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ABSTRACT. We prove that, for any hyperbolic group, the compressed
word and the compressed conjugacy problems are solvable in polynomial
time. We also prove that the compressed simultaneous conjugacy and
the compressed centraliser problems are solvable in polynomial time.
Finally, we prove that, for any infinite hyperbolic group, the compressed
knapsack problem is NP—complete.
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1. INTRODUCTION

1.1. Background. Suppose that G is a finitely generated group. Let X be a
finite generating set which is symmetric: if a lies in ¥ then so does a~!. The
word problem for G asks, given a word w € X*, if w represents the identity
in G. This, along with the conjugacy and isomorphism problems, was set
out by Dehn [16] in 1911. These three decision problems are fundamental in
group theory generally [54, 11].

However, Dehn’s claimed justification was that solutions to these problems
have applications in what is now called low-dimensional topology. Dehn’s
techniques, in particular his solution to the word problem in surface groups,
were greatly generalised by Gromov. In [29] Gromov introduced what are
now called word-hyperbolic or Gromov hyperbolic groups. (We will simply
call these hyperbolic groups. See Section 3.) With this and other innovations
Gromov revived the strictly geometric study of groups. For example, he
characterised hyperbolic groups as being exactly those that satisfy a linear
isoperimetric inequality; see [29, Section 6.8.M] as well as [60, 9, 62]. Gromov
also showed that, in certain models of random groups, all groups are almost
surely hyperbolic; see [29, Section 5.5.F] as well as [61].

Another theme in geometric group theory is the subject of distortion. As
a concrete example, consider the Baumslag-Solitar group [6]

G= <a,b‘ b~ lab = a2>
The subgroup (a) is exponentially distorted in G, in the sense that the
element a®" =g b~"ab™ has length 2" as an element of (a) but length 2n + 1

as an element of G. Thus, to solve the word problem efficiently in G it seems
necessary to record exponents of a, say in binary; see also [70].
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So, seeking to solve the word problem in groups leads us to consider
compressed words: elements of the group given by some useful succinct
representation. One popular such representation is by straight-line programs;
we give definitions and examples of these in Section 4.1. We will call the word
problem for group elements that are represented by straight-line programs
the compressed word problem.

The motivating result for this paper is a theorem due to the second
author [47, Theorem 4.5]. Let F,, be the free group on n generators. Lohrey
gives a polynomial-time algorithm to solve the compressed word problem for
F,,; in fact this problem is P—complete. Building on this, the third author
shows in [66, Theorems 5.2 and 6.1] that the word problems for Aut(F;,)
and Out(F},) can be solved in polynomial time and then goes on to show
that the compressed word problem for closed surface groups can be solved
in polynomial time. This also gives a new solution to the word problem in
mapping class groups of surfaces.

This sequence of results closely parallels Dehn’s original development, but
in the compressed setting.

1.2. This paper. Suppose that w is a word in the generators of G. We
say w is shortlex reduced if it is shorter than, or of the same length and
lexicographically earlier than, any other word representing the same group
element; see Definition 2.2. Suppose that G is a straight-line program over
Y. Then we denote the output of G by eval(G). Here is our main result.

Theorem 5.7. Let G be a hyperbolic group, with symmetric generating set
Y. There is a polynomial-time algorithm that, given a straight-line program
G over ¥, finds a straight-line program H so that eval(H) is the shortlex
reduction of eval(G).

This was previously announced without proof in [49, Theorem 4.12]. From
this theorem we deduce the following.

Corollary 5.8. Let G be a hyperbolic group. Then the compressed word
problem for G can be solved in polynomial time.

In the recent paper [38] the first author, with Sarah Rees, has generalised
the techniques of this paper to relatively hyperbolic groups where all periph-
eral groups are free abelian. So, for a knot K C S3, the compressed word
problem for the knot complement is polynomial time. This gives a further
parallel with Dehn’s programme for low-dimensional topology via the study
of the fundamental group.

1.3. Applications. Given these results, in Section 6.2 we deal with the
compressed versions of several other algorithmic problems. Recall that the
order problem for a group G asks us, given an element g € G, to compute the
order of g. Since hyperbolic groups only have torsion elements of bounded
order we can prove the following.
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Corollary 6.1. Let G be a hyperbolic group. Then the compressed order
problem for G can be solved in polynomial time.

The first author, with Epstein, proved in [23] that the conjugacy problem
in hyperbolic groups is linear time. If, in the conjugacy problem, we replace
the given pair of elements by a pair of finite ordered lists of elements then
we obtain the simultaneous conjugacy problem. See [44] and its references
for a discussion of this problem, for various classes of groups.

The centraliser problem asks for the centraliser of a given finitely generated
subgroup of G. Holt and Buckley proved in [10] that the simultaneous
conjugacy problem as well as the centraliser problem for hyperbolic groups
is linear time.

Using the results of [23, 10], and our work above, we solve the compressed
versions of these problems.

Theorem 6.3. Let G be a hyperbolic group. Then the compressed simultane-
ous conjugacy problem for G can be solved in polynomial time. Moreover, if
the two input lists are conjugate, thenm we can compute a straight-line program
for a conjugating element in polynomial time.

Theorem 6.4. Let G be a hyperbolic group. Then the compressed centraliser
problem for G can be solved in polynomial time.

We remark that, for finitely generated nilpotent groups, the (compressed)
simultaneous conjugacy problem is solvable in polynomial time [53, Theo-
rem 7).

As suggested in [66, Remark A.5], the word problem for a finitely generated
subgroup of the automorphism group Aut(G) is polynomial-time reducible to
the compressed word problem for GG. Similarly, the word problem for a finitely
generated subgroup of the outer automorphism group Out(G) is polynomial-
time reducible to the compressed simultaneous conjugacy problem for G;
see [33, Proposition 10].

Note that, if G is hyperbolic then Aut(G), and thus Out(G), is finitely
generated; see [15, Corollary 8.4]. We deduce the following.

Corollary 1.1. Let G be a hyperbolic group. Then the word problems for
Aut(G) and Out(G) can be solved in polynomial time. O

Our final application is to knapsack problems. Suppose that G is a finitely
generated group. The given input is a list (ug, u1,us,...,ux) of words over
the generators of G. We are asked if there are natural numbers n; such that

ug =¢ uftuy? - up®

When G is hyperbolic, the knapsack problem can be solved in polynomial
time; see [57, Theorem 6.1].

In the compressed knapsack problem, the words u; are represented by
straight-line programs. For the special case G = Z this problem is a variant
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of the classical knapsack problem for binary encoded integers, which is NP—
complete [42, page 95]. Using this, and our results above, we prove the
following.

Theorem 6.5. Let G be an infinite hyperbolic group. Then the compressed
knapsack problem for G is NP—-complete.

1.4. Related work. We here give a brief overview of previous work. For a
more in-depth treatment, we refer to [48, 49].

1.4.1. Compressed word problems. The use of straight-line programs in group
theory dates back to, at least, the methods developed by Sims [67] for
computing with a subgroup of the symmetric group S,, defined by generators.
The first step in virtually all of the algorithms developed by Sims is to
expand the given list of generators to a longer list (a strong generating set)
by defining a sequence of new generators as words in the existing generators.
Straight-line programs were later used, again in the context of finite groups,
by Babai and Szemeredi [3] in the proof of their Reachability Theorem.

Note that the compressed word problem for a group G is decidable if and
only if the word problem for G is decidable. However, the computational
complexity of the compressed word problem for G can be strictly more
difficult than the word problem itself. We return to this topic below.

It is interesting to note that the compressed word problem for a group
G is exactly the circuit evaluation problem for G. For finite groups the
compressed word problem, and thus the circuit evaluation problem, is nearly
linear time. In fact, more is known. The parallel complexity of the circuit
evaluation problem over finite groups is investigated in [7]. If G is a finite
solvable group, then the compressed word problem for G belongs to the
parallel complexity class DET C NC?2. If G is finite and not solvable, then
the compressed word problem for G is P—complete.

We now turn our attention to infinite, but finitely generated, groups. As
mentioned above, the word problem for a finitely generated subgroup of
Aut(G) is polynomial-time reducible to the compressed word problem for G.
A similar reduction exists for certain group extensions [49, Theorem 4.8 and
4.9]. These results on automorphisms are tightly connected to the study of
distortion of subgroups, mentioned above.

Beyond hyperbolic groups, there are several important classes of groups
where the compressed word problem can be solved in polynomial time. These
include the following.

e Finitely generated nilpotent groups [49, Section 4.7]. Here, the
compressed word problem belongs to the parallel complexity class
DET [45].

e Virtually special groups; that is, finite extensions of finitely generated
subgroups of right-angled Artin groups [49, Corollary 5.6]. Right-
angled Artin groups are also known as graph groups or partially
commutative groups. The class of virtually special groups contains
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all Coxeter groups [32], one-relator groups with torsion [71], fully
residually free groups [71], and fundamental groups of hyperbolic
three-manifolds [1]. Note that the case of fully residually free groups
is independently due to Macdonald [52].

Furthermore, the class of groups with polynomial time compressed word
problem is closed under the following operations.

e Graph products [49, Chapter 5].
e Amalgamated free products (or HNN—extensions) where the edges
groups are finite [49, Chapter 6].

We also note that, for finitely generated linear groups, the compressed
word problem belongs to the complexity class CORP [49, Theorem 4.15].
That is, there is a randomised polynomial-time algorithm that may err with
a small probability on negative input instances.

1.4.2. Hardness results. Certain hardness results for the compressed word
problem are known or suspected.

e The compressed word problem for every restricted wreath prod-
uct G Z with G finitely generated nonabelian is CONP—hard [49,
Theorem 4.21]. For G finite non-solvable (or free of rank two) the
problem is PSPACE—complete [4, Corollary B]; the authors obtain
the same result for Thompson’s group F', the Grigorchuk group and
the Gupta-Sidki groups.

On the other hand: the uncompressed word problem for the Grig-
orchuk group can be solved in logarithmic space [26]. Also, if G is
finite then the uncompressed word problem for G Z belongs to the
circuit complexity class NC! [68]. Thus we have examples of groups
where the compressed word problem is provably more difficult than
the uncompressed word problem.

e There exist automaton groups with an EXPSPACE—-complete com-
pressed word problem [69].

On the other hand, the uncompressed word problem for any au-
tomaton group belongs to PSPACE. Again this gives examples
where the compressed word problem is provably more difficult than
the uncompressed.

e The compressed word problem for the linear group SL(3,Z) is equiva-
lent, up to polynomial-time reductions, to the problem of polynomial
identity testing. This last is the decision problem of whether a given
circuit over the polynomial ring Z[z1,...,x,] evaluates to the zero
polynomial [49, Theorem 4.16]. The existence of a polynomial-time
algorithm for polynomial identity testing is an outstanding open
problem in the area of algebraic complexity theory.

On the other hand, the uncompressed word problem for SL(3,Z)
is polynomial time.
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1.4.3. Knapsack problems over groups. The uncompressed knapsack problem
has been studied for various classes of groups; see [24, 25, 46]. For non-
elementary hyperbolic groups, the knapsack problem lies in LOGCFL (the
logspace closure of the class of context-free languages); see [50, Theorem 4.1].
The second author further shows, in [51, Theorem 3.1], that the compressed
knapsack problem for every virtually special group belongs to NP.

1.4.4. Compressing integers. In addition to straight-line programs, there are
other methods of compression that arise in significant ways in computational
group theory. Here we will mention just a few with particular relevance
to the word problem. These are techniques for recording extremely large
integers, as opposed to recording long words.

The binary representation of an integer n can be translated into a straight-
line program G, of size O(logn) with output a”. Following our discussion of
circuit evaluation above, we could replace “concatenation of strings” by the
primitive operator “addition of integers”. Likewise, we replace the alphabet
{a} by the alphabet {1}. This transforms the straight-line program G, into
an additive circuit with output n.

If we allow multiplication as well as addition gates we obtain arithmetic
circuits. For example, a circuit with n gates can produce an integer of
size 22" using iterated squaring. Power circuits, the topic of [59], replace
multiplication of x and y by the operation x - 2¥: that is, shifting the first
input by the second. Thus a power circuit of depth n can represent an integer
of the size of a tower of exponentials of height n. The same authors use their
new theory, in [58], to show that the word problem in Baumslag’s group [5]

<a, b ‘ (b_lab)f1 a (b_lab) = a2>

is polynomial time. We note that Baumslag’s group has a non-elementary
Dehn function [64]; this demonstrates one of the many possible separations
between the computational and the geometric theories of a group.

Again exploiting various properties of power circuits, the authors of [18]
give a cubic time algorithm for the word problem in Baumslag’s group [18,
Theorem 16]. They also show that the word problem for Higman’s group [34]

<a, b,c,d ‘ b lab=a? ¢ be =02, d ted = ¢, a" M da = d2>

is polynomial time [18, Theorem 19].

Of course, even more extreme compression is possible and this leads to
polynomial-time algorithms for even more extreme groups. The authors of
[19, 20] construct certain HNN—extensions of the hydra groups [21]

Hy = <a7b|["'Havb]’bL""b] = 1>7

where [z,y] = 27y '2y is a commutator and [---[[a,b],b],...,b] is a nested

commutator of depth &, for which the Dehn function grows roughly like the
Ackermann function and the word problem is still solvable in polynomial
time. For this, they use a compression scheme for integers that yields a
compression ratio of order of the Ackermann function on some integers.
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2. GENERAL NOTATION

We include zero in the set of natural numbers; that is, N = {0, 1,2,...}.

2.1. Words. Suppose that X is an alphabet; the elements of ¥ are called
letters. We write X* for the Kleene closure of ¥; that is, the set of all finite
words over Y. We call any subset L C ¥* a language over X.

For any alphabet X, we use ¢ € ¥* to denote the empty word. Suppose
that u, v, and w are words over Y. We denote the concatenation of v and v
by w - v; we often simplify this to just uv (u - v is sometimes preferred for
better readability). So, for example, w-e = ¢ - w = w. We say that u is a
factor of v if there are words x and y so that v = xuy. We say that u is a
rotation of v if there are words x and y so that v = xy and u = yz. We have
the following easy but useful result.

Lemma 2.1. Let u and v be words over Y. Then wu is a rotation of v if and
only if |u| = |v| and u is a factor of v - v. O

Suppose that w = ag-aq---an,_1 lies in ¥*, where the a; are letters. Then
we define |w| to be the length of w; that is, |w| = n. For any i between zero
and n — 1 (inclusive) we define w[i] = a;. Note that the empty word ¢ is the
unique word of length zero.

We now define the cut operators. Let w be a word, as above, and let 7 and
J be indices with 0 <i < j <n = |w|. We define w[i : j] = a;---aj—1. We
use w[: j] to denote w0 : j], the prefiz of length j. We use wli :] to denote
w(i : n], the suffiz of length n —i. Note that w[i : i] = ¢ and w = w|: 7] - w]i :].

Suppose that ¥ is a finite alphabet equipped with a total order < (the
concrete choice of < will never be important for us).

Definition 2.2. We define the shortlexr order on ¥* as follows. For words
u, v we have u <glex v if

o |u| < |v| or

o |u| = |v| and there are words z,y, z € ¥* and letters a,b € ¥ so that

— u = xay,
— v = zbz, and
—a<b.

Note that shortlex is a well-order on ¥*: that is, every nonempty subset
of ¥* has a unique shortlex least element.

2.2. Finite state automata. We refer to [40] for background in automata
theory. A (deterministic) finite state automaton is a tuple M = (Q, X, qo, 6, F),
where

e () is a finite set of states,
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Y is a finite alphabet,

qo € Q is the initial state,

0: @ X X — @ is a transition function, and
F C Q is the set of accept states.

Intuitively, if the automaton M is “in” state ¢ € @@, and receives input
a € ¥, then it transitions to the new state §(g,a). We extend 4 to a function
8 Q x ¥* — @ recursively. That is, for any state ¢, word w, and letter a
we have

e 0'(q,e) = ¢ and

e (g, wa) = 6(8'(q,w),a).
Since § and ¢’ agree on words of length at most one, we will suppress ¢’ in
what follows and instead reuse §. We define

L(M) = {w € X* | §(qo,w) € F}

to be the language accepted by M. Intuitively, if w lies in L(M) then w,
when input into M, takes it from the initial state to an accept state.

We say that a language L C ¥* is regular if there exists a finite state
automaton M so that L = L(M).

3. HYPERBOLIC GROUPS

We refer to [2] as a general reference on (word) hyperbolic groups.

Let G be a finitely generated group. Let 15 denote the identity element
of G. Let X be a finite, symmetric generating set for G. That is, if a lies in
¥ then so does a~!. For two words u,v € ¥*, we will use ©w =g v to mean
that u and v represent the same element of G. We fix a total order < on X.

The (right) Cayley graph T' =T'(G, %) of G with respect to X is defined
as follows.

e The vertices of I' are the elements of G.
e The undirected edges of I' are of the form {g,ga} for ¢ € G and
a € .

We will label a directed edge (g, ga) with the letter a. Note that G acts, by
graph automorphisms, on I' on the left.

Giving all edges length one makes I' into a geodesic metric space. We do
this in such a way so that the action of G is by isometries. The distance
between two points p, ¢ is denoted dr(p, ¢). For g € G we define |g| = dr (1, g).
We deduce that |g| is the smallest length among all words w € ¥* that
represent g. Fix r > 0. The ball of radius r in I is the set

B(r) =Br(r) ={geG:lg| <r}

Fix a word w € ¥*. We define P, C I to be the path starting at 15 which
is labelled by w. Thus the path g - P, starts at g and is again labelled by w.
In general, we will take P: [0,n] — T to be an edge path from P(0) to P(n).

In particular, we must allow real ¢ € [0,n] as we traverse edges. We use P to
denote P with its parametrisation reversed. Note that P, = gy, - Py,-1.
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We call a path P geodesic if for all real t > 0 we have dr(P(0), P(t)) = t.
Suppose that the word w € X* represents the group element g, € G. We
say that w € X* is geodesic if the path P, is geodesic. We say that w € X*
is shortlex reduced if for all u € 3* the equality g, = ¢ implies w <gjex u.
We use slex(w) to denote the shortlex reduced representative of g, .

Remark. Suppose that w is geodesic or shortlex reduced. Suppose that u
is a factor of w. Then wu is also, respectively, geodesic or shortlex reduced.

A geodesic triangle in I' consists of three vertices p,q,r € G and three
sides P,QQ, R C I'. The sides are geodesic paths connecting the vertices; see
Figure 3.1. Fix 6 > 0. We now follow [2, Definition 1.3]. We say that a
geodesic triangle is d—slim, if every point x in the side P is distance at most
0 from some point of RU @, and similarly for the sides @ and R.

Fix G and X as above. We say G is §—hyperbolic if every geodesic triangle
in the Cayley graph I' = I'(G, X) is d—slim. Finally, we simply say G is
hyperbolic, if it is —hyperbolic for some § > 0. For example, the group G
is O—hyperbolic (with respect to X) if and only if G is a free group, freely
generated by (half of) 3.

Remark 3.1. In his article [29], Gromov proves that hyperbolic groups have
many good properties. In Corollary 2.3.B he states that such groups satisfy
a linear isoperimetric inequality; hence they have solvable word problem. In
Corollary 2.3.E he shows that the notion of hyperbolicity is independent of
the choice of finite generating set. In Section 7.4.B he proves that they have
solvable conjugacy problem. For another exposition of these results (excepting
the conjugacy problem) we refer to [2]: see Theorem 2.5, Proposition 2.10,
and Theorem 2.18 of that work. For an exposition of the conjugacy problem
we refer to [23].

We will need a seemingly stronger condition on our geodesic triangles,
called d—thinness. We here follow [2, Definition 1.5]. Suppose again that we
have a geodesic triangle with vertices p,q,r € G and with sides P,Q, R C I';
see Figure 3.1. Let cp € P, cg € @, and cg € R be the unique points so that

dF(p7 CQ) = dF(pv CR)7 dF(Q,CR) = dF(QacP)a dF(Tv CP) = dr(’l”, CQ)

We call these the meeting points of the triangle. Note that the meeting points
may be elements of G or midpoints of edges of I'. Suppose that z € P and
y € @ are points with

e dr(r,z) = dp(r,y) =t and

e t <dp(r,cp) =dr(r,cq).
Then we call x and y corresponding points with respect to r. Note that if
one of z or y lies in G then so does the other. We make the same definition
with respect to the vertices p and ¢q. Note that the three meeting points
are all in correspondence. Fix § > 0. The triangle is called d—thin if for
all corresponding pairs (x,y) we have dr(z,y) < J. See Figure 3.1; there
the dotted arcs indicate corresponding pairs. Note that a é—thin triangle
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r

p q

FiGUurE 3.1. A geodesic triangle in a hyperbolic metric
space. Note how the three sides “bow in” to a common centre.
Dotted lines represent paths of length at most § between
corresponding points.

is —slim. A converse also holds: every geodesic triangle in a d—hyperbolic
space is 40—thin; see [2, Proposition 2.1].

We now fix a group G and a symmetric generating set X; we assume that
G is é—hyperbolic. We choose  large enough to ensure that all geodesic
triangles in I" are d—thin.

Remark. From a computational viewpoint, hyperbolic groups have many
nice properties. For example, their word problems can be solved in linear
time [2, Theorem 2.18] as can their conjugacy problems [23]. (Here we gloss
over the details of the required model of computation.) In a more recent and
noteworthy achievement, their isomorphism problem has also been solved;
see [14, 15]. Thus all three of Dehn’s fundamental problems have been settled
positively for hyperbolic groups.

Other positive results include the simultaneous conjugacy problem [10]
and the knapsack problem [50]. We will return to both of these below.

Note that the compressed word problem easily reduces to the problem of
checking the solvability of a system of equations. There is a substantial body
of work on the latter, over hyperbolic groups. Dahmani and Guirardel [14]
prove (building on earlier work of [65]) that the problem is decidable. The
compressibility by straight-line programs of solutions of equations in hy-
perbolic groups is studied in [17]. Ciobanu and Elder [13] give a complete
description of the set of all solutions of a given system of equations over a
hyperbolic group. They obtain, as a corollary, a polynomial-space algorithm
for deciding the existential theory of a hyperbolic group.

The following results come from the fact that hyperbolic groups have
automatic structures with respect to any shortlex ordering [22, Theorem 3.4.5
and Corollary 2.5.2].

Lemma 3.2 [22, Theorem 2.3.10]. There is a polynomial-time (in fact, qua-
dratic) algorithm that, given a word w € ¥*, produces slex(w). O
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FIGURE 3.2. Splitting a geodesic quadrilateral according to Lemma 3.4.

Lemma 3.3 [22, Proposition 2.5.11 and Theorem 3.4.5]. The languages in
>*, of geodesic words and of shortlexr reduced words, are regular. ([

Remark. We will in fact need both geodesic and shortlex reduced words in
our proof of Theorem 5.7. This is because the inverse of a geodesic word is
again geodesic; this need not be the case for shortlex reduced words. On the
other hand, shortlex reduced words provide unique representatives of group
elements; this is almost never the case for geodesic words.

We will need the following standard lemma on geodesic quadrilaterals.
See, for example, the proof of [2, Proposition 3.5].

Lemma 3.4. Let a,b,u,v € X* be geodesic words such that vb =g au.
Suppose that u has a factorisation w = v'u" with |u'| > |a| + 2§ and |u"| >
|b| +25. Then there exists a factorisation v = v'v" and a geodesic word ¢ so
that

e [c] <20,

e Vc=¢g au', and

o v'b=¢gcu”.

Proof. We consider the quadrilateral with sides P,, P,, g, - Py, and g, - P.
Here gy, is the group element represented by the word w. We are given a
factorisation u = u'u”. Set g = g,g. and note that g lies in g, - P,. See
Figure 3.2. Since geodesic quadrilaterals are 26—slim there is a group element
h with dr(g,h) < 26 lying in the union of the three other sides.

We now consider cases. Suppose that h lies in P, — {1g}. Then the
triangle inequality implies |u/| < |a| + 2§. Similarly, if & lies in g, - Py — {gv},
then |u”| < |b| + 26. Both of these are contrary to hypothesis. We deduce
that A lies in P,, proving the lemma. ([l

The lemma has a useful corollary.

Corollary 3.5. Let a,b,u,v € X* be geodesic words such that vb =g au.
Suppose that u has a factorisation u = vw'u"u" with |u'| > |a| 4 26, |u"| > 46,
and [u"'| > |b|+26. Then there exists a factorisation v = v'v"v"" and geodesic
words ¢,d so that

], |d] < 20,

v'e =g a,

v"'d =q cu”, and

,U///b =G du///'
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Proof. We prove this with two applications of Lemma 3.4. The first applica-
tion gives us c. In the second application we restrict our attention to the
quadrilateral with sides labelled ¢, b, " - «'”, and the fourth side labelled by
the resulting suffix of v. This gives d. O

Suppose that S is a path in ' of length n, and 4 is an integer. We adopt
the convention that the use of the expression S(i) implies that i lies in [0, n].
Recall that S denotes S with its parametrisation reversed.

Lemma 3.6. Let T be a §-thin geodesic triangle with vertices at p, q, and r
and with sides P, Q, and R. Suppose that P(0) = ¢ = R(0), Q(0) = r = P(0),

and R(0) = p = Q(0). Let j be any integer so that dr(R(j), Q(j)) > . Then

there are integers ig < iq so that dr(R(j), P(ir)) < 6 and dr(Q(j), P(ig)) <
J.

In the statement and the proof we follow the notation of Figure 3.1.

Proof of Lemma 3.6. Since dr(R(j),Q(j)) > 9, the group elements R(j) and
Q(7) do not correspond to each other. Thus R(j) is strictly after the meeting
point cg along R. Similarly Q(j) is strictly after the meeting point c¢ along
Q. Since T is §-thin, there are integers ir and 1 so that

e R(j) corresponds to P(ir) and so dr(R(j), P(igr)) < ¢ and

e (Q(j) corresponds to P(ig) and so dr(Q(j), P(ig)) < 9.

We deduce that P(ig) is strictly before, and P(ig) is strictly after, cp along
P. Thus ir < ig and we are done. O

4. COMPRESSED WORDS AND THE COMPRESSED WORD PROBLEM

4.1. Straight-line programs. Straight-line programs offer succinct repre-
sentations of long words that contain many repeated substrings. We here
review the basics, referring to [49] for a more in-depth introduction.

Definition 4.1. Fix X, a finite alphabet. A straight-line program over ¥ is
a triple G = (V, S, p) where
e V is a finite set of variables, disjoint from 3,
e S €V is the start variable, and
e p:V — (VUX)* is an acyclic production mapping: that is, the
relation
{(B,A) € V x V| B appears in p(A)}
is acyclic. We call p(A) the right-hand side of A.

Example 4.2. Let ¥ = {a, b} and fixn > 0. We define G,, = ({Ao, ..., An}, An, p),
where p(Ag) = ab and p(A4;11) = A;A; for 0 <i<n-—1.

Definition 4.3. Given a straight-line program G as above, we define an
evaluation function eval = evalg: (V U X)* — £* as follows.

e eval(a) =a fora € 3,
e eval(uv) = eval(u)eval(v) for uv € (V UX)*, and
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o eval(A) =eval(p(A)) for Ac V.

One proves by a delicate induction that eval is well defined. We finally take
eval(G) = eval(S). We call eval(G) the output of the program G.

In other words, G is a context-free grammar that generates exactly one
word eval(G) of ¥*.

So, continuing Example 4.2 above we have eval(4p) = ab and more
generally eval(4;) = (ab)*. Thus eval(G,) = eval(4,) = (ab)?". So the
output has length 271,

We say a straight-line program G = (V, S, p) over X is trivial if S is the
only variable and p(S) = ¢ = eval(G).

We say that a straight-line program is in Chomsky normal form if it is
either a trivial program or all right-hand sides are of the form a € 3 or BC
with B,C € V. There is a linear-time algorithm that transforms a given
straight-line program G into a program G’ in Chomsky normal form with the
same output; see [49, Proposition 3.8].

Definition 4.4. We define the size |G| of G = (V, S, p) to be the sum of the
bit-lengths of the right-hand sides of p. Symbols from V U X are encoded by
bit strings of length O(log(|V'| + |X|)) using a prefix code.

Again considering Example 4.2, we see that the size of G,, is O(nlog(n)).
(Note that we take into account the cost of writing out the indices of the
variables A;.) Thus we see that straight-line programs can achieve (essentially)
exponential compression. The following result proves that straight-line
programs can do no better; the proof follows the proof of [12, Lemma 1].!

Lemma 4.5. For every straight-line program G we have |eval(G)| < 319173,
([

As a convenient short-hand, we will refer to straight-line programs over X
as compressed words.

4.2. Algorithms for compressed words. We will assume that all integers
given as input to algorithms are given in binary. We will need to know that
the following algorithmic tasks can be solved in polynomial time; see [49,
Proposition 3.9].

Given a straight-line program G and natural numbers i < j:

e find the length |eval(G)|;
e find the letter eval(G)][i];
e find a straight-line program G’ with eval(G’) = eval(G)[i : j].

The following proposition is also well-known [12, Lemma 2].

ln [12], |G| is defined as the sum of all lengths of right-hand sides of G. Note that this
value is less than or equal to our value of |G| (the bit-lengths of the right-hand sides).
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Proposition 4.6. There is a polynomial-time algorithm that, given a straight-
line program G and a natural number n > 0, computes a straight-line pro-
gram G, with eval(G,) = eval(G)". In fact, the time required is linear in
|G| + logn. O

The following results are less trivial. A proof of this proposition can be
found in [49, Theorem 3.11].

Proposition 4.7. There is a polynomial-time algorithm that, given

e ¢ finite alphabet ¥,
e ¢ finite state automaton M over X, and
e q straight-line program G over ¥,

decides if eval(G) lies in the language L(M). O
We also need the following variant of Proposition 4.7.

Proposition 4.8. There is a polynomial-time algorithm that, given

e ¢ finite alphabet 3,
e ¢ finite state automaton M over X, and
e q straight-line program G over 3,

decides if {eval(G)" | n € N} is a subset of L(M).

Proof. Let M = (Q, X%, qo, d, F') be the automaton. Suppose that w = eval(G).
All non-negative powers of w belong to L(M) if and only if §(go, w™) lies in
F, for all n > 0.

Since @ is finite, there are natural numbers k and [, with 0 < k <[ < |Q)|
such that 6(qo, w*) = §(qo, w') and hence

5(q0,wk+i) = 0(qo, w'™?) for all i > 0.

It follows that w"™ € L(M) for all n > 0 if and only if w™ € L(M) for all
0 <n <|Q|. By Proposition 4.6, we can compute, in polynomial time and
for all 0 < n < |Q], a straight-line program G, with output eval(G,) = w".
Finally we use Proposition 4.7 to test, in polynomial time, if eval(G,) € L(M)
for these programs. O

The following result is central to our past and present work. It was indepen-
dently discovered by Hirshfeld, Jerrum, and Moller [35, Proposition 12| (see
also [36, Proposition 3.2]), by Mehlhorn, Sundar, and Uhrig [55, 56] (where
the result is implicitly stated in terms of dynamic string data structures),
and by Plandowski [63, Theorem 13].

Theorem 4.9. There is a polynomial-time algorithm that, given straight-line
programs G and H, decides if eval(G) = eval(H). O

We now give a version of [43, Theorem 1]; this generalises Theorem 4.9
to the so-called fully compressed pattern matching problem. See [41, Theo-
rem 1.1] for a quadratic time algorithm, which is the best currently known.
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Theorem 4.10. There is a polynomial-time algorithm that, given straight-
line programs G and H, decides if eval(G) is a factor of eval(H). Furthermore,
if it is a factor, the algorithm returns (in binary) the smallest m € N so that
eval(G) is a prefiz of eval(H)[n :]. O

We obtain the following corollary of Theorem 4.10 and Lemma 2.1.

Corollary 4.11. There is a polynomial-time algorithm that, given straight-
line programs G and H, decides if eval(G) is a rotation of eval(H). Further-
more, if it is, then the algorithm returns straight-line programs H' and H"
such that

eval(#H) = eval(H')eval(H") and  eval(G) = eval(H")eval(H') O

4.3. The compressed word problem. Suppose that G is a group and X
is a finite symmetric generating set. The compressed word problem for G,
over %, is the following decision problem.

Input: A straight-line program G over X.
Question: Does eval(G) represent the identity of G?

Note that the compressed word problem for a group G is decidable if and
only if the word problem for G is decidable. As discussed in the introduction,
there are in fact groups G where the compressed word problem is strictly
harder than the word problem itself.

Observe that the computational complexity of the compressed word prob-
lem for G does not depend on the chosen generating set Y. That is, if ¥/ is
another such, then the compressed word problem for G over ¥ is logspace
reducible to the compressed word problem for G over ¥’ [49, Lemma 4.2].
Thus, when proving that the compressed word problem is polynomial time,
we are allowed to use whatever generating set is most convenient for our
purposes.

Remark 4.12. As a simple but useful tool, note that if G is a straight-line
program over Y with output w then there is a straight-line program G with

output w L.

4.4. Cut programs. A useful generalisation of straight-line programs are
the composition systems of [31, Definition 8.1.2]. These are also called cut
straight-line programs in [49]. We shall simply call them cut programs. They
are used, for example, in the polynomial-time algorithm for the compressed
word problem of a free group [47].

A cut program over ¥ is a tuple G = (V,S,p), with V and S as in
Section 4.1, and where we also allow, as right-hand sides for p, expressions
of the form B[i : j], with B € V and with ¢ < j. We again require p to be
acyclic. When p(A) = Bli : j] we define

eval(A) = eval(B)][i : j]

with the cut operator [i : j] as defined in Section 2. The size of a cut program
G is the sum of the bit-lengths of the right-hand sides; as usual all natural
numbers are written in binary.
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We can now state a straightforward but important result of Hagenah;
see [31, Algorithmus 8.1.4] as well as [49, Theorem 3.14].

Theorem 4.13. There is a polynomial-time algorithm that, given a cut
program G, finds a straight-line program G’ such that eval(G) = eval(G’).

Theorems 4.9 and 4.13 imply that there is a polynomial-time algorithm
that, given two cut programs, decides if they have the same output.

Remark 4.14. In fact, in what follows, we will only ever need the prefix
and suffix cut operators [: j] and [¢ :]. This is because, when using a word to
represent a group element, cancellation appears where two factors meet.

We also note that iterating the cut operator can be done using arithmetic
alone. That is, the cut variables

Bli:jl[k:¢ and Bli+k:i+/{

have the same evaluation. This “cut elimination” is, in some sense, the heart
of the proof of Theorem 4.13.

5. THE COMPRESSED WORD PROBLEM FOR HYPERBOLIC GROUPS

Suppose that G is a group and ¥ is a finite symmetric generating set. We
fix a total order < on X. Suppose that G is d—hyperbolic; here we take §
large enough so that all geodesic triangles are d—thin, and we assume also
that 0 > 0 is an integer. (This assumption is used in Case 3.2 inside of the
proof of Lemma 5.3.) In what follows, we take ( = 20. Recall that B(r) is
the ball of radius r about 1¢ in the Cayley graph I' = T'(G, X).

5.1. Tethered programs. We introduce a new type of program using the
tether operator.

A tethered program over X is a tuple G = (V, S, p), with V and S as in
Section 4.1, and where we also allow, as right-hand sides for p, expressions
of the form B(a,b), with B € V' and with a,b € B({). We again require p to
be acyclic. If p(A) = B(a, b) then we define

eval(A) = slex(a - eval(B) - b 1)

We call the suffix (a,b) a tether operator. The size of a tethered program G
is the sum of the bit-lengths of the right-hand sides; group elements in B(()
are represented by their shortlex representatives.

Finally, in a tether-cut program G over X we allow right-hand sides which
are words from (VUX)*, a cut variable, or a tethered variable. It is sometimes
convenient to allow more complicated right-hand sides such as

Bl[:i]{a,b) - C[j :}{c,d)

Again, we define the size of G as the sum of the bit-lengths of the right-hand
sides. In what follows we will assume that all programs arising are over a
fixed alphabet X.
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Y

FIGURE 5.2. The evaluation of B{a,b)(a’,b’) agrees with the
evaluation of z - B[i : j|(a”, V") - y. Here we are assuming that
eval(B) = u = v'u”v" and that eval(B[i : j](a", V")) = w".

Remark 5.1. In what follows we mostly need the prefix and suffix tether
operators (a, 1) and (1,b). For, suppose that I'(G,¥) is hyperbolic and that
u and v are geodesic words. Let w =g uv be a geodesic word representing
their product. Then we can describe w (up to bounded Hausdorff distance)
by taking a prefix of u, tethering the result at the end, concatenating with a
short word, and then tethering (at the front) a suffix of v. See Figure 5.12
below.

We also note that iterating tether operators can be done “locally”. That
is, for any a,a’,b,b’ € B(() there are elements a”,b” € B((), elements
x,y € B(2¢), and natural numbers i, j so that the expressions

Bla,b){a’,b') and x-Bl[i:jl{a", V") -y

have the same evaluation: that is, they represent the same shortlex reduced
word. See Figure 5.2. Again, this “tether-elimination” is, in some sense, the
heart of our proof of Lemma 5.3.

We say that a program is in Chomsky normal form if it is either a trivial
program or all right hand sides p(A) have one of the following forms, where
B,CeV,ae€X i<jandb,ce B(): a, BC, B[i: j|, B(b,c). Similar
to the case of straight-line programs, there is a linear-time algorithm that
transforms a given program G (with eval(G) # ¢) into a program G’ in
Chomsky normal form with the same output.

We say that a program G is geodesic (or shortlex) if for every variable A,
the word eval(A) is geodesic (shortlex reduced).

Lemma 5.2. There is a polynomial-time algorithm that, given a geodesic
tether-cut program G, returns a geodesic tether-cut program G' with the same
evaluation which is in Chomsky normal form.

Proof. We essentially use the usual algorithm; see, for example [49, Propo-
sition 3.8]. However, some care must be taken with tethered variables. If
p(A) = B(a,b) and p(B) = ¢ then we set p(A) = slex(ab~!) and repeat the
process. O
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Note that the concatenation of geodesic words may not itself be geodesic;
however the concatenation does provide two sides of a geodesic triangle.
When the group G is hyperbolic, this gives us the beginnings of a reduction
procedure.

We now turn to the task of proving Proposition 5.5. We will give a
sequence of results that allows us to transform a geodesic tether-cut program
into a straight-line program, whose evaluation is the shortlex representative
of the original. The first step, in Lemma 5.3, gives such a transformation for
tethered programs. The second step, finishing the proof of Proposition 5.5,
is to transform a geodesic tether-cut program into an geodesic tethered
program with the same output. This second step is inspired by Hagenah’s
result (Theorem 4.13) transforming a cut program into an equivalent straight-
line program.

5.3. Transforming tethered programs. Suppose that G = (V, S, p) is a
program, as above.

We recursively define the height of elements of XU V. If a € ¥ then we
take height(a) = 0. For A € V' we define

height(A) = max{height(B) + 1| B € YUV occurs in p(A)}

Finally we set height(G) = height(.S).

Suppose that G is a tethered program in Chomsky normal form. If A € V
is a variable we define its tether-height, denoted height,(A), recursively as
follows.

e If p(A) = a, then height,(A) =0,
o if p(A) = BC, then height,(A) = max{height,(B), height,(C)}, and
e if p(A) = B(s,t) then height,(A) = height,(B) + 1.
For a variable A we define its tether-depth to be
depth,(A) = height,(S) — height,(A4) + 1

Lemma 5.3. There is a polynomial-time algorithm that, given a geodesic
tethered program G, finds a shortlex straight-line program G’ so that eval(G') =
slex(eval(G)).

Proof. Set G = (V,, S, p). The straight-line program G’ that we construct will
be of the form G’ = (V', S, p') for suitable V' and p'.

Applying Lemma 5.2 we may assume that G is in Chomsky normal form.
Introducing a new start variable, if needed, we may assume that p(S) has
the form A(1,1) for a variable A. We do this to force the evaluation of G to
be shortlex reduced, not just geodesic. By removing unused variables, we
can assume that S has maximal height and maximal tether-height among all
variables. This implies that, for all A € V, the tether-depth of A is greater
than zero. Finally, for every variable A € V such that p(A4) = BC with
B,C €V we can assume that

depth,(A) = depth,(B) = depth,(C)
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To ensure this property we add dummy variables to G, with productions of
the form X (1,1), as needed.

In the rest of the proof, height, height, and depth, always refer to the
original tethered program G.

We carry out the proof in a bottom-up fashion; that is, we consider the
variables of G in order of increasing height. Here is an outline of the proof;
we give the details below. Set w = eval(A4). If |w| < 16¢depth,(A) + 2¢ then
we compute and record w, as a word. If w is longer than that, then we
instead compute words £4 and r4 such that

w=">ls-w -1y

for some word w’ of length at least 2¢. The details of the computation
depend on the production p(A). We require that the word ¢4 satisfies the
following length constraint

(4) 8(depth,(A) < |€4] < 8(depth,(A) + 2¢height(A)

and similarly for r4.
When w is long, we also add to the program G’ the decorated variables
A, for all a,b € B((). We arrange the following:

eval(Ay ;) = slex(a - w' - b1

These new variables A’ ,, and also a new start variable S’, are the only

a,b’
variables appearing in G’, that is, they form the set V’. All of the words that
we compute and record along the way, such as the short words w and the
prefixes and suffixes £4 and 7,4, are not separately stored as part of G’.
That completes our outline of the proof. We now consider the possibilities

for the right-hand side p(A).
Case 1. Suppose p(A) € ¥. Thus w = eval(A) is geodesic and shorter than
16¢depth,(A) 4+ 2¢. We record it and continue.

Case 2. Suppose p(A) = BC for variables B and C'. Recall that we have
depth,(A) = depth,(B) = depth,(C)

Set n = depth,(A). Let u = eval(B), v = eval(C), and w = eval(4) = wv.
Recall that u, v, w are geodesic by assumption.
Case 2.1. Suppose |u| > 16¢n + 2¢ and |v| > 16{n + 2¢. Hence, in previous
stages of the algorithm we computed words ¢p,rg,fc,rc such that the
following properties hold.
e The prefixes and suffixes £, rp, o, rc satisfy the length constraint
of Equation 4.
e There are geodesic words v/, v’ of length at least 2¢ with u = ¢g-u'-rp
and v ={lg -V - re.
Also, we have already defined variables B(/l,c and C{i,b for all a,b,c,d € B((),
which produce slex(a-u’-c~1) and slex(d-v'-b~1), respectively. See Figure 5.5.
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slex(au/c™1) . slex(dv'b™1)

lp u "B Ao v’ T

Fi1GURE 5.5. Case 2.1 from the proof of Lemma 5.3. Dashed
lines represent words that are given by straight-line programs.

We now set £4 = fp and r4 = r¢. Since the tether-depths of A, B, C are
all the same, but A has greater height, we deduce that £4 and r 4 satisfy the
length constraint of Equation 4. We also note that

[u' - rp - Lo -v'| > 2¢

because |u'| > 2(.
It remains to define the right-hand sides for the variables A;b for all
a,b € B(¢). Fix a,b € B(¢). For all ¢,d € B({) we compute

z=slex(c-rp-lo-d7Y)
in polynomial time using Lemma 3.2. We then check, using Proposition 4.7
and Lemma 3.3, whether the word
eval(B,, ) z-eval(Cyy,) = slex(a-u'-c ") -slex(c-rp - Lo -d™ ') - slex(d-v'-b™")
is shortlex reduced, in which case it is equal to
slex(a -/ -rg -l -v' - b71)

Again, see Figure 5.5. Since |u/| > 2¢ > |a| + ¢ = |a| + 20, |V| > 2¢ >
|bl + ¢ = |b| + 29, and |rplc| > 16¢ > 40, Corollary 3.5 ensures that there
must be at least one such pair ¢, d. (If there are several, we stop as soon as
we find the first such.) We then define

P'(A4y) = Bz Chy

Case 2.2. Suppose |u| > 16¢{n + 2¢ and |v| < 16¢n + 2¢. Thus, at previous
stages of the algorithm we computed the geodesic word v explicitly and also
computed explicit words £p and rp such that the following properties hold.

e The prefix and suffix ¢p,rp satisfy the length constraint of Equa-

tion 4.

e There is a geodesic word u’ of length at least 2¢ with u =g -u' - rp.
Also, we already defined variables By, for all a,b € B(() such that B,
produces slex(a - v’ - b~1).

If |v] < 2¢, then we set £4 = ¢p and r4 = rpv. In this case, we also define
P (Al ) = B!, for all a,b € B((). Since height(B) + 1 < height(A), we have
the fdllowingf

8¢n < [€a| < 8¢n + 2¢height(B) < 8¢n + 2¢height(A)
8¢n < [ral < 8¢n + 2¢(height(B) + 1) < 8(n + 2Cheight(A)
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o Slex(au’e™) 2
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FIGURE 5.6. Case 2.2 from the proof of Lemma 5.3. Again,
dashed lines represent words that are given by straight-line
programs.

Thus the length bounds of Equation 4 are satisfied.

Now assume that |v| > 2¢. Again, we set £4 = {p. Since |rg -v| > |rg| >
8Cn we can define r 4 as the suffix of rp-v of length 8(n; that is, rg-v =y-74
for some word y of length |y| = |rp| + |v| — |ra| > |v| > 2¢. This satisfies
the required bounds on the lengths of £4 and r 4.

It remains to define the right-hand sides for the variables Ag,b for all a,b €
B(¢). Let us fix a,b € B(¢). For all ¢ € B(¢) we compute z = slex(c-y - b~1)
and check whether the word

eval(B, ) -z =slex(a-u'-c™") -slex(c-y - b7")

is shortlex reduced. If it is, then it equals slex(a - u’ -y - b~1); see Figure 5.6.
By Lemma 3.4, there must be at least one such ¢, for which we define

pl( iz,b) - B(IJ,C “ R

Case 2.3. Suppose |u| < 16¢n + 2¢ and |v| > 16¢{n + 2¢. This is dealt with
in similar fashion to the previous case.

Case 2.4. Suppose |u| < 16¢n+2¢ and |v| < 16¢{n+ 2¢. In this case, we have
computed u and v explicitly at a previous stage. We now distinguish between
the cases |w| < 16¢n + 2¢ and |w| > 16¢n + 2¢. In the first case, we record
the word w for later use. In the second, we factorise w as w = f4 -w' - 74
with [£4] = |ra| = 8¢n, and thus |w'| > 2. We then explicitly compute, for
each a,b € B((), the word slex(a - w’ - b~1) and set p'(A4., ,) equal to it. This
again uses Lemma 3.2. ’

Case 3. Suppose p(A) = B(a,b) for a,b € B((). Let u = eval(B) and
v = eval(A) = slex(a - u-b~1). The word u is geodesic by assumption,
and v is shortlex reduced by definition. Let n = depth,(B). We have
depth,(A) =n—12>1.

Case 3.1. Suppose |u| < 16¢n + 2¢. Hence, at a previous stage, we explicitly
computed the word u. Using Lemma 3.2 we explicitly compute the word
v = slex(a-u-b"1). The rest of the work divides into cases as |v| is less than
or equal to 16¢n + 2¢ or is greater. This is analogous to Case 2.4 (where w
plays the role of v).

Case 3.2. Suppose |u| > 16¢n + 2¢. At a previous stage we computed words
{p,rp with the following properties.



22 D. HOLT, M. LOHREY, AND S. SCHLEIMER

e The prefix and suffix /g, rp satisfy the length constraint of Equa-
tion 4.
e There is a geodesic word u’ of length at least 2¢ with u = g -u - rp.

Also, we already defined variables By ; for all ¢,d € B(() such that B,

produces z = slex(cu/d™1).

We check for all ¢,d € B(¢) whether
slex(a -l -cY) - z-slex(d - rp - b7 1)
=slex(a-lp-c7) slex(c-u' -d7Y) -slex(d-rp - b 1)
is shortlex reduced. If it is shortlex reduced then it equals
slex(a - g - -rp-b71) =slex(a-u-b"1) =0

See Figure 5.7. By Corollary 3.5, there must exist such ¢,d € B(().

Let s = slex(a-fp-c') and t = slex(d-rg-b~!). By the triangle inequality,
these words have length at least 8(n — 2. Hence we can factorise these
words as s = wz and t = yz with

|w| = |z| = 8((n — 1) = 8(depth,(A) > 8

Again, see Figure 5.7. The words = and y have length at least 6¢. We set
{4 = w and r4 = z. These words satisfy the required bounds on their lengths.
Note that

eval(A) =slex(a-u-b"') =4y -z -slex(c-u'-d™')-y-ra and
|z - slex(c-u/ - d™Y) -y >12¢ > 2

It remains to define the right-hand sides of the variables Aiz’,b’ for all ', €
B(¢). (This, in essence, is where we call upon Remark 5.1.)

Fix o/,b € B(¢). The lower bounds on the lengths of w,z,y, z allow
us to apply Lemma 3.4 to the geodesic quadrilaterals with sides labelled
a,lp,c,wxr and d,rp,b,yz, respectively. Note that all of these words have
been computed explicitly. Applying Lemma 3.2, we compute in polynomial
time words e, f € B(¢) and factorisations £p = w'2’ and rg = 32’ such that
aw’ =g we, ex’ =g xc, dy' =g yf, and fz' =g zb. Once again, see Figure 5.7.
Now consider the geodesic quadrilateral with sides labelled 2’ -’ -3/, slex(d’e),
slex(b'f), and slex(a’e - 2’ - u’ -y - (' f)~1). The triangle inequality implies
||, ]y/| > 4¢ and |slex(a’e)|, |slex(V/ f)| < 2¢. Again applying Corollary 3.5
there are ¢, d’ € B({) such that the word

slex(a’e - 2’ - (¢)71) - evalg/ (B g) - slex(d' -y - vHH
=slex(d'e -2’ - ()71 -slex(¢ -/ - (d)71) -slex(d' -y - (V' f)™h)

is shortlex reduced. Thus the above word is slex(a’e - 2’ -/ -/ - (' f)™1). As
before, we can compute such ¢/, d’ € B(¢) in polynomial time. We finally
define the right-hand side of A/, ,, as

p'(Al ) =slex(d'e-a’ - ()71) - Bl g -slex(d -y - (V'f)™)
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FIGURE 5.7. Case 3 from the proof of Lemma 5.3. Again,
dashed lines represent words that are given by straight-line
programs.

This concludes the definition of the right-hand sides for the variables A;b.

We complete the definition of the straight-line program G’. We add a new
start variable S’ to G'. If eval(S) is short then we set p/(S") = eval(S) and
we are done. If eval(S) is long then we set p'(S") = £g -5 ; -rs. This ensures
eval(G') = lg-slex(s") - rg, where s’ is such that £g-s’'-rg = eval(S) = eval(G).
But eval(G) is shortlex reduced (since p(S) has the form A(1,1)). Hence s
is also shortlex reduced and we find

eval(G') = lg -slex(s') - rg = lg - s’ - g = eval(G)
This concludes the proof of the lemma. ([l
The next lemma follows from Lemma 5.3.

Lemma 5.4. There is a polynomial-time algorithm that, given a geodesic
tethered program G, computes for every A the length |eval(A)]|.

Proof. By Lemma 5.3, we can compute for every variable A a straight-line
program G4 with eval(G4) = slex(eval(A)). As in Section 4.2, we can compute
leval(Ga)| = |slex(eval(A))| = |eval(A)| in polynomial time. Here the last
equality holds since G is a geodesic program. O

We now can prove our proposition; this generalises Lemma 5.3 to tether-cut
programs.

Proposition 5.5. There is a polynomial-time algorithm that, given a geo-
desic tether-cut program G, computes a shortlex straight-line program G' such
that eval(G’) = slex(eval(G)).

Proof. The idea of the proof is taken from the proof of Theorem 4.13; see [31,
Algorithmus 8.1.4]. That is, we will eliminate cut operators by pushing them
towards smaller variables. We then appeal to Lemma 5.3 to eliminate tether
operators.

Let G = (V, S, p) be the input geodesic tether-cut program. By Lemma 5.2,
we can assume that G is in Chomsky normal form. Let pu = height(G). By
Lemma 5.3 it suffices to transform G into a geodesic tethered program for

eval(G).
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FiGUrE 5.8. Case 3.1 in the proof of Proposition 5.5.

We will only consider cuts of the form [: 4] and [i :]; see Remark 4.14. It is
not difficult to include also general cuts of the form [i : j].

Consider a variable A such that p(A) = B[: i]; the case that p(A) = BJi ‘]
is dealt with analogously. We consider variables in order of increasing height;
so the algorithm is bottom-up. By induction we may assume that no cut
operator occurs in the right-hand side of any variable C' with height less
than that of A.

We now must eliminate the cut operator in p(A). In so doing, we add
at most p new variables to the tether-cut program. Moreover the height of
the tether-cut program after the cut elimination will still be bounded by
u. Hence, the final tethered program will have at most u - |V| variables. In
addition, the bit length of every new right-hand side will be polynomially
bounded in the input length. Thus, the size of the final tethered program
will be polynomially bounded in the input length.

Recall that p(A) = B[: i|. We divide the work into cases, depending on the
form of p(B). Since we already have processed B, only one of the following
cases can occur.

Case 1. Suppose p(B) =a € X. If i = 1 we redefine p(A) = a, and if i =0
we redefine p(A) = e.

Case 2. Suppose p(B) = CD with C, D € V. We compute nc = |eval(C)|
using Lemma 5.4 and with an appeal to the induction hypothesis. If i < n¢o
then we redefine p(A) = C[:i]. If i > nc then we add a new variable X, we
define p(X) = DJ: i — n¢], and we redefine p(A) = CX. We then eliminate
the new cut operator in C[: i] or in D[: i — n¢] with a top-down sub-routine.
(This is what leads to the quadratic growth of new variables.)

Case 3. Suppose p(B) = C(a,b) with C € V and a,b € B({). Let u =
evalg(C), v = evalg(B), and v = v'v" with |v'| = i. Thus, we have evalg(A4) =
v and v = slex(aub™!). By Lemma 5.3 we can assume that we have straight-
line programs for the words u and v.

Case 3.1. There exists ¢ € B({) and a factorisation a = da’a” such that
v' =g d'c; see Figure 5.8. Note that this implies that i = |[v/| < 2¢. Hence,
we can check in polynomial time whether this case holds by computing the
prefix of the compressed word v of length i. We redefine p(A) = v'.

Case 3.2. There exists ¢ € B(() and a factorisation b = V"’ such that
V"0 =¢ ¢; see Figure 5.9. As in Case 3.1 we can check in polynomial
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FIGURE 5.9. Case 3.2 in the proof of Proposition 5.5.

time whether this condition holds. We introduce a new variable X, we set
p(X) = C(1,V), and we redefine p(A) = X (a,c).

Case 8.3. Neither Case 3.1 nor Case 3.2 holds. In this case, there exists a
factorisation © = w'u” and ¢ € B(() such that v'¢c =¢ au’ and v"b =¢ cu”;
see Figure 3.2. The triangle inequality implies i — 2¢ < |u/| < i+ 2¢. We can
find such a factorisation of u in polynomial time; we note that j = |v/| lies
in N and satisfies |i — j| < 2¢. So, using Theorem 4.13, we find straight-line
programs for the 4¢ + 1 many words v’ = ul[: j|, where j € N, |i — j| < 2(.
Since u is geodesic, also all factors of u are geodesic. Hence, the straight-line
programs for the words v’ = u[: j] must be geodesic too. Then we apply
Lemma 5.3 and compute for every ¢ € B({) a shortlex straight-line program
for the word w’ = slex(au’c™1). Theorem 4.13 yields a shortlex straight-line
program for v' = v[: i|. Finally, we check, using Theorem 4.9, whether
v =

Hyperbolicity ensures that we will find at least one such j and c¢. We
introduce a new variable X, we set p(X) = C[: j], and we redefine p(A) =
X (a, c) We then continue with the elimination of the cut operator in C[: j],
as in Case 2.

This concludes the proof of the lemma. U

Recall our convention: if w € ¥* is a word then g,, € G is the corresponding
group element. Thus g, is a vertex of the Cayley graph I' = T'(G, X).

Lemma 5.6. There is a polynomial-time algorithm that, given geodesic
tether-cut programs G and H, determines if dr(g,h) < J, where g = geyal(g)
and h = geyai(3). Moreover, when this holds, the algorithm also finds an
element b € B(0) such that g =g hb.

Proof. Let S and T be the start variables of G and H, respectively. For all b €
B(d) we produce a new geodesic tether-cut program G° for slex(eval(G)b1).
We do this by adding to G a new start variable with right-hand side S(1,b).

We also add to ‘H a new start variable with right-hand side 7(1,1) and
denote the resulting tether-cut program by H!'. This ensures that the
evaluation of H! is slex(eval(#)). Using Proposition 5.5 and Theorem 4.9
we now check, in polynomial time, if eval(G®) = eval(H!). This is equivalent
to g =¢ hb. O
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5.10. Solving the compressed word problem. We now prove our main
result. Recall that ¥ is a symmetric generating set for the hyperbolic group

G.

Theorem 5.7. There is a polynomial-time algorithm that, given a straight-
line program G over X, finds a straight-line program H with evaluation

slex(eval(G)).

Proof. By Proposition 5.5 it suffices to build, in polynomial time, a geodesic
tether-cut program # for slex(eval(G)). We process G from the bottom-
up; that is, we consider its variables in order of increasing height. Set
G = (V,S,p); applying [49, Proposition 3.8], we may assume that G is in
Chomsky normal form. We build by induction on the height a new tether-cut
program G' = (V' 5', p’) over X; here V! = {A" | A € V'} is a copy of V and
S’ € V' is the variable corresponding to S. The construction will ensure that
eval(A’) = slex(eval(A)) for every A € V,

In the base cases we have p(A) = a € ¥. Here we set p/(A’) = slex(a).

In the inductive step we have p(A) = BC. Since B and C have smaller
height than A they satisfy the induction hypotheses. Set

u = slex(eval(B)) = eval(B’) and v = slex(eval(C)) = eval(C’)

By Proposition 5.5 we can transform the geodesic tether-cut programs with
start variables B’ and C’ into shortlex straight-line programs. Using these,
we compute the lengths m = |u| and n = |v|. If one or both of these have
length zero then we accordingly take p'(A’) = C" or p/(A’) = B’ or p/(A’) = .
We now assume that m and n are both non-zero. Breaking symmetry, we
assume that m < n.

Let P be the path in the Cayley graph I' starting at 1, ending at wu,
and labelled by u. Similarly, let @) be the path starting at u, ending at uw,
and labelled by v. Finally, let R be the path starting at 15, ending at uw,
and labelled by slex(uv). See Figure 5.12. The path P, the reverse of P, is
labelled by u~!. Applying Remark 4.12 we invert the geodesic straight-line
program for u to give a straight-line program for «~!. Using Lemma 5.6 we
can check whether or not

dr(P(m),Q(m)) <6
We break into cases accordingly.

Case 1. Suppose that dp(P(m),Q(m)) < §. We compute, again using
Lemma 5.6, a word a of length at most ¢ such that a =g uv[: m]. See the
left-hand side of Figure 5.12. In this case we set p'(A") = C'[m :|{a, 1).

Case 2. Suppose that dr(P(m), Q(m)) > 6. Using binary search, we compute
an integer k € [0, m — 1] such that

dr(P(k),Q(k)) < ¢ and dp(P(k+1),Q(k+1))>6

Here are the details of the binary search. We store an interval [p, q] C [0, m]
such that
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FIGURE 5.12. Case 1 (left) and 2 (right) from the proof of Theorem 5.7.

°p<y,
e dr(P(p),Q(p)) <4, and
e dr(P(q),Q(q)) > 0.

We begin with p = 0 and ¢ = m. We stop when ¢ = p + 1. In each iteration,
we compute r = [(p + q)/2] and check, using Lemma 5.6, whether

dr(P(r),Q(r)) <48 or dr(P(r),Q(r)) > 6

In the first case we set p = r and do not change ¢; in the second case we set
g = r and do not change p. In each iteration the size of the interval [p, q|
is roughly halved. Thus the binary search halts after O(log(m)) iterations;
this is polynomial in the input size. In addition to the final position k, we
record a word a € B(6) that labels a path from P(k) to Q(k). Let j = k + 1.

Recall that R is the path from P(m) = 15 to Q(n) labelled by slex(uv).
By Lemma 3.6 there exist ip < ig such that

dr(P(j), R(ip)) <4 and dr(Q(j), R(iq)) <6
For all pairs b, ¢ € B(d) we explicitly compute the word
s =slex(b-u[m —j]-a-v[k]-ct)

The symbols u[m — j] and v[k] can be computed in polynomial time from
the available straight-line programs for v and v using [49, Proposition 3.9];
see Section 4.2. For each of these words s, we must check if the word

(11) slex(u[: m — j] - b_l) - s-slex(c-v[j 1))

is shortlex reduced; if so, it equals slex(uv). This step can be done using
Lemma 3.3 and using the given geodesic tether-cut programs for u and v.
From these we obtain geodesic tether-cut programs for slex(u[: m — j] - b=1)
and slex(c - v[j :]). We then use Proposition 5.5 to transform these into
equivalent straight-line programs.

Lemma 3.6 ensures that that we will find a pair b, ¢ € B(§) such that the
word in (11) is shortlex reduced. Using the first such pair we find, we set

pA) = (B'[:m —j](1,0)) - s (C"[5 :]{c, 1))
This concludes the proof of the theorem. ([l

Theorem 5.7 now solves the compressed word problem.
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Corollary 5.8. The compressed word problem for a hyperbolic group can be
solved in polynomial time.

Proof. Suppose that G is the given compressed word. Note that eval(G) € ¥*
represents 1¢ if and only if slex(eval(G)) = €. This, in turn, happens if and
only if slex(eval(G)) has length zero. Since Theorem 5.7 gives a straight-line
program G’ for slex(eval(G)), we are done. O

6. FURTHER COMPRESSED DECISION PROBLEMS

6.1. Compressed order problem. Suppose that G is a group. Suppose
that X is a finite, symmetric generating set for G. For any g € G we define
the order of g to be the smallest positive integer k so that ¢¥ = 1. If there
is no such k we define the order to be infinity. We define the compressed
order problem as follows.

Input: Straight-line program G over X.
Output: The order of the group element eval(G).

As a consequence of Corollary 5.8 we have the following result.

Corollary 6.1. Let G be a hyperbolic group. Then the compressed order
problem for G can be solved in polynomial time.

Proof. Let G be the given compressed word. Since G is hyperbolic, it has
only finitely many conjugacy classes of finite subgroups [39, Theorem 6.8.4].
Thus there is a bound ¢ = ¢(G) on the size of its finite cyclic subgroups.
Hence the order of any element g € G belongs to {1,...,c} U {oco}.

To compute the order of eval(G) it suffices to check whether eval(G)* =¢ 14
for some integer k in the range {1, ..., c}. Proposition 4.6 gives us the desired
compressed word and Corollary 5.8 checks it, both in polynomial time. [

6.2. The compressed (simultaneous) conjugacy and compressed
centraliser problems. Suppose that G is a group. Suppose that ¥ is
a finite, symmetric generating set for G. For group elements g, h € G we
have the standard abbreviation g" = h=lgh. If £L = (g1,...,gx) is a finite
list of group elements then we write £ = (g7,..., g,};) We extend these
definitions to words over ¥ in the obvious way.

6.3. The problems. The compressed conjugacy problem for G is the follow-
ing.

Input: Straight-line programs G and H over X.

Question: Do eval(G) and eval(H) represent conjugate elements in G?

If £ is a list of straight-line programs over ¥, then we define eval(L) to
be the corresponding list of evaluations. We now define the compressed
simultaneous conjugacy problem for G.

Input: Finite lists £ = (G1,...,G;) and M = (H1,...,Hy) of straight-line
programs over ..
Question: Are eval(£) and eval(M) conjugate lists in G?
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In the case when the answer to either of these questions is positive, we
might also want to compute a straight-line program for an element that
conjugates eval(G) to eval(#) or eval(L£) to eval(M).

The compressed centraliser problem for G is the following computation
problem.

Input: A finite list £ = (Gy,...,Gx) of straight-line programs over X.
Output: A finite list M = (Hq,...,H;) such eval(M) generates the inter-
section of the centralisers of the elements eval(L).

Note that this intersection is in fact the centraliser of the subgroup
generated by the elements eval(£). When the desired centraliser is not
finitely generated, by convention the problem has no solution.

6.4. The proofs. A linear-time algorithm for solving the conjugacy problem
in a hyperbolic group G is described in [23, Section 3]. This was generalised
in [10] to linear-time algorithms for the (uncompressed) simultaneous conju-
gacy, and the centraliser, problems. We will show that essentially the same
algorithms can be used to solve the compressed (simultaneous) conjugacy
problem and the compressed centraliser problem, in polynomial time.

We deal with the compressed conjugacy problem in Section 6.4.1. Building
on that, and making the special assumption that one of the input elements
has infinite order, we solve the compressed simultaneous conjugacy problem
and the compressed centraliser problem in Section 6.4.2. Finally, we deal
with the case that all input group elements have finite order in Section 6.4.3.

6.4.1. Compressed conjugacy problem. We now have the following.

Theorem 6.2. Let G be a hyperbolic group. Then the compressed conjugacy
problem in G is polynomial time.

Proof. The input consists of two straight-line programs G and H; we wish to
test if u = eval(G) and v = eval(H) are conjugate. To do this we essentially
use the conjugacy algorithm from [23, Theorem 1.1], applied to the words u
and v. We will describe our modification of their algorithm, step-by-step, in
the following.

Our description of each step consists of two parts. The first describes
operations relating to the words u and v; the second explains how we effect
these operations in polynomial time using only the straight-line programs
G and H. All assertions that we make in the uncompressed setting are
justified in [23]. All corresponding assertions are then justified again, in the
compressed setting, using the work in previous sections of this paper.

Let 0 be a positive integer that serves as a thinness constant for the Cayley
graph I' = T'(G, X); see Section 3. We define constants L = 345 + 2 and
K =17(2L +1)/7; see [23, pages 298|.

A word w € X* is said to be shortlex straight if, for all non-negative powers
k, the word wF is shortlex reduced. Applying Lemma 3.3 and Proposition 4.8
we can determine, in polynomial time, if a given compressed word eval(G) is
shortlex straight.
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In the preprocessing stage, we make a look-up table of all pairs of shortlex
reduced words of length at most K that are conjugate in G.

Step 1. We replace u and v by slex(u) and slex(v).
By Theorem 5.7 we can replace, in polynomial time, the programs G and
H by straight-line programs for slex(eval(G)) and slex(eval(H)), respectively.

Step 2. For a word w, we define wg = wgrwyp, where w = wpwg with
|lwr| < |wr| < |wr| + 1. Replace u by slex(uc) and v by slex(ve).

Using cut operators and Theorem 5.7 we can make the corresponding
substitutions on G and H.

Step 3. If |ul,|v| < K then use the look-up table to test for conjugacy of u
and v. Otherwise, at least one of the words, u say, satisfies |u| > K > 2L+ 1.
If |[v| < 2L 4+ 1 then v and v are not conjugate [23, Section 3.1], and we
return false. We assume from now on that |ul, |v| > 2L + 1.

For the compressed conjugacy problem, if |eval(G)][, |eval(H)| < K then
we can compute eval(G) and eval(#) explicitly. We then proceed as in the
uncompressed setting.

Step 4. There exists a group element g € B(49) and a positive integer m, of
size at most |B(46)|?, such that the shortlex reduction of g~!u™g is shortlex
straight [23, Section 3.2]. To find such, for every pair (g, m) of at most those
sizes, we replace u by slex(g~!ug) and test z = slex(u™) to see if it is shortlex
straight.

Using Proposition 4.8, we can perform the corresponding operations with

G. Thus we find g and m and also find a straight-line program G’ with
eval(g') = 2.
Step 5. We now test for the following necessary (but not sufficient) property
for the conjugacy of v and v: is v conjugate to z? We decide this as follows.
For all h € B(65), we compute v, = slex(hv™h™1), and then test whether
vp, is a rotation of z. If this fails for all h, then v and z =g u™ are not
conjugate [23, Section 3.3]. But then, u and v are not conjugate, so we may
stop and return false.

Otherwise, we find h and v, with this property. Let z; be a prefix of z
such that z =g z1ho™h ™ 2. We replace v by slex(z1hvh~'27!). Now we
have v™ =g u™ = 2. From this we get that every g € G with ¢ 'ug =g v
belongs to the centraliser Cz(2) of z in G. In particular, u and v are conjugate
in G if and only if they are conjugate in Cg(2).

Using Corollary 4.11 we can do the corresponding calculations with H and
G’. Checking whether vy, is a rotation of z can be accomplished in polynomial
time by the first statement of Corollary 4.11; the second statement allows us
to compute in polynomial time a straight-line program for z;.

Step 6. Find the shortest prefix y of z that is a root of z: that is, there is an
¢ > 1 so that z = y’. We do that by finding the second occurrence of the
substring z in the word 22.
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To find the root of eval(G’'), we compute a straight-line program for
eval(G')? and appeal to Theorem 4.10. We then build a straight-line program
G" with eval(G"”) = y using cut operators and Theorem 4.13.

Step 7. For each h € B(26), compute slex(hzh™!) and test whether it is
a rotation of z. If so, find a prefix z, of z with hzh™! =g z;lzzh, and
compute and store slex(zp, - h) (which lies in Cg(z)) in a list C,. Then
|C.| < J =|B(20)].

Corollary 4.11 allows us to do the corresponding calculations with G’. We

obtain a list of straight-line programs that evaluate to the words in the list
C,.
Step 8. For each n with 0 < n < (J — 1)! and for each 2’ € C;, let g = y"2'.
Test if u =g gvg~!. If so, then return true (and a conjugating element). If
not, then return false because u and v are not conjugate [23, Section 3.4].

We can perform corresponding operations on the straight-line programs.

This concludes our description of a polynomial-time algorithm for the
compressed conjugacy problem. The correctness proof is identical to that
in [23, Section 3| O

6.4.2. Compressed simultaneous conjugacy and centralisers: the infinite order
case. We now turn to the following.

Theorem 6.3. Let G be a hyperbolic group. Then the compressed simultane-
ous conjugacy problem for G can be solved in polynomial time. Moreover, if
the two input lists are conjugate, then we can compute a straight-line program
for a conjugating element in polynomial time.

Theorem 6.4. Let G be a hyperbolic group. Then the compressed centraliser
problem for G can be solved in polynomial time.

The input now consists of two lists £ = (G, ...,Gx) and M = (H1,..., H)
of straight-line programs over the alphabet ¥. For the compressed centraliser
problem we assume that £ = M. For all i we let u; = eval(G;) and v; =
eval(H;).

By Corollary 6.1 we can check in polynomial time whether some u; has
infinite order. Following [10, Section 3] we begin by assuming that this is
indeed the case. Reordering the lists in the same way, as needed, we may
assume that w; has infinite order. If v; does not have infinite order we are
done.

The conjugacy testing algorithm proceeds as follows. We first repeatedly
replace the elements in £ by conjugates, using a common conjugating element.
This culminates in a check for a conjugating element which must lie in an
explicit finite set. In each replacement, straight-line programs are known
for the conjugating element. By keeping track of these, we can find (if the
lists are conjugate) an overall conjugating element for the original input. We
omit further details regarding this overall conjugating element.

We proceed by carrying out the eight steps of the algorithm of Section 6.4.1
as applied to u; and v;. If they are not conjugate we are done. Suppose
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that they are conjugate. In this case we record the programs for the words
z and y produced by Steps 5 and 6. We also record the list (of straight-
line programs) C, given in Step 7. The overall algorithm also gives us a
straight-line program for an element g € G with u{ =¢ v;. The algorithm
also replaced w1 and vy by conjugates in some of the steps; we make the
corresponding replacements to the other elements of £ and M. By replacing
each u; by its conjugate under g, we may now assume that u; = v1.

Thus we have reduced the problem to the following. Assuming that u; = v
and that u; has infinite order, we must decide if there is g € Cg(u;) with
uf =g v; for 2 <7 < k. We are also given z; thus u* =g v]* =g 2z and z is
shortlex straight element z and m > 1. We are also given y with z = y* and
for maximal ¢ > 1.

In [23, Section 3.4] it is shown that all elements g € Cz(2) have the form
g =g y"2', for some n € Z and 2’ € C,, where C, is the list given above. So
the same applies to any g € Cg(u1) C Cg(z).

We now try each 2z’ € C, in turn. Replacing each v; by z'v;(2/)~!, the
problem reduces to the following: is there some n € Z such that u?n =q v;
for 1 <i<k?

To solve this problem, we apply [10, Proposition 24] to each pair u;, v; in
turn. For each i, there are three possibilities.

(i) there exist 0 < r; < t; < |B(2)] such that u;“-ﬂ =q v; if and only if
j =r; mod t;;

(i) there is a unique r; € Z with v/ =g v;, where |r;| is bounded by a
linear function of |u;| and |v;|; or

(iii) there is no r; € Z with u?” =q ;.

The proof of [10, Proposition 24] provides an algorithm for determining
which case applies, and for finding r;, t; in cases (i) and (ii). This involves
calculating a number of powers u}, v}, and y™ for integers n such that |n|
is bounded by a linear function of |u;| and |v;|, and where the number of
powers that need to be calculated is bounded by a constant. So we can
perform these calculations in polynomial time with straight-line programs
by Proposition 4.6.

After performing this calculation for each ¢ with 1 < ¢ < k, the conjugacy
problem for the lists reduces to solving some modular linear equations
involving the integers r; and ¢;, as described in [10, Section 3.4]. Since the r;
and ¢; in case (i) are bounded by a constant and, for r; in case (ii), log |r|
is bounded by a linear function of the size of the straight-line programs
representing u; and v;, these equations can be solved in polynomial time
using standard arithmetical operations on the binary representations of r; and
t;. This completes our discussion of the compressed simultaneous conjugacy
problem in the case where there is a list element of infinite order.

For the compressed centraliser problem, we are in the same situation but
with v; = u; for all .. We perform the same calculations as above, but we do
them for every 2’ € C,. If there are solutions, then we find them by solving
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modular equations. The set of solutions we find now generates the centraliser.
This completes our discussion of the compressed centraliser problem in the
case where there is a list element of infinite order.

6.4.3. Compressed simultaneous conjugacy and centralisers: the finite order
case. Here we continue the proofs of Theorems 6.3 and 6.4. We now consider
the case where all of the u; (in the list eval(£)) have finite order. We now
follow [10, Section 4]. No new complications arise when applying those
methods to lists of straight-line programs. Indeed, some steps become easier
because we are only interested in achieving polynomial, rather than linear,
time.

We follow the steps of the algorithm described in [10, Section 4.5]. We
deal with the conjugacy and centraliser problems together; the two lists
are taken to be equal for the centraliser calculation. At this stage we have
already verified that all of the u; and v; have finite order. Furthermore all of
the words are shortlex reduced. By deleting programs, we can assume that
the list uq,...,u, and likewise the list vy,..., v, has no duplicates. Thus
the u; represent distinct group elements, as do the v;.

Let n = min{|B(20)|* + 1, k}. We consider the prefix sublists eval(£’) =
(u,...,u,) and eval(M’) = (v1,...,v,). We apply the function SHORTEN-
WORDS from [10, Section 4.2] to the lists £’ and M’. This function applies
slex to a number of words; this number is bounded above by n?. Each word
is a concatenation (of length at most n + 2) of words either from the lists £’
or M, or of words previously calculated during this process. These opera-
tions can be executed in polynomial time when working with straight-line
programs. Since there is an absolute bound |B(24)|* + 1 on the lengths of
L' and M’, the complete application of SHORTENWORDS to each list takes
place in polynomial time.

SHORTENWORDS has two possible outcomes. In the first it finds a product
Up - Upi1 - - Ug Of elements of £” with infinite order. This reduces the problem
to the case dealt with in Section 6.4.2.

In the second possible outcome, SHORTENWORDS replaces £ and M’ by

conjugates and then calculates lists £” = (u],...,u),) and M" = (v}, ..., v])

ren
with |u;| and |v}| bounded by a constant, and such that £9 = M if and only
if (£")9 = M".
We now test in time O(1) (using our precomputed look-up table) whether
there exists g € G with
(... ,u,)d = (vy,...,v))
If so, we replace (uq,...,ux) by (u1,...,ur)? and thereby assume that u; =
v; for 1 < ¢ < n. For the centraliser problem, methods are described
in [27, Proposition 2.3] of finding a generating set of the centraliser of any
quasiconvex subgroup of any biautomatic group; finitely generated subgroups
of hyperbolic groups satisfy these conditions. Since they need only be applied
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to words of bounded length their complexity does not matter - indeed, we
could precompute all such centralisers.

This completes the proof in the case n = k. In the case k > n, it is proved
in [10, Corollary 30] that the centraliser C' of the subgroup (ui,...,uy) is
finite, and that the elements of C' have lengths bounded by a constant. So
we can compute the elements of C' explicitly (in time O(1)). Then we simply
need to check whether any g € C satisfies

(Unt1s- - ug)? = (Unt1, - - -, Uk)

This completes the proofs of Theorems 6.3 and 6.4. O

6.5. Compressed knapsack. In this final section, we prove the following.

Theorem 6.5. If G is an infinite hyperbolic group then the compressed
knapsack problem for G is NP—complete.

As above, fix G a finitely generated group. Fix as well a finite symmetric
generating set Y. A knapsack expression over X is a regular expression
of the form F = v~ luju}---u} with ¥ > 0 and u,u; € £*. The length
of E is defined to be |E| = |u| + Zle |ui|. A solution for E is a tuple
(n1,m2,...,ny) € N¥ of natural numbers such that u =¢ uf*ul?---u*. In
other words: the language defined by E contains a word that represents the
identity of G.

The knapsack problem for G, over 3, is the following.

Input: A knapsack expression E over X.
Question: Does E has a solution?

In [57, Theorem 6.1] it was shown that the knapsack problem for a hyperbolic
group can be solved in polynomial time. A crucial step in the proof for this
fact is the following result, which is of independent interest.

Theorem 6.6 [57, Theorem 6.7]. For every hyperbolic group G there exists
a polynomial p(x) such that the following holds. Suppose that a knapsack
expression E = u~tuju} - - u} over G has a solution. Then E has a solution
(n1,n9,...,n) € N¥ such that n; < p(|E|) for all i satisfying 1 <i <k. O

Recently, this result has been extended to acylindrically hyperbolic group
in [8].

Let us now consider the compressed knapsack problem for G. It is defined
in the same way as the knapsack problem, except that the words u, u; € X*
are given by straight-line programs. Note that the compressed knapsack
problem for Z is NP—complete [30, Proposition 4.1.1]. Hence, for every
group with an element of infinite order, the compressed knapsack problem is
NP-hard. This makes it interesting to look for groups where the compressed
knapsack problem is NP—complete.

From Corollary 5.8 and Theorem 6.6 we prove Theorem 6.5, which states
that compressed knapsack for an infinite hyperbolic group G is NP—complete.
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Proof of Theorem 6.5. Consider a knapsack expression E = u ™ tufuj - - “uy,
over G, where u and the u; are given by straight-line programs G and G;. We
then have |ul, [u;| < 3191/3 by Lemma 4.5. Let N = |G| + S.F | |G| be the
input length.

By Theorem 6.6, there exists a polynomial p(z) such that E has a solution
if and only if it has a solution (n1,ns ..., ny) € NF with n; < p(|E|) for all i so
that 1 < i < k. Thus we obtain a bound of the form 2°®) on the exponents
ni. Hence, we can guess the binary encoding of a tuple (ny,ns,...,n;) € N
with all n; bounded by 2°") and then check whether it is a solution for E.
The latter can be done in polynomial time by constructing from the straight-
line programs G and G; a straight-line program H for u™'uj ub? - - - u}* using
Proposition 4.6. Finally, we check in polynomial time whether eval(H) =¢ 1
using Corollary 5.8.

The NP-hardness of the compressed knapsack problem for G (an infinite
hyperbolic group) now follows from the fact that G has elements of infinite
order [28, page 156] and the above mentioned result for Z [30, Proposition
4.1.1]. O
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