(L) directly
implies that SWn(L) is n-suffix testable. By Lemma 3.15(iii) SWn(L) is 2FL(n)-suffix
testable. �

Note that Lemma 3.16 holds for arbitrary languages and not only for regular
languages.

Proof of Theorem 3.3(i). First, let L ⊆ Σ∗ be a regular language with FL(n) = O(1)
and let k = maxn∈N 2FL(n). By Lemma 3.16 the language SWn(L) is k-suffix testable
for all n > 0. We can express L as the Boolean combination

L = (L ∩ Σ6k−1) ∪
⋃
z∈Σk

(Lz−1) z = (L ∩ Σ6k−1) ∪
⋃
z∈Σk

((Lz−1) Σk ∩ Σ∗z)

where the right quotient Lz−1 = {x ∈ Σ∗ | xz ∈ L} is regular [15, Chapter 3, Exam-
ple 5.7]. The set L ∩ Σ6k−1 is finite and hence suffix testable. It remains to show
that each Lz−1 for z ∈ Σk is a length language. Consider two words x, y ∈ Σ∗ of
the same length |x| = |y| = n. Since |xz| = |yz| = n+ k and SWn+k(L) is k-suffix
testable, we have xz ∈ L if and only if yz ∈ L, and hence x ∈ Lz−1 if and only if
y ∈ Lz−1.
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For the other direction note that (i) if L is a length language or a suffix testable
language then clearly FL(n) = O(1), and (ii) {L ⊆ Σ∗ | FL(n) = O(1)} is closed
under Boolean operations by Lemma 2.6. This proves the theorem. �

3.8. Characterization of logarithmic space. Recall from Theorem 3.2 that
well-behaved rDFAs precisely define those regular languages with logarithmic space
complexity FL(n) or equivalently VL(n). In the following, we will show that well-
behaved rDFAs recognize precisely the finite Boolean combinations of regular
left ideals and regular length languages, which therefore are precisely the regular
languages with logarithmic space complexity (Theorem 3.3(ii)). Let us start with
the easy direction:

Proposition 3.17. Every language L ∈ 〈LI,Len〉 is recognized by a well-behaved
rDFA.

Proof. Let B be an rDFA for L. If L is a length language then for all reachable states
q and all runs π, π′ starting from q with |π| = |π′| we have: π is accepting if and
only if π′ is accepting. If L is a left ideal, then whenever a final state p is reachable,
and q is reachable from p, then q is also final. Hence, for every reachable SCC P in
B either all states of P are final or all states of P are nonfinal. In particular, B is
well-behaved.

It remains to show that the class of languages L ⊆ Σ∗ recognized by well-behaved
rDFAs is closed under Boolean operations. If B is well-behaved then the complement
automaton B is also well-behaved. Given two well-behaved rDFAs B1,B2, we claim
that the product automaton B1 × B2 recognizing the intersection language is also
well-behaved. Suppose that Bi = (Qi,Σ, Fi, δi, q0,i) for i ∈ {1, 2}. The product
automaton for the intersection language is defined by

B1 × B2 = (Q1 ×Q2,Σ, F1 × F2, δ, (q0,1, q0,2))

where δ(a, (q1, q2)) = (δ1(a, q1), δ2(a, q2)) for all q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ.
Consider an SCC S of B1 × B2 which is reachable from the initial state and let
(p1, p2), (q1, q2), (r1, r2) ∈ S such that

(q1, q2)
u←− (p1, p2) and (r1, r2)

v←− (p1, p2)

for some words u, v ∈ Σ∗ with |u| = |v|. Since for i ∈ {1, 2} we have qi
u←− pi and

ri
v←− pi, and {pi, ri, qi} is contained in an SCC of Bi (which is also reachable from

the initial state q0,i), we have

(q1, q2) is final ⇐⇒ q1 and q2 are final

⇐⇒ r1 and r2 are final

⇐⇒ (r1, r2) is final,

and therefore B1 × B2 is well-behaved. �

It remains to prove that every well-behaved rDFA recognizes a finite Boolean
combination of regular left ideals and regular length languages. With a right-
deterministic finite automaton B = (Q,Σ, F, δ, q0) we associate the directed graph
(Q,E) with edge set E = {(p, a · p) | p ∈ Q, a ∈ Σ}. The period g(G) of a directed
graph G is the greatest common divisor of all cycle lengths in G. If G is acyclic we
define the period to be ∞. We will apply the following lemma from Alon et al. [2]
to the nontransient SCCs of B.

Lemma 3.18 ([2]). Let G = (V,E) be a strongly connected directed graph with

E 6= ∅ and finite period g. Then there exist a partition V =
⋃g−1
i=0 Vi and a constant

m(G) 6 3|V |2 with the following properties:
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• For every 0 6 i, j 6 g − 1 and for every u ∈ Vi, v ∈ Vj the length of every
directed path from u to v in G is congruent to j − i modulo g.
• For every 0 6 i, j 6 g − 1, for every u ∈ Vi, v ∈ Vj and every integer
r > m(G), if r is congruent to j − i modulo g, then there exists a directed
path from u to v in G of length r.

Lemma 3.19 (uniform period). For every regular language there exists an rDFA B
recognizing L and a number g such that every nontransient SCC C in B has period
g(C) = g.

Proof. Let B = (Q,Σ, F, δ, q0) be any rDFA for L. Let g be the product of all
periods g(C) over all nontransient SCCs C in B. In the following, we compute in
the additive group Zg = {0, . . . , g − 1}. We define

B × Zg = (Q× Zg,Σ, F × Zg, δ′, (q0, 0)),

where for all (p, i) ∈ Q× Zg and a ∈ Σ we set

δ′(a, (p, i)) =

{
(δ(a, p), i+ 1), if p and δ(a, p) are strongly connected,

(δ(a, p), 0), otherwise.

Clearly, L(B × Zg) = L(B). We show that every nontransient SCC of B × Zg has
period g. Let D be a nontransient SCC of B × Zg. Clearly, every cycle length
in D is a multiple of g. Take any state (q, i) ∈ D and let C be the SCC of q in
B. Since D is nontransient, there exists a cycle in B × Zg containing (q, i), which
induces a cycle in B containing q. This implies that C is nontransient. Hence,
we can apply Lemma 3.18 and obtain a cycle of length k · g(C) in C for every
sufficiently large k ∈ N (k > m(C) suffices). Since g is a multiple of g(C), C also
contains a cycle of length k · g for every sufficiently large k. But every such cycle
induces a cycle of the same length k · g in D. Hence, there exists k ∈ N such that D
contains cycles of length k · g and (k + 1) · g. It follows that the period of D divides
gcd(k · g, (k + 1) · g) = g. This proves that the period of D is exactly g. �

Proof of Theorem 3.3(ii). It remains to show the direction from left to right. Con-
sider a well-behaved rDFA B = (Q,Σ, F, δ, q0) for a regular language L ⊆ Σ∗. We
prove that L is a finite Boolean combination of regular left ideals and regular length
languages. By Lemma 3.19 we can ensure that all nontransient SCCs in B have
the same period g. This new rDFA B is also well-behaved since in fact any rDFA
for L must be well-behaved; this follows from Proposition 3.9 and Corollary 3.10.
Alternatively, one can verify that the transformation from Lemma 3.19 preserves
the well-behavedness of B.

A path description P is a sequence

(4) Ck, (qk, ak−1, pk−1), Ck−1, . . . , (q3, a2, p2), C2, (q2, a1, p1), C1, q1

where Ck, . . . , C1 are pairwise distinct SCCs of B, q1 = q0, (qi+1, ai, pi) is a transition
in B for all 1 6 i 6 k − 1, pi, qi ∈ Ci for all 1 6 i 6 k − 1, and qk ∈ Ck.
A run π in B respects the path description P if the SCC-factorization of π is
π = πkτk−1 · · · τ2π2τ1π1, πi is a Ci-internal run from qi to pi for all 1 6 i 6 k − 1,
τi = qi+1aipi for all 1 6 i 6 k − 1, and πk is a Ck-internal run starting in qk. Let
LP be the set of words w ∈ Σ∗ such that the unique run of B on w starting in q0

respects the path description P . We can write L =
⋃
P (LP ∩ L) where P ranges

over all path descriptions. Notice that the number of path descriptions is finite.
Let us fix a path description P as in (4). We prove that LP ∩L is a finite Boolean

combination of regular left ideals and regular length languages. First, we claim that
LP is a finite Boolean combination of regular left ideals. Let ∆ = {(a · p, a, p) | p ∈
Q, a ∈ Σ} be the set of all transition triples and let ∆P ⊆ ∆ be the set of transition
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triples contained in any of the SCCs Ck, . . . , C1 together with the transition triples
(qi+1, ai, pi) for 1 6 i 6 k − 1. A word w ∈ Σ∗ then belongs to LP if and only if w
belongs to the regular left ideal Σ∗LP and the run of B on w starting in q0 does
not use any transitions from ∆ \∆P . It is easy to construct for every τ ∈ ∆ \∆P

an rDFA Dτ which accepts all words w such that the run of B on w starting in
q0 uses the transition τ . Clearly, this language is a left ideal. In total we have
LP = Σ∗LP \

⋃
τ∈∆\∆P

L(Dτ ), which proves the claim.

If Ck is a transient SCC then LP ∩L is either empty or LP , and we are done. For
the rest of the proof we assume that Ck is nontransient. Recall that all nontransient
SCCs in B have period g. Furthermore, Ck is well-behaved since it is reachable
from q0 according to the path description P . Let Ck =

⋃g−1
i=0 Vi be the partition

from Lemma 3.18. We claim that F ∩ Ck is a union of some of the Vi’s. Towards a
contradiction assume that there exist states p, q ∈ Vi where p ∈ F and q /∈ F . Let
r > m(C) be any number divisible by g. Then, by Lemma 3.18 there exist runs
from p to p and from p to q, both of length r. This contradicts the fact that Ck is
well-behaved.

Let π, π′ be two runs of B starting from q0 which respect P . We claim that
|π| ≡ |π′| (mod g) if and only if π and π′ end in the same part Vi of Ck. Consider the
SCC-factorizations π = πkτk−1πk−1 · · · τ2π2τ1π1 and π′ = π′kτk−1π

′
k−1 · · · τ2π′2τ1π′1.

For all 1 6 i 6 k − 1 the subruns πi and π′i start in qi and end in pi. If Ci is
nontransient then |πi| ≡ |π′i| (mod g) by Lemma 3.18, and otherwise |πi| = |π′i| = 0.
This implies |τk−1πk−1 · · · τ2π2τ1π1| ≡ |τk−1π

′
k−1 · · · τ2π′2τ1π′1| (mod g). Also by

Lemma 3.18 we know that |πk| ≡ |π′k| (mod g) if and only if π and π′ end in the
same part Vi. This proves the claim.

It follows that we can write LP ∩ L = LP ∩K where

K = {w ∈ Σ∗ | ∃r ∈ R : |w| ≡ r (mod g)}

for some R ⊆ {0, . . . , g − 1}. Since K is a regular length language, we have proved
the claim that L is a Boolean combination of regular left ideals and regular length
languages. This concludes the proof of Theorem 3.3(ii). �

4. Randomized sliding window algorithms

Most of the work in the context of streaming uses randomness and/or approxima-
tion to design space- and time-efficient algorithms. For example, the AMS-algorithm
[3] approximates the number of distinct elements in a stream with high probability
in O(logm) space where m is the size of the universe. Furthermore, it is proved that
any deterministic approximation algorithm and any randomized exact algorithm
must use Ω(n) space [3]. On the other hand, the exponential histogram algorithm
by Datar et al. [26] for approximating the number of 1’s in a sliding window is a
deterministic sliding window approximation algorithm that uses O( 1

ε log2 n) bits.

It is proven in [26] that Ω( 1
ε log2 n) bits are necessary even for randomized (Monte

Carlo or Las Vegas) sliding window algorithms.
In this section, we will study if and how randomness helps for testing membership

to regular languages over sliding windows. The main result of this section is a space
tetrachotomy in the fixed-size sliding window model, stating that every regular
language has optimal space complexity Θ(1), Θ∞(log log n), Θ∞(log n) or Θ∞(n) if
the streaming algorithms are randomized with two-sided error.

4.1. Randomized streaming algorithms. In the following, we will introduce
probabilistic automata [78, 81] as a model of randomized streaming algorithms.
With [0, 1] we denote the set of all real numbers r with 0 6 r 6 1. A probabilistic
automaton P = (Q,Σ, ι, ρ, F ) consists of a nonempty countable set of states Q, a
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finite alphabet Σ, an initial state distribution ι : Q→ [0, 1], a transition probability
function ρ : Q× Σ×Q→ [0, 1], and a set of final states F ⊆ Q, such that

(i)
∑
q∈Q ι(q) = 1,

(ii)
∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ.

If Q is infinite then this means of course that the above infinite sums converge to 1.
This implies that these sums are absolutely convergent (all ι(q) and ρ(p, a, q) are
non-negative) and therefore the order of summation is not relevant.

If ι and ρ map into {0, 1}, then P can be viewed as a deterministic automaton.
We will refer to probabilistic automata also as randomized streaming algorithms.

For a word w ∈ Σ∗ and a state q we define the probability P(w, q) that P after
reading the word w arrives in state q inductively over the length of w as follows,
where q ∈ Q, v ∈ Σ∗ and a ∈ Σ:

• P(ε, q) = ι(q) and
• P(va, q) =

∑
p∈Q P(v, p) · ρ(p, a, q).

Then the probability that P accepts the word w is

Pr[P accepts w] =
∑
q∈F
P(w, q).

and the probability that P rejects the word w is

Pr[P rejects w] =
∑

q∈Q\F

P(w, q).

The space of P (or number of bits used by P) is given by s(P) = log |Q| ∈ R>0∪{∞}.
We say that P is a randomized streaming algorithm for L ⊆ Σ∗ with error probability
0 6 λ 6 1 if

• Pr[P accepts w] > 1− λ for all w ∈ L,
• Pr[P rejects w] > 1− λ for all w /∈ L.

The error probability λ is also called a two-sided error. If we omit λ we choose
λ = 1/3.

For a randomized streaming algorithm P = (Q,Σ, ι, ρ, F ) and a number k > 1
let P(k) be the randomized streaming algorithm which simulates k instances of P in
parallel with independent random choices and outputs the majority vote. Formally
the states of P(k) are multisets of size k over Q (using multisets instead of ordered
tuples will yield a better space bound in Section 4.3). Therefore, s(P(k)) 6 k · s(P).

Lemma 4.1 (probability amplification). For all 0 < λ′ < λ < 1/2 there exists a

number k = O(log
(

1
λ′

)
·
(

1
2 − λ

)−2
) such that for all randomized streaming algorithms

P and all w ∈ Σ∗ we have:

(i) If Pr[P accepts w] > 1− λ then Pr[P(k) accepts w] > 1− λ′.
(ii) If Pr[P rejects w] > 1− λ then Pr[P(k) rejects w] 6 1− λ′.

Proof. We will choose k later. Let X1, . . . , Xk be independent Bernoulli random

variables with Pr[Xi = 0] = λ and Pr[Xi = 1] = 1 − λ. Let X =
∑k
i=1Xi with

expectation µ = k(1 − λ). Suppose that P accepts w with probability > 1 − λ,
i.e., P rejects w with probability at most λ. Then, P(k) rejects w with probability
at most Pr[X 6 k/2]. By the Chernoff bound [75, Theorem 4.5], for any 0 < δ < 1
we have

(5) Pr[X 6 (1− δ)µ] 6 exp

(
−µδ

2

2

)
.
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By choosing δ = 1 − 1
2(1−λ) we get (1 − δ)µ = k/2. Then, (5) gives the following

estimate:

Pr[X 6 k/2] 6 exp

(
−
k(1− λ)(1− 1

2(1−λ) )2

2

)

= exp

(
−k

2
·

( 1
2 − λ)2

1− λ

)
6 exp

(
−k

2
·
(

1

2
− λ

)2
)
.

By choosing

k > 2 · ln
(

1

λ′

)
·
(

1

2
− λ
)−2

we can bound the probability that P(k) rejects w by λ′. Statement (ii) can be shown
analogously. �

4.2. Space tetrachotomy. A randomized sliding window algorithm for a language
L and window size n is a randomized streaming algorithm for SWn(L). The
randomized space complexity Fr

L(n) of L in the fixed-size sliding window model is
the minimal space complexity s(Pn) of a randomized sliding window algorithm Pn
for L and window size n. For this to be well-defined it is important that we require
the error probability to be at most 1/3.

Before we investigate randomized streaming algorithms in more detail, let us
first comment on the fact that in our definition of randomized SW-algorithms we
allow arbitrary (even irrational) probabilities in the state transitions. On the other
hand, in all correctness proofs for our randomized SW-algorithms we only need
the fact that the probabilities are from a certain interval I ⊆ [0, 1]. Therefore, if
d is the length of the interval I, we can always choose a probability p ∈ I with
O(log2(1/d)) bits such that the algorithm still achieves an error probability of at
most 1/3. However, the size of the interval I may depend on the window size n;
more precisely it may shrink when n grows. In particular, the number of bits needed
to write down the probabilities used in Pn (the algorithm for window size n) may
grow with n. One might argue that these bits should also enter the definition of
the space used by the algorithm. The reason why we do not take these bits into
account is the same as why we do not consider the space for internal calculations;
see Remark 2.7. Assume for instance that we need to implement a randomized
branching with probabilities p and 1− p and let m be the number of bits of p. Let
us moreover assume that we have a randomized machine model that apart from
deterministic commands can only toss fair coins. It is not difficult to see that one
can implement a biased coin with probabilities p and 1− p using m many fair coins.
For this, one also needs some additional control structure for which O(logm) bits
are needed (basically to store the program counter).5 But this is internal space that
we do not take into account in our definition of space (as justified in Remark 2.7).

Clearly we have Fr
L(n) 6 FL(n). Furthermore, we prove that randomness can

reduce the space complexity at most exponentially:

Lemma 4.2. For any language L we have FL(n) = 2O(F r
L(n)).

Proof. Rabin proved that any probabilistic finite automaton with a so-called isolated
cut-point can be made deterministic with an exponential size increase [81]. Let
P = (Q,Σ, ι, ρ, F ) be a probabilistic finite automaton with m states. Suppose that

5The reader may view this control structure as additional ε-transitions in a probabilistic
automaton that are taken with probability 1/2.
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λ ∈ [0, 1] is an isolated cut-point with radius δ > 0, i.e., |Pr[P accepts w]− λ| > δ
for all w ∈ Σ∗. Then, L = {w ∈ Σ∗ | Pr[P accepts w] > λ} is recognized by a DFA
A with at most (1 +m/δ)m−1 = 2O(m logm) states [81, Theorem 3].

Now, let Pn be a minimal probabilistic finite automaton for SWn(L) with m states
and error probability 6 1/3. Since Pn has 1/2 as an isolated cutpoint with radius
1/2− 1/3 = 1/6, there exists an equivalent DFA Qn with |Qn| 6 2O(m logm) states.
The statement follows from FL(n) 6 log |Qn| = O(m logm) = O(2Fr

L(n) · Fr
L(n)),

which is bounded by 2O(Fr
L(n)). �

In this section, we will prove Theorem 1.4, which is a tetrachotomy for the
randomized space complexity of regular languages in the fixed-size sliding window
model. Let us rephrase Theorem 1.4 and split it into three upper bounds and three
lower bounds.

Theorem 4.3. Let L ⊆ Σ∗ be a regular language.

(1) If L ∈ 〈ST,Len〉 then Fr
L(n) = O(1).

(2) If L /∈ 〈ST,Len〉 then Fr
L(n) = Ω∞(log log n).

(3) If L ∈ 〈ST,SF,Len〉 then Fr
L(n) = O(log log n).

(4) If L /∈ 〈ST,SF,Len〉 then Fr
L(n) = Ω∞(log n).

(5) If L ∈ 〈LI,Len〉 then Fr
L(n) = O(log n).

(6) If L /∈ 〈LI,Len〉 then Fr
L(n) = Ω∞(n).

Points (1) and (5) already hold in the deterministic setting, see Theorem 3.3. In
the next sections we prove points (2), (3), (4), and (6).

We first transfer Lemma 2.6 to the fixed-size model in the randomized setting:

Lemma 4.4. Let Σ be a finite alphabet. For any function s(n), the class {L ⊆ Σ∗ |
Fr
L(n) = O(s(n))} forms a Boolean algebra.

Proof. Let L ⊆ Σ∗ be a language and n ∈ N a window size. If Pn is a randomized
SW-algorithm for L and window size n then Pn is a randomized SW-algorithm
for Σ∗ \ L and window size n, where Pn simulates Pn and returns the negated
output. Let Pn and Qn be randomized SW-algorithms for K and L, respectively,
and window size n. By Lemma 4.1 we can reduce their error probabilities to 1/6
with a constant space increase. Then, the algorithm which simulates Pn and Qn in
parallel and returns the disjunction of the outputs is a randomized SW-algorithm
for K ∪ L and window size n. Its error probability is at most 1/3 by the union
bound. �

4.3. The Bernoulli counter. The crucial algorithmic tool for the proof of Theo-
rem 4.3(3) is a simple probabilistic counter. It is inspired by the approximate counter
by Morris [36, 76], which uses O(log log n) bits. For our purposes, it suffices to detect
whether the counter has exceeded a certain threshold, which can be accomplished
using only O(1) bits.

Formally, a probabilistic counter is a probabilistic automaton

Z = (C, {inc}, ι, ρ, F )

over the unary alphabet {inc}. States in F are called high and states in C \ F
are called low. We make the restriction that there is a low state c0 ∈ C such that
ι(c0) = 1 (and hence ι(c) = 0 for all c ∈ C \ {c0}); thus Z has a unique initial state
c0 (which must be low) and we write Z = (C, {inc}, c0, ρ, F ). This restriction is
not really important (and can in fact be achieved for every probabilistic automaton
by adding a new state), but it will simplify our constructions.

In the following we write Z(k, c) for Z(inck, c) (k > 0, c ∈ C), which is the
probability that Z arrives in state c after k increments. Moreover, Zhi(k) is
the probability that Z is in a high state after k increments (this is the same as
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Pr[Z accepts inck]). Given numbers 0 6 ` < h we say that Z is an (h, `)-counter
with error probability λ < 1

2 if for all k ∈ N we have:

• If k 6 `, then Zhi(k) 6 λ.
• If k > h, then Zhi(k) > 1− λ.

In other words, a probabilistic counter can distinguish with high probability between
values below ` and values above h but does not give any guarantees for counter
values strictly between ` and h. A Bernoulli counter is a probabilistic counter Zp
that is parameterized by a probability 0 < p < 1 and that has the state set {0, 1},
where 0 is a low state and 1 is a high state. Initially the counter is in the state x = 0.
On every increment we set x = 1 with probability p; the state remains unchanged
with probability 1− p. We have

Zhi
p (k) = Zp(k, 1) = 1− (1− p)k.

Let us first show the following claim.

Lemma 4.5. For all h > 0, 0 < ξ < 1 and 0 < ` 6 (1− ξ)h there exists 0 < p < 1
such that Zp is an (h, `)-counter with error probability 1/2− ξ/8.

Proof. We need to choose 0 < p < 1 such that

(i) 1− (1−p)(1−ξ)h 6 1/2− ξ/8, or equivalently, 1/2 + ξ/8 6 (1−p)(1−ξ)h, and
(ii) (1− p)h 6 1/2− ξ/8, or equivalently, (1− p)(1−ξ)h 6 (1/2− ξ/8)1−ξ.

It suffices to show

(6)
1

2
+
ξ

8
6

(
1

2
− ξ

8

)1−ξ

.

Then one can take for instance p = 1− (1/2− ξ/8)1/h ∈ (0, 1), which satisfies (ii).
Moreover, (i) is satisfied due to (6).

Taking logarithms shows that (6) is equivalent to

ln(4 + ξ)− ln 8 6 (1− ξ) · (ln(4− ξ)− ln 8),

which can be rearranged to ln(4 + ξ) 6 ln(4 − ξ) + ξ(ln 8 − ln(4 − ξ)). Since
ln 8− ln(4− ξ) > ln 8− ln 4 = ln 2, it suffices to prove

(7) ln(4 + ξ) 6 ln(4− ξ) + ξ ln 2.

One can verify 3 ln 2 ≈ 2.0794 > 2. We have

4 + ξ 6 4 + (3 ln 2− 1)ξ

= 4 + (4 ln 2− 1)ξ − ξ ln 2

6 4 + (4 ln 2− 1)ξ − ξ2 ln 2

= (4− ξ)(ξ ln 2 + 1).

By taking logarithms and plugging in lnx 6 x− 1 for all x > 0, we obtain

ln(4 + ξ) 6 ln(4− ξ) + ln(ξ ln 2 + 1) 6 ln(4− ξ) + ξ ln 2.

This proves (7) and hence (6), and thus the lemma. �

Proposition 4.6. For all h > 0, 0 < ξ < 1, 0 < ` 6 (1 − ξ)h and 0 < λ′ < 1/2
there exists an (h, `)-counter Z with error probability λ′ which uses O(log log(1/λ′)+
log(1/ξ)) bits.

Proof. Take the (h, `)-counter Zp from Lemma 4.5, whose error probability is
λ := 1/2 − ξ/8. To Zp we apply Lemma 4.1, which states that we need to run
k = O(log( 1

λ′ ) ·
1
ξ2 ) independent copies to reduce the error probability to λ′. The

states of Z(k)
p are multisets over {0, 1} of size k, which can be encoded with

O(log k) = O(log log 1
λ′ + log 1

ξ ) bits by specifying the number of 1-bits in the
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multiset. Note that the unique initial state of Z(k)
p is the multiset with k occurrences

of 0. �

4.4. Suffix-free languages. In this section, we prove Theorem 4.3(3). Since
languages in ST∪Len have constant space (deterministic) SW-algorithms it suffices
by Lemma 4.4 to show:

Theorem 4.7. If L is regular and suffix-free then Fr
L(n) = O(log log n).

Fix a regular suffix-free language L ⊆ Σ∗ and let B = (Q,Σ, F, δ, q0) be an rDFA
for L where all states are reachable. Excluding the trivial case L = ∅, we assume
that B contains at least one final state. Furthermore, since L is suffix-free, any run
in B contains at most one final state. Therefore, we can assume that F contains
exactly one final state qF , and all outgoing transitions from qF lead to a sink state.
For a stream w ∈ Σ∗ define the function `w : Q→ N ∪ {∞} by

(8) `w(q) = inf{k ∈ N | lastk(w) · q = qF },
where we set inf(∅) =∞ (note that {k ∈ N | lastk(w) · q = qF } is either empty or
a singleton set). Notice that lastn(w) ∈ L if and only if `w(q0) = n. Also, it holds
`w(qF ) = 0 for every w ∈ Σ∗. A deterministic streaming algorithm can maintain
the function `w where w ∈ Σ∗ is the stream prefix read so far: If a symbol a ∈ Σ is
read, we can determine

(9) `wa(q) =

{
0, if q = qF ,

1 + `w(a · q), otherwise,

where 1 +∞ = ∞. Storing `w(q) may require up to log |w| bits. Therefore, if an
SW-algorithm for window size n wants to store all `w(q) for q ∈ Q (w is the input
stream and not just the sliding window), then the space is not bounded in the
window size. The solution is to use probabilistic counters with suitable threshold
values ` and h.

Let n ∈ N be a window size. The randomized sliding window algorithm Pn for
L consists of two parts: a constant-space threshold algorithm Tn, which rejects
with high probability whenever `w(q0) > 2n, and a modulo counting algorithm Mn,
which maintains `w modulo a random prime number with O(log log n) bits.

Lemma 4.8 (threshold counting). There exists a randomized streaming algorithm
Tn with O(1) bits such that for all w ∈ Σ∗ we have:

• Pr[Tn accepts w] > 2/3, if `w(q0) 6 n, and
• Pr[Tn rejects w] > 2/3, if `w(q0) > 2n.

Proof. By Proposition 4.6 there is a (2n, n)-counter Z = (C, {inc}, c0, ρ, F ) with
error probability 1/3 which uses O(1) space. Let c∞ ∈ F be an arbitrary high state.
The algorithm Tn maintains for every q ∈ Q an instance Zq of the (2n, n)-counter
Z. The input alphabet of Zq is Σ (instead of {inc}) and the probability Zq(w, c)
of reaching c ∈ C after reading the word w ∈ Σ∗ will satisfy

(10) Zq(w, c) = Z(`w(q), c),

where we set Z(∞, c∞) = 1 (and Z(∞, c) = 0 for all states c 6= c∞) We initialize Zq
in order to get (10) for w = ε. To this end, we distinguish whether state q has finite
or infinite value `ε(q). Notice that `ε(q) is finite if and only if the final state qF
can be reached from state q by only reading the padding symbol �. If `ε(q) <∞,
then we initialize Zq in its initial state c0 and then execute `ε(q) increments. If
`ε(q) =∞, we set Zq to state c∞ (with probability one). Given an input symbol
a ∈ Σ, we compute the new states of the counters Zq as follows: Assume that cq is
the current state of Zq. First we set ZqF to the initial state c0. This ensures (10)
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for qF since `wa(qF ) = 0 and Z(0, c0) = 1. For q ∈ Q \ {qF } we set the new state of
Zq with probability ρ(ca·q, inc, c) to c. This ensures again (10):

Zq(wa, c) =
∑
c′∈C
Za·q(w, c′) · ρ(c′, inc, c)

=
∑
c′∈C
Z(`w(a · q), c′) · ρ(c′, inc, c)

= Z(`w(a · q) + 1, c) = Z(`wa(q), c).

The algorithm Tn accepts the word w if and only if Zq0 is in a low state after reading
w. Note that this happens with probability 1−Zhi

q0(w) = 1−Zhi(`w(q0)) (Zhi(k) is
the probability that Z is in a high state after k increments). Correctness follows
from the fact that Z is a (2n, n)-counter with error probability 1/3:

Pr[Tn accepts w] = 1−Zhi(`w(q0))

{
> 2/3 if `w(q0) 6 n,

6 1/3 if `w(q0) > 2n.

This proves the lemma. �

Also note that the randomized SW-algorithm from the previous proof uses several
probabilistic counters Zq (one for each state q ∈ Q) and they all have the same
parameters ` = n and h = 2n. For each new input symbol, a subset of these counters
have to be incremented. These increments are not needed to be independent. Hence,
in each step, only the random bits for incrementing a single (2n, n)-counter are
needed. These random bits can be used for all Zq that have to be incremented.

We now come to the modulo counting algorithm, for which we use the following
simple fact on prime numbers.

Lemma 4.9. There is a constant c such that for every large enough m ∈ N
and all 0 6 a, b 6 m with a 6= b the following holds: If the prime number p is
picked uniformly at random among all prime numbers that are no greater than
c logm log logm, then Pr[a ≡ b (mod p)] 6 1/3.

Proof. Let pi be the i-th prime number. It is known that pi < i · (ln i + ln ln i)
for i > 6 [83, 3.13]. Fix an m and let k be the first natural number such that∏k
i=1 pi > m. Since

∏k
i=1 pi > 2k, we have k 6 logm and hence p3k 6 3 logm ·

(ln(3 logm) + ln ln(3 logm)) 6 c logm log logm for some constant c and all large
enough m.

Since −m 6 a− b 6 m and any product of at least k+ 1 pairwise distinct primes
exceeds m, the integer a− b 6= 0 has at most k prime factors. Hence, for a randomly
chosen prime p ∈ {p1, . . . , p3k} we have Pr[a ≡ b (mod p)] 6 1/3. �

Lemma 4.10 (modulo counting). There exists a randomized streaming algorithm
Mn with O(log log n) bits such that for all w ∈ Σ∗ we have:

• Pr[Mn accepts w] = 1, if `w(q0) = n, and
• Pr[Mn rejects w] > 2/3, if `w(q0) < 2n and `w(q0) 6= n.

Proof. Let c be the constant from Lemma 4.9 which is applied with m = 2n. The
algorithm Mn initially picks a random prime p 6 c log(2n) log log(2n) which is
stored throughout the run using O(log logn) bits. Then, after reading w ∈ Σ∗, Mn

stores for every q ∈ Q a bit telling whether `w(q) < ∞ and, if the latter holds,
the value `w(q) mod p using in total O(|Q| · log log n) bits. These numbers can
be maintained according to (9). The algorithm accepts if and only if `w(q0) ≡ n
(mod p).

If `w(q0) = n then the algorithm always accepts. Now, assume `w(q0) < 2n and
`w(q0) 6= n. Then Lemma 4.9 with a = `w(q0) and b = n yields Pr[`w(q0) ≡ n
(mod p)] 6 1/3. Therefore, Mn rejects with probability at least 2/3. �
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It is worth mentioning that in the above modulo counting algorithm the errors
after reading different prefixes of an input stream w are not independent. If for
instance w = uu with |u| the window size, then the algorithm will make an error
after reading u if and only if it makes an error after reading uu. This is of course
due to the fact that the only random choice is made at the very beginning. After
this random choice, the algorithm proceeds deterministically.

By combining the algorithms from Lemma 4.8 and Lemma 4.10 we can prove
Theorem 4.7. The algorithm Pn is the conjunction of the threshold algorithm Tn
and the modulo counting algorithm Mn. Recall that lastn(w) ∈ L if and only
if `w(q0) = n. If `w(q0) = n then Tn accepts with probability at least 2/3 and
Mn accepts with probability 1; hence Pn accepts with probability at least 2/3. If
`w(q0) 6= n then Mn or Tn rejects with probability at least 2/3. Hence, Pn rejects
with probability at least 2/3.

4.5. Lower bounds. In this section, we prove the lower bounds from Theorem 4.3.
Point (2) from Theorem 4.3 follows easily from the relation FL(n) = 2O(Fr

L(n))

(Lemma 4.2). Since every language L ∈ Reg\〈ST,Len〉 satisfies FL(n) = Ω∞(log n)
(Theorem 3.2 and 3.3), it also satisfies Fr

L(n) = Ω∞(log log n).
For (4) and (6) we apply known lower bounds from communication complexity by

deriving a randomized communication protocol from a randomized SW-algorithm.
This is in fact a standard technique for obtaining lower bounds for streaming
algorithms; see e.g. [84].

We present the necessary background from communication complexity; see [71]
for a detailed introduction. We only need the one-way setting where Alice sends a
single message to Bob. Consider a function f : X × Y → {0, 1} for some finite sets
X and Y . A randomized one-way (communication) protocol P = (a, b) consists of
functions a : X ×Ra → {0, 1}∗ and b : {0, 1}∗ × Y ×Rb → {0, 1}, where Ra and Rb
are finite sets of random choices of Alice and Bob, respectively. The cost of P is the
maximum number of bits transmitted by Alice, i.e.

cost(P ) = max
x∈X,ra∈Ra

|a(x, ra)|.

Moreover, probability distributions are given on Ra and Rb. Alice computes from
her input x ∈ X and a random choice ra ∈ Ra the value a(x, ra) and sends it to
Bob. Using this value, his input y ∈ Y and a random choice rb ∈ Rb he outputs
b(a(x, ra), y, rb). The random choices ra ∈ Ra, rb ∈ Rb are chosen independently
from each other. The protocol P computes f if for all (x, y) ∈ X × Y we have

(11) Pr
ra∈Ra,rb∈Rb

[P (x, y) 6= f(x, y)] 6
1

3
,

where P (x, y) is the random variable b(a(x, ra), y, rb). The randomized one-way
communication complexity of f is the minimal cost among all one-way randomized
protocols that compute f (with an arbitrary number of random bits). The choice of
the constant 1/3 in (11) is arbitrary in the sense that changing the constant to any
λ < 1/2 only changes the communication complexity by a constant (depending on
λ), see [71, p. 30]. We will use established lower bounds on the randomized one-way
communication complexity of some functions.

Theorem 4.11 ([70, Theorem 3.7 and 3.8]). Let n ∈ N.

• The index function

IDXn : {0, 1}n × {1, . . . , n} → {0, 1}

with IDXn(a1 · · · an, i) = ai has randomized one-way communication com-
plexity Θ(n).
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• The greater-than function

GTn : {1, . . . , n} × {1, . . . , n} → {0, 1}

with GTn(i, j) = 1 if and only if i > j has randomized one-way communica-
tion complexity Θ(log n).

The upper bounds from these statements also hold for the deterministic one-way
communication complexity as witnessed by the trivial deterministic protocols. We
also define the equality function

EQn : {1, . . . , n} × {1, . . . , n} → {0, 1}
by EQn(i, j) = 1 if and only if i = j. Its randomized one-way communication com-
plexity is Θ(log log n) whereas its deterministic one-way communication complexity
is Θ(log n) [71].

We start with the proof of (6) from Theorem 4.3, which extends our linear space
lower bound from the deterministic setting to the randomized setting.

Proposition 4.12. If L ∈ Reg \ 〈LI,Len〉 then Fr
L(n) = Ω∞(n).

Proof. By Theorem 3.3(ii) any rDFA for L is not well-behaved and by Lemma 3.8
there exist words u = u1u2, v = v1v2, z ∈ Σ∗ such that |u1| = |v1|, |u2| = |v2| and
L separates u2{u, v}∗z and v2{u, v}∗z. Let η : {0, 1}∗ → {u, v}∗ be the injective
homomorphism defined by η(0) = u and η(1) = v.

Now, consider a randomized SW-algorithm Pn for L and window size n =
|u2|+ |u| ·m+ |z| for some m > 1. We describe a randomized one-way communication
protocol for IDXm.

Let α = α1 · · ·αm ∈ {0, 1}m be Alice’s input and i ∈ {1, . . . ,m} be Bob’s
input. Alice reads η(α) into Pn (using here random choices in order to select the
outgoing transitions in Pn) and sends the memory state using O(s(Pn)) bits to Bob.
Continuing from the received state, Bob reads uiz into Pn. Then, the active window
is

lastn(η(α)uiz) = s η(αi+1 · · ·αm)uiz ∈ {u2, v2}{u, v}∗z
where s = u2 if αi = 0 and s = v2 if αi = 1. Hence, from the output of Pn Bob can
determine whether αi = 1. The cost of the protocol is bounded by O(s(Pn)) and
must be at least Ω(m) = Ω(n) by Theorem 4.11. We conclude that s(Pn) = Ω(n)
for infinitely many n and therefore Fr

L(n) = Ω∞(n). �

Next, we prove point (4) from Theorem 4.3. For that, we need the following
automaton property, where B = (Q,Σ, F, δ, q0) is an rDFA.

A pair (p, q) ∈ Q×Q of states is called synchronized if there exist words x, y, z ∈ Σ∗

with |x| = |y| = |z| > 1 such that

q
x←− q y←− p z←− p.

A pair (p, q) ∈ Q × Q is called reachable if p and q are reachable from q0 and
(p, q) is called F -consistent if either {p, q} ∩ F = ∅ or {p, q} ⊆ F . We remark that
synchronized state pairs have no connection to the notion of synchronizing words.

Our main technical result for synchronized pairs is the following:

Lemma 4.13. Assume that every reachable synchronized pair in B is F -consistent.
Then, L(B) belongs to 〈ST,SF,Len〉.

For the proof of Lemma 4.13 we need two lemmas.

Lemma 4.14. A state pair (p, q) is synchronized if and only if p and q are non-
transient and there exists a nonempty run from p to q whose length is a multiple of
|Q|!.
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Proof. First assume that (p, q) is synchronized. Let x, y, z ∈ Σ+ with |x| = |y| =
|z| = k such that q

x←− q y←− p z←− p. Then, p and q are nontransient and we have

q
x|Q|!−1y←−−−−− p,

where x|Q|!−1y has length (|Q|!− 1) · k + k = |Q|! · k.
Conversely, assume that p and q are nontransient and there exists a nonempty

run q
y←− p whose length is divided by |Q|!. Since the states p and q are nontransient,

there are words x and z of length at most |Q| with q
x←− q and p

z←− p. These words
can be pumped up to have length |y|. �

Let Q = T ∪N be the partition of the state set into the set T of transient states
and the set N of nontransient states. A function β : N → {0, 1} is k-periodic if
β(i) = β(i+ k) for all i ∈ N.

Lemma 4.15. Assume that every reachable synchronized pair in B is F -consistent.
Then, for every word v ∈ Σ∗ of length at least |Q|! · (|T | + 1) there exists a |Q|!-
periodic function βv : N → {0, 1} such that the following holds: If w ∈ Σ∗v and
w · q0 ∈ N , then we have w ∈ L(B) if and only if β(|w|) = 1.

Proof. Let v = ak · · · a2a1 with k > |Q|! · (|T |+ 1), and consider the run

(12) qk
ak←− · · · a2←− q1

a1←− q0

of B on v. Clearly, each transient state can occur at most once in the run. First
notice that for each 0 6 i 6 |Q|!− 1 at least one of the states in

Qi = {qi+j|Q|! | 0 6 j 6 |T |}

is nontransient because otherwise the set would contain |T |+ 1 pairwise distinct
transient states. Furthermore, we claim that the nontransient states in Qi are either
all final or all nonfinal: Take two nontransient states qi+j1|Q|! and qi+j2|Q|! with
j1 < j2. Since we have a run of length (j2 − j1)|Q|! from qi+j1|Q|! to qi+j2|Q|!, these
two states form a synchronized pair by Lemma 4.14, which by assumption must be
F -consistent.

Now, define βv : N→ {0, 1} by

βv(m) =

{
1, if the states in Qm mod |Q|! ∩N are final,

0, if the states in Qm mod |Q|! ∩N are nonfinal,

which is well-defined by the remarks above. Clearly βv is |Q|!-periodic.
Let w = am · · · a2a1 ∈ Σ∗v be a word of length m > k. The run of B on w

starting from the initial state prolongs the run in (12):

qm
am←−− · · · ak+2←−−− qk+1

ak+1←−−− qk
ak←− · · · a2←− q1

a1←− q0

Assume that qm ∈ N . As argued above, there is a position 0 6 i < k such that
i ≡ m (mod |Q|!) and qi ∈ N . Therefore, there exists a nonempty run from qi to
qm whose length is a multiple of |Q|!. Hence, (qi, qm) is a synchronized pair by
Lemma 4.14, which is F -consistent by assumption. Therefore, w ∈ L if and only if
qm ∈ F if and only if qi ∈ F if and only if βv(|w|) = 1. �

We can now prove Lemma 4.13.

Proof of Lemma 4.13. Given a subset P ⊆ Q let L(B, P ) := L(Q,Σ, P, δ, q0). Let
FN = N ∩ F and FT = T ∩ F . We disjointly decompose L into

L = L(B, FN ) ∪
⋃
q∈FT

L(B, {q}).
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First observe that L(B, {q}) ∈ SF for all q ∈ FT because a transient state q can
occur at most once in a run of B.

It remains to show that L(B, FN ) belongs to 〈ST,SF,Len〉. Using the threshold
k = |Q|! · (|T |+ 1), we distinguish between words of length at most k− 1 and words
of length at least k, and group the latter set by their suffixes of length k:

L(B, FN ) = (L(B, FN ) ∩ Σ6k−1) ∪
⋃
v∈Σk

(L(B, FN ) ∩ Σ∗v).

The first part L(B, FN )∩Σ6k−1 is finite and thus suffix testable. To finish the proof,
we will show that L(B, FN ) ∩ Σ∗v ∈ 〈ST,SF,Len〉 for each v ∈ Σk. Let v ∈ Σk

and let βv : N→ {0, 1} be the |Q|!-periodic function from Lemma 4.15. The lemma
implies that

L(B, FN ) ∩ Σ∗v = (Σ∗v ∩ {w ∈ Σ∗ | β(|w|) = 1}) \ L(B, T ).

The language {w ∈ Σ∗ | β(|w|) = 1} is a regular length language, Σ∗v is suffix
testable and L(B, T ) is a finite union of regular suffix-free languages. �

The following lemma is an immediate consequence of Lemma 4.13.

Lemma 4.16. If L ∈ Reg \ 〈ST,SF,Len〉 then there exist u, x, y, z ∈ Σ∗ with
|x| = |y| = |z| > 1 such that L separates x∗yz∗u and z∗u.

Now, we can finally prove point (4) from Theorem 4.3.

Proposition 4.17. If L ∈ Reg \ 〈ST,SF,Len〉 then Fr
L(n) = Ω∞(log n).

Proof. Consider the words u, x, y, z ∈ Σ∗ described in Lemma 4.16. Let n =
|z| ·m+ |u| for some m > 1 and let Pn be a randomized SW-algorithm for L. We
describe a randomized one-way protocol for GTm: Let 1 6 i 6 m be the input
of Alice and 1 6 j 6 m be the input of Bob. Alice starts with reading xmyzm−i

into Pn. Then she sends the reached state to Bob using O(s(Pn)) bits. Bob then
continues the run of Pn from the transmitted state with the word zju. Hence, Pn
is simulated on the word w := xmyzm−izju = xmyzm−i+ju. We have

lastn(w) =

{
xi−1−jyzm−i+ju, if i > j,

zmu, if i 6 j.

By Lemma 4.16, lastn(w) belongs to L in exactly one of the two cases i > j and
i 6 j. Hence, Bob can distinguish these two cases with probability at least 2/3.
It follows that the protocol computes GTm and its cost is bounded by s(Pn). By
Theorem 4.11 we can conclude that s(Pn) = Ω(logm) = Ω(log n), and therefore
Fr
L(n) = Ω∞(log n). �

4.6. Sliding window algorithms with one-sided error. So far, we have only
considered randomized SW-algorithms with two-sided error (analogously to the
complexity class BPP). Randomized SW-algorithms with one-sided error (analo-
gously to the classes RP and coRP) can be motivated by applications where all
“yes”-outputs or all “no”-outputs, respectively, have to be correct. We distinguish be-
tween true-biased and false-biased algorithms. A true-biased (randomized) streaming
algorithm P for a language L satisfies the following properties:

• If w ∈ L then Pr[P accepts w] > 2/3.
• If w /∈ L then Pr[P rejects w] = 1.

A false-biased (randomized) streaming algorithm P for a language L satisfies the
following properties:

• If w ∈ L then Pr[P accepts w] = 1.
• If w /∈ L then Pr[P rejects w] > 2/3.
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Let F 0
L(n) (resp., F 1

L(n)) be the minimal space complexity s(Pn) of any true-biased
(resp., false-biased) SW-algorithm Pn for L and window size n. We have the relations
F r
L(n) 6 F iL(n) 6 FL(n) for i ∈ {0, 1}, and F 0

L(n) = F 1
Σ∗\L(n).

For F 0
L(n) and F 1

L(n) a statement analogous to Lemma 4.4 does not hold, i.e., the
classes {L ⊆ Σ∗ | Fi

L(n) = O(s(n))} for i ∈ {0, 1} and a function s(n) do not form
a Boolean algebra. To see this, consider the language L = {$w#w : w ∈ {0, 1}∗}.
It is easy to see that F 1

L(n) = O(log n). On the other hand, every true-biased
randomized (in fact, every nondeterministic) communication protocol for EQn (over
the domain {1, . . . , n}) has cost Ω(log n) [84, Chapter 5]. This implies F 1

Σ∗\L(n) =

F 0
L(n) = Ω∞(n), where Σ = {0, 1, $,#}.

We show that for all regular languages SW-algorithms with one-sided error have
no advantage over their deterministic counterparts:

Theorem 4.18 (one-sided error). Let L be regular.

(i) If L ∈ 〈ST,Len〉 then F 0
L(n) and F 1

L(n) are O(1).
(ii) If L /∈ 〈ST,Len〉 then F 0

L(n) and F 1
L(n) are Ω∞(log n).

(iii) If L ∈ 〈LI,Len〉 then F 0
L(n) and F 1

L(n) are O(log n).
(iv) If L /∈ 〈LI,Len〉 then F 0

L(n) and F 1
L(n) are Ω∞(n).

The upper bounds in (i) and (iii) already hold for deterministic SW-algorithms
(Theorem 1.3). Moreover, the lower bound in (iv) already holds for SW-algorithms
with two-sided error (Theorem 4.3(6)). It remains to prove point (ii) of the theorem.6

In fact we show that any nondeterministic SW-algorithm for a regular language
L /∈ 〈ST,Len〉 requires space Ω∞(log n) (this generalizes the lower bound in the
second equivalence of Theorem 1.3). A nondeterministic SW-algorithm for a language
L and window size n is an NFA Pn with L(Pn) = SWn(L), and its space complexity
is s(Pn) = log |Pn|. If we have a true-biased randomized SW-algorithm for L we can
turn it into a nondeterministic SW-algorithm by keeping only those transitions with
nonzero probabilities and making all states q initial which have a positive initial
probability ι(q) > 0. Therefore, it suffices to show the following statement:

Proposition 4.19. Let L ∈ Reg \ 〈ST,Len〉. Then, for infinitely many n every
nondeterministic SW-algorithm Pn for L has Ω(

√
n) many states.

For the proof of Proposition 4.19 we need the following lemma.

Lemma 4.20. Let L ⊆ a∗ and n ∈ N such that L separates {an} and {ak | k > n}.
Then, every NFA for L has at least

√
n many states.

Proof. The easy case is an ∈ L and ak /∈ L for all k > n. If an NFA for L has at most
n states then any successful run on an must have a state repetition. By pumping
one can construct a successful run on ak for some k > n, which is a contradiction.

Now, assume an /∈ L and ak ∈ L for all k > n. The proof is essentially the same
as for [64, Lemma 6], where the statement of the lemma is shown for L = a∗ \ {an}.
Let us give the proof for completeness. It is known that every unary NFA has
an equivalent NFA in so-called Chrobak normal form. A unary NFA in Chrobak
normal form consists of a simple path (called the initial path in the following) whose
starting state is the unique initial state of the NFA. From the last state of the
initial path, edges go to a collection of disjoint cycles. In [50] it is shown that an
m-state unary NFA has an equivalent NFA in Chrobak normal form whose initial
path consists of m2 −m states. Now, assume that L is accepted by an NFA with
m states and let A be the equivalent NFA in Chrobak normal form, whose initial
path consists of m2 −m states. If n > m2 −m then all states that are reached in A

6Note that Theorem 4.18((ii)) generalizes the lower bound FL(n) = Ω∞(logn) for languages
L ∈ Reg \ 〈ST,Len〉; see Theorem 1.3.
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from the initial state via an belong to a cycle and every cycle contains such a state.
Since an /∈ L, all these states are rejecting. Hence, an+x·d /∈ L for all x > 0, where
d is the product of all cycle lengths. This contradicts the fact that ak ∈ L for all
k > n. Hence, we must have n < m2 −m and therefore m >

√
n. �

Proof of Proposition 4.19. Let L ∈ Reg \ 〈ST,Len〉. By Lemma 3.13 and the
results from Section 3.7 there are words x, y, z ∈ Σ∗ such that |x| = |y| and L
separates xy∗z and y∗z. Note that we must have x 6= y.

Fix m > 0 and consider the window size n = |x| + m|y| + |z|. Let Pn =
(Q,Σ, I,∆, F ) be a nondeterministic SW-algorithm for L and window size n, i.e., it
is an NFA for SWn(L). Notice that Pn separates {xymz} and {xykz | k > m}. We
define an NFA A over the unary alphabet {a} as follows:

• The state set of A is Q.

• The set of initial states of A is {q ∈ Q | ∃p ∈ I : p
x−→ q in Pn}.

• The set of final states of A is {p ∈ Q | ∃q ∈ F : p
z−→ q in Pn}.

• The set of transitions of A is {(p, a, q) | p y−→ q in Pn}.
It recognizes the language L(A) = {ak | xykz ∈ SWn(L)}, and therefore L(A)
separates {am} and {ak | k > m}. By Lemma 4.20, A has at least

√
m = Ω(

√
n)

states. Hence, also the number of states of Pn is in Ω(
√
n). �

Proposition 4.19 implies F 0
L(n) > 1/2 log n − O(1) on infinitely many n for

all L ∈ Reg \ 〈ST,Len〉. Since Reg \ 〈ST,Len〉 is closed under complement,
this implies F 1

L(n) = F 0
Σ∗\L(n) > 1/2 log n − O(1) on infinitely many n for all

L ∈ Reg \ 〈ST,Len〉.

4.7. Randomized variable-size model. In this section, we briefly look at ran-
domized algorithms in the variable-size model. First we transfer the definitions from
Section 2.5 in a straightforward way. A randomized variable-size sliding window
algorithm P for L ⊆ Σ∗ is a randomized streaming algorithm for SW(L) (defined
in (2) on page 11). Its space complexity is v(P, n) = log |M6n| ∈ N ∪ {∞} where
M6n contains all memory states in P which are reachable with nonzero probability
in P on inputs w ∈ Σ∗↓ with mwl(w) 6 n. Since the variable-size sliding window

model subsumes the fixed-size model, we have FrL(n) 6 v(P, n) for every randomized
variable-size sliding window algorithm P for L.

Again we raise the question if randomness can improve the space complexity in the
variable-size model. We claim that, in contrast to the fixed-size model, randomness
does not allow more space efficient algorithms in the variable-size setting. Clearly, all
upper bounds for the deterministic variable-size setting transfer to the randomized
variable-size setting, i.e., languages in 〈LI,Len〉 have O(log n) space complexity,
and empty and universal languages have O(1) space complexity. For every regular
language L which is not contained in 〈LI,Len〉 we proved a linear lower bound on
Fr
L(n) (Proposition 4.12), which is also a lower bound on the space complexity of

any randomized variable-size sliding window algorithm for L. It remains to look at
languages ∅ ( L ( Σ∗, for which we have proved a logarithmic lower bound in the
deterministic setting (Lemma 2.5).

Lemma 4.21. If P is a randomized variable-size SW-algorithm for a language
∅ ( L ( Σ∗ then v(P, n) = Ω(log n).

Proof. Let ∅ ( L ( Σ∗ be a language. There must be a length-minimal nonempty
word a1 · · · ak ∈ Σ+ such that |{ε, a1 · · · ak}∩L| = 1 and we fix such a word a1 · · · ak.
By minimality we also have |{a1 · · · ak, a2 · · · ak} ∩ L| = 1. Let P be a randomized
variable-size SW-algorithm for L. By Lemma 4.1 we can assume that the error
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probability of P is at most 1/6, which increases its space complexity v(P, n) by a
constant factor.

For every n ∈ N we construct a protocol for GTn with cost O(v(P, n)). With
Theorem 4.11 this implies that v(P, n) = Ω(log n). Let 1 6 i 6 n be the input of
Alice and 1 6 j 6 n be the input of Bob. Alice starts two instances of P (using
independent random bits) and reads ai1 into both of them. She sends the memory
states to Bob using O(v(P, i)) 6 O(v(P, n)) bits. Bob then continues from both
states, and reads ↓j a2 · · · ak into the first instance and ↓j+1 a1a2 · · · ak into the
second instance. Let y1, y2 ∈ {0, 1} be the outputs of the two instances of P. With
high probability, namely (1− 1/6)2 > 2/3, both answers are correct, i.e.

y1 = 1 ⇐⇒ wnd(ai1 ↓j a2 · · · ak) ∈ L
and

y2 = 1 ⇐⇒ wnd(ai1 ↓j+1 a1a2 · · · ak) ∈ L.
Bob returns true, i.e., he claims i > j, if and only if y1 = y2.

Let us prove the correctness. If i > j then

wnd(ai1 ↓j a2 · · · ak) = ai−j1 a2 · · · ak = wnd(ai1 ↓j+1 a1a2 · · · ak)

and hence Bob returns true with probability at least 2/3. If i 6 j then

wnd(ai1 ↓j a2 · · · ak) = a2 · · · ak
and

wnd(ai1 ↓j+1 a1a2 · · · ak) = a1a2 · · · ak.
By assumption, exactly one of the words a1 · · · ak, a2 · · · ak belongs to L, and
therefore Bob returns false with probability at least 2/3. �

The lower bound from Lemma 4.21 also holds for variable-size SW-algorithms
with one-sided error since they are more restricted than algorithms with two-sided
error. In fact, Lemma 4.21 also holds for nondeterministic and co-nondeterministic
SW-algorithms since the (co-)nondeterministic communication complexity of GTn
is Θ(log n) [84, Chapter 5].

5. Property testing in the sliding window model

In all settings discussed so far, there are some regular languages for which testing
membership in the sliding window model requires linear space. To be more specific,
for any language L ∈ Reg \ 〈LI,Len〉 it requires linear space to test membership
even for randomized sliding window algorithms with two-sided error. In order
to achieve space-efficient sliding window algorithms for all regular languages, we
have to allow randomized sliding window algorithms that are allowed to err with
unbounded probability on some specific inputs. We formalize this in the context of
the property testing framework. More precisely, we introduce in this section sliding
window (property) testers, which must accept if the active window belongs to a
language L and reject if it has large Hamming distance from L.

For words that are not in L but that have small Hamming distance from L the
algorithm is allowed to give any answer. We consider deterministic sliding window
property testers and randomized sliding window property testers.

While at first sight the only connection between property testers and sliding
window property testers is that we must accept the input if it satisfies a property P
and reject if it is far from satisfying P , there is, in fact, a deeper link. In particular,
the property tester for regular languages due to Alon et al. [2] combined with an
optimal sampling algorithm for sliding windows [18] immediately yields O(log n)-
space, two-sided error sliding window property testers with Hamming gap γ(n) = εn
for all regular languages. We will improve on this observation.
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5.1. Sliding window testers. The Hamming distance between two words u =
a1 · · · an and v = b1 · · · bn of equal length is the number of positions where u and
v differ, i.e., dist(u, v) = |{i | ai 6= bi}|. If |u| 6= |v| we set dist(u, v) = ∞. The
distance of a word u to a language L is defined as

dist(u, L) = inf{dist(u, v) | v ∈ L} ∈ N ∪ {∞}.

Additionally, we define the prefix distance between equal-length words u = a1 · · · an
and v = b1 · · · bn by pdist(u, v) = min{i ∈ {0, . . . , n} | ai+1 · · · an = bi+1 · · · bn}. For
instance, we have pdist(abbaca, abcaca) = 3 and pdist(abccca, abcaca) = 4 (whereas
the Hamming distance in both cases is 1). Clearly, we have dist(u, v) 6 pdist(u, v).
The algorithms presented in this section satisfy the stronger property that windows
whose prefix distance to the language L is large are rejected by the algorithm.

In this section, γ is always a function γ : N → R>0 such that γ(n) < n for all
n. A deterministic sliding window (property) tester with Hamming gap γ(n) for a
language L ⊆ Σ∗ and window size n is a deterministic streaming algorithm Pn over
the alphabet Σ with the following properties:

• If lastn(w) ∈ L, then w ∈ L(Pn).
• If dist(lastn(w), L) > γ(n), then w /∈ L(Pn).

If neither of the two cases hold, the behaviour of Pn can be arbitrary. Recall that
s(Pn) is the space used by Pn (see Section 2.3). A randomized sliding window tester
with Hamming gap γ(n) for a language L ⊆ Σ∗ and window size n is a randomized
streaming algorithm Pn over the alphabet Σ with the following properties. It has
two-sided error if for all w ∈ Σ∗ we have:

• If lastn(w) ∈ L, then Pr[Pn accepts w] > 2/3.
• If dist(lastn(w), L) > γ(n), then Pr[Pn rejects w] > 2/3.

It is true-biased if for all w ∈ Σ∗ we have:

• If lastn(w) ∈ L, then Pr[Pn accepts w] > 2/3.
• If dist(lastn(w), L) > γ(n), then Pr[Pn rejects w] = 1.

It is false-biased if for all w ∈ Σ∗ we have:

• If lastn(w) ∈ L, then Pr[Pn accepts w] = 1.
• If dist(lastn(w), L) > γ(n), then Pr[Pn rejects w] > 2/3.

True-biased and false-biased algorithms are algorithms with one-sided error. Again,
the success probability 2/3 is an arbitrary choice in light of Lemma 4.1.

Intuitively, the Hamming gap function γ should be a small function. Typical
choices for γ(n) are εn for some constant ε (0 < ε < 1) or γ(n) = c for a constant
c. We will also consider Hamming gap functions that are between these two cases.
The case γ(n) = 0 for all n corresponds to exact membership testing to L, which
was studied in the previous sections.

Let us also remark that we only consider the fixed-size sliding window model in
this section. One might also consider variable-size sliding window testers, where the
size of the window can grow and shrink. We leave this for future work. Moreover,
we only consider the Hamming distance in this paper. One might also consider
other distances on words, like for instance edit distance. We believe that Hamming
distance is the most basic distance measure on strings. The upper bounds stated
below also apply to edit distance (since the edit distance is always bounded by the
Hamming distance). Whether our lower bounds can be extended to edit distance
remains open.

5.2. Main results of this section. Let us now state and discuss the main results
of this section. We start with our upper bounds:
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Theorem 5.1. For every regular language L and window size n there exists a deter-
ministic sliding window tester Pn with Hamming gap O(1) and s(Pn) = O(log n).

We will later see that allowing a larger (but not too large) Hamming gap in
Theorem 5.1 does not allow a better space bound. This changes if we allow
randomized sliding window testers with a two-sided error:

Theorem 5.2. For every regular language L there is a constant c such that the
following holds: If the function γ(n) and the window size n satisfy γ(n) > c then
there is a randomized sliding window tester Pn for L and window size n with a
two-sided error, Hamming gap γ(n), and s(Pn) = O(log(n/γ(n))).

From Theorem 5.2 we will easily obtain the following corollary:

Corollary 5.3. For every regular language L, every window size n and every
0 < ε < 1 there exists a randomized sliding window tester Pn with two-sided error,
Hamming gap εn and s(Pn) = O(1/ε).

The upper bounds in Theorem 5.1 and Theorem 5.2 hold for all regular languages.
We will also identify subclasses for which these upper bounds can be improved.
Recall the definition of suffix-free languages from Section 1.2. Another important
language class in the context of sliding-window testers is the class of trivial languages.
A language L ⊆ Σ∗ is γ(n)-trivial (for a function γ(n) < n) if for all n ∈ N with
L ∩ Σn 6= ∅ and all w ∈ Σn we have dist(w,L) 6 γ(n). If L is O(1)-trivial we say
that L is trivial. Examples of trivial languages include all length languages, all suffix
(resp., prefix) testable languages (in particular, L = a{a, b}∗ for which FL(n) = Θ(n)
holds), and also the set of all words over {a, b} which contain an even number of
a’s. Note that Alon et al. [2] call a language L trivial if L is o(n)-trivial according
to our definition, i.e., γ(n)-trivial for some function γ(n) = o(n). In fact, we will
prove that both definitions coincide for regular languages (Theorem 5.24). With
Triv we denote the set of all regular trivial languages.

We can achieve a Hamming gap of γ(n) simply with a deterministic sliding
window tester that accepts or rejects all input words depending on the input length.
Moreover, the tester has only one state and hence uses space log(1) = 0. It turns out
that for finite unions of regular trivial languages and regular suffix-free languages,
we can obtain a doubly logarithmic space bound if we allow false-biased randomized
sliding window testers. Let us write

⋃
(Triv,SF) for the class of all finite unions of

regular trivial languages and regular suffix-free languages.

Theorem 5.4. For every L ∈
⋃

(Triv,SF) and window size n there exists a
false-biased randomized sliding window tester Pn with Hamming gap O(1) and
s(Pn) = O(log log n).

Let us now discuss our lower bounds. It turns out that the above upper bounds
are sharp in most cases. First of all, the logarithmic space bound in Theorem 5.1
cannot be improved whenever L is a regular nontrivial language. This holds even
for randomized true-biased algorithms and a Hamming gap εn (assuming ε < 1 is
not too big). Similarly, the doubly logarithmic space bound in Theorem 5.4 cannot
be improved.

Theorem 5.5. For every language L ∈ Reg \Triv there exist ε > 0 and infinitely
many window sizes n ∈ N for which every true-biased (resp., false-biased) randomized
sliding window tester for L with Hamming gap εn uses space at least log n−O(1)
(resp. log log n−O(1)).

Moreover, also for false-biased randomized sliding window testers the logarith-
mic space bound from Theorem 5.1 cannot be improved whenever L ∈ Reg \⋃

(Triv,SF):
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space complexity deterministic
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Figure 5. The space complexity of regular languages with respect
to deterministic, true-biased and false-biased sliding window testers.
As in Figure 1, only upper bounds are shown, and they hold for
every Hamming gap function γ(n) provided that γ(n) > c for a
constant c that depends on the language. All upper bounds can
be matched with lower bounds that hold for every γ(n) 6 εn for a
constant ε that depends on the language.

Theorem 5.6. If L ∈ Reg\
⋃

(Triv,SF) then there exist ε > 0 and infinitely many
window sizes n ∈ N for which every false-biased randomized sliding window tester
for L with Hamming gap εn uses at least log n−O(1) space.

The above results provide matching upper and lower space bounds for deter-
ministic, true-biased and false-biased sliding window testers; see also Figure 5.
Moreover, the upper bounds hold for a constant Hamming gap (Theorems 5.1 and
5.4) whereas the lower bounds hold for Hamming gap εn as long as ε is larger than
a language-dependent constant (Theorems 5.5 and 5.6). Thus, in the deterministic,
true-biased and false-biased settings, the space complexity is quite insensitive to the
choice of the Hamming gap function γ(n).

For randomized sliding window testers with a two-sided error, the situation is
different. We have already discussed Theorem 5.2, where the Hamming gap γ(n) is
reflected in the space bound. It turns out that the upper bound in Theorem 5.2
is tight whenever L is not a finite union of regular trivial languages and regular
suffix-free languages:

Theorem 5.7. If L ∈ Reg\
⋃

(Triv,SF) then there exist ε > 0 and infinitely many
window sizes n ∈ N for which every randomized sliding window tester with two-sided
error for L and Hamming gap γ(n) 6 εn needs space Ω(log(n/γ(n))).

If L ∈
⋃

(Triv,SF) then the lower bound from Theorem 5.7 does not hold in
general, since we have an upper bound of O(log log n) from Theorem 5.4.7 We do
not know whether there is a matching lower bound of Ω∞(log log n) for nontrivial
languages. Currently, we can only show a slightly weaker lower bound in this case:

Theorem 5.8. If L ∈ Reg\Triv then there exist ε > 0 and infinitely many window
sizes n ∈ N for which every randomized sliding window tester with two-sided error
for L and Hamming gap γ(n) 6 εn needs space Ω(log log(n/γ(n))).

Note that whenever γ(n) = O(nc) for some constant c < 1 then the lower bound
Ω∞(log log(n/γ(n))) from Theorem 5.8 becomes Ω∞(log log n), which matches the
upper bound from Theorem 5.4. It is left open to classify the space complexity for
languages in

⋃
(Triv,SF) \Triv, e.g. L = ab∗, for sublinear Hamming gaps γ(n)

which are Ω(nc) for all c < 1, e.g. γ(n) = n/ log n.

7Note that if γ(n) = O(n/ logn) then the lower bound Ω∞(log(n/γ(n))) becomes Ω∞(log logn).
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ρ2
π′

ρ1

Figure 6. The run π = π′ρ2 t-simulates the run ρ = ρ1ρ2. We
have |ρ1| 6 t.

Let us also remark that Lemma 4.2 does not generalize to sliding window testers
(with the obvious generalization of the space complexities FL(n) and FrL(n) to sliding
window testers). In the proof of Lemma 4.2 we used the fact that a randomized
sliding window algorithm for a language L and a window size n is a probabilistic
finite automaton with the isolated cut-point 1/2. This is not necessarily true for
randomized sliding window testers. If w is a word such that neither lastn(w) ∈ L nor
dist(lastn(w), L) > γ(n) holds then Pr[Pn accepts w] = 1/2 is possible. Indeed, the
generalization of Lemma 4.2 to sliding window testers would contradict Corollary 5.3
together with Theorem 5.5.

5.3. Upper bounds. In this section we prove Theorems 5.1, 5.2 and 5.4.

5.3.1. Deterministic sliding window testers. In this section, we prove Theorem 5.1:
every regular language has a deterministic sliding window tester with constant
Hamming gap which uses O(log n) space. It is based on the path summary algorithm
from Section 3.3. In the following, we fix a regular language L and an rDFA
B = (Q,Σ, F, δ, q0) for L. By Lemma 3.19 we can assume that every nontransient
SCC of B has the same period g > 1.

For a state q ∈ Q we define Acc(q) = {n ∈ N | ∃w ∈ Σn : w · q ∈ F}. The
following lemma is the main tool to prove correctness of our sliding window testers.
It states that if a word of length n is accepted from state p and ρ is any internal run
(see Section 3.3 and page 15) of length at most n starting from state p, then after
removing a bounded length run at the end of ρ, ρ can be extended to an accepting
run of length n. Formally, a run π t-simulates a run ρ if one can factorize ρ = ρ1ρ2

and π = π′ρ2 where |ρ1| 6 t for runs ρ1, ρ2, and π′; see also Figure 6. Note that
this implies that ρ and π start in the same state. Also note that runs go from right
to left (we work with an rDFA), so ρ1 (resp., π′) is the final part of ρ (resp., π).

Lemma 5.9. There exists a number t ∈ N (which only depends on B) such that
for every internal run ρ starting from a state p and every n ∈ Acc(p) with n > |ρ|,
there exists an accepting run π of length n which t-simulates ρ.

Note that the run π in this lemma is not necessarily internal.
Based on Lemma 5.9 we can prove Theorem 5.1. Afterwards we prove Lemma 5.9.

Proof of Theorem 5.1. Let t be the constant from Lemma 5.9. We present a deter-
ministic sliding window tester with constant Hamming gap t which uses O(log n)
space. Let n ∈ N be the window size. By Lemma 3.5 we can maintain the set of all
path summaries PSB(w) = {ps(πw,q) | q ∈ Q} for the active window w ∈ Σn, using
O(log n) bits. In fact, the path summary algorithm works for variable-size windows
but we do not need this here.

It remains to define the acceptance condition. Consider the SCC-factorization of
πw,q0 , say

πw,q0 = πmτm−1πm−1 · · · τ1π1

and its path summary (`m, qm) · · · (`1, q1). The algorithm accepts if and only if
this path summary is accepting, i.e., `m = |πm| ∈ Acc(qm). If w ∈ L then clearly
|πm| ∈ Acc(qm). On the other hand, if |πm| ∈ Acc(qm) then the internal run πm
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can be t-simulated by an accepting run π′m of equal length by Lemma 5.9. The
run π′mτm−1πm−1 · · · τ1π1 is accepting and witnesses that pdist(w,L) 6 t. We get
dist(w,L) 6 pdist(w,L) 6 t. �

To prove Lemma 5.9 we need to analyze the sets Acc(q) first. For a ∈ N and
X ⊆ N we use the standard notation X + a = {a + x | x ∈ X}. A set X ⊆ N is
eventually d-periodic, where d > 1 is an integer, if there exists a threshold t ∈ N
such that for all x > t we have x ∈ X if and only if x+ d ∈ X. If X is eventually
d-periodic for some d > 1, then X is eventually periodic.

Lemma 5.10. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Proof. It suffices to show that for all 0 6 r 6 g − 1 the set Sr = {i ∈ N | r + i · g ∈
Acc(q)} is either finite or co-finite. Consider a remainder 0 6 r 6 g − 1 where Sr
is infinite. We need to show that Sr is indeed co-finite. Let i ∈ Sr with i > |Q|,
i.e., there exists an accepting run π from q of length r + i · g. Since π has length
at least |Q|, it must traverse a state p in a nontransient SCC C. Choose j0 such
that j0 · g > m(C) where m(C) is the reachability constant from Lemma 3.18. By
Lemma 3.18 for all j > j0 there exists a cycle from p to p of length j · g. Therefore,
we can extend π to a longer accepting run by j · g symbols for any j > j0. This
proves that x ∈ Sr for every x > i+ j0 and that Sr is co-finite. �

Two sets X,Y ⊆ N are equal up to a threshold t ∈ N, in symbol X =t Y , if for
all x > t: x ∈ X if and only if x ∈ Y . Two sets X,Y ⊆ N are almost equal if they
are equal up to some threshold t ∈ N.

Lemma 5.11. A set X ⊆ N is eventually d-periodic if and only if X and X + d
are almost equal.

Proof. Let t ∈ N be such that for all x > t we have x ∈ X if and only if x+ d ∈ X.
Then, X and X + d are equal up to threshold t + d. Conversely, if X =t X + d,
then for all x > t we have x+ d ∈ X if and only if x+ d ∈ X + d, which is true if
and only if x ∈ X. �

If the graph G = (V,E) is strongly connected with E 6= ∅ and finite period g,
and V0, . . . , Vg−1 satisfy the properties from Lemma 3.18, then we define the shift
from u ∈ Vi to v ∈ Vj by

(13) shift(u, v) = (j − i) mod g ∈ {0, . . . , g − 1}.

Notice that shift(u, v) could be defined without referring to the partition
⋃g−1
i=0 Vi

since the length of any path from u to v is congruent to shift(u, v) modulo g by
Lemma 3.18. Also, note that shift(u, v) + shift(v, u) ≡ 0 (mod g).

Lemma 5.12. Let C be a nontransient SCC in B, p, q ∈ C and s = shift(p, q).
Then, Acc(p) and Acc(q) + s are almost equal.

Proof. Let k ∈ N such that k · g > m(C) where m(C) is the constant from
Lemma 3.18. By Lemma 3.18 there exists a run from p to q of length s+ k · g, and a
run from q to p of length (k+ 1) · g− s (the latter number is congruent to shift(q, p)
modulo g). By prolonging accepting runs we obtain

Acc(q) + s+ k · g ⊆ Acc(p) and Acc(p) + (k + 1) · g − s ⊆ Acc(q).

Adding s+ k · g to both sides of the last inclusion yields

Acc(p) + (2k + 1) · g ⊆ Acc(q) + s+ k · g ⊆ Acc(p).

By Lemma 5.10 and Lemma 5.11 the three sets above are almost equal. Also,
Acc(q) + s+ k · g is almost equal to Acc(q) + s by Lemma 5.10 and Lemma 5.11.
Since almost equality is a transitive relation, this proves the statement. �
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Corollary 5.13. There exists a threshold t ∈ N such that

(i) Acc(q) =t Acc(q) + g for all q ∈ Q, and
(ii) Acc(p) =t Acc(q) + shift(p, q) for all nontransient SCCs C and all p, q ∈ C.

Let us fix the threshold t from Corollary 5.13 in the following. We can now prove
Lemma 5.9.

Proof of Lemma 5.9. Let ρ be an internal run starting from p with |ρ| 6 n ∈ Acc(p).
We have to find an accepting run π of length n starting from p and factorizations
ρ = ρ1ρ2 and π = π′ρ2 with |ρ1| 6 t.

If |ρ| 6 t, then we can choose for π any accepting run from p of length n ∈ Acc(p).
Otherwise, if |ρ| > t, then the internal run ρ is nonempty, which implies that the
SCC C containing p is nontransient. Moreover, writing ρ = ρ1ρ2 where |ρ1| = t, it
is the case that ρ2 leads from p to some state q of the same SCC. Set s := shift(q, p),
which satisfies s+ |ρ2| ≡ 0 (mod g) by the properties in Lemma 3.18 (see also the
discussion before Lemma 5.12). Since Acc(q) =t Acc(p) + s by Corollary 5.13(ii),
n > t and n ∈ Acc(p), we have n + s ∈ Acc(q). Finally, since n + s ≡ n − |ρ2|
(mod g) and n−|ρ2| = n−|ρ|+t > t, we know n−|ρ2| ∈ Acc(q) by Corollary 5.13(i).
This yields an accepting run π′ from q of length n− |ρ2|. Then, ρ is t-simulated by
π = π′ρ2. �

5.3.2. Sliding window testers with two-sided error. In this section, we will prove
Theorem 5.2. We will construct for every regular language a randomized sliding
window tester with two-sided error and Hamming gap γ(n) that uses O(log(n/γ(n)))
bits assuming the window size n satisfies γ(n) > c for a suitably chosen constant. We
still assume that the regular language L is recognized by an rDFA B = (Q,Σ, F, δ, q0)
whose nontransient SCCs have uniform period g > 1. Furthermore, we again use
the constant t from Corollary 5.13.

We will set the constant c from Theorem 5.2 to c = 4(t + 1). Let us fix a
window size n such that γ(n) > 4(t+ 1). We define the parameters h = n− t and
` = n− γ(n) + t+ 1, which satisfy

`

h
=
n− γ(n) + t+ 1

n− t
6
n− γ(n) + 1

4γ(n)

n− 1
4γ(n)

=
n− 1

4γ(n)− 1
2γ(n)

n− 1
4γ(n)

6 1− γ(n)

2n
.

(14)

Let Z = (C, {inc}, c0, ρ, F ) be the (h, `)-counter with error probability 1/(3|Q|)
from Proposition 4.6, which uses O(log log |Q| + log(n/γ(n))) = O(log(n/γ(n)))
space by (14) (as usual, we consider |Q| as a constant). The counter Z is used to
define so-called compact summaries of runs.

A compact summary κ = (qm, rm, cm) · · · (q2, r2, c2)(q1, r1, c1) is a sequence of
triples, where each triple (qi, ri, ci) consists of a state qi ∈ Q, a remainder 0 6 ri 6
g − 1, and a state ci ∈ C of the counter Z. The state c1 of the counter is always
its initial state c0 (and hence low) and r1 = 0. We say that κ represents a run π if
the SCC-factorization of π has the form πmτm−1πm−1 · · · τ1π1, and the following
properties hold for all 1 6 i 6 m:

(C1) πi starts in qi;
(C2) ri = |τi−1πi−1 · · · τ1π1| mod g;
(C3) if |τi−1πi−1 · · · τ1π1| 6 n− γ(n) + t+ 1 then ci is a low state;
(C4) if |τi−1πi−1 · · · τ1π1| > n− t then ci is a high state.

Note that κ does not restrict πm except that the latter must be an internal run
starting in qm.
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qi−1qiqi+1 q1qm

πi−1τi−1πiτi

ci and ri (mod g)

Figure 7. A compact summary of a run π.

The idea of a compact summary is visualized in Figure 7. If m > |Q| then
the above compact summary cannot represent a run. Therefore, we can assume
that m 6 |Q|. For every triple (qi, ri, ci), the entries qi and ri only depend on the
rDFA B, and hence can be stored with O(1) bits. Each state ci of the probabilistic
counter Z needs O(log(n/γ(n))) bits. Hence, a compact summary can be stored
in O(log(n/γ(n))) bits. In contrast to the deterministic sliding window tester, we
maintain a set of compact summaries which represent all runs of B on the complete
stream read so far (not only on the active window) with high probability.8

Proposition 5.14. For a given input stream w ∈ Σ∗, we can maintain a set of
compact summaries S = {κw(q) | q ∈ Q} such that for all q ∈ Q, κw(q) starts in q
and Pr[run πw,q is represented by κw(q)] > 2/3.

Proof. We maintain for the input word w ∈ Σ∗ a set of random compact summaries
S = {κw(q) | q ∈ Q} as follows.

For w = ε, we initialize S = {κε(q) | q ∈ Q} where κε(q) = (q, 0, c0) for q ∈ Q. If
a ∈ Σ is the next input symbol in the stream, then S is updated to the new set S′ of

compact summaries by iterating over all transitions q
a←− p in B and prolonging the

compact summary starting in q by that transition. To prolong a compact summary

(15) κw(q) = (qm, rm, cm) · · · (q1, r1, c1)

we proceed similarly to Algorithm 1.
If p and q = q1 are not in the same SCC then the new compact summary κwa(p)

is

(qm, (rm + 1) mod g, c′m) · · · (q1, (r1 + 1) mod g, c′1)(p, 0, c0),

where every counter state c′i is chosen with probability ρ(ci, inc, c
′
i).

If p and q = q1 belong to the same SCC, then κwa(p) is

(qm, (rm + 1) mod g, c′m) · · · (q2, (r2 + 1) mod g, c′2)(p, r1, c1),

where every counter state c′i with 2 6 i 6 m is chosen with probability ρ(ci, inc, c
′
i).

Note that the right-most triple of κw(q) will be (q, 0, c0) with probability 1.
Finally we claim that for every q ∈ Q, the compact summary κw(q) from (15)

computed by the algorithm represents πw,q with probability 2/3. Properties (C1)
and (C2) are satisfied by construction. Furthermore, since the length of κw(q) is
bounded by |Q| and each instance of Z has error probability 1/(3|Q|) the probability
that property (C3) or (C4) is violated for some i is at most 1/3 by the union
bound. �

For the randomized algorithm from the proof of Proposition 5.14 the same
comment applies that was made after the proof of Lemma 4.8: the increments of
the probabilistic counters do not have to be independent. Hence, in each step, only
the random bits for incrementing a single (`, h)-counter (with the above parameters
` and h) are needed. These random bits can be used for all counters that have to
be incremented.

8This is similar to the randomized SW-algorithm from Lemma 4.8 that stores in the probabilistic

counters Zq information about the complete input stream.
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It remains to define an acceptance condition on compact summaries. For every
q ∈ Q we define

Accmod(q) = {` mod g | ` ∈ Acc(q) and ` > t}.
Let κ = (qm, rm, cm) · · · (q1, r1, c1) be a compact summary. Since c1 is the low initial
state of the probabilistic counter, there exists a maximal index i ∈ {1, . . . ,m} such
that ci is low. We say that κ is accepting if (n− ri) mod g ∈ Accmod(qi).

Proposition 5.15. Let w ∈ Σ∗ with |w| > n and let κ be a compact summary
which represents πw,q0 .

(i) If lastn(w) ∈ L, then κ is accepting.
(ii) If κ is accepting, then pdist(lastn(w), L) 6 γ(n).

Proof. Consider the SCC-factorization of π = πw,q0 = πmτm−1 · · · τ1π1 and a
compact summary κ = (qm, rm, cm) · · · (q1, r1, c1) representing π. Thus, q1 = q0

and c1 = c0. Consider the maximal index 1 6 i 6 m where ci is low, which
means that |τi−1πi−1 · · · τ1π1| < n − t by (C4). The run of B on lastn(w) has
the form π′kτk−1πk−1 · · · τ1π1 for some suffix π′k of πk and k > i. We have
|π′kτk−1 · · ·πi| = n− |τi−1πi−1 · · · τ1π1| > t. By (C2) we know that

ri = |τi−1πi−1 · · · τ1π1| mod g = n− |π′kτk−1 · · ·πi| mod g.

For (i) assume that lastn(w) ∈ L. Thus, π′kτk−1πk−1 · · · τ1π1 is an accepting run
starting in q0. By (C1) the run π′kτk−1 · · ·πi starts in qi. Hence, π′kτk−1 · · ·πi is an
accepting run from qi of length at least t. By definition of Accmod(qi) we have

n− ri mod g = |π′kτk−1 · · ·πi| mod g ∈ Accmod(qi),

and therefore κ is accepting.
For (ii) assume that κ is accepting, i.e.

(n− ri) mod g = |π′kτk−1 · · ·πi| mod g ∈ Accmod(qi).

Recall that |π′kτk−1 · · ·πi| > t. By definition of Accmod (qi) there exists an accepting
run from qi whose length is congruent to |π′kτk−1 · · ·πi| mod g and at least t. By
point (i) from Corollary 5.13 we derive that |π′kτk−1 · · ·πi| ∈ Acc(qi). We show that
|πiτi−1πi−1 · · · τ1π1| > n − γ(n) + t by a case distinction. If i = m, then clearly
|πiτi−1πi−1 · · · τ1π1| = |w| > n > n − γ(n) + t. The latter inequality follows from
our assumption t + 1 6 γ(n)/4. If i < m, then ci+1 is high by maximality of i,
which implies |τiπi · · · τ1π1| > n− γ(n) + t+ 1 by (C3). Since τi has length one, we
have |πiτi−1πi−1 · · · τ1π1| > n− γ(n) + t.

Since |π′kτk−1 · · ·πi| ∈ Acc(qi), we can apply Lemma 5.9 and obtain an accepting
run ρ of length |π′kτk−1 · · ·πi| ∈ Acc(qi) starting in qi which t-simulates the internal
run πi. The prefix distance between ρ and π′kτk−1 · · ·πi (which we define as the
prefix distance between the words read along the two runs) is at most

|π′kτk−1 · · ·πi+1τi|+ t = n− |πiτi−1πi−1 · · · τ1π1|+ t 6 n− n+ γ(n) = γ(n).

Therefore, the prefix distance from the accepting run ρτi−1πi−1 · · · τ1π1 to the run
π′kτk−1πk−1 · · · τ1π1 is also at most γ(n). This implies pdist(lastn(w), L) 6 γ(n). �

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Assume that the window size is such that γ(n) > 4(t + 1)
(recall that 4(t+ 1) is our constant c from Theorem 5.2). We use the algorithm from
Proposition 5.14, which is initialized by reading the initial window �n. It maintains
a compact summary which represents πw,q0 with probability at least 2/3 for the
read stream prefix w. The algorithm accepts if that compact summary is accepting.
From Proposition 5.15 we get:

• If lastn(w) ∈ L, then the algorithm accepts with probability at least 2/3.
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• If pdist(lastn(w), L) > γ(n), then the algorithm rejects with probability at
least 2/3.

This concludes the proof of Theorem 5.2. �

From Theorem 5.2 we can easily deduce Corollary 5.3: Let γ(n) = εn for some
0 < ε < 1 and let c be the constant from Theorem 5.2. Then the condition
γ(n) > c becomes n > c/ε. Hence, for a window size n > c/ε, Theorem 5.2
yields a randomized sliding window tester with two-sided error that uses space
O(log(n/γ(n)) = O(log(1/ε)). For n < c/ε we can use a trivial sliding window tester
that stores the window content explicitly using O(1/ε) bits.

5.3.3. Sliding window testers with one-sided error. In the following, we turn to
sliding window testers with one-sided error and prove Theorem 5.4, i.e., we present
a false-biased sliding window tester for languages in

⋃
(Triv,SF) with constant

Hamming gap using O(log log n) space. By the following lemma, it suffices to
consider the cases L ∈ Triv and L ∈ SF.

Lemma 5.16. Let P1 and P2 be randomized false-biased sliding window testers for
L1 and L2, respectively, for window size n with Hamming gap γ(n). Then, there
exists a randomized false-biased sliding window tester for L1 ∪ L2 for window size n
with Hamming gap γ(n) using space O(s(P1) + s(P2)).

Proof. First we reduce the error probability of Pi (i ∈ {1, 2}) from 1/3 to 1/9 by
running 2 independent and parallel copies of Pi and reject if and only if one of
the copies rejects. Then, we run both algorithms in parallel and accept if and
only if one of them accepts. If the window belongs to L1 ∪ L2 then either P1

or P2 accepts with probability 1. If the window w satisfies dist(w,L1 ∪ L2) =
min(dist(w,L1),dist(w,L2)) > γ(n) then dist(w,Li) > γ(n) for both i ∈ {1, 2}.
Hence, both algorithms falsely accept with probability at most 1/9 and the combined
algorithm falsely accepts with probability at most 1/9 + 1/9 6 1/3. �

The case of a regular trivial language is covered by the following result:

Theorem 5.17. Let L be a language and γ(n) be a function. The following
statements are equivalent:

• L is (γ(n) + c)-trivial for some number c ∈ N.
• There is a deterministic sliding window tester with Hamming gap γ(n) + c′

for L which uses constant space for some number c′ ∈ N.

Proof. Assume first that L is (γ(n) + c)-trivial. Let n ∈ N be a window size. If
L ∩ Σn = ∅, then the algorithm always rejects, which is obviously correct since any
active window of size n has infinite Hamming distance to L. On the other hand, if
L ∩ Σn 6= ∅ then the Hamming distance between an arbitrary active window of size
n and L is at most γ(n) + c. Hence, the algorithm that always accepts achieves a
Hamming gap of γ(n) + c.

We now show the converse statement.9 For each window size n ∈ N let Pn be a
deterministic sliding window tester for L with Hamming gap γ(n) + c′ such that
the number of states of Pn is constant. Assume that Pn has at most s states for
every n. Let N ⊆ N be the set of all n such that L ∩ Σn 6= ∅. Note that every Pn
with n ∈ N accepts a nonempty language. Every Pn is a DFA with a most s states
over the fixed alphabet Σ. The number of pairwise nonisomorphic DFAs with at
most s states over the input alphabet Σ is bounded by a fixed constant d. Hence,
at most d nonisomorphic DFAs can appear in the list (Pn)n∈N . We therefore can

9The converse statement is not needed for the proof of Theorem 5.4 but we think it is of
independent interest.
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choose numbers n1 < n2 < · · · < ne from N with e 6 d such that for every n ∈ N
there exists a unique i ∈ {1, 2, . . . , e} with ni 6 n and Pn = Pni

(here and in the
following we do not distinguish between isomorphic DFAs). Let us choose for every
1 6 i 6 e some word ui ∈ L of length ni. Now, take any n ∈ N and assume that
Pn = Pni

where ni 6 n. Consider any word u ∈ Σ∗ui. Since lastni
(u) = ui ∈ L,

Pni
has to accept u. Hence, Pn accepts all words from Σ∗ui. In particular, for every

word x of length n− ni, Pn accepts xui. This implies that dist(xui, L) 6 γ(n) + c′

for all x ∈ Σn−ni . Recall that this holds for all n ∈ N and that N is the set of all
lengths realized by L. Hence, if we define c′′ := max{n1, . . . , ne}, then every word
w of length n ∈ N has Hamming distance at most γ(n) + c′ + c′′ from a word in L.
Therefore, L is (γ(n) + c)-trivial with c = c′ + c′′. �

Let us now turn to the case of a regular suffix-free language L. We again consider
an rDFA B = (Q,Σ, F, δ, q0) for L whose nontransient SCCs have uniform period
g > 1. Since L is suffix-free, B has the property that no final state can be reached
from a final state by a nonempty run.

We adapt the definition of a path description from Section 3.8. In the following,
a path description is a sequence

(16) P = (qk, ak, pk−1), Ck−1, . . . , (q2, a2, p1), C1, (q1, a1, p0), C0, q0.

where Ck−1, . . . , C0 is a chain (from right to left) in the SCC-ordering of B, pi, qi ∈ Ci,
qi+1

ai+1←−−− pi is a transition in B for all 0 6 i 6 k − 1, and qk ∈ F . Each path
description defines a partial rDFA BP = (QP ,Σ, {qk}, δP , q0) by restricting B to the

state set QP =
⋃k−1
i=0 Ci∪{qk}, restricting the transitions of B to internal transitions

from the SCCs Ci and the transitions qi+1
ai+1←−−− pi, and declaring qk to be the only

final state. This rDFA is partial since for every state p and every symbol a ∈ Σ there

exists at most one transition q
a←− p in BP . Since the number of path descriptions P

is finite and L(B) =
⋃
P L(BP ), we can fix a single path description P and provide a

sliding window tester for L(BP ) (we again use Lemma 5.16 here).
From now on, we fix a path description P as in (16). The acceptance sets AccP (q)

are defined with respect to the restricted automaton BP . If all Ci are transient,
then L(BP ) is a singleton and we can use a trivial sliding window tester with space
complexity O(1). Now, assume the contrary and let 0 6 e 6 k − 1 be maximal such
that Ce is nontransient.

Lemma 5.18. There exist numbers r0, . . . , rk−1, s0, . . . , se ∈ N such that the fol-
lowing holds:

(i) For all e+ 1 6 i 6 k, the set AccP (qi) is a singleton.
(ii) For all 0 6 i 6 k − 1, every run from qi to qi+1 has length ri (mod g).

(iii) For all 0 6 i 6 e, AccP (qi) =si

∑k−1
j=i rj + gN.

Proof. Point (i) follows immediately from the definition of transient SCCs. Let us
now show (ii) and (iii). Let 0 6 i 6 k − 1 and let Ni be the set of lengths of runs of

the form qi+1
ai+1←−−− pi

w←− qi in BP . If Ci is transient, then Ni = {1}. Otherwise,
by Lemma 3.18 there exist a number ri ∈ N and a cofinite set Di ⊆ N such that
Ni = ri + gDi. We can summarize both cases by saying that there exist a number
ri ∈ N and a set Di ⊆ N which is either cofinite or Di = {0} such that Ni = ri+gDi.
This implies point (ii). Moreover, the acceptance sets in BP satisfy

AccP (qi) =

k−1∑
j=i

Nj =

k−1∑
j=i

(rj + gDj) =

k−1∑
j=i

rj + g

k−1∑
j=i

Dj .

For all 0 6 i 6 e we get AccP (qi) =si

∑k−1
j=i rj + gN for some threshold si ∈ N (note

that a nonempty sum of cofinite subsets of N is again cofinite). �
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Let us fix the numbers ri and si from Lemma 5.18. Let p be a random prime with
Θ(log log n) bits. By choosing the Θ-constant large enough and using Lemma 4.9
(where we set m = n, a = ` and b = n) we obtain for every 0 6 ` < n the inequality
Pr[` ≡ n (mod p)] 6 1/3. Define the threshold

s = max{k,
k−1∑
j=0

rj , s0, . . . , se}

and for a word w ∈ Σ∗ define the function `w : Q→ N ∪ {∞} where

`w(q) = inf{` ∈ N | δP (last`(w), q) = qk}

(we set inf ∅ =∞). We now define an acceptance condition on `w(q). If n /∈ AccP (q0),
we always reject. Otherwise, we accept w if and only if `w(q0) ≡ n (mod p).

Lemma 5.19. Let n ∈ AccP (q0) be a window size with n > s+ |QP | and w ∈ Σ∗

with |w| > n. There exists a constant c > 0 such that:

(i) if lastn(w) ∈ L(BP ), then w is accepted (in the above sense) with probability
1, and

(ii) if pdist(lastn(w), L(BP )) > c, then w is rejected with probability at least 2/3.

Proof. Consider a word w ∈ Σ∗ with |w| > n. We consider several cases.

Case 1: lastn(w) ∈ L(BP ). Since L(BP ) ⊆ L is suffix-free, we have `w(q0) ≡ n
(mod p) and w is accepted with probability 1, which shows statement (i) from the
lemma.

Case 2: lastn(w) /∈ L(BP ). We then have `w(q0) 6= n, which yields the following two
subcases.

Case 2.1: `w(q0) < n. Then, by the choice of p we have `w(q0) 6≡ n (mod p) with
probability at least 2/3. Hence, w is rejected with probability at least 2/3.

Case 2.2: `w(q0) > n. We will show that this implies pdist(lastn(w), L(BP )) 6
c for a constant c. For this c, statement (ii) from the lemma then holds: if
pdist(lastn(w), L(BP )) > c, we must have `w(q0) < n, which by Case 2.1 implies
that w is rejected with probability at least 2/3.

Let π be the run of BP on lastn(w) starting from the initial state, and let
π = πmτm−1πm−1 · · · τ0π0 be its SCC-factorization. We have |π| = n. Since
`w(q0) > n, the run π can be strictly extended to a run to qk and hence we must
have m < k. For all 0 6 i 6 m, the run πi is an internal run in the SCC Ci from qi
to pi. For all 0 6 i 6 m − 1 we have τi = qi+1 ai+1 pi and |τiπi| ≡ ri (mod g) by
point (ii) from Lemma 5.18. We claim that there exists an index 0 6 i0 6 m such
that the following three properties hold:

(1) qi0 is nontransient,
(2) |πmτm−1πm−1 · · · τi0πi0 | > s,
(3) |πmτm−1πm−1 · · · τi0+1πi0+1| 6 s+m

(note that |πmτm−1πm−1 · · · τi0+1πi0+1| = 0 is possible).

Indeed, let 0 6 i 6 m be the smallest integer such that qi is nontransient (recall
that n > |QP | and hence π must traverse a nontransient SCC). Then, the run
τi−1πi−1 · · · τ0π0 only passes transient states except for its last state qi and hence
its length is bounded by |QP |. Therefore, we have

|πmτm−1πm−1 · · · τiπi| = n− |τi−1πi−1 · · · τ0π0| > n− |QP | > s.

Hence, there exists i satisfying properties (1) and (2) (with i0 replaced by i). Let
0 6 i0 6 m be the largest integer satisfying properties (1) and (2). We show that
property (3) holds for i0.
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If the run πmτm−1πm−1 · · · τi0+1πi0+1 only passes transient states, then its length
is bounded by m− i0 6 s+m, and we are done. Otherwise, let i0 + 1 6 j 6 m be
the smallest integer such that qj is nontransient. The run τj−1πj−1 · · · τi0+1πi0+1

only passes transient states except for its last state qj and therefore it has length
j − i0 − 1. By maximality of i0, we have |πmτm−1πm−1 · · · τjπj | < s and hence
property (3) holds:

|πmτm−1πm−1 · · · τi0+1πi0+1| = |πm · · · τjπj |+ |τj−1πj−1 · · · τi0+1πi0+1|
< s+ j − i0 6 s+m.

In the rest of the proof let 0 6 i0 6 m be the above index satisfying properties (1)-(3).
Since qi0 is nontransient, we have i0 6 e and therefore

(17) AccP (qi0) =s

k−1∑
j=i0

rj + gN

by Lemma 5.18(iii) and s > si0 . We claim that

(18) |πmτm−1πm−1 · · · τi0πi0 | ∈ AccP (qi0).

Since n > s and n ∈ AccP (q0) =s

∑k−1
j=0 rj + gN we have n ∈

∑k−1
j=0 rj + gN. This

implies

|πmτm−1πm−1 · · · τi0πi0 | = n− |τi0−1πi0−1 · · · τ0π0| ≡ n−
i0−1∑
j=0

rj ≡
k−1∑
j=i0

rj (mod g).

In addition, we have |πmτm−1πm−1 · · · τi0πi0 | > s by property (2). Since s >∑k−1
j=i0

rj , we get

|πmτm−1πm−1 · · · τi0πi0 | ∈
k−1∑
j=i0

rj + gN.

Finally, we obtain (18) from (17).
By Lemma 5.9 and (18), there is an accepting run π′ from qi0 which t-simulates the

internal run πi0 and has length |πmτm−1πm−1 · · · τi0πi0 |. Here, t is a constant only
depending on B. The prefix distance between the runs π = πmτm−1πm−1 · · · τ0π0

and π′τi0−1πi0−1 · · · τ0π0 is at most t in case i0 = m, and at most

|πmτm−1πm−1 · · · τi0 |+ t = |πmτm−1πm−1 · · · τi0+1πi0+1|+ 1 + t

6 1 + s+m+ t =: c

in case i0 < m due to property (3): Hence, the prefix distance between lastn(w)
and L(BP ) is bounded by the constant c. As explained before, statement (ii) of the
lemma then holds. �

Proof of Theorem 5.4. Let n ∈ N be the window size. By the previous discussion,
it suffices to give a randomized sliding window tester (with the properties stated in
Theorem 5.4) for a fixed partial automaton BP . Assume n > s+ |Q|, otherwise a
trivial tester can be used. If n /∈ AccP (q0), the tester always rejects. Otherwise, the
tester picks a random prime p with Θ(log log n) bits and maintains `w(q) mod p for
all q ∈ QP , where w is the stream read so far, which requires O(log log n) bits. When
a symbol a ∈ Σ is read, we can update `wa using `w: If q = qk, then `wa(q) = 0,
otherwise `wa(q) = 1 + `w(δP (a, q)) mod p where 1 +∞ =∞. The tester accepts if
`w(q0) ≡ n (mod p). Lemma 5.19 guarantees that the tester is false-biased. �

Note that in contrast to the randomized sliding window algorithm from Section 4.4,
the randomized sliding window tester from this section only uses the modulo counting
technique; Bernoulli counters are not needed. As a consequence, the tester only has
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to make a random choice at the beginning (where the prime p is chosen) before the
first input symbol arrives. Then it continues deterministically.

5.4. Lower bounds. In this section we prove our lower bounds. In Section 5.4.1
we will prove Theorem 5.5 and Theorem 5.8. Theorem 5.6 and Theorem 5.7 will be
shown in Section 5.4.2.

5.4.1. Regular nontrivial languages. In this section, we prove Theorem 5.5 and
Theorem 5.8. For this, we first have to study regular trivial languages in more
detail. We will also show a result of independent interest: every regular o(n)-trivial
language L is already trivial (i.e., O(1)-trivial); see Theorem 5.24.

Given i, j > 0 and a word w of length at least i+ j we define cuti,j(w) = y such
that w = xyz, |x| = i and |z| = j. If |w| < i+ j, then cuti,j(w) is undefined. For a
language L we define the cut-language cuti,j(L) = {cuti,j(w) | w ∈ L, |w| > i+ j}.

Lemma 5.20. If L is regular, then there are finitely many languages cuti,j(L).

Proof. Let A = (Q,Σ, q0, δ, F ) be a DFA for L. Given i, j > 0, let I be the set of
states reachable from q0 via i symbols and let F ′ be the set of states from which
F can be reached via j symbols. Then, the NFA Ai,j = (Q,Σ, I, δ, F ′) recognizes

cuti,j(L). Since there are at most 22|Q| such choices for I and F ′, the number of
languages of the form cuti,j(L) must be finite. �

Lemma 5.21. If cuti,j(L) is a length language for some i, j > 0, then L is trivial.

Proof. Assume that cuti,j(L) is a length language. Let n ∈ N such that L∩Σn 6= ∅.
We claim that dist(w,L) 6 i+ j for all w ∈ Σn. If n < i+ j this is clear. So, assume
that n > i + j. Let w ∈ Σn and w′ ∈ L ∩ Σn. Then, cuti,j(w

′) ∈ cuti,j(L) and
hence also cuti,j(w) ∈ cuti,j(L). Therefore, there exist x ∈ Σi and z ∈ Σj such that
x cuti,j(w) z ∈ L satisfies dist(w, x cuti,j(w) z) 6 i+ j. �

The restriction of a language L to a set of lengths N ⊆ N is L|N = {w ∈ L |
|w| ∈ N}. A language L excludes a word w as a factor if w is not a factor of any
word in L. A simple but important observation is that if L excludes w as a factor
and v contains k disjoint occurrences of w, then dist(v, L) > k: If we change at
most k − 1 many symbols in v, then the resulting word v′ must still contain w as a
factor and hence v′ /∈ L.

Lemma 5.22. Let L be regular. If for all i, j > 0, cuti,j(L) is not a length language,
then there exists an arithmetic progression N = d+ eN such that the restriction L|N
is infinite and excludes a factor.

Proof. First notice that cuti,j(L) determines cuti+1,j(L) and cuti,j+1(L): we have
cuti+1,j(L) = cut1,0(cuti,j(L)) and similarly for cuti,j+1(L). Since the number of
cut-languages cuti,j(L) is finite by Lemma 5.20, there exist numbers i > 0 and
d > 0 such that cuti,0(L) = cuti+d,0(L). Hence, we have cuti,j(L) = cuti+d,j(L)
for all j > 0. By the same argument, there exist numbers j > 0 and e > 0
such that cuti,j(L) = cuti,j+e(L) = cuti+d,j(L) = cuti+d,j+e(L), which implies
cuti,j(L) = cuti,j+h(L) = cuti+h,j(L) = cuti+h,j+h(L) for some h > 0 (we can take
h = ed). This implies that cuti,j(L) is closed under removing prefixes and suffixes
of length h.

By assumption cuti,j(L) is not a length language, i.e., there exist words y′ ∈
cuti,j(L) and y /∈ cuti,j(L) of the same length k. Let N = {k + i+ j + hn | n ∈ N}.
For any n ∈ N the restriction L|N contains a word of length k + i+ j + hn because
y′ ∈ cuti,j(L) = cuti+hn,j(L). This proves that L|N is infinite.

Let u be an arbitrary word which contains for every remainder 0 6 r 6 h− 1 an
occurrence of y as a factor starting at a position which is congruent to r mod h
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(these occurrences do not have to be disjoint). We claim that L|N excludes aiuaj as
a factor where a is an arbitrary symbol. Assume that there exists a word w ∈ L|N
which contains aiuaj as a factor. Then, cuti,j(w) contains u as a factor, has length
k+hn for some n > 0, and belongs to cuti,j(L). Therefore, cuti,j(w) also contains h
many occurrences of y, one per remainder 0 6 r 6 h− 1. Consider the occurrence of
y in cuti,j(w) which starts at a position that is divisible by h, i.e., we can factorize
cuti,j(w) = xyz such that |x| is a multiple of h. Since | cuti,j(w)| = k + hn and
|y| = k, then |z| is also a multiple of h. Therefore, y ∈ cuti+|x|,j+|z|(L) = cuti,j(L),
which is a contradiction. �

Lemma 5.23. If L ∈ Reg \ Triv then there are a restriction L|N that excludes
some factor wf and words x, y, z such that |y| > 0 and xy∗z ⊆ L|N .

Proof. By Lemma 5.21, cuti,j(L) is not a length language for all i, j > 0. Let N be
the set of lengths from Lemma 5.22 such that L|N is infinite and excludes some factor
wf . Since N is an arithmetic progression, L|N is regular. Let A = (Q,Σ, q0, δ, F )
be a DFA for L|N . Since L(A) is infinite, there must exist words x, y, z such that
y 6= ε and for δ(q0, x) = q we have δ(q, y) = q and δ(q, z) ∈ F . �

Before we prove Theorem 5.5 let us first show the following result of independent
interest:

Theorem 5.24. For every regular language L, the following statements are equiva-
lent:

(i) L is trivial.
(ii) L is o(n)-trivial.

(iii) cuti,j(L) is a length language for some i, j > 0.

Proof. If cuti,j(L) is a length language then L is trivial by Lemma 5.21, and thus
also o(n)-trivial. It remains to show the direction (ii) to (iii). Assume that L is
o(n)-trivial. If (iii) would not hold then some infinite restriction L|N of L excludes
a factor wf by Lemma 5.22. Hence, if n ∈ N is a length with L|N ∩ Σn 6= ∅, then
any word v of length n which contains at least bn/|wf |c many disjoint occurrences
of wf , has distance dist(v, L) > bn/|wf |c to L. Then, L is not o(n)-trivial, which is
a contradiction. �

Proof of Theorem 5.5. We will prove the two lower bounds in Theorem 5.5 for
the more general class of nondeterministic and co-nondeterministic sliding window
testers. A nondeterministic sliding window tester for a language L and window size
n ∈ N with Hamming gap γ(n) is a nondeterministic finite automaton Pn such that
for all input words w ∈ Σ∗ we have the following (recall from Section 2.2 that a
successful run is a run from an initial state to a final state):

• If lastn(w) ∈ L, then there is at least one successful run of Pn on w.
• If dist(lastn(w), L) > γ(n), then there is no successful run of Pn on w.

In contrast, Pn is co-nondeterministic if for all w ∈ Σ∗ we have:

• If lastn(w) ∈ L, then all runs of Pn on w that start in an initial state are
successful.
• If dist(lastn(w), L) > γ(n), then there is a nonsuccessful run of Pn on w

that starts in an initial state.

The space complexity of Pn is log |Pn|. Clearly, every true-biased (resp., false-biased)
sliding window tester is a nondeterministic (resp., co-nondeterministic) one.

Assume that L ∈ Reg \ Triv. We will prove an log n − O(1) lower bound
for nondeterministic sliding window testers, and hence also for true-biased and
deterministic sliding window testers. By the power set construction one can transform
a co-nondeterministic sliding window tester with m memory states into an equivalent
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nondeterministic (and in fact, even deterministic) sliding window tester with 2m

memory states. Hence, an log n − O(1) lower bound for nondeterministic sliding
window testers immediately yields an log(log n − O(1)) > log log n − O(1) lower
bound for co-nondeterministic sliding window testers, and hence also for false-biased
sliding window testers.

By Lemma 5.23 there are a restriction L|N that excludes some factor wf and
words x, y, z such that |y| > 0 and xy∗z ⊆ L|N . Let c = |wf | > 0 and choose
0 < ε < 1/c. Moreover, let d = |xz| and e = |y| > 0, which satisfy d + eN ⊆ N .
Recall that every word v that contains k disjoint occurrences of wf has Hamming
distance at least k from any word in L|N .

Fix a window size n ∈ N and consider a nondeterministic sliding window tester
Pn for L and window size n with Hamming gap εn. Define for k > 0 the input
stream

vk = wnf xy
kz.

Let α = cε < 1. If 0 6 k 6 b (1−α)n−c−d
e c, then the suffix of vk of length n contains

at least⌊
n− d− ek

c

⌋
>

⌊
n− d− (1− α)n+ c+ d

c

⌋
=

⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf . Hence, Pn has no successful run on an input

stream vk with 0 6 k 6 b (1−α)n−c−d
e c.

Assume now that the window size n satisfies n > d and n ≡ d (mod e). Write

n = d + le for some l > 0. We have l = n−d
e > b (1−α)n−c−d

e c. The suffix of

vl = wnf xy
lz of length n is xylz ∈ L|N . Therefore, there exists a successful run π of

Pn on vl. Let m be the number of states of Pn. For 0 6 i 6 l let pi be the state on
the run π that is reached after the prefix wnf xy

i of vl.

In order to deduce a contradiction, let us assume that m 6 b (1−α)n−c−d
e c. Then,

there must exist numbers i and j with 0 6 i < j 6 b (1−α)n−c−d
e c such that

pi = pj =: p. By cutting off cycles at p from the run π and repeating this, we finally

obtain a run of Pn on an input stream vk = wnf xy
kz with k 6 b (1−α)n−c−d

e c. This
run is still successful. But this contradicts our previous observation that Pn has no

successful run on an input stream vk with 0 6 k 6 b (1−α)n−c−d
e c. We conclude that

Pn must have more than b (1−α)n−c−d
e c states. This implies

s(Pn) > log

(
(1− α)n− c− d

e

)
> log n−O(1),

which proves the theorem. �

For the proof of Theorem 5.8 we need a promise variant of the communication
problem EQm (see Section 4.5). With EQ>

m we denote the following promise
communication problem: Alice’s (resp., Bob’s) input is a number i ∈ {1, . . . ,m}
(resp., j ∈ {1, . . . ,m}) and the promise is that i > j (i.e., we do not care about the
output of the protocol in case i < j). If i = j then Bob’s final output must be 1 and
if i > j then Bob’s final output must be 0. We claim that the randomized one-way
communication complexity of EQ>

m is Ω(log logm).
Since the randomized one-way communication complexity of EQm is Ω(log logm)

by Theorem 4.11, it suffices to show that a randomized one-way protocol for EQ>
m

with cost c(m) and error probability λ yields a randomized one-way protocol for
EQm with cost 2c(m) and error probability 2λ. This is easy to see: Assume that

Pm is a randomized one-way protocol for EQ>
m with cost c(m). To get a randomized

one-way protocol for EQm, Alice and Bob run two copies of Pm, one on inputs i, j
and the other one on inputs m− i,m− j in parallel and with independent random
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bits. If both copies of Pm yield output 1 then Bob returns 1. In all other cases,
Bob returns 0. If i = j then this combined protocol returns 1 with probability at
least 1− 2λ. On the other hand if i > j or i < j then the protocol returns 0 with
probability at least 1− λ.

Proof of Theorem 5.8. Let L be a language in L ∈ Reg \ Triv. By Lemma 5.23
there are a restriction L|N that excludes some factor wf and words x, y, z such that
|y| > 0 and xy∗z ⊆ L|N .

Let b = |y| and c = |xz|. Note in the following that b, c, and |wf | are constants.
Fix a window size n ∈ N such that that n− c is a multiple of b. Since xy∗z ⊆ L|N ,
we have n ∈ N . Define the word v = uwkf where k = bγ(n)c + 1 > γ(n) and u

is a word of length at most b − 1 such that |v| is a multiple of b. Let l ∈ N be
such that |v| = b · l. Since b divides n − c we can write n − c = (m · l + r) · b for
m ∈ N and 0 6 r 6 l − 1. Choose the constant ε from the theorem statement such
that 0 < ε < 1

|wf | and hence γ(n) 6 εn. Assuming n is large enough, we obtain

k = bγ(n)c + 1 6 1
|wf | (n − b − c), i.e., b · l = |v| 6 b + k · |wf | 6 n − c and hence

m > 1. Moreover, we have l = |v|/b = Θ(γ(n)) and therefore

m =
n− c
b · l

− r

l
= Θ(n/γ(n)).

Consider now a randomized sliding window tester Pn with two-sided error for L
and window size n with Hamming gap γ(n). We show that from Pn we can obtain

a randomized one-way protocol for EQ>
m.

Alice produces from her input i ∈ {1, . . . ,m} the word vxyr+(m−i)l. She then
runs Pn on this word and sends the memory state to Bob. Bob continues the
run of the randomized sliding window tester, starting from the transferred mem-
ory state, with the input stream yjlz, where j ∈ {1, . . . ,m} is his input. He
obtains the memory state reached after the input vxyr+(m−i+j)lz. Finally, Bob
outputs the answer given by the randomized sliding window tester. If i = j, then
lastn(vxyr+(m−i+j)lz) = xym·l+rz ∈ L and Bob accepts with high probability. On
the other hand, if i > j, then lastn(vxyr+(m−i+j)lz) contains v (recall that |v| = b · l
and hence |xyr+(m−i+j)lz| 6 n− |v|). Since v contains strictly more than γ(n) dis-
joint occurrences of wf (an excluded factor of L|N ), we have dist(lastn(w), L) > γ(n)
(here it is important that n ∈ N). Thus, Bob rejects with high probability. We

therefore have a correct protocol for EQ>
m.

Since the randomized one-way communication complexity of EQ>
m is Ω(log logm)

we finally obtain s(Pn) = Ω(log logm) = Ω(log log(n/γ(n))). �

5.4.2. Regular languages that are not finite unions of suffix-free and trivial languages.
In this section, we show the lower bounds from Theorem 5.6 and Theorem 5.7. We
start with the following observation.

Lemma 5.25. Every suffix-free language excludes a factor.

Proof. Let B = (Q,Σ, F, δ, q0) be an rDFA for L. Since L is suffix-free, we can
assume that there exists a unique sink state qfail /∈ F , i.e., δ(a, qfail) = qfail for
all a ∈ Σ, which is reachable from all states. We construct a word wf ∈ Σ∗ such
that δ(p, wf ) = qfail for all p ∈ Q. Let p1, . . . , pm be an enumeration of all states
in Q \ {qfail}. We then construct inductively words w0, w1, . . . , wm ∈ Σ∗ such that
for all 0 6 i 6 m and 1 6 j 6 i: δ(wi, pj) = qfail . We start with w0 = ε. Assume
that wi has been constructed for some i < m. There is a word x such that that
δ(x, δ(wi, pi+1)) = qfail . We set wi+1 = xwi. Then, δ(wi+1, pi+1) = δ(xwi, pi+1) =
qfail and δ(wi+1, pj) = δ(xwi, pj) = δ(x, qfail) = qfail for 1 6 j 6 i. Finally, we
define wf = wm. �
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Lemma 5.26. Every regular language L satisfies one of the following properties:10

• L ∈
⋃

(Triv,SF)
• L has a restriction L|N which excludes some factor and contains y∗z for

some y, z ∈ Σ∗, |y| > 0.

Proof. Let B = (Q,Σ, F, δ, q0) be an rDFA for L. Let Br = (Q,Σ, Fr, δ, q0) where
Fr is the set of nontransient final states and Bq = (Q,Σ, {q}, δ, q0) for q ∈ Q. We
can decompose L as a union of Lr = L(Br) and all languages L(Bq) over all transient
states q ∈ F . Notice that L(Bq) is suffix-free for all transient q ∈ F since any run
to q cannot be prolonged to another run to q. If Lr is trivial, then L satisfies the
first property. If Lr is nontrivial, then by Lemma 5.21 and Lemma 5.22 there exists
an arithmetic progression N = a+ bN such that Lr|N is infinite and excludes some
word w ∈ Σ∗ as a factor. Let z ∈ Lr|N be any word. Since some nontransient
final state p is reached in Br on input z, there exists a word y which leads from p
back to p. We can ensure that |y| is a multiple of b by replacing y by yb. Then,
y∗z ⊆ Lr|N ⊆ L|N . Furthermore, since each language L(Bq) excludes some factor
wq by Lemma 5.25, the language L|N ⊆ Lr|N ∪

⋃
q L(Bq) excludes any concatenation

of w and all words wq as a factor. �

Proof of Theorem 5.6. Let L ∈ Reg \
⋃

(Triv,SF). By Lemma 5.26, L has a
restriction L|N which excludes some factor wf and contains y∗z for some y, z ∈ Σ∗,
|y| > 0. Let c = |wf | > 1. We choose 0 < ε < 1/c. Let d = |z| and e = |y|. Fix a
window size n ∈ N and define for k > 0 the input stream vk = wnf y

kz.

We show the lower bound of log n−O(1) for co-nondeterministic sliding window
testers. Consider a co-nondeterministic sliding window tester Pn for L and window

size n with Hamming gap εn. Let α = cε < 1 and r = b (1−α)n−c−d
e c. If 0 6 k 6 r,

then the suffix of vk of length n contains at least⌊
n− d− ek

c

⌋
>

⌊
n− d− (1− α)n+ c+ d

c

⌋
=

⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf . Hence, Pn must reject the input stream vk for
0 6 k 6 r, i.e., there is a run of Pn on vk that starts in an initial state and ends in
a nonfinal state. Consider such a run π for vr. For 0 6 i 6 r let pi be the state in π
that is reached after the prefix wnf y

i of vr. Let now m be the number of states of
Pn and assume m 6 r. There must exist numbers i and j with 0 6 i < j 6 r such
that pi = pj =: p. It follows that there is a Pn-run on yj−i that starts and ends in
state p. Using that cycle we can now prolong the run π, i.e., for all t > 0 there is a
run of Pn on vr+(j−i)·t = wnf y

r+(j−i)·tz that starts in an initial state and ends in a
nonfinal state.

Assume now that the window size satisfies n > d and n ≡ d (mod e). Write
n = d+ le for some l > 0. Each n with this property satisfies n ∈ N since the word

ylz belongs to L|N . We have l = n−d
e > b (1−α)n−c−d

e c = r. For every k > l, the

suffix of vk = wnf y
kz of length n is ylz ∈ L. Therefore, Pn accepts vk, i.e., for all

k > l, every run of Pn on vk that starts in an initial state has to end in a final state.
This contradicts our observation that for all t > 0 there is a run of Pn on vr+(j−i)·t
that goes from an initial state to a nonfinal state. We conclude that Pn has at least

r + 1 > (1−α)n−c−d
e states. It follows that

s(Pn) > log

(
(1− α)n− c− d

e

)
> log n−O(1).

This proves the theorem. �

10It is not hard to see that the two properties exclude each other, but this is not needed for
our further consideration.
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Finally, we prove Theorem 5.7.

Proof of Theorem 5.7. Let L be a language in Reg \
⋃

(Triv,SF). By Lemma 5.26,
L has a restriction L|N which excludes some factor wf and contains y∗z for some
y, z ∈ Σ∗, |y| > 0. Let b = |y| and c = |z|. Note in the following that b, c, and |wf |
are constants. Choose a window size n > c such that n− c is a multiple of b. Since
y∗z ⊆ L|N , we have n ∈ N . Define the word v = uwkf where k = bγ(n)c+ 1 > γ(n)

and u is any word of length at most b− 1 such that |v| is a multiple of b. Let l ∈ N
be such that |v| = b · l. Since b divides n − c we can write n − c = (m · l + r) · b
for m ∈ N and 0 6 r 6 l − 1. Choose the constant ε from the theorem statement
such that 0 < ε < 1

|wf | and hence γ(n) 6 εn. Assuming n is large enough, we obtain

k = bγ(n)c + 1 6 1
|wf | (n − b − c), i.e., b · l = |v| 6 b + k · |wf | 6 n − c and hence

m > 1. Moreover, l = |v|/b = Θ(γ(n)) (b and |wf | are constants) and therefore

m =
n− c
b · l

− r

l
= Θ(n/γ(n)).

Consider now a randomized sliding window tester Pn with two-sided error for L
and window size n with Hamming gap γ(n). We show that from Pn we can obtain
a randomized one-way protocol for GTm (the greater-than-function on the interval
{1, . . . ,m}). Recall that m > 1.

Alice produces from her input i ∈ {1, . . . ,m} the word vyr+(m−i)l. She then
runs Pn on this word and sends the memory state to Bob. Bob continues the run
of the randomized sliding window tester, starting from the transferred memory
state, with the input stream yjlz, where j ∈ {1, . . . ,m} is his input. He obtains
the memory state reached after the input vyr+(m−i+j)lz. Finally, Bob outputs the
negated answer given by the randomized sliding window tester. If i 6 j, then
lastn(vyr+(m−i+j)lz) = ym·l+rz ∈ L and Bob rejects with high probability. On the
other hand, if i > j, then lastn(vyr+(m−i+j)lz) contains v (recall that |v| = b · l and
hence |yr+(m−i+j)lz| 6 n− |v|). Since v contains strictly more than γ(n) disjoint
occurrences of wf (an excluded factor of L|N ), we have dist(lastn(w), L) > γ(n)
(here it is important that n ∈ N). Thus, Bob accepts with high probability. We
therefore have a correct protocol for GTm.

Since the randomized one-way communication complexity of GTm is Ω(logm)
(Theorem 4.11) we finally obtain s(Pn) = Ω(logm) = Ω(log(n/γ(n))). �

For example, if γ(n) 6 nc for some 0 < c < 1 then the lower bound in Theorem 5.7
is Ω(log n). Note that if L ∈

⋃
(Triv,SF) then the lower bound of Theorem 5.7

does not hold any more; this follows from Theorem 5.4.
Note the similarity between the proofs of Theorem 5.7 and Theorem 5.8. The

difference is that the word x in the proof of Theorem 5.8 is not present in the proof
of Theorem 5.7. The possibly non-empty x in the proof of Theorem 5.8 only allows
to do a reduction from EQ>

m, whereas the empty x in the proof of Theorem 5.7
allows to do a reduction from GTm, which yields a larger lower bound.

6. Conclusion and future work

In this paper we precisely determined the space complexity of regular languages
in the sliding window model in the following settings: deterministic, randomized,
deterministic property testing, and randomized property testing. Two important
restrictions that made our results possible but that also limit their applicability are
the following:

• Our sliding window algorithms only answer Boolean queries (does the
window content belong to a language or not?). In many applications one
wants to compute a certain non-Boolean value, e.g. the number of 1’s in
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the window. This leads to the question whether our automata theoretic
framework for sliding window problems can be extended to non-Boolean
queries. Weighted automata [29] or cost register automata [4] could be a
suitable framework for such an endeavor. Another interesting problem in
this context is to maintain the distance (e.g. the Hamming distance or edit
distance) between the sliding window and a fixed language L.
• The incoming data values in our model are from a fixed finite alphabet.

In many practical situations the incoming data values are from an infinite
domain (at least on an abstract level) like the natural numbers or real
numbers. Again, the question arises, whether our automata theoretic
approach can be extended to such a setting. A popular automata model
for words over an infinite alphabet (which are known as data words in
this context) are register automata, which are also known as finite memory
automata [65, 77]. In the context of sliding window streaming, deterministic
register automata (DRA for short) [37] might be a good starting point.
Benedikt, Ley and Puppis [14] proved a Myhill-Nerode-like theorem that
characterizes the class of data languages recognized by DRA for the case
that the underlying relational structure A on the data values is either (D,=)
(where = denotes the equality relation) or (D,<) for a strict linear order <.
As a byproduct of this characterization, they obtain a minimal DRA for any
DRA-recognizable language. This DRA is minimal in a very strong sense: at
the same time it has the minimal number of states and the minimal number
of registers among all equivalent DRA. Using these minimal DRA, one can
define space-optimal streaming algorithms for data languages analogously
to the case of words over a finite alphabet. This yields a starting point
for studying space complexity classes for streaming algorithms over infinite
domains.
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first and third author were partly supported by the DFG project LO 748/13-1/2
(Streaming Automata Theory).
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