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Abstract. Whereas for strings, higher-order empirical entropy is the
standard entropy measure, several different notions of empirical entropy
for trees have been proposed in the past, notably label entropy, degree
entropy, conditional versions of the latter two, and empirical entropy
of trees (here, called label-shape entropy). In this paper, we carry out
a systematic comparison of these entropy measures. We underpin our
theoretical investigations by experimental results with real XML data.

1 Introduction

In the area of string compression the notion of higher order empirical entropy
yields a well established measure for the compressibility of a string. Roughly
speaking, the kth-order empirical entropy of a string is the expected uncertainty
about the symbol at a certain position, given the k-preceding symbols. In fact,
except for some modifications (as the kth-order modified empirical entropy from
[19]) the authors are not aware of any other empirical entropy measure for strings
(“empirical” refers to the fact that the entropy is defined for the string itself and
not a certain probability distribution on strings). For many string compressors,
worst-case bounds on the length of a compressed string in terms of the kth-
order empirical entropy are known [11,19,20]. For further aspects of higher-order
empirical entropy see [8].

If one goes from strings to trees the situation becomes different. Let us first
mention that the area of tree compression (and compression of structured data in
general) is currently a very active area, which is motivated by the appearance of
large tree data in applications like XML processing. Common tree compression
techniques are based on succinct tree encodings [5,6,12,17,21], grammar-based
tree compressors [13,9,14,18], directed acyclic graphs [7,3] and top dags [2,1]. In
recent years, several notions of empirical tree entropy have been proposed with
the aim of quantifying the compressibility of a given tree. Let us briefly discuss
these entropies in the following paragraphs (all entropies below are unnormalized;
the corresponding normalized entropies are obtained by dividing by the tree size).

Ferragina et al. [5,6] introduced the kth-order label entropy H`
k(t) of a node-

labeled unranked1 tree t. Its normalized version is the expected uncertainty
about the label of a node v, given the so-called k-label-history of v, which contains

1 Unranked means that there is no bound on the number of children of a node. More-
over, we only consider ordered trees, where the children of a node are linearly ordered.



the k first labels on the path from v’s parent node to the root. The kth-order
label entropy is not useful for unlabeled trees since it ignores the tree shape.

In [17], Jansson et al. introduce the degree entropy Hdeg(t), which is the
(unnormalized) 0th-order empirical entropy of the node degrees occurring in the
unranked tree t. Degree entropy is mainly made for unlabeled trees since it
ignores node labels, but in combination with label entropy it yields a reasonable
measure for the compressibility of a tree: every node-labeled unranked tree of
size n in which σ many different node labels occur can be stored in H`

k(t) +
Hdeg(t) + o(n + n log σ) bits if σ is not too big; see Theorem 2. Note that
the (unnormalized) degree entropy of a binary tree with n leaves converges to
2n− o(n) since a binary tree with n leaves has exactly n− 1 nodes of degree 2.

Recently, Ganczorz [12] defined relativized versions of kth-order label entropy

and degree entropy: the kth-order degree-label entropy Hdeg,`
k (t) and the kth-

order label-degree entropy H`,deg
k (t). The normalized version of Hdeg,`

k (t) is the
expected uncertainty about the label of a node v of t, given (i) the k-label-history

of v and (ii) the degree of v, whereas the normalized version of H`,deg
k (t) is the

expected uncertainty about the degree of a node v, given (i) the k-label-history of
v and (ii) the label of v. Ganczorz [12] proved that every node-labeled unranked

tree of size n can be stored in H`
k(t) +H`,deg

k (t) + o(n+ n log σ) bits as well as

in Hdeg(t) + Hdeg,`
k (t) + o(n + n log σ) bits (again assuming σ is not too big);

see Theorem 2. Note that for unlabeled trees t, we have H`
k(t) + H`,deg

k (t) =

Hdeg(t) + Hdeg,`
k (t) = Hdeg(t), which for unlabeled binary trees is equal to the

information theoretic upper bound 2n− o(n) (with n the number of leaves).

Motivated by the inability of the existing entropies for measuring the com-
pressibility of unlabeled binary trees, we introduced in [14] a new entropy for
binary trees (possibly with labels) that we called kth-order empirical entropy
Hk(t). In order to distinguish it better from the existing tree entropies we pre-
fer the term kth-order label-shape entropy in this paper. The main idea is to
extend k-label-histories in a binary tree by adding to the labels of the k prede-
cessors of a node v also the k last directions (0 for left, 1 for right) on the path
from the root to v. We call this extended label history simply the k-history of
v. The normalized version of Hk(t) is the expected uncertainty about the pair
consisting of the label of a node and the information whether it is a leaf or an
internal node, given the k-history of the node. The main result of [14] states that
a node-labeled binary tree t can be stored in Hk(t) + o(n + n log σ) bits using
a grammar-based code building on tree straight-line programs. We also defined
in [14] the kth-order label-shape entropy of an unranked node-labeled tree t by
taking the kth-order label-shape entropy of the first-child next-sibling encoding
of t.

The goal of this paper is to compare the entropy variants H`
k(t) + Hdeg(t),

H`
k(t)+H`,deg

k (t), Hdeg(t)+Hdeg,`
k (t), and Hk(t). Our results for unranked node-

labeled trees are summarized in Figure 1. Let us explain the meaning of the

arrows in Figure 1: For two entropy notions H and H ′, an arrow H
∃ o−−→ H ′

means that there is a sequence of unranked node-labeled trees tn (n ≥ 1) such
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Fig. 1. Comparison of the entropy notions for unranked node-labeled trees. The mean-
ing of the red and green arrows is explained in the main text.

that (i) the function n 7→ |tn| is strictly increasing and (ii) H(tn) ≤ o(H ′(tn)) (in
most cases we prove an exponential separation). The meaning of the arrow with

label ∀ ≥ is that Hdeg(t)+Hdeg,`
k (t) ≥ H`

k(t)+H`,deg
k (t) for every unranked node-

labeled tree t, whereas the edge with label ∀Θ means that Hdeg(t) + Hdeg,`
k (t)

and Hdeg(t) + H`
k(t) are equivalent up to fixed multiplicative constants (which

are 1 and 2).
We also investigate the relationship between the entropies for node-labeled

binary trees and unranked unlabeled trees (the case of unlabeled binary trees
is not really interesting as explained above). An unranked unlabeled tree t of
size n can be represented with Hdeg(t) + o(n) bits [17]. Here, we prove that
Hk(t) ≤ 2Hdeg(t) + 2 log2(n) + 4 for every unranked unlabeled tree t.

Finally, we underpin our theoretical results by experimental results with real
XML data from XMLCompBench (http://xmlcompbench.sourceforge.net).
For each XML document we consider the corresponding tree structure t (ob-
tained by removing all text values and attributes) and compute H`

k(t)+Hdeg(t),

H`
k(t)+H`,deg

k (t), Hdeg(t)+Hdeg,`
k (t), and Hk(t). The results are summarized in

Table 1 on page 14. Our experiments indicate that the upper bound on the num-
ber of bits needed by the compressed data structure in [14] is the strongest for
real XML data since the kth-order label-shape entropy (for k > 0) is significantly
smaller than all other entropy values for all XMLs that we have examined.

Let us remark that Ganczorz’s succinct tree representations [12] that achieve

(up to low-order terms) the entropies H`
k(t) +H`,deg

k (t) and Hdeg(t) +Hdeg,`
k (t),

respectively, allow constant query times for a large number of tree queries. For
the entropy Hk(t) such a result is not known. The tree representation from [14]
is based on tree straight-line programs, which can be queried in logarithmic time
(if we assume logarithmic height of the grammar, which can be enforced by [10]).

Missing proofs can be found in the long version [16].

2 Preliminaries

With N we denote the natural numbers including 0. Let w = a1 · · · al ∈ Γ ∗ be a
word over an alphabet Γ . With |w| = l we denote the length of w. Let ε denote
the empty word. We use the standard O-notation. If b > 1 is a constant, then
we write O(log n) for O(logb n). Moreover, terms logb n with b ≥ 1 are implicitly
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replaced by logb′ n for b′ = max{2, b}. We make the convention that 0 · log(0) = 0
and 0 · log(x/0) = 0 for x ≥ 0. The well-known log-sum inequality (see e.g. [4,
Theorem 2.7.1]) states:

Lemma 1 (Log-Sum inequality). Let a1, a2, . . . , al, b1, b2, . . . , bl ≥ 0 be real

numbers. Moreover, let a =
∑l
i=1 ai and b =

∑l
i=1 bi. Then

a log2

(
b

a

)
≥

l∑
i=1

ai log2

(
bi
ai

)
.

2.1 Unranked trees

Let Σ denote a finite alphabet of size |Σ| = σ ≥ 1. Later, we need a fixed,
distinguished symbol from Σ that we denote with � ∈ Σ. We consider Σ-labeled
unranked ordered trees, where “Σ-labeled” means that every node is labeled by
a symbol from the alphabet Σ, “ordered” means that the children of a node are
totally ordered, and “unranked” means that the number of children of a node
(also called its degree) can be any natural number. In particular, the degree of
a node does not depend on the node’s label or vice versa. Let us denote by
T (Σ) the set of all such trees. Formally, the set T (Σ) is inductively defined as
the smallest set of expressions such that if a ∈ Σ and t1, . . . , tn ∈ T (Σ) then
also a(t1 · · · tn) ∈ T (Σ). This expression represents a tree with an a-labeled root
whose direct subtrees are t1, . . . , tn. Note that for the case n = 0 we obtain the
tree a(), for which we also write a. The size |t| of t ∈ T (Σ) is the number of
occurrences of labels from Σ in t, i.e., a(t1 · · · tn) = 1 +

∑n
i=1 |ti|. We identify an

unranked tree with a graph in the usual way, where each node is labeled with a
symbol from Σ. Let V (t) denote the set of nodes of a tree t ∈ T (Σ). We have
|V (t)| = |t|. The label of a node v ∈ V (t) is denoted with `(v) ∈ Σ. Moreover,
we write deg(v) ∈ N for the degree of v. An important special case of unranked
trees are unlabeled unranked trees: They can be considered as labeled unranked
trees over a singleton alphabet Σ = {a}.

For a node v ∈ V (t) of a tree t, we define its label-history h`(v) ∈ Σ∗

inductively: for the root node v0, we set h`(v0) = ε and for a child node w of
a node v of t, we set h`(w) = h`(v) `(v). In other words: h`(v) is obtained by
concatenating the node labels along the unique path from the root to v. The
label of v is not part of the label-history of v. The k-label-history h`k(v) of a tree
node v ∈ V (t) is defined as the length-k suffix of �kh`(v), where � is a fixed
dummy symbol in Σ. This means that if the depth of v in t is greater than k,
then h`k(v) lists the last k node labels along the path from the root to node v.
If the depth of v in t is at most v, then we pad its label-history h`(v) with the
symbol � such that h`k(v) ∈ Σk. For z ∈ Σk, a ∈ Σ and i ∈ N we set

ntz = |{v ∈ V (t) | h`k(v) = z}|, (1)

nti = |{v ∈ V (t) | deg(v) = i}|, (2)

ntz,i = |{v ∈ V (t) | h`k(v) = z and deg(v) = i}|, (3)
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ntz,a = |{v ∈ V (t) | h`k(v) = z and `(v) = a}|, (4)

ntz,i,a = |{v ∈ V (t) | h`k(v) = z, `(v) = a and deg(v) = i}|. (5)

In order to avoid ambiguities in these notations we should assume that Σ∩N = ∅.
Moreover, when writing ntz,i (resp., ntz,a) then, implicitly, i (resp., a) always
belongs to N (resp., Σ).

2.2 Binary trees

An important subset of T (Σ) is the set B(Σ) of labeled binary trees over the
alphabet Σ. A binary tree is a tree in T (Σ), where every node has either exactly
two children or is a leaf. Formally, B(Σ) is inductively defined as the smallest set
of terms over Σ such that (i) Σ ⊆ B(Σ) and (ii) if t1, t2 ∈ B(Σ) and a ∈ Σ, then
a(t1t2) ∈ B(Σ). An unlabeled binary tree can be considered as a binary tree over
the singleton alphabet Σ = {a}. The first-child next-sibling encoding (or shortly
fcns-encoding) transforms a tree t ∈ T (Σ) into a binary tree t ∈ B(Σ). We define
it more generally for an ordered sequence of unranked trees s = t1t2 · · · tn (a so-
called forest) inductively as follows (recall that � ∈ Σ is a fixed distinguished
symbol in Σ): fcns(s) = � for n = 0 and if n ≥ 1 and t1 = a(t′1 · · · t′m) then
fcns(s) = a(fcns(t′1 · · · t′m) fcns(t2 · · · tn)). Thus, the left (resp. right) child of a
node in fcns(s) is the first child (resp., right sibling) of the node in s or a �-
labeled leaf, if it does not exist.

For the special case of binary trees, we extend the label history of a node to
its full history, which we just call its history. Intuitively, the history of a node v
records all information that can be obtained by walking from the root of the tree
straight down to the node v. In addition to the node labels this also includes the
directions (left/right) of the descending edges. For an integer k ≥ 0 let

Lk = (Σ{0, 1})k = {a1i1a2i2 · · · akik | aj ∈ Σ, ij ∈ {0, 1} for 1 ≤ j ≤ k}.

For a node v of a binary tree t, we define its history h(v) ∈ (Σ{0, 1})∗ inductively
as follows: For the root node v0, we set h(v0) = ε. For a left child node w of
a node v of t, we set h(w) = h(v)`(v)0 and for a right child node w of v, we
set h(w) = h(v)`(v)1 (recall that `(v) is the label of v). That is, in order to
obtain h(v), while descending in the tree from the root node to the node v,
we alternately write down the current node label from Σ and the direction into
which we descend (0 if we descend to a left child, 1 if we descend to a right child).
Note that the symbol that labels v is not part of the history h(v). The k-history
of a node v is then defined as the length-2k suffix of the word (�0)kh(v), where
� is again a fixed dummy symbol in Σ. This means that if the depth of v in
t is greater than k, then hk(v) describes the last k directions and node labels
along the path from the root to node v. If the depth of v in t is at most k, then
we pad the history of v with �’s and zeroes such that hk(v) ∈ Lk. For a node
v of a binary tree we define λ(v) = (`(v),deg(v)) ∈ Σ × {0, 2}. For z ∈ Lk and
ã ∈ Σ × {0, 2}, we finally define

mt
z = |{v ∈ V (t) | hk(v) = z}|, (6)
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mt
z,ã = |{v ∈ V (t) | hk(v) = z and λ(v) = ã}|. (7)

3 Empirical entropy for trees

In this section we formally define the various entropy measures that were men-
tioned in the introduction. Note that in all cases we define so-called unnormalized
entropies, which has the advantage that we do not have to multiply with the size
of the tree in bounds for the encoding size of a tree. Note that in [5,6,12,17] the
authors define normalized entropies. In each case, one obtains the normalized
entropy by dividing the corresponding unnormalized entropy by the tree size.

Label entropy. The first notion of empirical entropy for trees was introduced in
[5]. In order to distinguish notions, we call the entropy from [5] label entropy. It
is defined for unranked labeled trees t ∈ T (Σ): the kth-order label entropy H`

k(t)
of t is defined as follows, where ntz and ntz,a are from (1) and (4), respectively:

H`
k(t) =

∑
z∈Σk

∑
a∈Σ

ntz,a log2

(
ntz
ntz,a

)
. (8)

We remark that in [5], it is not explicitly specified how to deal with nodes, whose
label-history is shorter than k. There are three natural variants: (i) padding
label-histories with a symbol � ∈ Σ (this is our choice), (ii) padding label-
histories with a fresh symbol � /∈ Σ, or equivalently, allowing label-histories
of length smaller than k, and (iii) ignoring nodes whose label-history is shorter
than k. However, similar considerations as in the appendix of [15] show that these
approaches yield the same kth-order label entropy up to an additional additive
term of at most m<(1 + 1/ ln(2) + log2(σ|t|/m<)), where m< is the number of
nodes at depth less than k in t.

Degree entropy. Another notion of empirical entropy for trees is the entropy
measure from [17], which we call degree entropy. Degree entropy is primarily
made for unlabeled unranked trees, as it completely ignores node labels. Nev-
ertheless the definition works for trees t ∈ T (Σ) over any alphabet Σ. For a
tree t ∈ T (Σ), the degree entropy Hdeg(t) is the 0th-order entropy of the node
degrees (nti is from (2)):

Hdeg(t) =

|t|∑
i=0

nti log2

(
|t|
nti

)
.

For the special case of unlabeled trees the following result was shown in [17]:

Theorem 1 ([17, Theorem 1]). Let t be an unlabeled unranked tree. Then t
can be represented with Hdeg(t) +O(|t| log log(|t|)/ log |t|) bits.
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Label-degree entropy and degree-label entropy. Recently, two combina-
tions of the label entropy from [5] and the degree entropy from [17] were proposed
in [12]. We call these two entropy measures label-degree entropy and degree-label
entropy. Both notions are defined for unranked node-labeled trees. Let t ∈ T (Σ)

be such a tree. The kth-order label-degree entropy H`,deg
k (t) of t from [12] is

defined as follows, where ntz,a and ntz,i,a are from (4) and (5), respectively:

H`,deg
k (t) =

∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz,a
ntz,i,a

)
.

The kth-order degree-label entropy Hdeg,`
k (t) of t from [12] is defined as follows,

where ntz,i and ntz,i,a are from (3) and (5), respectively:

Hdeg,`
k (t) =

∑
z∈Σk

|t|∑
i=0

∑
a∈Σ

ntz,i,a log2

(
ntz,i
ntz,i,a

)
.

In order to deal with nodes whose label-history is shorter than k one can again
choose one of the three alternatives (i)–(iii) that were mentioned after (8). In
[12], variant (ii) is chosen, while the above definitions correspond to choice (i).
However, as for the label entropy one can show that these variants only differ
by a small additive term of at most m<(1/ ln(2) + log2(σ|t|/m<)) in the case of
the degree-label entropy, respectively, m<(1/ ln(2) + log2 |t|) in the case of the
label-degree entropy, where m< is the number of nodes at depth less than k.

By [12], the following inequalities hold:

Lemma 2. For every t ∈ T (Σ), H`,deg
k (t) ≤ Hdeg(t) and Hdeg,`

k (t) ≤ H`
k(t).

Moreover, one of the main results of [12] states the following bounds:

Theorem 2 ([12, Theorem 12]). Let t ∈ T (Σ), with σ ≤ |t|1−α for some
α > 0. Then t can be represented in

H +O
(
|t|k log σ + |t| log logσ |t|

logσ |t|

)
,

bits, where H is one of Hdeg(t)+H`
k(t), H`

k(t)+H`,deg
k (t), or Hdeg(t)+Hdeg,`

k (t).

Label-shape entropy. Another notion of empirical entropy for trees which
incorporates both node labels and tree structure was recently introduced in [14]:
Let us start with a binary tree t ∈ B(Σ). The kth-order label-shape entropy
Hk(t) of t (in [14] it is simply called the kth-order empirical entropy of t) is

Hk(t) =
∑
z∈Lk

∑
ã∈Σ×{0,2}

mt
z,ã log2

(
mt
z

mt
z,ã

)
, (9)
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where mt
z and mt

z,ã are from (6) and (7), respectively. Now let t ∈ T (Σ) be an

unranked tree and recall that fcns(t) ∈ B(Σ). The kth-order label-shape entropy
Hk(t) of t is defined as

Hk(t) = Hk(fcns(t)). (10)

The following result is shown in [14] using a grammar-based encoding of trees:

Theorem 3. Every tree t ∈ T (Σ) can be represented within the following bound
(in bits):

Hk(t) +O
(
k|t| log σ

logσ |t|

)
+O

(
|t| log logσ |t|

logσ |t|

)
+ σ.

Note that for binary trees, there are two possibilities how to compute the label-
shape entropy Hk(t). The first is to compute the label-shape entropy as defined
in (9), the second is to consider the binary tree as an unranked tree and compute
the label-shape entropy of its first-child next-sibling encoding as defined in (10).
The following lemma from [15] states that if we consider the first-child next-
sibling encoding of the binary tree instead of the binary tree itself, the kth-order
label-shape entropy does not increase if we double the value of k:

Lemma 3. Let t ∈ B(Σ) be a binary tree with first-child next-sibling encoding
fcns(t) ∈ B(Σ). Then H2k(fcns(t)) ≤ Hk−1(t) for 1 ≤ k ≤ n.

In contrast to Lemma 3, there are families of binary trees tn where Hk(tn) ∈
Θ(n− k) and Hk(fcns(tn)) ∈ Θ(log(n− k)) [15].

4 Comparison of the empirical entropy notions

As we have seen in Theorems 2 and 3, entropy bounds for the number of
bits needed to represent an unranked labeled tree t are achievable by Hk(t),

H`
k(t) + H`,deg

k (t), Hdeg(t) + Hdeg,`
k (t), and Hdeg(t) + H`

k(t), where in all cases
we have to add a low-order term. The term Hdeg(t)+H`

k(t) is lower-bounded by

H`
k(t)+H`,deg

k (t) and Hdeg(t)+Hdeg,`
k (t) by Lemma 2. For the special case of un-

labeled unranked trees, Hdeg(t) (plus low-order terms) is an upper bound on the
encoding length (see Theorem 1) as well. Let us also remark that Hk′(t) ≤ Hk(t)

for k < k′ and analogously for H`
k, H`,deg

k , and Hdeg,`
k .

4.1 Binary trees

Let us start with unlabeled binary trees, i.e., trees t ∈ B({a}) over the unary
alphabet Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad k-histories
and k-label-histories is � = a. The following lemma follows from the fact that
every binary tree of size 2n− 1 consists of n nodes of degree 0 and n− 1 nodes
of degree 2:
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Lemma 4. Let t be an unlabeled binary tree with n leaves and thus |t| = 2n−1.

Then Hdeg(t) = H`,deg
k (t) = (2− o(1))n.

For the following lower bound one can take for tn a left-degenerate chain of
height n (formally: t1 = a and tn = a(tn−1 a) for n ≥ 2).

Lemma 5. There exists a family of unlabeled binary trees (tn)n≥1 such that
|tn| = 2n− 1 and Hk(tn) ≤ log2(en) for all n ≥ 1 and 1 ≤ k ≤ n.

Lemmas 4 and 5 already indicate that all entropies considered in this paper
except for the label-shape entropy are not interesting for unlabeled binary trees.
For every unlabeled binary tree t with n leaves (and 2n − 1 nodes) we have:

H`
k(t) = Hdeg,`

k = 0, as every node of t has the same label, andH`
k(t)+H`,deg

k (t) =

Hdeg(t) + Hdeg,`
k (t) = H`

k(t) + Hdeg(t) = Hdeg(t), and these values are lower
bounded by 2n(1 − o(1)) (Lemma 4). In contrast, the label-shape entropy (9)
is able to capture regularities in unlabeled binary trees (and attains different
values for different binary trees of the same size).

Let us now look at binary trees t ∈ B(Σ), where Σ is arbitrary. As in the
special case of unlabeled binary trees, we find that Hdeg(t) = 2n(1 − o(1)) for
every binary tree t of size 2n − 1 (the node labels do not influence Hdeg(t)),

which implies Hdeg(t) + Hdeg,`
k (t) ≥ 2n(1 − o(1)). The following lemma shows

that Hk(t) is always bounded by H`
k(t) +H`,deg

k (t) and Hdeg(t) +Hdeg,`
k (t) (and

hence also H`
k(t) +Hdeg(t)) for t ∈ B(Σ).

Lemma 6. Let t ∈ B(Σ) be a binary tree. Then (i) Hk(t) ≤ H`
k(t) + H`,deg

k (t)

and (ii) Hk(t) ≤ Hdeg(t) +Hdeg,`
k (t).

Proof. We start with proving statement (i): We have

Hk(t) =
∑
z∈Lk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log2

(
mt
z

mt
z,(a,i)

)

=
∑
z∈Lk

∑
a∈Σ

(
mt
z,(a,0) +mt

z,(a,2)

)
log2

(
mt
z

mt
z,(a,0) +mt

z,(a,2)

)

+
∑
z∈Lk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log2

(
mt
z,(a,0) +mt

z,(a,2)

mt
z,(a,i)

)

≤
∑
z∈Σk

∑
a∈Σ

ntz,a log2

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

∑
i∈{0,2}

ntz,i,a log2

(
ntz,a
ntz,i,a

)
= H`

k(t) +H`,deg
k (t),

where the inequality in the second last line follows from the log-sum inequality
(Lemma 1) and the last equality follows from the fact that in a binary tree, every
node is either of degree 0 or 2. Statement (ii) can be shown in a similar way:

Hk(t) =
∑
z∈Lk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log2

(
mt
z

mt
z,(a,i)

)

9



=
∑
z∈Lk

∑
i∈{0,2}

(∑
a∈Σ

mt
z,(a,i)

)
log2

(
mt
z∑

a∈Σm
t
z,(a,i)

)

+
∑
z∈Lk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log2

(∑
a∈Σm

t
z,(a,i)

mt
z,(a,i)

)

≤
∑

i∈{0,2}

nti log2

(
|t|
nti

)
+
∑
z∈Σk

∑
a∈Σ

∑
i∈{0,2}

ntz,i,a log2

(
ntz,i
ntz,i,a

)
= Hdeg(t) +Hdeg,`

k (t),

where the inequality follows again from the log-sum inequality. ut

4.2 Unlabeled unranked trees

In this subsection, we consider unranked trees t ∈ T (Σ) over the unary alphabet
Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad k-histories and k-
label-histories is � = a. Moreover, note that in order to compute Hk(t) for an
unranked tree t ∈ T (Σ), we have to consider fcns(t), which is an unlabeled
binary tree (we must take � = a by our conventions for the dummy symbol;
hence the fresh �-labeled leaves in fcns(t) are labeled with a, too). As in the case
of unlabeled binary trees, we observe that some entropy measures, in particular
those that involve labels, only attain trivial values for unranked unlabeled trees.
More precisely, for every tree t ∈ T ({a}) we have H`

k(t) = Hdeg,`
k (t) = 0, as

every node has the same label a, and Hdeg(t) = H`,deg
k (t), as every node has the

same k-label-history and the same label. Moreover, we get H`
k(t) + H`,deg

k (t) =

Hdeg(t) + Hdeg,`
k (t) = Hdeg(t) + H`

k(t) = Hdeg(t). By this observation, we only
compare Hk(t) with Hdeg(t) for t ∈ T ({a}) in this subsection. By Lemmas 4
and 5, there exists a family of unlabeled trees (tn)n≥1 such that |tn| = Θ(n) and
for which Hk(tn) is exponentially smaller than Hdeg(tn). For general unranked
unlabeled trees, we have the following result; see [16] for the proof.

Theorem 4. For every unlabeled unranked tree t with |t| ≥ 2 and integer k ≥ 1,
we have Hk(t) ≤ 2Hdeg(t) + 2 log2(|t|) + 4.

As Hdeg(t) = H`
k(t) +H`,deg

k (t) = Hdeg(t) +Hdeg,`
k (t) for every tree t ∈ T ({a})

and k ≥ 0, we obtain the following corollary from Theorem 4:

Corollary 1. For every unlabeled unranked tree t ∈ T ({a}) with |t| ≥ 2 and

integer k ≥ 1, we have Hk(t) ≤ 2(Hdeg(t) + Hdeg,`
k (t)) + 2 log2(|t|) + 4, and

Hk(t) ≤ 2(H`
k(t) +H`,deg

k (t)) + 2 log2(|t|) + 4.

We note that there exist families of unranked trees over a non-unary alphabet, for
which the degree entropy is exponentially smaller than the kth-order label-shape
tree entropy. This is not very surprising as the label-shape entropy incorporates
the node labels, while the degree entropy does not.

10



4.3 Labeled unranked trees

In this section, we consider general unranked labeled trees t ∈ T (Σ) over arbi-

trary alphabets Σ. The entropies to be compared are Hk(t), Hdeg(t)+Hdeg,`
k (t),

H`
k(t) +H`,deg

k (t) and Hdeg(t) +H`
k(t). Somewhat surprisingly it turns out that

H`
k(t) +H`,deg

k (t) is at most Hdeg(t) +Hdeg,`
k (t) for every tree t:

Theorem 5. Let t ∈ T (Σ). Then H`
k(t) +H`,deg

k (t) ≤ Hdeg(t) +Hdeg,`
k (t).

Proof. We have

H`
k(t) +H`,deg

k (t)

=
∑
z∈Σk

∑
a∈Σ

ntz,a log2

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz,a
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz,a
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz
ntz,i

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz,i
ntz,i,a

)

=
∑
z∈Σk

|t|∑
i=0

ntz,i log2

(
ntz
ntz,i

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log2

(
ntz,i
ntz,i,a

)
≤ Hdeg(t) +Hdeg,`

k (t),

where the final inequality follows from the log-sum inequality (Lemma 1). ut

As a corollary of Lemma 2 and Theorem 5 it turns out that Hdeg(t) +Hdeg,`
k (t)

and H`
k(t) +Hdeg(t) are equivalent up to constant factors.

Corollary 2. Let t ∈ T (Σ). Then

Hdeg(t) +Hdeg,`
k (t) ≤ Hdeg(t) +H`

k(t) ≤ 2Hdeg(t) +Hdeg,`
k (t).

In the rest of the section we present three examples showing that in all cases
that are not covered by Theorem 5 we can achieve a non-constant (in most cases
even exponential) separation between the corresponding entropies.

Lemma 7. (i) |tn| = 2n+ 1,
(ii) Hk(tn) ≤ log2(e) + log2

(
n−

⌊
k−1
2

⌋)
+ 2,

(iii) Hdeg,`
k (tn) = 2n and hence Hdeg(tn) +Hdeg,`

k (tn) ≥ 2n, and

(iv) H`
k(tn) ≥ 2n and hence H`

k(tn) +H`,deg
k (tn) ≥ 2n.

11



a

b

d d d

c

d

e

d

e

d

e

a

b a

d c

a d

a d

a a

d a

e

a a

d

e

a a

d

e

a a

a

Fig. 2. The binary tree t3 from Lemma 8 (left) and its first-child next-sibling encoding
fcns(t3) (right).

a

b1,2

c1 c2 c1 c2 c1 c2

b2,1

c2 c1 c2 c1 c2 c1

b1,3

c1 c3 c1 c3 c1 c3

b3,1

c3 c1 c3 c1 c3 c1

b2,3

c2 c3 c2 c3 c2 c3

b3,2

c3 c2 c3 c2 c3 c2

Fig. 3. The tree t3,2 from Lemma 9.

For the tree tn in Lemma 7 one can take tn = a(bcbc · · · bc) with n occurrences of
b (respetively, c). Lemma 7 shows that there are not only families of binary trees,
but also families of unranked (non-binary) trees (tn)n≥1 (for which we have to
compute Hk(tn) via the fcns-endcoding) such that |tn| = Θ(n) and Hk(tn) is

exponentially smaller than Hdeg(tn) +Hdeg,`
k (tn) and H`

k(tn) +H`,deg
k (tn).

Lemma 8. There exists a family of unranked trees (tn)n≥1 such that for all
n ≥ 1 and 1 ≤ k ≤ n:

(i) |tn| = 3n+ 3,
(ii) Hk(tn) ≥ 2(n− k + 1),

(iii) Hdeg(tn) +Hdeg,`
k (tn) ≥ 2n and

(iv) H`
1(tn) +H`,deg

1 (tn) = 3 log2(3).

For the tree tn in Lemma 7 one can take tn = a(b(dd · · · d) c(d(e)d(e) · · · d(e)))
with 2n occurrences of d. The tree t3 is shown in Figure 2. Note that we clearly
need Ω(log n) bits to represent this tree (since we have to represent its size). This

does not contradict Theorem 2 and the O(1)-bound for H`
1(tn) + H`,deg

1 (tn) in
Lemma 8, since we have the additional additive term of order o(|t|) in Theorem 2.

In the following lemma, nk = n(n− 1) · · · (n− k+ 1) is the falling factorial.

12



Lemma 9. There exists a family of unranked trees (tn,k)n≥1, where k(n) ≤ n
may depend on n, such that for all n ≥ 1:

(i) |tn,k| = 1 + nk + k · n · nk,

(ii) Hdeg(tn,k) +H`
1(tn,k) ≤ O(n · nk · k · log k) and

(iii) Hk−1(tn,k) ≥ Ω(n · nk · k · log(n− k + 1)).

The label set of the tree tn,k is {a} ∪ {bu | u ∈ [n]k} ∪ {ci | 1 ≤ i ≤ n},
where [n]k = {(i1, i2 . . . , ik) | 1 ≤ i1, . . . , ik ≤ n, ij 6= il for j 6= l}. For
u = (i1, i2, . . . , ik) ∈ [n]k define the tree tu = bu((ci1ci2 · · · cik)n); then tn,k
is a(tu1

tu2
· · · tum

), where u1, u2, . . . , um is an arbitrary enumeration of the set
[n]k (hence, m = nk). The tree t3,2 is shown in Figure 3.

If k ∈ (log n)O(1) then the trees tn,k from Lemma 9 satisfy

Hdeg(tn,k) +H`
1(tn,k)

Hk−1(tn,k)
≤ O

(
log k

log(n− k + 1)

)
= o(1).

This yields a relatively weak separation between Hdeg(t) +H`
1(t) and Hk(t). In

contrast, in Lemmas 7 and 8 we achieved an exponential separation. It remains
open, whether such an exponential separation is also possible for H`

1 +Hdeg and
Hk. In other words, does there exist a family of trees tn such that Hk(tn) ∈ Ω(n)
and Hdeg(tn) +H`

1(tn) ∈ O(log n)?

5 Experiments

We finally complement our theoretical results with experimental data. We com-
puted the entropies Hdeg, Hk, H`

k, H`,deg
k and Hdeg,`

k (for k ∈ {0, 1, 2, 4}) for 13
XML files from XMLCompBench (http://xmlcompbench.sourceforge.net).

Table 1 shows the values for Hk, Hdeg + H`
k, H`

k + H`,deg
k and Hdeg + Hdeg,`

k

(which can be achieved up to lower order terms by compressors). It turns out
that for all XML trees used in this comparison the kth-order label-shape entropy
(for k > 0) from [14] is significantly smaller than the entropies from [12]. In

the full version [16, Table 2] the reader finds also the values for H`
k, H`,deg

k and

Hdeg,`
k (divided by the tree size so that the table fits on the page). Addition-

ally, we computed in [16] the label-shape entropy Hk for a modified version of
each XML tree where all labels are replaced by a single dummy symbol, i.e., we
considered the underlying, unlabeled tree as well (in [16, Table 2] this value is
denoted by H ′k). Note again that the label-shape entropy Hk is the only measure
for which this modification is interesting. In the setting of unlabeled trees, our
experimental data indicate that neither the label-shape entropy nor the degree
entropy (which is the upper bound on the number of bits needed by the data
structure in [17] ignoring lower order terms; see also Theorem 1) is favorable.
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XML k Hk Hdeg +H`
k H`

k +H`,deg
k Hdeg +Hdeg,`

k

BaseBall 0 202 568.08 153 814.94 146 066.64 146 066.64
1 6 348.08 145 705.73 137 957.42 145 323.26
2 2 671.95 145 705.73 137 957.42 145 323.26
4 1 435.11 145 705.73 137 957.42 145 323.26

DBLP 0 18 727 523.44 14 576 781.00 12 967 501.16 12 967 501.16
1 2 607 784.68 12 137 042.56 10 527 690.38 12 076 935.39
2 2 076 410.50 12 136 974.71 10 527 595.96 12 076 845.69
4 1 951 141.63 12 136 966.29 10 527 586.31 12 076 836.82

EXI-Array 0 1 098 274.54 962 858.05 649 410.59 649 410.59
1 4 286.39 387 329.51 73 882.05 387 304.76
2 4 270.18 387 329.51 73 882.05 387 304.76
4 4 263.82 387 329.51 73 882.05 387 304.76

EXI-factbook 0 530 170.92 481 410.05 423 012.12 423 012.12
1 11 772.65 239 499.01 181 101.08 204 649.84
2 5 049.98 239 499.01 181 101.08 204 649.84
4 4 345.42 239 499.01 181 101.08 204 649.84

EnWikiNew 0 2 118 359.59 1 877 639.22 1 384 034.65 1 384 034.65
1 243 835.84 1 326 743.94 833 139.36 1 095 837.20
2 78 689.86 1 326 743.94 833 139.36 1 095 837.20
4 78 687.51 1 326 743.94 833 139.36 1 095 837.20

EnWikiQuote 0 1 372 201.38 1 229 530.04 894 768.55 894 768.55
1 156 710.30 871 127.39 536 365.91 717 721.09
2 51 557.50 871 127.39 536 365.91 717 721.09
4 51 557.31 871 127.39 536 365.91 717 721.09

EnWikiVersity 0 2 568 158.43 2 264 856.93 1 644 997.36 1 644 997.36
1 278 832.56 1 594 969.93 975 110.35 1 311 929.24
2 74 456.55 1 594 969.93 975 110.35 1 311 929.24
4 74 456.41 1 594 969.93 975 110.35 1 311 929.24

Nasa 0 3 022 100.11 2 872 172.41 2 214 641.55 2 214 641.55
1 292 671.36 1 368 899.76 701 433.91 1 226 592.72
2 168 551.10 1 363 699.16 696 194.53 1 221 474.16
4 147 041.08 1 363 699.16 696 194.53 1 221 474.16

Shakespeare 0 655 517.90 521 889.47 395 890.85 395 890.85
1 138 283.88 370 231.89 244 047.64 347 212.36
2 125 837.77 370 061.20 243 843.87 347 041.31
4 123 460.80 370 057.77 243 838.09 347 037.86

SwissProt 0 18 845 126.39 16 063 648.44 13 755 427.39 13 755 427.39
1 3 051 570.48 11 065 924.67 8 757 703.61 10 238 734.83
2 2 634 911.88 11 065 924.67 8 757 703.61 10 238 734.83
4 2 314 609.48 11 065 924.67 8 757 703.61 10 238 734.83

Treebank 0 16 127 202.92 15 669 672.80 12 938 625.09 12 938 625.09
1 7 504 481.18 12 301 414.61 9 482 695.67 9 925 567.44
2 5 607 499.40 11 909 330.06 9 051 186.33 9 559 968.40
4 4 675 093.61 11 626 935.89 8 736 301.14 9 285 544.85

USHouse 0 36 266.08 34 369.06 28 381.43 28 381.43
1 10 490.44 24 249.78 17 968.41 19 438.19
2 9 079.97 24 037.34 17 569.59 19 216.99
4 6 308.98 23 634.87 16 830.00 18 783.36

XMark1 0 1 250 525.41 1 186 214.34 988 678.93 988 678.93
1 167 586.81 592 634.17 394 639.43 523 996.29
2 131 057.35 592 625.76 394 565.79 523 969.97
4 127 157.34 592 037.39 393 770.73 523 432.87

Table 1. Values of the four entropies compared in this paper for various XML trees.
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