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Abstract

We present a new universal source code for unlabeled binary and ordinal trees that achieves
asymptotically optimal compression for all tree sources covered by existing universal codes.
At the same time, it supports answering many navigational queries on the compressed rep-
resentation in constant time on the word-RAM; this is not known to be possible for any
existing tree compression method. The resulting data structures, “hypersuccinct trees”, hence
combine the compression achieved by the best known universal codes with the operation
support of the best succinct tree data structures. Compared to prior work on succinct data
structures, we do not have to tailor our data structure to specific applications; hypersuccinct
trees automatically adapt to the trees at hand. We show that it simultaneously achieves the
asymptotically optimal space usage for a wide range of distributions over tree shapes, including:
random binary search trees (BSTs) / Cartesian trees of random arrays, random fringe-balanced
BSTs, binary trees with a given number of binary/unary/leaf nodes, random binary tries
generated from memoryless sources, full binary trees, unary paths, as well as uniformly chosen
weight-balanced BSTs, AVL trees, and left-leaning red-black trees. Using hypersuccinct trees,
we further obtain the first data structure that answers range-minimum queries on a random
permutation of n elements in constant time and using the optimal 1.736n+o(n) bits on average,
solving an open problem of Davoodi et al. (2014) and Golin et al. (2016).

1. Introduction
As space usage and memory access become the bottlenecks in computation, working directly on
a compressed representation (“computing over compressed data”) has become a popular field.
For textual data, substantial progress over the last two decades culminated in compressed text
indexing methods that had wide-reaching impact on applications and satisfy strong analytical
guarantees. For structured data, the picture is much less developed and clear. In this paper, we
develop the analog of entropy-compressed string indices for trees: a data structure that allows to
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query a tree stored in compressed form, with optimal query times and space matching the best
universal tree codes.

Computing over compressed data became possible by combining techniques from information
theory, string compression, and data structures. The central object of study in (classical)
information theory is that of a source of random strings, whose entropy rate is the fundamental
limit for source coding. The ultimate goal in compressing such strings is a universal code, which
(asymptotically) achieves optimal compression for (distributions of) strings from a large class of
possible sources without knowing the used source.

A classic result in this area is that Lempel-Ziv methods are universal codes for finite-state
sources, i.e., sources in which the next symbol’s distribution depends on the previous k emitted
symbols (see, e.g., [10, § 13]). The same is true for methods based on the Burrows-Wheeler-
transform [15] and for grammar-based compression [51]. The latter two results were only shown
around 2000, marking a renewed interest in compression methods.

The year 2000 also saw breakthroughs in compressed text indexing, with the first compressed
self-indices that can represent a string and support pattern matching queries using O(nH0) bits of
space [39, 40] and O(nHk) + o(n log |Σ|) bits of space [19] for Hk the kth order empirical entropy
of the string (for k ≥ 0); many improvements have since been obtained on space and query time;
(see [64, 6] for surveys and [28] for lower bounds on redundancy; [62, 63] summarizes more recent
trends). For strings, computing over compressed data has mainly been achieved.

In this article, we consider structure instead of strings; focusing on one of the simplest forms of
structured data: unlabeled binary and ordinal trees. Unlike for strings, the information theory of
structured data is still in its infancy. Random sources of binary trees have (to our knowledge) first
been suggested and analyzed in 2009 [52]; a more complete formalization then appeared in [80],
together with a first universal tree source code.

For trees, computational results predate information-theoretic developments. Succinct data
structures date back to 1989 [47] and have their roots in storing trees space-efficiently while
supporting fast queries. A succinct data structure is allowed to use lgUn(1 + o(1)) bits of space to
represent one out of Un possible objects of size n – corresponding to a uniform distribution over
these objects. This has become a flourishing field, and several succinct data structures for ordinal
or cardinal (including binary) trees supporting many operations are known [61]. Apart from the
exceptions discussed below (in particular [49, 11]), these methods do not achieve any compression
beyond lgUn no matter what the input is.

At the other end of the spectrum, more recent representations for highly repetitive trees [7, 8,
24, 26, 30, 31] can realize exponential space savings over lgUn in extreme cases, but recent lower
bounds [68] imply that these methods cannot simultaneously achieve constant time1 for queries;
they are also not known to be succinct when the tree is not highly compressible.

In this paper, we fill this gap between succinct trees and dictionary-compressed trees by
presenting the first data structure for unlabeled binary trees that answers all queries supported in
previous succinct data structures in constant time and simultaneously achieves optimal compression
over the same tree sources as the best previously known universal tree codes. We also extend the
tree-source concepts and our data structure to unlabeled ordinal trees. In contrast to previous
succinct trees, we give a single, universal data structure, the hypersuccinct trees2, that does not
need to be adapted to specific classes or distributions of trees.

1All running times assume the word-RAM model with word size w = Θ(logn).
2The name “hypersuccinct trees” is the escalation of the “ultrasuccinct trees” of [49].
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Our hypersuccinct trees require only a minor modification of existing succinct tree data
structures based on tree covering [33, 42, 16], (namely Huffman coding micro-tree types); the
contribution of our work is the careful analysis of the information-theoretic properties of the
simple tree-compression method, the “hypersuccinct code”, that underlies these data structures.

As a consequence of our results, we solve an open problem for succinct range-minimum queries
(RMQ): Here the task is to construct a data structure from an array A[1..n] of comparable items
at preprocessing time that can answer subsequent queries without inspecting A again. The answer
to the query RMQ(i, j), for 1 ≤ i ≤ j ≤ n, is the index (in A) of the (leftmost) minimum in A[i..j],
i.e., RMQ(i, j) = arg mini≤k≤j A[k]. We give a data structure that answers RMQ in constant time
using the optimal expected space of 1.736n+ o(n) bits when the array is a random permutation
(and 2n+ o(n) in the worst case); previous work either had suboptimal space [11] or Ω(n) query
time [36].

Outline The rest of our article is structured as follows: A comprehensive list of the contributions
of this article, including a systematic listing of the types of tree sources for which we prove
universality of our encoding appears below in Section 2. Section 3 describes our compressed tree
encoding. In Section 4, we give an outline of our proofs on the universality of our hypersuccinct
code for binary trees: In particular, considering two well-known types of random trees (random
binary search trees and random weight-balanced trees), we illustrate exemplarily the main ideas
and techniques of these proofs. In Section 5, we show how our hypersuccinct encoding can be
used to obtain a data structure that answers range-minimum queries in constant time and optimal
expected space. Finally, Section 6 concludes the paper with future directions. Full formal proofs
of all results are presented in the appendix.

2. Results
In a binary tree, each node has a left and a right child, either of which can be empty. For a
binary tree t we denote by |t| the number of nodes in t. Unless stated otherwise, n = |t|. A binary
tree source S emits this tree with a certain probability PS [t] (P[t] if S is clear from the context).
lg(1/0) is taken to mean +∞.

Theorem 2.1 (Hypersuccinct binary trees): Let t be a binary tree over n nodes. The hy-
persuccinct representation of t supports all queries from Table 4 in O(1) time and uses |H(t)|+o(n)
bits of space, where

|H(t)| ≤ min
{

2n+ 1, min
S

lg
( 1
PS [t]

)
+ o(n)

}
,

and PS [t] is the probability that t is emitted by source S. The minimum is taken over all binary-tree
sources S in the following families (which are explained in Table 3):

(i) memoryless node-type processes,
(ii) kth-order node-type processes (for k = o(log logn)),
(iii) monotonic fixed-size sources,
(iv) worst-case fringe-dominated fixed-size sources,
(v) monotonic fixed-height sources,
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Table 1: Overview of random tree sources for binary and ordinal trees.
Name Notation Intuition Reference Formal Definition of P[t]

Memoryless
Processes τ

A binary tree is constructed top-down,
drawing each node’s type (0 = leaf,
1 = left-unary, 2 = binary, 3 = right-
unary) i.i.d. according to the distribu-
tion (τ0, τ1, τ2, τ3).

Sec.D
Eq. (2)
[11, 36]

P[t] =
∏
v∈t

τ(type(v))

Higher-
order
Processes

(τz)z

A binary tree is constructed top-down,
drawing node v’s type according to
τhk(v) : {0, 1, 2, 3} → [0, 1], which de-
pends on the types of the k closest an-
cestors of v.

Sec.D
Eq. (2)

P[t] =
∏
v∈t

τhk(v)(type(v))

Fixed-size
Binary Tree
Sources

Sfs(p)
A binary tree of size n is constructed
top-down, asking source p at each node
for its left- and right subtree size.

Sec. E
Eq. (5)
[80, 25, 73]

P[t] =
∏
v∈t

p(|t`(v)|, |tr(v)|)

t`/r(v)= left/right subtree of v

Fixed-height
Binary Tree
Sources

Sfh(p)
A binary tree of height h is constructed
top-down, asking source p at each node
for a left and right subtree height.

Sec. E
Eq. (6)
[80, 25]

P[t] =
∏
v∈t

p(h(t`(v)), h(tr(v)))

h(t) = height of t

Uniform
Subclass
Sources

UP
A binary tree is drawn uniformly at ran-
dom from the set Tn(P) of all binary
trees of size n that satisfy property P.

Sec. F
Eq. (8)

P[t] = 1
|Tn(P)|

Memoryless
Ordinal Tree
Sources

d
An ordinal tree is constructed top-down,
drawing each node v’s degree deg(v) ac-
cording to distribution d = (d0, d1, . . .).

Sec. H
Eq. (10)

P[t] =
∏
v∈t

ddeg(v)

Fixed-size
Ordinal Tree
Sources

Sfs(p)
An ordinal tree of size n is constructed
top-down, asking source p at each node
for the number and sizes of the subtrees.

Sec. I P[t] =
∏
v∈t

p(|t1[v]|, . . . , |tdeg(v)[v]|)



2. Results 5

Table 2: An overview over the concrete examples of tree-shape distributions that our hypersuccinct
code compresses optimally (up to lower-order terms).

Tree-Shape Distribution Entropy Corresponding Source Def. Result

(Uniformly random) binary trees of size n 2n Memoryless binary,
monotonic fixed-size binary

Ex.D.2
Ex. E.2

Cor.D.10
Cor. E.22

(Uniformly random) full binary trees of
size n n Memoryless binary Ex.D.3 Cor.D.10

(Uniformly random) unary paths of
length n n Memoryless binary Ex.D.4 Cor.D.10

(Uniformly random) Motzkin trees of size n 1.585n Memoryless binary Ex.D.5 Cor.D.10

Random binary search trees (BSTs) 1.736n Monotonic fixed-size binary Ex. E.1 Cor. E.22
Cor. E.31

Binomial random trees P (lgn)na Average-case fringe-dominated
fixed-size binary

Ex. E.3 Cor. E.31

Almost paths —b Monotonic fixed-size binary Ex. E.4 Cor. E.22

Random fringe-balanced binary search trees —b Average-case fringe-dominated
fixed-size binary

Ex. E.5 Cor. E.31

(Uniformly random) AVL trees of height h —b Worst-case fringe-dominated
fixed-height binary

Ex. E.6 Cor. E.31

(Uniformly random) weight-balanced binary
trees of size n —b Worst-case fringe-dominated

fixed-size binary
Ex. F.4 Cor. E.31

(Uniformly random) AVL trees of size n 0.938n Uniform-subclass Ex. F.2 Cor. F.7

(Uniformly random) left-leaning red-black
trees of size n 0.879n Uniform-subclass Ex. F.3 Cor. F.7

(Uniformly random) full m-ary trees of
size n lg( m

m−1)n Memoryless ordinal Ex.H.2 Cor.H.5

Uniform composition trees —b Monotonic fixed-size ordinal Ex. I.2 Cor. I.9
Random LRM-trees 1.736n Monotonic fixed-size ordinal Ex. I.3 Cor. I.9
a Here P is a nonconstant, continuous, periodic function with period 1.
b No (concise) asymptotic approximation known.
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Table 3: Sufficient conditions under which we show universality of hypersuccinct code H for binary
trees.

Family of
sources Restriction Redundancy Def. Reference

Memoryless
node-type — O(n log logn/ logn) Sec.D Thm.D.9

kth-order
node-type — O((nk + n log logn)/ logn) Sec.D Thm.D.9

Monotonic
fixed-size

p(`, r) ≥ p(`+ 1, r) and p(`, r) ≥ p(`, r + 1)
for all `, r ∈ N0

O(n log logn/ logn) Def. E.7 Thm.E.21

Worst-case
fringe-dominated
fixed-size

n≥B(t) = o(n/ log logn)
for all t with P[t] > 0;

n≥B(t) = #nodes with subtree size in Ω(logn)

O
(
n≥B(t) log logn

+ n log logn/ logn
) Def. E.10 Thm.E.26

Weight-balanced
fixed-size

∑
n
c
≤`≤n−n

c

p(`− 1, n− `− 1) = 1
for constant c ≥ 3

O(n log logn/ logn) Def. E.15 Cor. E.29

Average-case
fringe-dominated
fixed-size

E[n≥B(T )] = o(n/ log logn)
for random T generated by source S

O
(
n≥B(t) log logn

+ n log logn/ logn
)a Def. E.9 Thm.E.25

Monotonic
fixed-height

p(`, r) ≥ p(`+ 1, r) and p(`, r) ≥ p(`, r + 1)
for all `, r ∈ N0

O(n log logn/ logn) Def. E.7 Thm.E.21

Worst-case
fringe-dominated
fixed-height

n≥B(t) = o(n/ log logn)
for all t with P[t] > 0

O
(
n≥B(t) log logn

+ n log logn/ logn
) Def. E.10 Thm.E.26

Tame
uniform-subclass

class of trees Tn(P) is hereditary
(i.e., closed under taking subtrees),
n≥B(t) = o(n/ log logn) for t ∈ Tn(P),

lg |Tn(P)| = cn+ o(n) for constant c > 0,
heavy-twigged: if v has subtree size Ω(logn),

v’s subtrees have size ω(1)

o(n) Def. F.1 Thm.F.6

a Stated redundancy is achieved in expectation for a random tree t generated by the source.

Table 4: Navigational operations on succinct binary trees. (v denotes a node and i an integer).
parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v
left_child(v) the left child of node v
right_child(v) the right child of node v
depth(v) the depth of v, i.e., the number of edges between the root and v
anc(v, i) the ancestor of node v at depth depth(v)− i
nbdesc(v) the number of descendants of v
height(v) the height of the subtree rooted at node v
LCA(v, u) the lowest common ancestor of nodes u and v
leftmost_leaf(v) the leftmost leaf descendant of v
rightmost_leaf(v) the rightmost leaf descendant of v
level_leftmost(`) the leftmost node on level `
level_rightmost(`) the rightmost node on level `
level_pred(v) the node immediately to the left of v on the same level
level_succ(v) the node immediately to the right of v on the same level
node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN}, i.e., in

a preorder, postorder, or inorder traversal of the tree
node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}
leaf_rank(v) the number of leaves before and including v in preorder
leaf_select(i) the ith leaf in preorder
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(vi) worst-case fringe-dominated fixed-height sources,
(vii) tame uniform subclass sources.

Corollary 2.2 (Examples & Empirical entropies): Hypersuccinct trees achieve asymptoti-
cally optimal compression for all example distributions listed in Table 2.

Moreover, for every binary tree t, we have:

(i) |H(t)| ≤ Htype
k (t) + o(n) with Htype

k (t) the (unnormalized) kth-order empirical entropy of
node types (leaf, left-unary, binary, or right-unary) for k = o(log logn).

(ii) |H(t)| ≤ Hst(t) + o(n) with Hst(t) the “subtree-size entropy”, i.e., the sum of lg of the
subtree size of v for all nodes v in t, (a.k.a. the splay-tree potential).

The hypersuccinct code is a universal code for the families of binary-tree sources listed in
Theorem 2.1 with bounded maximal pointwise redundancy. We also present a more general class
of sources, for which our code achieves o(n) expected redundancy in the appendix; see also Table 3.

To our knowledge, the list in Theorem 2.1 is a comprehensive account of all concrete binary-
tree sources for which any universal code is known. Remarkably, in all cases the bounds on
redundancies proven for the hypersuccinct code are identical (up to constant factors) to those
known for existing universal binary-tree codes. Our hypersuccinct code thus achieves the same
compression as all previous universal codes, but simultaneously supports constant-time queries on
the compressed representation with o(n) overhead.

In terms of queries, previous solutions either have suboptimal query times [7, 8, 26], higher
space usage [68], or rely on tailoring the representation to a specific subclass of trees [49, 16] to
achieve good space and time for precisely these instances, but fail to generalize to other use cases.
Some also do not support all operations. We give a detailed comparison with the state of the art
in Section A.

Due to space constraints, we focus here on our results for binary trees. In the appendix, Part II,
we extend the above notions of tree sources (except fixed-height sources) to ordinal trees, which
has not been done to our knowledge. Moreover, we extend both our code and data structure to
ordinal trees, and show their universality for the sources.

3. From Tree Covering to Hypersuccinct Trees
Our universally compressed tree data structures are based on tree covering [33, 42, 16]: A (binary
or ordinal) tree t is decomposed into mini trees, each of which is further decomposed into micro
trees; the size of the latter, B = B(n) = lgn/8, is chosen so that we can apply the “Four-Russian
Table” technique on micro trees, i.e., tabulating all possible shapes of micro trees and the answers
to various micro-tree-local queries. For each micro tree, its local shape is stored, e.g., using
the balanced-parenthesis (BP) encoding, using a total of exactly 2n bits (independent of the
tree shape). Using additional data structures occupying only o(n) bits of space, a long list of
operations can be supported in constant time (Table 4). The space usage of this representation
is asymptotically optimal for the worst case, since lgCn ∼ 2n bits are necessary to distinguish
all Cn =

(2n
n

)
/(n+ 1) trees of n nodes. (This worst-case bound applies both to ordinal trees and

binary trees).
A core observation is that the dominant space in tree-covering data structures comes from

storing the micro-tree types, and these can be further compressed using a different code. This has
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Figure 1: Example binary tree with n = 70 nodes and micro trees computed by the Farzan-Munro
tree-covering algorithm [16] with parameter B = 6. For the reader’s convenience, the
algorithm is summarized in the appendix (Section B.3). The micro trees are indicated by
colors. The algorithm guarantees that each node is part of exactly one micro tree and that
each micro tree has at most three edges shared with other micro trees, namely to a parent,
a left- and a right-child micro tree.

been used in an ad-hoc manner for specific tree classes [16, 11, 29], but has not been investigated
systematically. A natural idea is to use a Huffman code for the micro tree types to simultaneously
beat the compression of all these special cases; we dub this as the “Four Russians and one
American”3 trick. Applying it to the data structures based on the Farzan-Munro tree-covering
algorithm [16] yields our hypersuccinct trees.

The main contribution of our present work is the careful analysis of the potential of the Four
Russians and an American trick for (binary and ordinal) tree source coding. As an immediate
corollary, we obtain a single data structure that achieves optimal compression for all special cases
covered in previous work, plus a much wider class of distributions over trees for which no efficient
data structure was previously known.

Our analysis builds on previous work on tree compression, specifically DAG compression and
tree straight-line programs (TSLPs) [53]. Our core idea is to interpret (parts of the) tree-covering
data structures as a code for trees, the “hypersuccinct code”: it stores the type, i.e., the local
shape, of all micro trees separately from how they interface to form the entire tree (details are
given in the appendix, Section C for binary trees and Section G for ordinal trees). Intuitively, our
hypersuccinct code is a restricted version of a grammar-based tree code, where we enforce having
nonterminals for certain subtrees;4 we strengthen and extend existing universality proofs from
general grammar-based tree codes to the restricted hypersuccinct code.

3It deems us only fair to do D. A. Huffman the same questionable honor of reducing the person to a country of
residence that V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev have experienced ever since
their table-lookup technique has become known as the “Four-Russians trick”.

4Differences in technical details make the direct comparison difficult, though: in TSLPs, holes in contexts must be
stored (and encoded) alongside the local shapes as they are both part of the right-hand side of productions; in
our hypersuccinct code, we separately encode the shapes of micro trees and the positions of portals, potentially
gaining a small advantage. Our comment thus remains a motivational hint as to why similar analysis techniques
are useful in both cases, not a formal reduction.
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4. Universality for Fixed-Size Sources
In this section, we sketch the proof that our hypersuccinct trees achieve optimal compression for
two exemplary tree-shape distributions: random binary search trees and uniform weight-balanced
trees (defined below). These examples serve to illustrate the proof techniques and to showcase
the versatility of the approach. Extending the analysis to the general sufficient conditions from
Table 3 and full details of the computations are given in the appendix.

By random BSTs, we mean the distribution of tree shapes created by successively inserting
n keys in random order into an (initially empty) unbalanced binary search tree (BST). We
obtain random BSTs from a fixed-size tree source Sfs(pbst) with pbst(`, n − 1 − `) = 1

n for all
` ∈ {0, . . . , n − 1} and n ∈ N≥1. (Any left subtree size ` is equally likely in a random BST of
a given size.) Hence, P[t] =

∏
v∈t 1/|t[v]| where t[v] is the subtree rooted at v and |t[v]| its size

(number of nodes).
The second example are the shapes of uniformly random weight-balanced BSTs (BB[α]-trees,

[66]): A binary tree t is α-weight-balanced, if for every node v in t, we have |t`[v]|+1 ≥ α(|t[v]|+1)
and |tr[v]|+1 ≥ α(|t[v]|+1). Here t`[v] resp. tr[v] are the left resp. right subtrees of t[v]. We denote
the set of α-weight-balanced trees of size n by Tn(Wα). We obtain random α-weight-balanced
trees from another fixed-size source Sfs(pwb) with

pwb(`, n− 1− `) =


|T`(Wα)||Tn−1−`(Wα)|

|Tn(Wα)| if `+ 1, n− ` ≥ α(n+ 1),

0 otherwise.

It is easy to check that this yields the uniform probability distribution on Tn(Wα), P[t] =
1/|Tn(Wα)| for t ∈ Tn(Wα). We note that computing |Tn(Wα)| is a formidable challenge in
combinatorics, but we never have to do so; we only need the existence of a fixed-size source for
weight-balanced BSTs.

The hypersuccinct code H(t) is formed by partitioning the nodes of a given binary tree t
into m = Θ(n/ logn) micro trees µ1, . . . , µm, each of which is a connected subtree of at most
µ = O(logn) nodes each; an example is shown in Figure 1. Previous work on tree covering shows
how to compute these and how to encode everything but the local shape of the micro trees in
o(n) bits of space [16]. (We show that for a mere encoding, O(n log logn/ logn) bits suffice in
Section C).

The dominant part of the hypersuccinct code is the list of types for all micro trees. Let C
be a Huffman code for the string µ1, . . . , µm, where we identify micro trees now with their local
shape (i.e., the induced subgraph formed by the set of nodes in the micro tree). For a variety of
different tree sources S, we find that

∑m
i=1 |C(µi)|, the total length of codewords for the micro

trees, is upper bounded by lg(1/P[t]) + lower-order terms, where P[t] is the probability that t is
emitted by S; asymptotically, this is the best possible code length achievable for that source.

We will now show for our example distributions that the hypersuccinct code is asymptotically
optimal: |H(t)| ≤ lg(1/P[t]) + o(n).

4.1. Random BSTs
The proof consists of four steps that can be summarized as follows:
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Step 1
Construct a source-specific

micro-tree encoding
DS : {µ1, . . . , µm} → {0, 1}?

Goal: |DS(µi)| ≈ lg(1/P[µi])

Step 2
By optimality of
Huffman codes:

m∑
i=1

|C(µi)| ≤
m∑
i=1

|DS(µi)|

Step 3
Use properties of S

to show that
m∏
i=1

P[µi] & P[t]

Step 4
Conclude

m∑
i=1

|C(µi)| ≈ lg(1/P[t])

Steps 2 and 4 do not depend on the source and indeed follow immediately; Steps 1 and 3 are the
creative parts. Ignoring proper tracing of error terms, the result then follows as

|H(t)| ∼
n∑
i=1
|C(µi)| ≤

n∑
i=1
|DS(µi)| ≤

n∑
i=1

lg(1/P[µi]) . lg(1/P[t]).

Let us consider Sfs(pbst), the fixed-size source producing (shapes of) random BSTs, and address
these steps independently.

Our task in Step 1 is to find a code DS for the micro-tree types that can occur in t, so that
|DS(µi)| = lg(1/|PS [µi]) +O(log logn). The code may rely on the decoder to have knowledge of
S.

For random BSTs, DS(t) can be constructed as follows: We initially store n (using Elias
gamma code5) and then, following a depth-first (preorder) traversal of the tree, we encode the
size of the left subtree using arithmetic coding. Inductively, the size of the currently encoded
node is always known, and the source-specific code is allowed to use the probability distributions
hardwired into S without storing them; for random BSTs, we simply encode a number uniformly
distributed in [0..s− 1] at a node with subtree size s, using exactly lg s bits. Apart from storing
the initial size and the small additive overhead from arithmetic coding, the code length of this
“depth-first arithmetic tree code” is best possible: |DS(t)| ≤ lg(1/P[t]) +O(log |t|). This concludes
Step 1.

For Step 3, we have to show that the probability for the entire tree t is at most the product of
the probabilities for all micro-trees. Recall that µ1, . . . , µm are the micro trees in t. We can write
P[t] as a product over contributions of individual nodes, and can collect factors in P[t] according to
micro trees; this works for any fixed-size source. For random BSTs, we can use the “monotonicity”
of node contributions to show

P[t] =
∏
v∈t

1
|t[v]| =

m∏
i=1

∏
v∈µi

1
|t[v]| ≤

m∏
i=1

∏
v∈µi

1
|µi[v]| =

m∏
i=1

P[µi].

That completes Step 3, and hence the proof that |H(t)| ≤ PSfs(pbst)[t] + o(n).

4.2. Weight-balanced trees
Let us now consider uniformly random weight-balanced trees, i.e., the source S = Sfs(pwb). We
would like to follow the same template as above; however, this is not possible: Step 3 from above is
in general not true anymore. The reason is that it is not clear whether the “non-fringe” micro trees,
i.e., those that do not contain all descendants of the micro-tree root, have non-zero probability
under S. (A subtree of a tree is called fringe, if it consists of a node and all its descendants). Such

5Elias gamma code γ : N≥0 → {0, 1}? encodes an integer n ≥ 1 using 2dlgne + 1 bits by prefixing the binary
representation of n with that representation’s length encoded in unary.
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micro trees will also make Step 1 impossible as they would require a code length of 0. While this
issue is inevitable in general (Remark 4.2), we can under certain conditions circumvent Steps 1
and 3 altogether by directly bounding

∑m
i=1 |DS(µi)| ≤ P[t] + o(n).

As a first observation, note that it suffices to have |DS(µi)| = lg(1/|PS [µi]) + O(log logn)
for all but a vanishing fraction of the micro trees in any tree t; then we can still hope to show∑m
i=1 |DS(µi)| ≤ P[t] +o(n) overall. Second, it is known [24] that weight-balanced trees are “fringe

dominated” in the following sense: Denoting by n≥B(t) the number of “heavy” nodes, i.e., v
in t with |t[v]| ≥ B = lgn/8, we have n≥B(t) = O(n/B) = o(n) for every weight-balanced tree
t ∈ Tn(Wα). Since only a vanishing fraction of nodes are heavy, one might hope that also only a
vanishing fraction of micro trees are non-fringe, making the above route succeed. Unfortunately,
that is not the case; the non-fringe micro trees can be a constant fraction of all micro trees.

Notwithstanding this issue, a more sophisticated micro-tree code DS allows us to proceed. DS
encodes any fringe micro tree using depth-first arithmetic coding just as before. Any non-fringe
micro tree µi, however, is broken up into the subtree of heavy nodes, the “boughs” of µi, and
(fringe) subtrees fi,j hanging off the boughs. It is a property of the Farzan-Munro algorithm that
every micro-tree root is heavy, hence all fi,j are indeed entirely contained within µi.

DS(µi) then first encodes the bough nodes using 2 bits per node (using a BP representation for
the boughs subtree) and then appends the depth-first arithmetic code for the fi,j (in left-to-right
order). While this does not actually achieve |DS(µi)| ≈ lg(1/P[µi]) for entire micro trees µi, it does
so for all the fringe subtrees fi,j . Any node not contained in a fringe subtree fi,j must be part of a
bough and hence heavy; by the fringe-dominance property, these nodes form a vanishing fraction
of all nodes and hence contribute o(n) bits overall. This shows that |H(t)| ≤ PSfs(pwb)[t] + o(n).

Remark 4.1 (A simple code whose analysis isn’t): It is worth pointing out that the source
specific code DS is only a vehicle for the analysis of H; the complicated encodings DS do not ever
need to be computed when using our codes and data structures.

4.3. Other Sources
For memoryless sources, the analysis follows the four-step template, and is indeed much easier
than in the above examples since Step 3 becomes trivial.

For higher-order sources, node types of nodes at the boundary of a micro tree µi might differ
from the node types of the corresponding nodes in the whole tree t. We therefore augment the
depth-first arithmetic code by prefixing it with a list of “exceptional” nodes, whose location and
type is stored naively. Since their overall number is bounded per micro tree, they contribute a
lower order term overall.

The tame uniform-subclass sources require the most technical proof, but it is conceptually
similar to the weight-balanced tree case. The source-specific encoding for fringe subtrees is trivial
here; we simply use the rank in an enumeration of all trees of a given size, prefixed by the size
of the subtree. Using the tameness conditions, one can show that a similar decomposition into
boughs and fringe subtrees yields an optimal code length for almost all nodes. Details are deferred
to the appendix (Section F).

∗ ∗ ∗

Together with the observations from Section 3 this yields Theorem 2.1. We obtained similar
results for ordinal trees; details are deferred to the appendix (Part II).
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Remark 4.2 (Restrictions are inevitable): We point out that the restrictions discussed above
cannot possibly be overcome in general. Zhang, Yang, and Kieffer [80] prove that the unrestricted
class of fixed-size sources (leaf-centric binary tree sources in their terminology) does not allow a
universal code, even when only considering expected redundancy. The same is true for unrestricted
fixed-height and uniform-subclass sources. While each is a natural formalism to describe possible
binary-tree sources, additional conditions are strictly necessary for any interesting compression
statements to be made. Our sufficient conditions are the weakest such restrictions for which any
universal source code is known to exist, even without the requirement of efficient queries.

5. Hypersuccinct Range-Minimum Queries
We now show how hypersuccinct trees imply an optimal average-space solution for the range-
minimum query (RMQ) problem.6 Let A[1..n] store the numbers x1, . . . , xn, i.e., xj is stored at
index j for 1 ≤ j ≤ n. We assume x1, . . . , xn are n distinct numbers; in case of duplicates, we
do not per se require a specific tie breaking rule to be employed. Duplicates naturally arise, e.g.,
in the LCE problem (see below), but our RMQ solution works regardless which minimum-value
index is to be returned.

5.1. Cartesian Trees
The Cartesian tree T for x1, . . . , xn (resp. for A[1..n]) is a binary tree defined recursively as follows:
If n = 0, it is the empty tree (“null”). Otherwise it consists of a root whose left child is the
Cartesian tree for x1, . . . , xj−1 and its right child is the Cartesian tree for xj+1, . . . , xn where j
is the position of the minimum, j = arg mink A[k]. A classic observation of Gabow et al. [23] is
that range-minimum queries on A are isomorphic to lowest-common-ancestor (LCA) queries on T
when identifying nodes with their inorder index:

RMQA(i, j) = node_rankIN

(
LCAT

(
node_selectIN(i), node_selectIN(j)

))
.

We can thus reduce an RMQ instance (with arbitrary input) to an LCA instance of the same size
(the number of nodes in T equals the length of the array).

5.2. Random RMQ
We consider the random permutation model for RMQ: Every (relative) ordering of the elements
in A[1..n] is considered to occur with the same probability. Without loss of generality, we identify
these n elements with their rank, i.e., A[1..n] contains a random permutation of [1..n]. We refer
to this as a random RMQ instance.

We can characterize the distribution of Cartesian tree associated with a random RMQ instance:
Since the minimum in a random permutation is located at every position i ∈ [n] with probability 1

n ,
the inorder index of the root is uniformly distributed in [n]. Apart from renaming, the subarrays
A[1..i− 1] (resp. A[i+ 1..n]) contain a random permutation of i− 1 (resp. n− i) elements, and
these two permutations are independent of each other conditional on their sizes. Cartesian trees

6A technical report containing preliminary results for random RMQ, but including more details on the data
structure aspects of our solution, can be found on arXiv [60].
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of random RMQ instances thus have the same distribution as random BSTs. The former are also
known as random increasing binary trees [22, Ex. II.17&Ex. III.33]).

Since the sets of answers to range-minimum queries is in bijection with Cartesian trees, the
entropy Hn of the distribution of the shape of the Cartesian tree (and hence random BSTs) gives
an information-theoretic lower bound for the space required by any RMQ data structure (in the
encoding model studied here). Kieffer, Yang and Szpankowski [52] show7 that the entropy of
random BSTs is

Hn = lg(n) + 2(n+ 1)
n−1∑
i=2

lg i
(i+ 2)(i+ 1) ∼ 2n

∞∑
i=2

lg i
(i+ 2)(i+ 1) ≈ 1.7363771n

With these preparations, we are ready to prove our main result on range-minimum queries.

Corollary 5.1 (Average-case optimal succinct RMQ): There is a data structure that sup-
ports (static) range-minimum queries on an array A of n (distinct) numbers in O(1) worst-case
time and which occupies Hn + o(n) ≈ 1.736n + o(n) bits of space on average over all possible
permutations of the elements in A. The worst case space usage is 2n+ o(n) bits.

Proof: The shapes of Cartesian trees build on random permutations are produced by the
monotonic fixed-size source of Example E.1; by Theorem E.21, our hypersuccinct code has maximal
pointwise redundancy of o(n), hence also o(n) expected redundancy. Using the hypersuccinct
code in Theorem C.4, we obtain a tree data structure supporting in particular node_rankIN,
node_selectIN and LCA, thus we can answer RMQ in constant time. Averaging the instance-specific
space lg(1/P[t]) over all binary trees t ∈ Tn yields the source entropy, Hn ∼ 1.736n. Since the
hypersuccinct code uses length-bounded Huffman codes, we never use more than 2n+ o(n) bits
on any input. �

We note that our data structure immediately extends to other possible shape distributions of
Cartesian trees as long as they can we written as on of the sources listed in Table 3.

6. Conclusion
We presented the first succinct tree data structures with optimally adaptive space usage for a large
variety of random tree sources, both for binary trees and for ordinal trees. This is an important
step towards the goal of efficient computation over compressed structures, and has immediate
applications, e.g., for the range-minimum problem.

A goal for future work is to reduce the redundancy of o(n), which becomes dominant for
sources with sublinear entropy. While this has been considered for tree covering in principle [74],
many details remain to be thoroughly investigated.

For very compressible trees, the space savings in hypersuccinct trees are no longer competitive.
On the other hand, with current methods for random access on dictionary-compressed sequences,
constant-time queries are not possible in the regime of hardly compressible strings; the same
applies to known approaches to represent trees. An interesting question is whether these opposing
approaches can be combined in a way to complement each other’s strengths.

7Hwang and Neininger [46] showed earlier that the quicksort-style recurrence for Hn can be solved exactly for
arbitrary toll functions, and lgn is one such.
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In the appendix, we give full formal proof for all claims presented in the previous sections (in
particular Section 2) of the paper. Furthermore, we present a comprehensive discussion of related
work and applications of hypersuccinct trees.

The appendix is structured as follows: Section A puts the work in broader context and surveys
relevant results from information theory, tree compression, and succinct data structures. In
Section B, we introduce common notations, give basic definitions and recall important properties
with respect to trees and succinct data structures. Additionally, we briefly recapitulate the
Farzan-Munro algorithm from [16].

Part I gives full details for our results and proofs on binary trees: Section C formally defines
our compressed tree encoding, respectively, data structure (the hypersuccinct trees). In Section D
to Section F we show that our hypersuccinct tree encoding is universal with respect to the
various types of tree sources: In Section D, we formally define memoryless and higher order tree
sources and prove our results with respect to these sources. In Section E, we consider fixed-size
and fixed-height binary tree sources: In particular, the results and proof sketches presented in
Section 4.1 and Section 4.2 with respect to random BSTs and weight-balanced BSTs follow as
special cases from more general results (Theorem E.21 and Theorem E.26) proven in Section E.
In Section F, we introduce and prove our results with respect to uniform subclass sources.

Part II presents our results for ordinal trees: We describe our hypersuccinct tree encoding,
respectively, data structure in Section G. Furthermore, in Section H and Section I we generalize
the concepts and results with respect to memoryless/higher order and fixed-size tree sources
from binary to ordinal trees. Additionally, we show that our hypersuccinct encoding achieves the
so-called Label-Shape-Entropy, a concept introduced in [44] as a measure of empirical entropy for
both labeled and unlabeled trees, in Section J. For the reader’s convenience, Section K has a
comprehensive list of used notation.
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A. Related Work
We discuss related work here, focusing on methods that are (also) meaningful for unlabeled
structures.

A.1. Information Theory of Structure
Compared with the situation for sequences (see, e.g., [10]), the information theory of structured
data is much less developed. The last decade has seen increasing efforts to change that. Sources
and their entropies have been studied for binary trees [52, 80, 57, 35] and families of graphs [9, 56].
We are not aware of similar works specifically focusing on ordinal trees.

Some natural notions of structure sources contain more information (more degrees of freedom)
that can possibly be extracted from a given object. In particular the leaf- and depth-centric binary
trees sources of [80] as general classes of sources do not admit a universal code [80, Ex. 6&Ex. 8]
for that reason, making suitable restrictions necessary.

Other work has focused on notions of empirical entropies. Jansson et al. [49] study the degree
entropy of ordinal trees, i.e., the zeroth-order entropy of sequence of node degrees Hdeg(t), and
show that Hdeg(t)n bits are asymptotically necessary and sufficient to represent a tree of size n
with given node degree frequencies. In [44], a notion of kth order empirical entropy is introduced
for full binary trees, where the type of a node v (binary / leaf) depends on the direction (left/right)
of the last k edges on the path from the root to v.

A.2. Tree Compression
The most widely studied methods for compressing trees are DAG compression, top-tree compression,
and grammar-based compression. DAG compression is the oldest method. It stores identical
shared fringe subtrees only once and hence transforms a tree t into a DAG. The smallest such DAG
is unique and can be computed in linear time [13]. While good enough to yield universal binary-tree
codes for fringe-dominated trees (cf. the “Representation Ratio Negligibility Property” in [80]
and similar sufficient conditions [73]), it is easy to construct examples where DAG compression is
exponentially worse than the other methods [53] because repeated patterns “inside” the tree are
not exploited.

Top-tree compression [7] avoids this shortcoming by DAG compressing a top tree [2] of
t instead of t itself. A top tree represents a hierarchy of clusters of the tree edges: leaves are
individual edges, internal (binary) nodes are merging operations of child clusters. Top tree
compression is presented for node-labeled ordinal trees, but can be applied to unlabeled trees,
as well, and we formulate its properties for these here. Top trees of best possible worst-case size
O(n/ logn) and of height O(logn) can be computed in linear time [55, 14] from an ordinal tree t
on n nodes. Furthermore, any top DAG (of arbitrary height) for an ordinal tree t of size n can
be transformed with a constant multiplicative blow-up in linear time into a top DAG of height
O(logn) for t [27].

We can write a tree t as a term (see also Section B), thus transforming it into a string.8 Any
DAG for t corresponds to a straight-line program (SLP) [51] for this string, but with the restriction

8For terms, it is natural to have node labels (functions in the term) imply a given degree (function arity); such
trees are called ranked. When this is not the case, trees are called unranked. Working with ranked node labels
does not preclude to study unlabeled trees; we can imagine nodes to be labeled with their degree for this purpose.
Any tree code must necessarily store each node’s degree, so this does not add additional information.
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that every nonterminal produces (the term of) a fringe subtree of t. To allow better compression
through exploiting repeated patterns inside the tree, one can either give up the correspondence of
nonterminals to subtrees/tree patters or move to a more expressive grammar formalism.

The latter approach leads to (linear) tree straight-line programs (TSLPs) [53], which can
be seen as a multiple context-free grammar [76, §2.8]: here, a rank-k nonterminal derives k + 1
substrings separated by k gaps (instead of a single substring in context-free grammars). That
gives us the flexibility to let nonterminals produce (the term of) a context c, a fringe subtree t[v]
with k holes, i.e., k nodes are removed together with their subtree from t[v] to obtain c. Let
r denote the maximal degree in t, then we can transform any TSLP into one with only rank-1
and rank-0 nonterminals with a blow-up of O(r) in grammar size (the total size of all right-hand
sides) [54]. Like for top-tree compression, a TSLP of size O(n/ logn) and height O(logn) can be
computed from an unlabeled ranked (constant maximal degree) tree of n nodes in linear time [24];
unlike for top-trees this result does not directly generalize to ordered trees with arbitrary degrees.

Unsurprisingly, TSLPs yield universal codes for all the classes of binary-tree sources for which
the DAG-based code of [80] is universal [25] (the worst-case or average-case fringe-dominated
sources); but they are also shown to be universal for the class of monotonic sources [25], which are
not in general compressed optimally using DAGs, and achieve compression to the above mentioned
kth-order empirical entropy for binary trees [44].

Unlike top DAGs, TSLPs cannot decompose trees “horizontally” (splitting the children of one
node), which makes them less effective for trees of large degree. Forest straight-line programs
(FSLPs) [30] add such an operation; they are shown to achieve the same compression up to
constant factors as TSLPs for the first-child-next-sibling encoding of a tree and top DAGs (for
unlabeled trees) [30]. (For labeled trees over an alphabet of size σ, it is shown in [30] that a top
DAG can be transformed in O(n) time into an equivalent FSLP with a constant multiplicative
blow-up, whereas the transformation from an FSLP to a top DAG needs time O(σn) and a
multiplicative blow-up of size O(σ) is unavoidable.)

The other approach mentioned above – using unrestricted (string) SLPs on a linearization
of a tree t – is investigated in [8]. They consider compressing the balanced-parenthesis (BP)
encoding of an ordinal tree t on n nodes, and show that an SLP proportional in size to the smallest
DAG can be computed from the DAG [8, Lem. 8.1].

A similar approach is taken in [26], focusing on ranked trees. It is shown there that an SLP
for the depth-first degree sequence (DFDS) can be exponentially smaller than the smallest TSLP
(but a TSLP with factor O(h · d), for h the height and d the maximal degree of t, can always
be computed from an DFDS-SLP), and also exponentially smaller than the minimal SLP for
the BP sequence of an ordinal tree. On the other hand, any TSLP (and hence DAG) can be
transformed into an SLP for the DFDS with a factor O(d) blowup, where d is the maximal degree
in t. The latter can still be more desirable as many algorithmic problems are efficiently solvable
for TSLP-compressed trees [53].

Other approaches include an LZ77-inspired methods for ranked trees [31]; it is not known to
support operations on the compressed representation.

A.3. Succinct Trees
The survey of Raman and Rao [70] and Navarro’s book [61] give an overview of the various known
succinct ordinal-tree data structures; cardinal trees and binary trees are covered also in [16, 12].
From a theoretical perspective, the tree-covering technique – initially suggested by Geary, Raman
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and Raman [33]; extended and simplified in [42, 16, 11] – might be seen as the most versatile
representation [17].

A typical property of succinct data structures is that their space usage is determined only
by the size of the input. For example, all of the standard tree representations use 2n + o(n)
bits of space for any tree with n nodes. Notable exceptions are ultrasuccinct trees [49] that
compresses ordinal trees (indeed, their DFDS) to the (zeroth-order) empirical node-degree entropy
and otherwise employs the data structures designed for the depth-first unary degree sequeunce
(DFUDS) representation. Gańczorz [29] recently extended this shape compression to labeled trees,
in which the labels are also stored in compressed form, and Davoodi et al. [11] achieved space
bounded by the empirical node-type entropy for binary trees. The latter two works are closest to
ours in terms of their data structures; both are based on (variants) of tree covering.

“Four Russians and an American”. Using a Huffman code for the lookup-level in a data structure
is an arguably obvious idea, but to the last author’s surprise, this trick does not seem to be
part of the standard toolbox in the field. We refer to it as the “Four-Russians-One-American”
trick. While explicitly mentioned in [61, §4.1.2] for higher-order-entropy-compressed bitvectors,
a recent work on run-length compressed bitvectors [3] does not discuss four Russians and one
American as an option, although it is competitive (asymptotically) with some of their results, e.g.,
[3, Thm. 4]. The survey [38] on compressed storage schemes for strings does not mention four
Russians and one American as an option, although it yields the same time-space bounds as the
(conceptually more complicated) methods discussed there (§3.2 and §3.3, based on [37] resp. [20]).
Finally – closest to our work – compressing micro tree types in tree-covering data structures is
used in several works [16, 11, 74, 29] – only Gańczorz [29] makes use of Four Russians and one
American. Moreover, it does not seem to have been used before to compare against measures of
compressibility other than (empirical) entropy.

A.4. Compressed Tree Data Structures
Some of the tree compression methods discussed above have also been turned into compressed
data structures. Compressed tree data structures typically achieve O(logn) query times, which
is in general close to optimal as discussed below. The exact set of supported operations for all
discussed data structures is reported in Table 5, which also lists the main approaches for succinct
data structures for comparison.

A DAG-compressed top tree of with d nodes can be augmented to a O(d logn) bit data
structure [7, 43] for ordinal trees. Many more operations are supported by the data structure
of [8], which uses the machinery developed in the same paper for providing random access to
SLP-compressed strings to store an SLP for the BP string of an ordinal tree and simulate access
to the excess sequence used in [65]. The data structure of [26] also uses a string SLP, but for the
depth-first degree sequence instead of the BP, thus building on further indices for DFUDS-based
succinct trees. In both cases, the size of the data structure becomes O(g logn) bits when g is the
size of the SLP.

Lower bounds. Since all of the above methods are dictionary-based (in the sense of [50]), a
recent lower bound [68] applies to them. It builds on earlier work for SLPs [75], which proved that
if g is the size of an SLP G for a string T with n = |T | = Θ(g1+ε) for an ε > 0, random access to T
requires Ω(logn/ log logn) time for any data structure using O(g polylog(n)) space; ([75] has other
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Table 5: Supported operations and their running time for different static-tree representations: balanced
parentheses (BP), depth-first unary degree sequence (DFUDS), tree covering (TC), compression
using top-DAGs (top directed acyclic graphs), forest straight-line programs (FSLP), and
compression using straight-line programs for the BP sequence (SLP(BP)) resp. depth-first
degree sequence (SLP(DFDS)). BP includes the range-min-max-tree based data structure
of [65]; ultrasuccinct trees [49] are based on DFUDS; TC is used in [16, 11, 29, 74] and in
the present work.

Operations BP DFUDS TC top DAG/FSLP SLP(BP) SLP(DFDS)

parent O(1) O(1) O(1) O(logn) O(logn) O(logn)
degree O(1) O(1) O(1) O(logn)
first_child, next_sibling O(1) O(1) O(1) O(logn) O(logn) O(logn)
last_child O(1) O(1) O(1) O(logn) O(logn)
prev_sibling O(1) O(1) O(1) O(logn) O(logn)
child O(1) O(1) O(1) O(logn)
child_rank O(1) O(1) O(1) O(logn)
depth, O(1) O(1) O(1) O(logn) O(logn)
LCA O(1) O(1) O(1) O(logn) O(logn) O(logn)
anc O(1) O(1) O(1) O(logn) O(logn)
nbdesc O(1) O(1) O(1) O(logn) O(logn) O(logn)
height O(1) O(1) O(logn) O(logn)
leftmost_leaf, rightmost_leaf O(1) O(1) O(1) O(logn)
leaf_rank, leaf_select O(1) O(1) O(1)
level_leftmost, level_rightmost O(1) O(1) O(logn)
level_pred, level_succ O(1) O(1) O(logn)
node_rankPRE, node_selectPRE O(1) O(1) O(1) O(logn)
node_rankIN, node_selectIN O(1) O(1)
node_rankPOST, node_selectPOST O(1) O(1) O(logn)
node_rankDFUDS, node_selectDFUDS O(1) O(1)
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tradeoffs for more compressible strings, too). Prezza [68] showed that also all operations required
by tree data structures based on LOUDS, DFUDS or BP sequences require Ω(logn/ log logn)
time on O(α polylog(n))-space data structures, where α is the size of any dictionary compressor
(and n = Θ(α1+ε)).

Average-case behavior. While dictionary-based compression has the ability to dramatically
compress some specific trees, simple information-theoretic arguments show that the vast majority
are only slightly compressible. Clearly, this is true for uniformly chosen trees, but also for a vast
variety of less balanced sources as those considered in this article. For such “average-case” trees,
the compressed object (top dag, SLP) is of size α = O(n/ logn). While the above data structures
then still use O(n) bits of space, none is known to be succinct (have a constant of 2 in front of n).

Also, queries take O(logn) time, while the random-access lower bound no longer applies
with g = Ω(n/ logn). Indeed, constant-time random access to SLPs is generally possible using
O(nεg1−ε|Σ| logn) bits of space [68] (setting τ = (n/g)ε), and that seems to be the best known
bound. With g = Ω(n/ logn), that bound is Ω(|Σ|n logε(n)) = ω(n). It therefore seems not
currently possible to build universally compressed data structures on top of any dictionary-based
compressor that answers queries in constant time and has optimal space for the tree sources.

A.5. Range-Minimum Queries
Via the connection to lowest-common-ancestor (LCA) queries in Cartesian trees (see, e.g., [11]),
we can formulate the RMQ problem as a task on trees: Any (succinct) data structure for binary
trees that supports finding nodes by inorder index (node_selectIN), LCA, and finding the inorder
index of a node (node_rankIN) immediately implies a (succinct) solution for RMQ.

Worst-case optimal succinct data structures for the RMQ problem have been presented
by Fischer and Heun [21], with subsequent simplifications by Ferrada and Navarro [18] and
Baumstark et al. [5]. Implementations of (slight variants) of these solutions are part of widely-used
programming libraries for succinct data structures, such as Succinct [1] and SDSL [34].

The above approaches use the same 2n+ o(n) space on any input, but there are few attempts
to exploit compressible instances. Fischer and Heun [21] show that range-minimum queries can
still be answered efficiently when the array is compressed to kth order empirical entropy. For
random permutations, the model we considered here, this does not result in significant savings.
Barbay, Fischer and Navarro [4] used LRM-trees to obtain an RMQ data structure that adapts to
presortedness in A, e.g., the number of (strict) runs by storing the tree as an ultrasuccinct tree.
Again, for the random permutations considered here, this would not result in space reductions.

Recently, Gawrychowski et al. [32] designed RMQ solutions for grammar-compressed input
arrays resp. DAG-compressed Cartesian trees. The amount of compression for random permutation
is negligible for the former; for the latter it is less clear, but in both cases, they have to give up
constant-time queries. The node-type entropy-compressed data structure for binary trees [11] is
the first constant-time RMQ data structure that compresses random RMQ instances. They show
that a node in the Cartesian tree has probability 1

3 to be binary resp. a leaf, and probability 1
6

to have a single left resp. right child. The resulting entropy is H(1
3 ,

1
3 ,

1
6 ,

1
6) ≈ 1.91 bit per node

instead of the 2 bit for a trivial encoding.
Golin et al. [36] showed that 1.736n bits are (asymptotically) necessary and sufficient to encode

a random RMQ instance, but they do not present a data structure that is able to make use of
their encoding. The constant in the lower bound also appears in the entropy of BSTs build from
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random insertions [52], and indeed the shape distributions are the same [60, §3]. The encoding of
Golin et al. has independently been described by Magner et al. [57] to compress trees (without
attempts to combine it with efficient access to the stored object). Our result closes this gap
between the lower bound and the best data structure with efficient queries, both for RMQ and for
representing binary trees.

A.5.1. Applications

The RMQ problem is an elementary building block in many data structures. We discuss two
exemplary applications here, in which a non-uniform distribution over the set of RMQ answers is
to be expected.

Range searching. A direct application of RMQ data structures lies in 3-sided orthogonal 2D
range searching. Given a set of points in the plane with coordinates (x, y), the goal is to report
all points in x-range [x1, x2] and y-range (−∞, y1] for some x1, x2, y1 ∈ R. Given such a set
of points in the plane, we maintain an array of the points sorted by x-coordinates and build a
range-minimum data structure for the array of y-coordinates and a predecessor data structure for
the set of x-coordinates. To report all points in x-range [x1, x2] and y-range (−∞, y1], we find the
indices i and j of the outermost points enclosed in x-range, i.e., the ranks of (the successor of) x1
resp. (the predecessor of) x2. Then, the range-minimum in [i, j] is the first candidate, and we
compare its y-coordinate to y1. If it is smaller than y1, we report the point and recurse in both
subranges; otherwise, we stop.

A natural testbed is to consider random point sets. When x- and y-coordinates are independent
of each other, the ranking of the y-coordinates of points sorted by x form a random permutation,
and we obtain the exact setting studied in this paper.

Longest-common extensions. A second application of RMQ data structures is the longest-
common extension (LCE) problem on strings: Given a string T , the goal is to create a data
structure that allows to answer LCE queries, i.e., given indices i and j, what is the largest length
`, so that Ti,i+`−1 = Tj,j+`−1. LCE data structures are a building block, e.g., for finding tandem
repeats in genomes; (see Gusfield’s book [41] for many more applications).

A possible solution is to compute the suffix array SA[1..n], its inverse SA−1, and the longest
common prefix array LCP[1..n] for the string T , where LCP[i] stores the length of the longest
common prefix of the ith and (i− 1)st suffixes of T in lexicographic order. Using an RMQ data
structure on LCP, lce(i, j) is found as LCP

[
rmqLCP

(
SA−1(i) + 1,SA−1(j)

)]
.

Since LCE effectively asks for lowest common ancestors of leaves in suffix trees, the tree shapes
arising from this application are related to the shape of the suffix tree of T . This shape heavily
depends on the considered input strings, but for strings generated by a Markov source, it is
known that random suffix trees behave asymptotically similar to random tries constructed from
independent strings of the same source [48, Chap. 8]. Those in turn have logarithmic height. This
gives some hope that the RMQ instances arising from LCE are compressible; we could confirm
this on example strings, but further study is needed here.
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B. Preliminaries
In this section we introduce some basic definitions and notations; a comprehensive list of our
notation is given in Section K. We write [n..m] = {n, . . . ,m} and [n] = [1..n] for integers n, m.
We use the standard Landau notation (i.e., O-notation etc.) and write lg for log2. We leave the
basis of log undefined (but constant); (any occurrence of log outside a Landau-term should thus
be considered a mistake). We make the convention that 0 lg(0) = 0 and 0 lg(x/0) = 0 for x ≥ 0.

B.1. Trees
Let T denote the set of all binary trees, that is, of ordered rooted trees, such that each node
has either (i) exactly two children, or (ii) a single left child, or (iii) a single right child, or (iv)
is a leaf. For technical reasons, we also include the empty tree Λ (also called “null” in analogy
of representing trees via left/right-child pointers), which consists of zero nodes, in the set of
binary trees. A fringe subtree of a binary tree t is a subtree that consists of a node of t and all
its descendants. With t[v] we denote the fringe subtree rooted at node v and with t`[v] (resp.
tr[v]) we denote the fringe subtree rooted in v’s left (resp. right) child: If v does not have a left
(resp., right) child, then t`[v] (resp., tr[v]) is the empty binary tree. If v is the root node of t,
we shortly write t` and tr instead of t`[v] and tr[v]. With |t| we denote the size (i.e., number of
nodes) of t. Moreover, let h(t) denote the height of t, which is inductively defined by h(Λ) = 0 and
h(t) = 1 + max(h(t`), h(tr)), for t 6= Λ. Let Tn denote the set of binary trees with n nodes and
let T h denote the set of binary trees of height h. We write trees inline as (unranked) terms with
an anonymous function • representing a vertex; for example t = •

(
•(Λ,Λ), •(•(Λ,Λ), Λ)

)
∈ T4

represents the binary tree

t = .

(We followed the convention to draw empty subtrees as squares). A binary tree is called a full
binary tree, if every node has either exactly two children or is a leaf, i.e., there are no unary
nodes. Note that there is a natural one-to-one correspondence between the set Tn of binary trees
of size n and the set of full binary trees with n+ 1 leaves. Every binary tree t of size n uniquely
corresponds to a full binary tree t′ with n+ 1 leaves by identifying the nodes of t with the internal
nodes of t′. Thus, results from [25, 52, 73, 80] stated in the setting of full binary trees naturally
transfer to our setting.

With T we denote the set of ordinal trees (a.k.a. Catalan trees, planted plane trees); every node
has a potentially empty sequence of children, each of which is a (nonempty) ordinal tree. Again,
Tn are ordinal trees with n nodes, |t| denotes the size (number of nodes) of an ordinal tree t ∈ T,
and t[v] denotes the fringe subtree rooted in node v of t ∈ T. We use square brackets for writing
ordinal trees (to distinguish from binary trees); for example t = •

[
•[], •[•[]], •[•[], •[], •[]], •[]

]
∈ T9

stands for the ordinal tree
t = .

Definition B.1 (BP encoding): We define the balanced-parenthesis encoding of binary trees
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BP : T → {(, )}?, recursively as follows:

BP(t) =
{
ε if t = Λ

( · BP(t`) · ) · BP(tr) if t = •(tl, tr).

Similarly, we define for ordinal trees BPo : T→ {(, )}? recursively:

BPo(t) =
{
ε if t = Λ

( · BPo(t1) · · ·BPo(tk) · ) if t = •[t1, . . . , tk], k ∈ N0.

Here ε denotes the empty sequence. For technical reasons, we also define forests, which are
(possibly empty) sequences of trees from T: With F, we denote the set of all forests. We have
F = T?. The balanced parenthesis mapping BPo for ordinal trees naturally extends to a mapping
BPo : F→ {(, )}? by setting BPo(t1 · · · tk) = BPo(t1) · · ·BPo(tk).

Definition B.2 (FCNS): We define the first-child-next-sibling mapping fcns : F → T from
ordinal forests to binary trees recursively as follows:

fcns(ε) = Λ,

fcns(t1 = •[c1, . . . , ck], t2, . . . , tj) = •(fcns(c1, . . . , ck), fcns(t2, . . . , tj)).

Example B.3: Let t = •
[
•[], •[•[]], •[•[], •[], •[]], •[]

]
. Then

fcns(t) = •(fcns(•[], •[•[]], •[•[], •[], •[]], •[]), Λ)
= •(•(Λ, fcns(•[•[]], •[•[], •[], •[]], •[])), Λ)
= •(•(Λ, •(•(Λ,Λ), fcns(•[•[], •[], •[]], •[]))), Λ)
= •(•(Λ, •(•(Λ,Λ), •(fcns(•[], •[], •[]), fcns(•[])))), Λ)
= •(•(Λ, •(•(Λ,Λ), •(•(Λ, •(Λ, •(Λ,Λ))), •(Λ,Λ)))), Λ).

It is a folklore result that fcns is a bijection between ordinal forests and binary trees, which is
easily seen by noting that:

∀f ∈ F : fcns(f) = BP−1(BPo(f)) and ∀t ∈ T : fcns−1(t) = BPo
−1(BP(t)).

An easy, uniquely decodable binary-tree code is obtained by storing the size plus one, |t|+ 1,
of the binary tree in Elias-gamma-code, γ(|t| + 1), using |γ(|t| + 1)| = 2blg(|t| + 1)c + 1 many
bits, followed by the balanced parenthesis encoding BP(t) of the binary tree, using 2|t| many bits.
(We store the size plus one of the binary tree, instead of its size, in order to take the case into
account that t might be the empty binary tree). We can use this encoding to obtain a simple
length-restricted version of any binary-tree code C as follows:

Definition B.4 (Worst-case bounding trick): Let C : T → {0, 1}? denote a uniquely decod-
able encoding of binary trees. We define a simple length-restricted version C̄ : T → {0, 1}? of the
binary-tree code C as follows:

C̄(t) =
{

0 · γ(|t|+ 1) · BP(t), if |C(t)| > 2|t|+ 2blg(|t|+ 1)c;
1 · C(t), otherwise.
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The length-restricted code C̄ : T → {0, 1}? then uses

|C̄(t)| ≤ min{|C(t)|, 2|t|+ 2blg(|t|+ 1)c+ 1}+ 1 (1)

many bits in order to encode a binary tree t of size |t|, that is, by spending one extra bit to indicate
the used encoding, we can get the best of both worlds. In a similar way, using the balanced
parenthesis mapping BPo : T→ {(, )}? for ordinal trees, we can obtain a lenght-restricted version
of any ordinal-tree encoding.

B.2. Succinct Data Structures
We use the data structure of Raman, Raman, and Rao [69] for compressed bitvectors. They show
the following result; we use it for more specialized data structures below.

Lemma B.5 (Compressed bit vector): Let B be a bit vector of length n, containing m 1-bits.
In the word-RAM model with word size w = Θ(lgn) bits, there is a data structure of size

lg
(
n

m

)
+ O

(
n log logn

logn

)
≤ m lg

( n
m

)
+ O

(
n log logn

logn +m

)
bits that supports the following operations in O(1) time, for any i ∈ [1, n]:

• access(B, i): return the bit at index i in V.

• rankα(B, i): return the number of bits with value α ∈ {0, 1} in B[1..i].

• selectα(B, i): return the index of the i-th bit with value α ∈ {0, 1}.

Variable-cell arrays. A standard trick (“two-level index”) allows us to store variable cell arrays:
Let o1, . . . , om be m objects where oi needs si bits of space. The goal is to store an “array” O
of the objects contiguously in memory, so that we can access the ith element in constant time
as O[i]; in case si > w (where w denotes the word size in the word-RAM model), we mean by
“access” to find its starting position. We call such a data structure a variable-cell array.

Lemma B.6 (Variable-cell arrays): There is a variable-cell array data structure for objects
o1, . . . , om of sizes s1, . . . , sm that occupies

n + m lg(max si) + 2m lg lgn + O(m)

bits of space, where n =
∑m
i=1 si is the total size of all objects.

Proof: Denote by s = min si, S = max si and s̄ = n/m the minimal, maximal and average size of
the objects, respectively. We store the concatenated bit representation in a bitvector B[1..n] and
use a two-level index to find where the ith object begins. More in detail, we store the starting
index of every bth object in an array blockStart[1..dm/be]. The space usage is m

b lgn (ignoring
ceilings around the logarithms). In a second array blockLocalStart[1..m], we store for every object
its starting index within its block. The space for this is m lg(bS) (again, ignoring ceilings around
the logarithms): we have to prepare for the worst case of a block full of maximal objects.

It remains to choose the block size; b = lg2 n yields the claimed bounds. Note that blockStart
is o(n) (for b = ω(lgn/s̄)), but blockLocalStart has, in general, non-negligible space overhead. The
error term only comes from ignoring ceilings around the logarithms; its constant can be bounded
explicitly. �
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B.3. The Farzan-Munro Algorithm
We briefly recapitulate the Farzan-Munro algorithm [16, §3]. Recall that we have a parameter B
governing the sizes of micro trees.

B.3.1. Ordinal Trees

The Farzan-Munro algorithm builds components bottom-up, through a recursive procedure which
returns a component containing the root of the subtree it is called on, collecting nodes until a
component contains at least B nodes: Let v be a node of the tree t and suppose that components
for all children u1, . . . , uk of v have been computed recursively; the returned components will
be called the active components C1, . . . , Ck of the children, whereas some components might be
already declared permanent and remain invariant. The normal mode of operations – “greedy
packing” – is to start a new component C containing just v and to keep including the active
components of v’s children, left to right. If we reach |C| ≥ B, C is declared permanent, and we
start a new component C ← {v}. When all children are processed, we declare C permanent –
except for the case when |C| < B and it contains all children u1, . . . , uk of v. Finally, we return C.

This mode in isolation is not sufficient for our goal. An external edge of a component connects
a non-root node of the component with the root of another component. Greedily packing leads
to potentially many external edges per component. To achieve at most one external edge, the
Farzan-Munro algorithm distinguishes heavy and light nodes; a node u is heavy if |t[u]| ≥ B. The
entire subtree of a light node fits into one component, so these do not have external edges and
can be combined safely. For heavy children of v, there will be further connections, so we must
avoid grouping several heavy children into one component to have at most one external edge per
component. This leads to a problem since the active components of these nodes can be too small
to remain ungrouped, and in general, there can be Θ(n) heavy nodes, so we cannot afford keep
that many components around.
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Micro Tree id nodes (preorder ids)
0 0, 1, 2, 3, 4, 5, 6, 7, 8
1 0, 9, 49
2 10, 11
3 10, 27, 28, 29, 30, 31, 32
4 10, 48
5 12, 13, 14, 15, 16, 17, 18, 19, 20
6 12, 21, 22, 23, 24, 25, 26
7 33, 42, 43, 44, 45, 46, 47
8 34, 35, 36, 37, 38, 39, 40, 41

Figure 2: Example tree with n = 50 nodes, partitioned using B = 8. The root is a path node and the
micro tree {0, 9, 49} (preorder ids) shows a split of the children, omitting the heavy child
10. 10 itself is a branching node; note that here children in components are contiguous.
(The leftmost and rightmost children here are not in the same micro tree despite the color).

However, the number of branching nodes – nodes with at least two heavy children – is always
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O(n/B). If v is a branching node, we can declare the active components of heavy children
permanent and use greedy packing separately in the gaps between/outside heavy children. (This
leads to some undersized components, but they can be charged to branching nodes, so remain
bounded by O(n/B) in number.)

The remaining, and only truly “abnormal” case, is that of a path node, happening when v has
exactly one heavy child uj . This makes two special treatments necessary. First, we cannot bound
the number of path nodes, so we cannot afford to declare the active component of uj permanent
right away. But that is also not necessary, for there is only one heavy child anyways. So we just
greedily pack as if all children were light. If, however, Cj was already declared permanent, we
cannot add v to it without risking an oversized component – so Cj must stay untouched – but we
also cannot pack the children left resp. right of uj separately since that could lead to two external
edges from v for the component that we pass up the tree. Therefore, we here – and only in this
case – pack across the gap left by uj , allowing a component that contains a range of v’s children
with one gap.

An example illustrating the special cases is shown in Figure 2.

B.3.2. Properties

From the procedure above, we immediately observe the following properties.

Fact B.7: Suppose we apply the Farzan-Munro algorithm with parameter B to a tree t with n
nodes. For the resulting micro trees µ1, . . . , µm, we find:

(i) Every micro-tree root is heavy.
(ii) Every fringe micro tree has ≥ B nodes.
(iii) If v is a heavy leaf (v is heavy, but none of its children is), v is a micro-tree root (potentially

shared among several components). All components with children of v contain one interval
of children.

(iv) If v is a branching node (at least 2 heavy children), all components with children of v contain
one interval of children.

(v) If v is a path node (exactly 1 heavy child), the components containing v also each contain one
interval of children, except for the heavy child, which may be missing from the components
of the surrounding interval.

(vi) Every node v appears in at least one micro tree; if v appears in several micro trees, then as
the shared root of all of them.

B.3.3. Binary Trees

When applying the Farzan-Munro algorithm to binary trees, simplifications arise from the bounded
degree of nodes; in particular, we never obtain components that share nodes. Figure 1 (page 8)
shows an example.

It is illustrative to consider the possible cases that can arise. Let v be a node with children u1
and u2 (potentially null) whose active components are C1 and C2, respectively. If u1 and u2 are
light |C1|, |C2| < B, greedy packing yields a single component {v} ∪ C1 ∪ C2. If both children are
heavy – v is a branching node – we keep C = {v} and declare C, C1 and C2 permanent.
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If only one child, say u1, is heavy, there are two cases depending on whether C1 is permanent.
If it is, we keep it and pass {v} ∪ C2 up the tree. If C1 is not permanent, it must be small,
|C1| < B, and greedy packing yields a single component {v} ∪ C1 ∪ C2.
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Part I.
Binary Trees
We now present our results on binary trees. We begin by describing our code and data structure
(Section C), then define the various classes of sources, state properties, list concrete examples
and state and prove universality of our hypersuccinct code for the classes of sources introduced
(Section D–F). For an overview over the classes of sources sources and the concrete examples
considered in our paper, see Table 1 and Table 2.

C. Hypersuccinct Binary Trees
Here, we describe our compressed tree code resp. data structure. Both are based on the Farzan-
Munro algorithm [16] to decompose a tree into connected subtrees (so-called micro trees). It was
originally designed for ordinal trees; we state its properties here when applied on binary trees. The
results follow directly from the result proven in [16] and the fact that node degrees are at most
two. For the reader’s convenience, we describe the relevant details of the method in Section B.3.

Lemma C.1 (Binary tree decomposition, [16, Theorem 1]): For any parameter B ≥ 1, a
binary tree with n nodes can be decomposed, in linear time, into Θ(n/B) pairwise disjoint subtrees
(so-called micro trees) of ≤ 2B nodes each. Moreover, each of these micro trees has at most three
connections to other micro trees:

(i) an edge from a parent micro tree to the root of the micro tree,
(ii) an edge to another micro tree in the left subtree of the micro tree root,
(iii) an edge to another micro tree in the right subtree of the micro tree root.
(iv) At least one of the edges to a child micro tree (if both of them exist) emanates from the

root itself.

In particular, contracting micro trees into single nodes yields again a binary tree. �

If a node v’s parent u belongs to a different micro tree, u will have a “null pointer” within its
micro tree, i.e., it loses its child there. To recover these connections between micro trees, we do
not only need the information which micro tree is a child of which other micro tree, but also which
null pointer inside a micro tree leads to the lost child. We refer to this null pointer as the portal
of the (parent) micro tree (to the child micro tree).

An additional property that we need is stated in the following lemma; it follows directly from
the construction of micro trees.

Lemma C.2 (Micro-tree roots are heavy): Let v be the root of a micro tree constructed
using the tree parameter B, respectively, any ancestor of a micro tree root. Then |t[v]| ≥ B. �
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C.1. Hypersuccinct Code
Based on the above properties of this tree partitioning algorithm, we design a universal code
H : T → {0, 1}? for binary trees: Given a binary tree t of size n, we apply the Farzan-Munro
algorithm with parameter B = d1

8 lg(n)e to decompose the tree into micro trees µ1, . . . , µm, where
m = Θ(n/ logn). The size of the micro trees µ1, . . . , µm is thus upper-bounded by µ = d1

4 lg(n)e.
With Υ we denote the top tier of the tree t, which is obtained from t by contracting each micro
tree µi into a single node (it forms a graph minor of t in the graph-theoretic sense). In particular,
as each micro tree µi has at most 3 connections to other micro trees (a parent micro tree and (up
to) two child micro trees, see Lemma C.1), Υ is again a binary tree, and the size of Υ equals the
number m of micro trees. With Σµ ⊆

⋃
s≤µ Ts we denote the set of shapes of micro trees that occur

in the tree t: We observe that because of the limited size of micro trees, there are fewer different
possible shapes of binary trees than we have micro trees. The crucial idea of our hypersuccinct
encoding is to treat each shape of a micro tree as a letter in the alphabet Σµ and to compute a
Huffman code C : Σµ → {0, 1}? based on the frequency of occurrences of micro tree shapes in the
sequence µ1, . . . , µm ∈ Σm

µ : For our hypersuccinct code, we then use a length-restricted version
C̄ : Σµ → {0, 1}? obtained from C using the simple cutoff technique from Definition B.4. Finally,
for each micro tree, we have to encode which null pointers (external leaves) are portals to left and
right child components (if they exist). For that, we store the portals’ rank in the micro-tree-local
in left-to-right order of the null pointers using dlg(µ + 1)e bits each. We can thus encode t as
follows:

1. Store n and m in Elias gamma code,

2. followed by the balanced-parenthesis (BP) bitstring for Υ (see Definition B.1).

3. Next comes an encoding for C̄; for simplicity, we simply list all possible codewords and their
corresponding binary trees by storing the size (in Elias code) followed by their BP sequence.

4. Then, we list the length-restricted Huffman codes C̄(µi) of all micro trees in DFS order (of
Υ ).

5. Finally, we store 2 dlg(µ+ 1)e-bit integers to encode the portal nulls for each micro tree,
again in DFS order (of Υ ).

Altogether, this yields our hypersuccinct encoding H : T → {0, 1}? for binary trees. Decoding
is obviously possible by first recovering n, m, and Υ from the BP, then reading the Huffman
code and finally replacing each node in Υ by its micro tree in a depth-first traversal, using the
information about portals to identify nodes from components that are adjacent in Υ . With respect
to the length of the hypersuccinct code, we find the following:

Lemma C.3 (Hypersuccinct binary tree code): Let t ∈ Tn be a binary tree of n nodes,
decomposed into micro trees µ1, . . . , µm by the Farzan-Munro algorithm. Let C be an ordinary
Huffman code for the string µ1 . . . µm. Then, the hypersuccinct code encodes t with a binary
codeword of length

|H(t)| ≤
m∑
i=1
|C(µi)|+O

(
n

log logn
logn

)
.
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Proof: We first show that, among the five parts of the hypersuccinct binary-tree code for t ∈ Tn,
all but the second to last one contribute O(n log logn/ logn) bits. Part 1 clearly needs O(logn)
bits and Part 2 requires 2m = Θ(n/ logn) bits. For Part 3, observe that

|Σµ| ≤
∑

s≤dlgn/4e
4s < 4

3 · 4
lgn/4+1 = 16

3
√
n.

With the worst-case cutoff technique from Definition B.4, C̄(µi) ≤ 2 + 2 lg(µ+ 1) + 2µ ≤ O(µ),
so we need asymptotically O(

√
n) entries / codewords in the table, each of size O(µ) = O(logn),

for an overall table size of O(
√
n logn). Part 5 uses m · 2dlg(µ + 1)e = Θ(n · log logn

logn ) bits of
space. It remains to analyze Part 4. We note that by applying the worst-case pruning scheme of
Definition B.4, we waste 1 bit per micro tree compared to a pure, non-restricted Huffman code.
But these wasted bits amount to m = O(n/ logn) bits in total, and so are again a lower-order
term:

m∑
i=1

C̄(µi) =
m∑
i=1

min{|C(µi)|+ 1, 2|µi|+ 2blg |µi|+ 1c+ 2}

≤
m∑
i=1

(|C(µi)|+ 1) =
m∑
i=1
|C(µi)|+O(n/ logn),

where the first equality comes from (1). This finishes the proof. �

C.2. Tree Covering Data Structures
What sets hypersuccinct code apart from other known codes is that it can be turned into
a universally compressed tree data structure with constant-time queries. For that, we use a
well-known property of tree covering that can be formalized as follows.
Theorem C.4 (Tree-covering index [16]): Given a binary tree t ∈ Tn, decomposed into micro
trees µ1, . . . , µm with tree covering. Assuming access to a data structure that maps i to BP(µi) in
constant-time (for any i ∈ [m]), there is a data structure occupying o(n) additional bits of space
that supports all operations from Table 4 in constant-time.

We will use this to turn our hypersuccinct code into a full-blown tree data structure; any
results proven about the space of the former via Lemma C.3 can then be transferred to this data
structure. To realize the mapping of micro tree ids to shapes, we will keep a variable-cell bitvector
(Lemma B.6) storing i 7→ C̄(µi) where C̄(µi) is the (length-restricted) Huffman code of µ1, . . . , µm.
To get the balanced-parenthesis strings, we additionally store a lookup-table for C̄(µi) 7→ BP(µi).
The space for the former is

∑m
i=1 |C̄(µi)|+O(n log logn/ logn) by Lemma B.6 and the latter is

O(
√
n polylogn) because of the length restriction (see the proof of Lemma C.3).

D. Memoryless and Higher-Order Binary-Tree Sources
Let t ∈ T be a binary tree. We define the type of a node v as

type(v) =


0 if v is a leaf,
1 if v has a single left child (and no right child),
2 if v is a binary node,
3 if v has a single right child (and no left child).
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For a node v of a binary tree t, we inductively define the history of v, h(v) ∈ {1, 2, 3}?, as follows:
If v is the root node, we set h(v) = ε, (i.e., the empty string). If v is the child node of node w of t,
we set h(v) = h(w) type(w), i.e., in order to obtain h(v), we concatenate the types of v’s ancestors.
Note that type(v) is not part of the history of v. Moreover, we define the k-history of v, hk(v), as
the length-k-suffix of 1kh(v), i.e., if |h(v)| ≥ k, hk(v) equals the last k characters of h(v), and if
|h(v)| < k, we pad this too short history with 1’s in order to obtain a string hk(v) of length k.9

Let k ≥ 0, let z ∈ {1, 2, 3}k and let i ∈ {0, 1, 2, 3}. With ntz we denote the number of nodes of t
with k-history z and with ntz,i we denote the number of nodes of type i of t and k-history z . A kth-
order type process τ = (τz)z∈{1,2,3}k is a tuple of probability distributions τz : {0, 1, 2, 3} → [0, 1].
A kth order type process assigns a probability P[t] to a binary tree t by

P[t] =
∏
v∈t

τhk(v)(type(v)) =
∏

z∈{1,2,3}k

3∏
i=0

(τz(i))n
t
z,i . (2)

If k = 0, we call such a kth-order type process a memoryless binary-tree source: in this case, the
probability distribution on the node types is independent of the node’s ancestors’ node types. If
k > 0, we call the kth-order type process a higher-order binary-tree source.

A kth-order type process randomly constructs a binary tree t as follows: In a top-down way,
starting at the root node, we determine for each node v its type, where this decision depends on
the k-history hk(v) of the node: The probability that a node v is of type i is given by τhk(v)(i). If
i = 0, then this node becomes a leaf and the process stops at this node. If i = 1, we attach a
single left child to the node, if i = 2, we attach a left and a right child to the node, and if i = 3,
we attach a single right child to the node. The process then continues at these child nodes. Note
that this process might produce infinite trees with non-zero probability.

We define the following higher-order empirical entropy for binary trees:

Definition D.1 (Empirical type entropy): Let k ≥ 0 be an integer, and let t ∈ T be a binary
tree. The (unnormalized) kth-order type entropy Htype

k (t) of t is defined as

Htype
k (t) =

∑
z∈{1,2,3}k

3∑
i=0

ntz,i lg
(
ntz
ntz,i

)
.

The corresponding normalized tree entropy is obtained by dividing by the tree size. The zeroth
order empirical type entropy is a slight variant of the degree entropy defined for ordinal trees by
Jansson, Sadakane, and Sung [49] and occurs implicitly in [11].

We say that the kth-order type process (τz)z is the empirical kth-order type process of a tree
t, if τz(i) = ntz,i

ntz
for all z ∈ {1, 2, 3}k and i ∈ {0, 1, 2, 3}. In particular, if (τz)z is the empirical

kth-order type process of a binary tree t ∈ T , we have

lg
( 1
P[t]

)
=

∑
z∈{1,2,3}k

3∑
i=0

ntz,i lg
( 1
τz(i)

)
=

∑
z∈{1,2,3}k

3∑
i=0

ntz,i lg
(
ntz
ntz,i

)
= Htype

k (t).

This shows that the empirical entropy is precisely the number of bits an optimal code can achieve
for this source.

9This is an ad-hoc decision: Alternatively, we could allow histories of length smaller than k.
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Example D.2 (Uniform binary trees): In order to encode a (uniformly random) binary
tree of size n, 2n bits are necessary [16]. Let τ denote the memoryless type process defined by
τ(0) = τ(1) = τ(2) = τ(3) = 1

4 , then for every binary tree t of size n we have P[t] = 4−n and
in particular, lg(1/P[t]) = 2n.

Example D.3 (Full binary trees): Probability distributions over full binary trees are ob-
tained from type processes (τz)z∈{1,2,3}k with τz(1) = τz(3) = 0 for all z ∈ {1, 2, 3}k. Recall
that every full binary tree consists of an odd number n = 2ν + 1 of nodes: ν binary nodes
and ν + 1 leaves for some integer ν. If τ is a memoryless type process, we thus have
P[t] = τ(0)ν+1τ(2)ν for every t ∈ Tn. Setting τ(0) = τ(2) = 1

2 yields

lg
( 1
P[t]

)
= (ν + 1) log(2) + ν log(2) = n,

and n = 2ν + 1 is the minimum number of bits needed to represent a (uniformly chosen) full
binary tree t ∈ Tn [44].

Example D.4 (Unary paths): Type processes (τz)z∈{1,2,3}k with τz(2) = 0 yield probabil-
ity distributions over unary-path trees, i.e., trees only consisting of unary nodes and one
leaf. In order to encode a unary-path tree of size n + 1, we need n bits (to encode the n
“directions” left/right). For a fixed integer n, let τn denote the memoryless type process with
τn(1) = τn(3) = 1/(2 + εn) and τn(0) = εn/(2 + εn), for εn = 2/n. We have

lg
( 1
P[t]

)
= n lg(2 + εn) + lg

(
1 + 2

εn

)
= n lg

(
2 + 2

n

)
+ lg(n+ 1)

≤ n+ lg(n+ 1) + 1
ln(2) ,

for every unary-path tree t ∈ Tn+1.

Example D.5 (Motzkin trees): Motzkin trees are binary trees with only one type of
unary nodes: Probability distributions over Motzkin trees can be modeled by type processes
(τz)z∈{1,2,3}k with τz(3) = 0 for every z ∈ {1, 2, 3}k. For encoding (uniformly random) Motzkin
trees of size n, asymptotically lg(3)n ≈ 1.58496n bits are necessary [72, Theorem 6.16]: Let τ
denote the memoryless type process with τ(0) = τ(1) = τ(2) = 1

3 , then P(t) = 3−n for every
Motzkin tree of size n. In particular, we have lg(1/P[t]) = lg(3)n.

Example D.6: Let (τz)z∈{1,2,3}k denote a higher-order type process with τz′1(1) = τz′3(1) =
τz′1(3) = τz′3(3) = 0 for every z′ ∈ {1, 2, 3}k−1, then τ only generates binary trees with non-
zero probability, in which children of unary nodes are either binary nodes or leaves, i.e., on
each path from the root node to a leaf of the tree, we do not pass two consecutive unary nodes.
For example, a first-order type process (τz)z∈{1,2,3} which satisfies this property is obtained
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by setting τ1(2) = τ1(0) = 1/2, τ3(2) = τ3(0) = 1/2, τ2(0) = τ2(1) = τ2(2) = τ2(3) = 1/4.

Example D.7: The random binary search tree model assigns a probability to a binary tree
of size n by setting

Pbst(t) =
∏
v∈t

1
|t[v]| ,

where the product ranges over all nodes v of t, see Example E.1 and Section 5.2 for more
information. This distribution over binary trees arises for binary search trees (BST)s, when
they are built by successive insertions from a uniformly random permutation. In [36], it was
shown that the average numbers of node types in a random binary search tree t of size n
satisfy

∑
t∈Tn Pbst [t]nt0 ∼

∑
t∈Tn Pbst [t]nt2 ∼ 1

3n and
∑
t∈Tn Pbst [t]nt1 =

∑
t∈Tn Pbst [t]nt3 ∼ 1

6n.
Thus, it seems natural to consider the memoryless type process given by τ(0) = τ(2) = 1

3 and
τ(1) = τ(3) = 1

6 : In [11], a data structure supporting RMQ in constant time using

∑
t∈Tn

Pbst(t) lg
( 1
Pτ (t)

)
+ o(n)

=
∑
t∈Tn

Pbst(t)
(
nt0 lg(3) + nt2 lg(3) + nt1 lg(6) + nt3 lg(6)

)
+ o(n)

= 1
3 lg(3)n+ 1

3 lg(3)n+ 1
6 lg(6)n+ 1

6 lg(6)n

≈ 1.919n+ o(n)

many bits in expectation is introduced. However, to achieve the asymptotically optimal∑
t∈Tn Pbst(t) lg

( 1
Pbst [t]

)
+ o(n) ≈ 1.736n+ o(n) bits on average (see Section 5.2), it is necessary

to consider a different kind of binary-tree sources.

D.1. Universality of Memoryless and Higher-Order Sources
In order to show universality of the hypersuccinct code from Section C.1 with respect to memoryless
and higher-order binary tree sources, we first derive a source-specific encoding (a so-called depth-
first arithmetic code) with respect to the memoryless/higher-order source, against which we will
then compare our hypersuccinct code. An overview of the strategy is given in Section 4.1.

The formula for P[t], Equation (2), suggests a route for an (essentially) optimal source-specific
encoding of any binary tree t with P[t] > 0 that, given a kth-order type process (τz)z, spends
lg(1/P[t]) (plus lower-order terms) many bits in order to encode a binary tree t ∈ T with P[t] > 0:
Such an encoding may spend lg(1/τz(i)) many bits per node v of type i and of k-history z of t.
(Note that as P[t] > 0 by assumption, we have τhk(v)(type(v)) > 0 for every node v of t). Assuming
that we “know” the kth-order type process (τz)z – i.e., that it need not be stored as part of the
encoding – we can use arithmetic coding [79] in order to encode the type of node v in that many
bits. A simple (source-dependent) encoding Dτ , dependent on a given kth-order type process
(τz)z, thus stores a tree t as follows: While traversing the tree in depth-first order, we always
know the k-history of each node v we pass, and encode type(v) of each node v, using arithmetic
coding: To encode type(v), we feed the arithmetic coder with the model that the next symbol
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is a number i ∈ {0, 1, 2, 3} with probability τz(i), where z is the k-history of v. We refer to this
(source-dependent) code Dτ as the depth-first arithmetic code for the type process τ . We can
reconstruct the tree t recursively from its code Dτ (t), as we always know the node types of nodes
we have already visited in the depth-first order traversal of the tree, and the k-history of the node
which we will visit next. As arithmetic coding needs lg

(
1/τhk(v)(type(v))

)
many bits per node v,

plus at most 2 bits of overhead, the total number of bits needed to store a binary tree t ∈ T is
thus

|Dτ (t)| ≤
∑
v∈t

lg
(

1
τhk(v)(type(v))

)
+ 2 = lg

( 1
P[t]

)
+ 2. (3)

Note that Dτ is a single prefix-free code for the set of all binary trees which satisfy P[t] > 0 with
respect to the kth-order type process (τz)z. We now start with the following lemma:

Lemma D.8: Let (τz)z be a kth-order type process and let t ∈ T be a binary tree of size n with
P[t] > 0. Then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
nk

logn + n log logn
logn

)
,

where C is a Huffman code for the sequence of the micro trees µ1, . . . , µm obtained from the tree
covering scheme (see Section C.1).

Proof: Let v be a node of t and let µi denote the micro tree of t that contains v. For the sake of
clarity, let typet(v) denote the type of v viewed as a node of t, and let typeµi(v) denote the type
of v in µi. We find that typeµi(v) = typet(v), unless v is a parent of a portal null: In this case,
the degree of v in µi is strictly smaller than the degree of v in t. By definition of the tree covering
scheme (Lemma C.1), there are at most two parents of portal nulls per micro tree µi. If a tree µi
contains two parents of portal nulls, one of those two nodes is the root node by Lemma C.1. Let
πi,1 denote the root node of µi and let πi,2 denote the parent node of the portal null in µi which is
not the root node, if it exists. Moreover, let pos(πi,2) denote the preorder index of node πi,2 in µi.

Again for the sake of clarity, let htk(v) denote the k-history of v in t, and let hµik (v) denote
the k-history of v in micro tree µi. If v is of depth smaller than k (within µi), then its k-history
hµik (v) in µi might not coincide with its k-history htk(v) in t, and if v is a descendant of order
smaller than k of node πi,2 (i.e., v is of depth smaller than k in the subtree of µi rooted in πi,2),
then its k-history in µi does not coincide with its k-history in t, as πi,2 changes its node type.

However, if we know the k-history htk(πi,1) of the root node πi,1 of µi, the type typet(πi,1), and
the preorder position (in µi) and type (in t) of the node πi,2, we are able to recover the k-history
htk(v) of every node v ∈ µi. We define the following modification of Dτ (i.e., the depth-first
arithmetic code defined at the beginning of Section D.1), under the assumption that we know
htk(πi,1), typet(πi,1), typet(πi,2) and pos(πi,2): While traversing the micro-tree µi in depth-first
order, we encode typeµi(v) (i.e., typet(v)) for every node v of µi except for nodes πi,1 and πi,2
(if it exists), for which we encode typet(πi,1) and typet(πi,2) (which we know, by assumption, as
well as the preorder position of πi,2); as we know htk(πi,1) by assumption, as well as the node
types of πi,1 and πi,2, we know htk(v) at every node v we pass: we therefore encode typet(v) using
arithmetic coding by feeding the arithmetic coder with the model that the next symbol is a number
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i ∈ {0, 1, 2, 3} with probability τht
k

(v)(i). We denote this modification of Dτ (µi) with Dhtk(πi,1)
τ (µi)

and find that it spends at most

D
htk(πi,1)
τ (µi) ≤

∑
v∈µi

lg
(

1
τht
k

(v)(typet(v))

)
+ 2 (4)

many bits in order to encode a micro tree µi.
Furthermore, let S : {0, 1, 2, 3}? → {0, 1}? denote any uniquely decodable binary encoding

which spends 2|z| bits in order to encode z ∈ {0, 1, 2, 3}?. Let I0 denote the set of indices i ∈ [m]
for which µi is fringe, let I1 denote the set of indices i ∈ [m] for which the root node of µi is a
parent of a portal null, but no other portal null exists, let I3 denote the set of indices i ∈ [m], for
which the root node of µi is not a parent of a portal null, but node πi,2 is a parent of a portal
null, and let I3 = [m] \ (I0 ∪ I1 ∪ I2). We define a modified encoding of µi as follows:

D̃τ (µi) =



00 · S(htk(πi,1)) ·Dhtk(πi,1)
τ (µi), if i ∈ I0;

01 · S(htk(πi,1)) · γ(typet(πi,1) + 1) ·Dhtk(µi)
τ (µi), if i ∈ I1;

10 · S(htk(πi,1)) · γ(pos(πi,2)) · γ(typet(πi,2 + 1))

·Dhtk(µi)
τ (µi),

if i ∈ I1;

11 · S(htk(πi,1)) · γ(typet(πi,1 + 1)) · γ(pos(πi,2))

· γ(typet(πi,2) + 1) ·Dhtk(πi,1)
τ (µi)

if i ∈ I3.

Note that formally, D̃τ is not a prefix-free code over Σµ, as there can be micro tree shapes
that are assigned several codewords by D̃τ , depending on which and how many nodes are portals
to other micro trees. But D̃τ is uniquely decodable to local shapes of micro trees, and can thus be
seen as a generalized prefix-free code, where more than one codeword per symbol is allowed. In
terms of encoding length, assigning more than one codeword is not helpful – removing all but the
shortest one never makes the code worse – so a Huffman code minimizes the encoding length over
the larger class of generalized prefix-free codes. Thus, as a Huffman code minimizes the encoding
length over the class of generalized prefix-free codes, we find

m∑
i=1
|C(µi)| ≤

m∑
i=1
|D̃τ (µi)| =

3∑
j=0

∑
i∈Ij
|D̃τ (µi)|

≤
m∑
i=1
|S(htk(πi,1))| +

3∑
j=0

∑
i∈Ij
|Dhtk(πi,1)

τ (µi)| + O(m logµ),

as pos(πi,2) ≤ µ. With the estimate (4), this is upper-bounded by

≤
m∑
i=1
|S(htk(πi,1))| +

3∑
j=0

∑
i∈Ij

∑
v∈µi

lg
(

1
τht
k

(v)(typet(v))

)
+ O(m logµ).
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Finally, as |S(htk(πi,1))| = 2k, we have
m∑
i=1
|C(µi)| ≤

∑
v∈t

lg
(

1
τht
k

(v)(typet(v))

)
+ O(m logµ) +O(km)

= lg
( 1
P[t]

)
+ O

(
nk

logn + n log logn
logn

)
, �

as m = Θ(n/ logn) and µ = Θ(logn) (see Section C.1). This finishes the proof of the lemma.

From Lemma D.8 and Lemma C.3, we find that our hypersuccinct code is universal with respect
to memoryless/higher-order type processes of order k, if k = o(logn):

Theorem D.9: Let (τz)z be a kth-order type process. The hypersuccinct code H : T → {0, 1}?
satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+ O

(
nk + n log logn

logn

)
for every t ∈ Tn with P[t] > 0. In particular, if (τz)z is the empirical kth-order type process of the
binary tree t, we have

|H(t)| ≤ Htype
k (t) +O

(
nk + n log logn

logn

)
.

From Theorem D.9 and Example D.2, Example D.3, Example D.4 and Example D.5 we obtain
the following corollary:

Corollary D.10: The hypersuccinct code H : T → {0, 1}? optimally compresses

(i) binary trees t of size n, drawn uniformly at random from the set of all binary trees of
size n, using |H(t)| ≤ 2n+O(n log logn/ logn) many bits,

(ii) full binary trees t of size n, drawn uniformly at random from the set of all full binary
trees of size n, using |H(t)| ≤ n+O(n log logn/ logn) many bits,

(iii) unary-path trees t of size n + 1, drawn uniformly at random from the set of all
unary-path trees of size n+ 1, using |H(t)| ≤ n+O(n log logn/ logn) many bits, and

(iv) Motzkin trees t of size n, drawn uniformly at random from the set of all Motzkin
trees of size n, using |H(t)| ≤ lg(3)n+O(n log logn/ logn) many bits.

Remark D.11 (Shape entropy): Another notion of empirical entropy for unlabeled full binary
trees was defined in [44]: The authors define the k-history of a node v of a full binary tree t
as the string consisting of the last k directions (left/right) on the path from the root node of
the tree to node v, and define the (normalized) kth order empirical entropy Hsk(t)/|t| of the full
binary tree as the expected uncertainty of the node types conditioned on the k-history of the
node. In particular, it is then shown in [44], that the length of the binary encoding of full binary
trees based on TSLPs from [25] can be upper-bounded in terms of this empirical entropy plus
lower-order terms. As this notion of empirical entropy Hk(t) for full binary trees is conceptually
quite similar to the empirical entropy of the node types Htype

k (t), the main ideas of our proof
that |H(t)| ≤ Htype

k (t) + o(n) can be transferred to the setting from [44] in order to show that
|H(t)| ≤ Hk(t) + o(n) holds for full binary trees of size n, as well, if k = o(logn). For a formal
definition and further details on shape entropy, see Section J.
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E. Fixed-Size and Fixed-Height Binary Tree Sources
A general concept to model probability distributions on various sets of binary trees was introduced
by Zhang, Yang, and Kieffer in [80] (see also [52]), where the authors extend the classical notion of
an information source on finite sequences to so-called structured binary-tree sources, or binary-tree
sources for short: So-called leaf-centric binary-tree sources induce probability distributions on the
set of full binary trees with n leaves and correspond to fixed-size binary-tree sources which we will
introduce below, while so-called depth-centric binary tree souces induce probability distributions
on the set of full binary trees of height h and correspond to fixed-height binary-tree sources,
also to be introduced below in this section. For a formal introduction of structure sources and
underlying concepts, see [80].

E.1. Fixed-Size Binary Tree Sources
A fixed-size binary tree source Sfs(p) is defined by a function p : N2

0 → [0, 1], such that

n∑
`=0

p(`, n− `) = 1 for all n ∈ N0.

A fixed-size tree source Sfs(p) induces a probability distribution over the set of all binary trees of
size n by

P[t] =
∏
v∈t

p(|t`[v]|, |tr[v]|), (5)

where the product ranges over all nodes v of the binary tree t. If t is the empty tree, we set P[t] = 1.
Intuitively, this corresponds to generating a binary tree by a (recursive) depth-first traversal as
follows: Given a target tree size n, ask the source for a left subtree size ` ∈ {0, ..., n− 1}: The
probability of a left subtree size ` is p(`, n− 1− `). Create a node and recursively generate its
left subtree of size ` and its right subtree of size n− 1− `. The random choices in the left and
right subtree are independent conditional on their sizes. An inductive proof over n verifies that∑
t∈Tn P[t] = 1 for every n ∈ N0.
Note that the concept of fixed-size binary-tree sources is equivalent to the concept of leaf-centric

binary-tree sources considered in [25, 52, 73, 80] in the setting of full binary trees.

Example E.1 (Random binary search tree model): The (arguably) simplest example
of a fixed-size tree source is the random binary search tree (BST) model Sfs(pbst). This
corresponds to setting pbst(`, n− `) = 1

n+1 for all ` ∈ {0, . . . , n} and n ∈ N0. The very same
distribution over binary trees arises for (unbalanced) binary search trees (BSTs), when they
are build by successive insertions from a uniformly random permutation (“random BSTs”),
and also for the shape of Cartesian trees build from a uniformly random permutation (a.k.a.
random increasing binary trees [22, Ex. II.17&Ex. III.33]); see Section 5.2.

Example E.2 (Uniform model): Perhaps the most elementary distribution on the set Tn
is the uniform probability distribution, i.e., P(t) = 1

|Tn| for every t ∈ Tn. This distribution
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corresponds to the fixed-size tree source Sfs(puni) defined by

puni(`, n− `) = |T`||Tn−`|
|Tn+1|

for every ` ∈ {0, . . . , n− 1} and n ∈ N0.

Example E.3 (Binomial random tree model): Fix a constant 0 < α < 1. The binomial
random tree model Sfs(pbin) is defined by

pbin(`, n− `) = α`(1− α)n−`
(
n

`

)

for every ` ∈ {0, . . . , n} and n ∈ N0. It is a slight variant of the digital search tree model,
studied in [58] (see also [52, 80, 73]), and corresponds to (simple) tries built from n bitstrings
generated by a Bernoulli(α) (memoryless) source.

Example E.4 (Almost paths): Setting p(0, n) = p(n, 0) = 1
2 for n ≥ 2 yields a fixed-size

source which produces unary paths; (this is a special case of [80, Ex. 6]). One can generalize
the example so that p(`, r) > 0 implies min{`, r} ≤ K for some constant K by setting

ppath(`, r) =

min
{ 1
`+ r + 1 ,

1
2(K + 1)

}
if ` ≤ K or r ≤ K,

0 otherwise.

A fixed-size source Sfs(ppath) only generates binary trees for which at each node, the left or
right subtree has at most K nodes. Unary paths correspond to K = 0.

Example E.5 (Random fringe-balanced BSTs): Let t ∈ N0 be a parameter, and define

pbal(k, n− k − 1) =


(
k

t

)(
n− k − 1

t

)/(
n

2t+ 1

)
if n ≥ 2t+ 1,

1
n

otherwise.

This is the shape of a random (2t+ 1)-fringe-balanced BST; (see [78, §4.3] and the references
therein for background on these trees).

E.2. Fixed-Height Binary-Tree Sources
A fixed-height binary tree source Sfh(p) is defined by a function p : N2

0 → [0, 1], such that∑
i,j∈N0

max(i,j)=h

p(i, j) = 1 for all h ∈ N0.
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A fixed-height tree source Sfh(p) induces a probability distribution over the set of all binary trees
of height h by

P[t] =
∏
v∈t

p(h(t`[v]), h(tr[v])), (6)

where the product ranges over all nodes of the binary tree t. If t is the empty tree, we set P[t] = 1.
Intuitively, this corresponds to generating a binary tree by a (recursive) depth-first traversal as
follows: Given a target height h of the tree, ask the source for the height ` of the left subtree
and the height r of the right subtree conditional on max(`, r) = h− 1. The probability of a pair
of heights (`, r) with max(`, r) = h− 1 is p(`, r). Create a node and recursively generate its left
subtree of height ` and its right subtree of height r. The random choices in the left and right
subtree are independent conditional on their heights. An inductive proof over h verifies that∑
t∈T h P[t] = 1 for every h ∈ N0. Note that the concept of fixed-height binary-tree sources is

equivalent to the concept of depth-centric binary-tree sources considered in [25, 52] in the setting
of full binary trees.

Example E.6 (AVL trees by height): An AVL tree is a binary tree t, such that for every
node v of t, we have |h(t`[v])− h(tr[v])| ≤ 1. Let T h(A) denote the set of AVL trees of height
h. The number of AVL trees of height h satisfies the following recurrence relation:

|T h(A)| = 2|T h−1(A)||T h−2(A)| + |T h−1(A)||T h−1(A)|.

Set

p(j, k) =


|T j(A)||T k(A)|
|T h(A)| for (j, k) ∈ {(h−2, h−1), (h−1, h−1), (h−1, h−2)}

0 otherwise,

for every h ≥ 2. Then Sfh(p) corresponds to a uniform probability distribution on the set
T h(A) of AVL trees of height h for every h ∈ N.

E.3. Entropy of Fixed-Size and Fixed-Height Sources
Given a fixed-size tree source Sfs(p) or fixed-height tree source Sfh(p), we write Hn(Sfs(p)),
respectively Hh(Sfh(p)) for the entropy of the distribution it induces over the set of binary trees
Tn, respectively, T h: If Sfs(p) is a fixed-size tree source, we have

Hn(Sfs(p)) =
∑
t∈Tn

P[t] lg
( 1
P[t]

)

=
∑
t∈Tn

(∏
v∈t

p(|t`[v]|, |tr[v]|)
)
·
∑
v∈t

lg
( 1
p(|t`[v]|, |tr[v]|)

)
.

Similarly, if Sfh(p) is a fixed-height tree source, we have

Hh(Sfh(p)) =
∑
t∈T h

P[t] lg
( 1
P[t]

)



40 Hypersuccinct Trees

=
∑
t∈T h

(∏
v∈t

p(h(t`[v]), h(tr[v]))
)
·
∑
v∈t

lg
( 1
p(h(t`[v]), h(tr[v]))

)
.

(Recall our convention 0 lg(1/0) = 0).

In [52], the growth of Hn was examined with respect to several types of fixed-size binary-tree
sources, like the uniform model Sfs(puni) from Example E.2 and the binomial random tree
model Sfs(pbin) from Example E.3. In particular, for the random BST model Sfs(pbst) from
Example E.1, it was shown in [52] that

Hn(Sfs(pbst)) ∼ 2n
∞∑
i=2

lg i
(i+ 2)(i+ 1) ≈ 1.7363771n;

see Section 5.2 (page 12) for more discussion of this example.

In the following, we present several properties of fixed-size and fixed-height binary-tree sources,
for which we will be able to derive universal codes.

E.4. Monotonic Tree Sources
The first property was introduced in [25], where it was shown that a certain binary encoding of
binary trees based on tree straight-line programs yields universal codes with respect to fixed-size
and fixed-height sources satisfying this property:

Definition E.7 (Monotonic source): A fixed-size or fixed-height binary tree source is mono-
tonic if p(`, r) ≥ p(`+ 1, r) and p(`, r) ≥ p(`, r + 1) for all `, r ∈ N0.
Clearly, the binary search tree model Sfs(pbst) from Example E.1 is a monotonic fixed-size tree
source, and one can easily show that the uniform model Sfs(puni) from Example E.2 is another
one. Furthermore, the fixed-size source Sfs(ppath) from Example E.4 is monotonic. In contrast,
the binomial random tree model Sfs(pbin) from Example E.3 and the fringe-balanced BSTs
(Example E.5) are not monotonic.

For monotonic tree sources, we find the following:

Lemma E.8 (Monotonicity implies submultiplicativity): Let t ∈ T , and let µ1, . . . , µm be
a partition of t into disjoint subtrees, in the sense that every node of t belongs to exactly one
subtree µi. If p corresponds to a monotonic fixed-size or monotonic fixed-height tree source, then

P[t] ≤
m∏
i=1

P[µi]

Proof: Let v be a node of t and let µi denote the subtree that v belongs to. As µi is a subtree of
t, we find |µi`[v]| ≤ |t`[v]|, |µir[v]| ≤ |tr[v]|, h(µi`[v]) ≤ h(t`[v]) and h(µir[v]) ≤ h(tr[v]). From the
definition of monotonicity, we thus have p(|µi`[v]|, |µir[v]|) ≥ p(|t`[v]|, |tr[v]|), if p corresponds to
a fixed-size source, respectively, p(h(µi`[v]), h(µir[v])) ≥ p(h(t`[v]), h(tr[v])), if p corresponds to a
fixed-height source. As every node of t belongs to exactly one subtree µi, we find for monotonic
fixed-size sources p:

P[t] =
∏
v∈t

p
(
|t`[v]|, |tr[v]|

)
≤

m∏
i=1

∏
v∈µi

p
(
|µi`[v]|, |µir[v]|

)
=

m∏
i=1

P[µi].
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For monotonic fixed-height sources, we similarly find

P[t] =
∏
v∈t

p
(
h(t`[v]), h(tr[v])

)
≤

m∏
i=1

∏
v∈µi

p
(
h(µi`[v]), h(µir[v])

)
=

m∏
i=1

P[µi]. �

Lemma E.8 depicts the crucial property of monotonic sources, based on which we will be able
prove universality of our hypersuccinct encoding from Section C.1.

E.5. Fringe-Dominated Tree Sources
A second class of tree sources, for which we will be able to show universality of our encoding, is
the following: Let nb(t) be the number of nodes v in t with |t[v]| = b and let n≥b(t) likewise be
the number of nodes v in t with |t[v]| ≥ b.

Definition E.9 (Average-case fringe-dominated): We call a fixed-size binary tree source
average-case B-fringe dominated for a function B with B(n) = Θ(log(n)), if

∑
t∈Tn

P[t]n≥B(n)(t) = o

(
n

log(B(n))

)
.

Definition E.10 (Worst-case fringe-dominated): We call a fixed-size or fixed-height binary
tree source worst-case B-fringe dominated for a function B with B(n) = Θ(log(n)), if

n≥B(n)(t) = o(n/(logB(n)))

for every tree t ∈ Tn with P[t] > 0.

Note that Definition E.10 treats fixed-size and fixed-height binary tree sources, but Definition E.9
only covers fixed-size binary tree sources (to avoid averaging over trees of different sizes). Moreover,
a fixed-size tree source that is worst-case B-fringe-dominated is clearly average-case B-fringe-
dominated as well.

Sufficient conditions for fixed-size sources to be average-case fringe-dominated are given in [73]
in the context of DAG-compression of trees. The classes for which our hypersuccinct code from
Section C.1 is universal happen to be exactly the classes for which the DAG-based compression
provably yields best possible compression:

Definition E.11 (ψ-nondegenerate [73]): Let ψ : R→ (0, 1] denote a monotonically decreas-
ing function. A fixed-size tree source Sfs(p) is called ψ-nondegenerate, if p(`, n− `) ≤ ψ(n) for
every ` ∈ {0, . . . , n} and sufficiently large n.

Definition E.12 (ϕ-weakly-weight-balanced [73]): Let ϕ : R → (0, 1] denote a monotoni-
cally decreasing function and let c ≥ 3 denote a constant. A fixed-size tree source Sfs(p) is called
ϕ-weakly-weight-balanced, if ∑

n
c
≤`≤n−n

c

p(`− 1, n− `− 1) ≥ ϕ(n)

for every n ∈ N.
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The following two lemmas follow from results shown in [73] (note that in [73], the authors consider
full binary trees with n leaves, whereas we consider (not necessarily full) binary trees with n
nodes, so there is an off-by-one in the definition of the tree size n):

Lemma E.13 (ψ-nondegeneracy implies fringe dominance, [73, Lemma 4]): Let Sfs(p)
be a ψ-nondegenerate fixed-size tree source, then∑

t∈Tn
P[t] · n≥B(n)(t) ≤ O(nψ(B(n))),

for every function B with B(n) = Θ(logn).

Lemma E.14 (ϕ-balance implies fringe dominance, [73, Lemma 14]): Let Sfs(p) be a ϕ-
weakly-weight-balanced fixed-size tree source, then∑

t∈Tn
P[t] · n≥B(n)(t) ≤ O

(
cn

ϕ(n)B(n)

)
,

for every function B with B(n) = Θ(logn).

Thus, if a fixed-size tree source Sfs(p) is ψ-nondegenerate for a function ψ with ψ(n) ∈ o(1/ log(n)),
or ϕ-weakly-weight-balanced for a function ϕ with ϕ(n) ∈ ω(log logn/ logn) (under the assump-
tion that B = Θ(logn)), then it is average-case fringe dominated. For the binary search tree
model Sfs(pbst) (Example E.1), Lemma E.13 and Lemma E.14 both yield

∑
t∈Tn P[t]n≥B(n)(t) ∈

O(n/B(n)), by choosing ψ(n) ∈ Θ(1/n) and ϕ(n) ∈ Θ(1). Moreover, for the binomial random tree
model Sfs(pbin) from Example E.3, we find

∑
t∈Tn P[t]n≥B(n)(t) ∈ O(n/B(n)) from Lemma E.14

(see also [73, Ex. 16]). Additionally, for random fringe-balanced BSTs from Example E.5, it is easy
to show that

∑
t∈Tn P[t]n≥B(n)(t) ∈ O(n/B(n)) by choosing ψ(n) = Θ(1/n) in Lemma E.13 (see

also [77, Lemma 2.38]).
Intuitively, ϕ-weakly-weight-balanced fixed-size tree sources lower-bound the probability of

balanced binary trees in terms of the function ϕ. They generalize a class of tree sources considered
in [25, Lemma 4 and Theorem 2], as well as so-called leaf-balanced (called weight-balanced below)
tree sources introduced in [80] and further analyzed in [25]:

Definition E.15 (Weight-balanced): A weight-balanced tree source is a ϕ-weakly-weight-
balanced tree source with ϕ = 1, that is, there is a constant c ≥ 3, such that∑

n
c
≤`≤n−n

c

p(`− 1, n− `− 1) = 1

for every n ∈ N.

Weight-balanced tree sources constitute an example of fixed-size tree sources which are worst-case
fringe-dominated:

Lemma E.16 (Weight-balance implies fringe dominance): Let Sfs(p) be a weight-balanced
fixed-size tree source. Then

n≥B(n)(t) = O

(
n

B(n)

)
for every tree t ∈ Tn with P[t] > 0 and function B, i.e., Sfs(p) is worst-case B-fringe dominated.

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf66
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Proof: Lemma E.16 follows from results shown in [24] (see also [25, Lemma 3]): Let 0 < β ≤ 1.
In [24], the authors introduce so-called β-balanced binary trees: A node v of a binary tree t is
called β-balanced, if |t`[v]|+ 1 ≥ β(|tr[v]|+ 1) and |tr[v]|+ 1 ≥ β(|t`[v]|+ 1) (note that in [24],
the authors count leaves of full binary trees, such that there is an off-by-one in the definition of
β-balanced nodes). A binary tree is called β-balanced, if for all internal nodes u, v of t such that u
is the parent node of v, we have that u is β-balanced or v is β-balanced. In the proof of [24, Lemma
10], it is shown in the context of DAG-compression of trees that for every β-balanced tree t ∈ Tn,
we have n≥b(t) ≤ 4αn/b for every constant b ∈ N, where α = 1 + log1+β(β−1). Now let Sfs(p) be
a weight-balanced fixed-size tree source and let t be a binary tree with P[t] > 0. It remains to
show that t is β-balanced for some constant β: Let v be a node of t. As P[t] > 0, we find that
p(|t`[v]|, |tr[v]|) > 0, and thus, there is a constant c, such that n/c ≤ |t`[v]|+1, |tr[v]|+1 ≤ n−n/c:
In particular, we find that |t`[v]|+ 1 ≥ (|tr[v]|+ 1)/c and |tr[v]|+ 1 ≥ (|t`[v]|+ 1)/c. Thus, t is
β-balanced with β = 1/c. �

Finally, we will present a class of fixed-height binary tree sources that generalizes AVL-trees
and is worst-case B-fringe dominated (and thus amenable to compression using our techniques).

Definition E.17 (δ-height-balanced): A fixed-height tree source Sfh(p) is called δ-height-
balanced, if there is a monotonically increasing function δ : N→ N0, such that for all (i, j) ∈ N0×N0
with p(i, j) > 0 and max(i, j) = k − 1 we have |i− j| ≤ δ(k).

For δ-height-balanced tree sources, we find the following:

Lemma E.18 (Height balance implies fringe dominance): Let Sfh(p) be a δ-height-balanced
fixed-height tree source, then

n≥B(n)(t) ≤ O

(
δ(n)n logB(n)

B(n)

)
for every tree t ∈ Tn with P[t] > 0 and function B.

In particular, under the assumption that B(n) = Θ(logn), Sfh(p) is worst-case fringe-dominated
if δ(k) ∈ o(log k/(log log k)2). The class of δ-height-balanced fixed-height tree sources generalizes
so-called depth-balanced tree sources introduced in [25]. The fixed-height binary tree source
from Example E.6 is an example of a 1-height-balanced fixed-height tree source. Lemma E.18
follows from combining, respectively, generalizing known results from [25, Lemma 7] and [43,
Lemma 2], the latter presented in the context of top-tree compression; in the following, we give a
self-contained proof in our notation: We start with showing the following lemma based upon [43,
Lemma 2], which is wider interest for establishing fringe dominance.

Lemma E.19 (Log-height implies fringe dominance): Let t be a binary tree and let b ∈ N.
If there is a constant c > 1, such that h(t[v]) ≤ logc(|t[v]|+ 1) = 1

lg(c) · lg(|t[v]|+ 1) for every node
v of t, then the number n≥b(t) of nodes v with |t[v]| ≥ b in t satisfies

n≥b(t) ≤
4|t|(lg b+ 2)

b lg c + 2|t|
b
.

Proof: We call a node v of t heavy, if |t[v]| ≥ b, otherwise, we call the node v light. Furthermore,
we call the empty binary tree light. Thus, our goal is to upper-bound the number of heavy nodes
in t. The total number of heavy nodes consists of
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(i) the number of heavy nodes with only light children plus

(ii) the number of heavy nodes with one heavy child and one light child (which might be the
empty tree), plus

(iii) the number of heavy nodes with two heavy children.

We start with upper-bounding the number (i) of heavy nodes with only light children: These
nodes are not in an ancestor-descendant relationship with each other, and as they are heavy, the
subtrees rooted in those nodes are of size at least b: Thus, there are at most |t|/b many of those
nodes.

In order to upper-bound number (ii) of heavy nodes with one heavy child and one light child,
we adapt the following definition from [43]: We say that a node v is in class i for an integer
i ∈ N0, if |t[v]| ∈ [2i, 2i+1− 1]. Moreover, we call a node a top-class i node, if its parent belongs to
class j > i and we say that a node is a bottom-class i node, if its children both belong to classes
i1, i2 < i.

We find that if a node is heavy, then it is in class i for an integer blg bc ≤ i ≤ blg |t|c. Moreover,
if a node v is in class i, then at most one of its children u,w is in class i as well: If both nodes
u,w belonged to class i, then |t[v]| = 1 + |t[u]|+ |t[w]| ≥ 1 + 2i + 2i > 2i+1, a contradiction to the
fact that v belongs to class i.

Let v be a top-class i node. By the above considerations, there is exactly one path of class
i nodes in t[v], which leads from v to a bottom-class i node w, and there are no other class i
nodes in t[v]. We upper-bound the length of this path from node v to node w as follows: By
assumption, we find that h(t[v]) ≤ lg(|t[v]|+ 1)(lg c)−1 ≤ lg(2i+1)(lg c)−1 = (i+ 1)(lg c)−1. Thus,
h(t[v])− h(t[w]) ≤ (i+ 1)(lg c)−1. Hence, t[v] contains at most (i+ 1)(lg c)−1 many class i nodes
and in particular, t[v] contains at most (i+ 1)(lg c)−1 many class i heavy nodes with one heavy
child and one light child.

As top-class i nodes are not in an ancestor-descendant relationship with each other, there are
at most |t|/2i many top-class i nodes in t. Thus, there are at most |t|/2i · (i+ 1)(lg c)−1 class i
heavy nodes with one heavy child and one light child, respectively, only one heavy child, in t.
Altogether, there are at most

blg |t|c∑
i=blg bc

|t|(i+ 1)
2i(lg c) ≤ 4|t|(lg b+ 2)

b lg c

many heavy nodes with one heavy child and one light child in t.
It remains to upper-bound number (iii) of heavy nodes with two heavy children: For this, note

that all heavy nodes of t form a (non-fringe) subtree t′ of t rooted in the root of t. Heavy nodes of
type (i), i.e., heavy nodes with only light children, are the leaves of this subtree t′, while nodes
of type (ii) are unary nodes in t′ and heavy nodes of type (iii) are binary nodes in t′. Thus, the
number (iii) of heavy nodes with two heavy children is upper-bounded by the number (i), which
is upper-bounded by |t|/b. This finishes the proof. �

With Lemma E.19, we are able to prove Lemma E.18:

Lemma E.18: Let β ∈ N. We call a binary tree t β-height-balanced, if for every node v of t, we
have |h(t`[v])−h(tr[v])| ≤ β. This property of trees was called β-depth-balanced trees in [25]. Note
that every subtree of a β-height-balanced tree is β-height-balanced as well. In [25, Lemma 7], it is
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shown that for every β-height-balanced tree t, we have |t|+ 1 ≥ ch(t) with c = 1 + 1/(1 + β) (note
that in [25], the authors consider full binary trees and measure size as the number of leaves, such
that there is an off-by-one in the meaning of |t|). Thus, Lemma E.19 applies to β-height-balanced
trees.

Now let Sfh(p) be a fixed-height tree source, and let δ : N→ N0 be a monotonically increasing
function, such that for all (i, j) ∈ N0 × N0 with p(i, j) > 0 and max(i, j) = k − 1, we have
|i − j| ≤ δ(k). Moreover, let t ∈ Tn be a binary tree of size n with P[t] > 0. Then |h(t`[v]) −
h(tr[v])| ≤ δ(h(t[v])) for every node v of t. In particular, as δ is monotonically increasing, we find
that t is β-height balanced with β = δ(h(t)) and as h(t) ≤ |t| = n, t is δ(n)-height-balanced. By
Lemma E.19, we thus find that

n≥B(n)(t) ≤
4n(lgB(n) + 2)

B(n) lg c + 2n
B(n) ,

with c = 1 + 1/(1 + δ(n)). By the mean-value theorem, we find

lg
(

1 + 1
1 + δ(n)

)
= lg

(2 + δ(n)
1 + δ(n)

)
= lg(2 + δ(n))− lg(1 + δ(n))

≥ 1
(2 + δ(n)) ln(2) .

Thus

n≥B(n)(t) ≤
4 ln(2)(2 + δ(n))n(lgB(n) + 2)

B(n) + 2n
B(n) = O

(
δ(n)n logB(n)

B(n)

)
.

This proves the lemma. �

E.6. Universality of Fixed-Size and Fixed-Height Sources
In order to show universality of the hypersuccinct code from Section C.1 with respect to fixed-size
and fixed-height sources, we proceed in a similar way as in the case of memoryless and higher-order
sources: An overview of the strategy is given in Section 4.1. First, we derive a source-specific
encoding (a so-called depth-first order arithmetic code) with respect to the fixed-size or fixed-height
source, against which we will then compare our hypersuccinct code:

The formulas for P[t], Equation (5) and Equation (6), immediately suggest a route for an
(essentially) optimal source-specific encoding of any binary tree t with P[t] > 0 that, given a
fixed-size or fixed-height source p, spends lg(1/P[t]) (plus lower-order terms) many bits in order
to encode a binary tree t ∈ T with P[t] > 0: For a given fixed-size source, such an encoding may
spend − lg

(
p(|t`[v]|, |tr[v]|)

)
many bits per node v, while for a fixed-height source, it may spend

− lg
(
p(h(t`[v]), h(tr[v]))

)
many bits per node v. (Note that as P[t] > 0 by assumption, we have

p(|t`[v]|, |tr[v]|) > 0, respectively, p(h(t`[v]), h(tr[v])) > 0 for every node v of t.) Assuming that we
“know” p – i.e., assuming it is “hard-wired” into the code and need not be stored as part of the
encoding – and assuming that we have already stored |t[v]|, if p corresponds to a fixed-size source,
respectively, h(t[v]), if p corresponds to a fixed-height source, we can use arithmetic coding [79] to
store |t`[v]| (from which we will then be able to determine |tr[v]|), if p corresponds to a fixed-size
source, respectively, h(t`[v]) and h(tr[v]), if p corresponds to a fixed-height source.

First, let us assume that p corresponds to a fixed-size binary tree source. A simple (source-
dependent) encoding Dp thus stores a tree t ∈ Tn as follows: We initially encode the size of the
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tree in Elias gamma code: If the tree consists of n nodes, we store the Elias gamma code of n+ 1,
γ(n + 1), in order to take the case into account that t is the empty binary tree. Additionally,
while traversing the tree in depth-first order, we encode |t`[v]| for each node v, using arithmetic
coding: To encode |t`[v]|, we feed the arithmetic coder with the model that the next symbol is a
number ` ∈ {0, . . . , |t[v]| − 1} with respective probabilities p(`, |t[v]| − 1− `).

If p corresponds to a fixed-height binary tree source, we proceed similarly: A (source-dependent)
encoding Dp with respect to a fixed-height source Sfh(p) stores a tree t ∈ T h by initially encoding
h + 1, i.e., the height of the tree plus one, in Elias gamma code, γ(h + 1), followed by an
encoding of (h(t`[v]), h(tr[v])) for every node v in depth-first order, stored using arithmetic
encoding: Note that there are 2h(t[v])− 1 many different possibilities for (h(t`[v]), h(tr[v])), thus,
we can represent a pair (h(t`[v]), h(tr[v])) by a number i ∈ {0, 2h(t[v]) − 2}, (e.g., by letting i
represent the pair (i, h(t[v])− 1) if i ≤ h(t[v])− 1 and (h(t[v])− 1, 2h(t[v])− 2− i), otherwise).
To encode (h(t`[v]), h(tr[v])), we feed the arithmetic coder with the model that the next symbol is
a number i ∈ {0, 2h(t[v])− 2} with respective probabilities p(i, h(t[v])− 1), if i ≤ h(t[v])− 1, and
p(h(t[v])− 1, 2h(t[v])− 2− i), otherwise.

We refer to this (source-dependent) code Dp as the depth-first arithmetic code for the binary
tree source with probabilities p. We can reconstruct the tree t recursively from its code Dp(t):
Since we always know the subtree size, respectively, subtree height, we know how many and
what size the bins for the next left subtree size, respectively, pair of subtree heights, uses in
the arithmetic code. Finally, if a subtree size or height is 1 or 0, we know the subtree itself.
Recalling that arithmetic coding compresses to the entropy of the given input plus at most 2 bits
of overhead, we need at most lg(1/P[t]) + 2 bits to store t when we know |t|, respectively h(t)
(depending on the type of tree source). With h(t) ≤ |t|, and as the Elias-gamma code satisfies
|γ(n)| ≤ 2blg(n)c+ 1, we find that the total encoding length is upper-bounded by

|Dp(t)| ≤ lg(1/P[t]) + 2blg(|t|+ 1)c + 3. (7)

If p corresponds to a fixed-size tree source, taking expectations over the tree t to encode, depth-first
arithmetic coding thus stores a binary tree with n nodes using Hn(Sfs(p)) + O(logn) bits on
average.

E.6.1. Universality for Monotonic Fixed-Size and Fixed-Height Sources

In this subsection, we show universality of our hypersuccinct code from Section C.1 with respect
to monotonic fixed-size and fixed-height sources, as defined in Definition E.7. We start with the
following lemma:

Lemma E.20 (Monotonic bounds micro-tree code): Let Sfs(p), respectively, Sfh(p), be a
fixed-size or fixed-height tree source and let t ∈ Tn with P[t] > 0. If Sfs(p), respectively, Sfh(p) is
monotonic, then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
n log logn

logn

)
,

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm obtained from our tree
covering scheme (see Section C.1).
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Figure 3: Example of a binary tree t with 20 nodes. Each node shows the inorder number (in the node),
its preorder index (above the node) and the sizes of left subtree and its total subtree (blue,
below the node). Assuming the random BST model, we have lg(1/P[t]) ≈ 28.74, slightly
below the expectation H20(Sfs(pbst)) ≈ 29.2209. The arithmetic DFS code for the left tree
sizes is 111011010111101011110101011111, i.e., 30 bits. This compares very favorably to
a balanced-parenthesis representation ((((((()()))(()())))((((()))())(())))())
which would use 40 bits.

Proof: Let us denote by Dp : T → {0, 1}? the depth-first arithmetic code as introduced in the
beginning of Section E.6. In particular, by Lemma E.8, we find that P[µi] ≥ P[t] for all micro
trees µi of t, and thus, Dp(µi) is well-defined for every micro tree µi. Restricting Dp to Σµ yields
a prefix-free code for Σµ, so we know by the optimality of Huffman codes that

m∑
i=1
|C(µi)| ≤

m∑
i=1
|Dp(µi)|.

By our estimate (7) for |Dp|, we find that

m∑
i=1
|Dp(µi)| ≤

m∑
i=1

(
lg
( 1
P[µi]

)
+ 3 + 2blg(|µi|+ 1)c

)

≤
m∑
i=1

lg
( 1
P[µi]

)
+O(m logµ).

Note that the subtrees µ1, . . . , µm form a partition of t in the sense that every node of t belongs
to exactly one subtree µi: Thus, and as p corresponds to a monotonic fixed-size or fixed-height



48 Hypersuccinct Trees

source, we find by Lemma E.8:
m∑
i=1

lg
( 1
P[µi]

)
+O(m logµ) ≤ lg

( 1
P[t]

)
+O(m logµ).

Altogether, with m = Θ(n/ logn) and µ = Θ(logn) (see Section C.1), we thus obtain
m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ O

(
n log logn

logn

)
. �

From Lemma E.20 and Lemma C.3, we obtain the following result for monotonic tree sources
(defined in Definition E.7):

Theorem E.21 (Universality for monotonic sources): Let Sfs(p), respectively, Sfh(p), be a
monotonic fixed-size or fixed-height tree source. Then the hypersuccinct code H : T → {0, 1}?
satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+O

(
n log logn

logn

)
for every t ∈ Tn with P[t] > 0.

The binary tree sources from Example E.1, Example E.2, and Example E.4 are monotonic fixed-size
binary tree sources. Thus, together with Theorem E.21, we obtain the following corollary:

Corollary E.22: The hypersuccinct code H : T → {0, 1}? satisfies the following:

(i) A (random) binary search tree (BST) (see Example E.1) t of size n is encoded using

|H(t)| ≤ lg(1/P[t]) +O(n log logn/ logn)

many bits. In particular, we need on average∑
t∈Tn

P[t]|H(t)| ≤ Hn(Sfs(pbst)) +O(n log logn/ logn)

≈ 1.736n+O(n log logn/ logn)

many bits (see [52]) in order to encode a random BST of size n.

(ii) Almost-path binary trees (for arbitrary K ≥ 0) from Example E.4 are encoded
using |H(t)| ≤ lg

(
1

P[t]

)
+O(n log logn/ logn) many bits.

As the uniform probability distribution on the set Tn of binary trees of size n can be modeled
as a monotonic fixed-size binary tree source (see Example E.2), we find moreover that
Corollary D.10, part (i) follows from Theorem E.21.

E.6.2. Universality for Fringe-Dominated Fixed-Size and Fixed-Height Sources

Recall that our hypersuccinct code from Section Section C.1 decomposes t into micro trees
µ1, . . . , µm using Lemma C.1 and uses a Huffman code C for µ1, . . . , µm. Some of these micro
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trees might be “fringe”, i.e., correspond to fringe subtrees of t and leaves in the top tier tree Υ ,
but many will be internal micro trees, i.e., have child micro trees in the top tier tree Υ . That
means, micro-tree-local subtree sizes, resp. heights, and global subtree sizes, resp., heights, differ
for nodes that are ancestors of the portal to the child micro tree – and only for those nodes do
they differ: This will be the crucial observation in order to show that our hypersuccinct code is
universal with respect to fringe-dominated sources.

Formally, let v be a node of t. If v is contained in a fringe micro tree µi, respectively, in
a non-fringe micro tree µi but not an ancestor of a portal node, then µi[v] = t[v], and thus
p(|µi`[v]|, |µir[v]|) = p(|t`[v]|, |tr[v]|), respectively, p(h(µi`[v]), h(µir[v])) = p(h(t`[v]), h(tr[v])). On
the other hand, if v is an ancestor of a portal node in a non-fringe subtree µi, then µi[v] 6= t[v].
In order to take this observation into consideration, we make the following definitions: Let µi be
an internal (non-fringe) micro tree. By bough(µi), we denote the subtree of µi induced by the set
of nodes that are ancestors of µi’s child micro trees (ancestors of the portals); the boughs of a
micro tree are the paths from the portals to the micro tree root. In particular, if v denotes a node
of t contained in a subtree µi, then t[v] 6= µi[v] if and only if µi is not fringe and v is contained
in bough(µi). Hanging off the boughs of µi are (fringe) subtrees fi,1, . . . , fi,|bough(µi)|+1, listed in
depth-first order of the bough nulls these subtrees are attached to. In particular, some of these
subtrees might be the empty tree. Recall that the portal nodes themselves are not part of µi and
hence not part of bough(µi). We now find the following:

Lemma E.23 (bough decomposition): Let Sfs(p), respectively, Sfh(p), be a fixed-size, respec-
tively, fixed-height binary tree source. Furthermore, let I0 = {i ∈ [m] : µi is a fringe micro tree in
t} and let I1 = [m] \ I0. Then

∑
i∈I0

lg
( 1
P[µi]

)
+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg
(

1
P[fi,j ]

)
≤ lg

( 1
P[t]

)
.

Proof: The statement follows immediately from the facts that (i) all the subtrees µi for i ∈ I0
and fi,j for i ∈ I1 and j ∈ {1, . . . , |bough(µi)|+ 1} are fringe subtrees of t, and (ii) every node v
of t occurs in at most one of these fringe subtrees. Assume that p corresponds to a fixed-size tree
source, then we find:

∑
i∈I0

lg
( 1
P[µi]

)
+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg
(

1
P[fi,j ]

)

= −
∑
i∈I0

∑
v∈µi

lg(p(|µi`[v]|, |µir[v]|))−
∑
i∈I1

|bough(µi)|+1∑
j=1

∑
v∈fi,j

lg(p(|fi,j`[v]|, |fi,jr[v]|))

(i)= −
∑
i∈I0

∑
v∈µi

lg(p(|t`[v]|, |tr[v]|))−
∑
i∈I1

|bough(µi)|+1∑
j=1

∑
v∈fi,j

lg(p(|t`[v]|, |tr[v]|))

(ii)
≤ −

∑
v∈t

lg(p(|t`[v]|, |tr[v]|))

= lg
( 1
P[t]

)
.

The proof for fixed-height sources is similar. �
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We now find the following:
Lemma E.24 (Great-branching lemma): Let Sfs(p), respectively, Sfh(p), be a fixed-size, re-
spectively, fixed-height tree source and let t ∈ Tn with P[t] > 0. Then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O(n≥B(t) logB),

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm from our tree covering
scheme and B = B(n) ∈ Θ(logn) is the parameter of the tree covering scheme (see Section C.1).
Proof: We construct a new encoding for micro trees against which we can compare the hypersuc-
cinct code, the “great-branching” code, GB, as follows:

GB(µi) =


0 ·Dp(µi), if µi is a fringe micro tree;

1 · γ(|bough(µi)|) · BP(bough(µi)) ·
Dp(fi,1) · · ·Dp(fi,|bough(µi)|+1),

otherwise,

where Dp : T → {0, 1}? is the depth-first order arithmetic code as introduced in the beginning of
Section E.6. Note that GB is well-defined, as the encoding Dp is only applied to fringe subtrees µi
and fi,j of t, for which P[µi],P[fi,j ] > 0 follows from P[t] > 0. Moreover, note that formally, GB is
not a prefix-free code over Σµ: there can be micro tree shapes that are assigned several codewords
by GB, depending on which nodes are portals to other micro trees (if any). But GB is uniquely
decodable to local shapes of micro trees, and can thus be seen as a generalized prefix-free code,
where more than one codeword per symbol is allowed. In terms of the encoding length, assigning
more than one codeword is not helpful – removing all but the shortest one never makes the code
worse – so a Huffman code minimizes the encoding length over the larger class of generalized
prefix-free codes. In particular, the Huffman code C for micro trees used in the hypersuccinct
code achieves no worse encoding length than the great-branching code:

m∑
i=1
|C(µi)| ≤

m∑
i=1
|GB(µi)|.

With I0 = {i ∈ [m] : µi is a fringe micro tree in t}, and I1 = [m] \ I0, we have
m∑
i=1
|GB(µi)| =

∑
i∈I0

|GB(µi)|+
∑
i∈I1

|GB(µi)|

≤
∑
i∈I0

(1 + |Dp(µi)|) +
∑
i∈I1

2 + 2 lg(|bough(µi)|) + 2|bough(µi)|+
|bough(µi)|+1∑

j=1
|Dp(fi,j)|

.
With the estimate (7), this is upper-bounded by

∑
i∈I0

(
4 + lg 1

P[µi]
+ 2 lg(|µi|+ 1)

)
+
∑
i∈I1

|bough(µi)|+1∑
j=1

(
3 + lg 1

P[fi,j ]
+ 2 lg(|fi,j |+ 1)

)

+
∑
i∈I1

(2 + 2 lg(|bough(µi)|) + 2|bough(µi)|)

≤
∑
i∈I0

lg 1
P[µi]

+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg 1
P[fi,j ]

+ O(m logµ) +O

∑
i∈I1

|bough(µi)| logµ

.
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By Lemma E.23, we have

∑
i∈I0

lg 1
P[µi]

+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg 1
P[fi,j ]

≤ lg
( 1
P[t]

)
.

It remains to upper-bound the error terms: Lemma C.2 implies that any node v in the bough of a
micro tree satisfies |t[v]| ≥ B. Thus, the total number of nodes of t which belong to a bough of t
is therefore upper-bounded by n≥B(t). Altogether, we thus obtain

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ O(m logµ) + O

(
n≥B(t) logµ

)
.

By a pigeon-hole argument, we find n≥B(t) = Ω(n/B). As µ = Θ(B(n)) = Θ(logn) and
m = Θ(n/B(n)) = Θ(n/ logn) (see Section C.1), we have

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ O

(
n≥B(n)(t) log logn

)
. �

For average-case fringe-dominated fixed-size binary tree sources (defined in Definition E.9), we
obtain the following result from Lemma E.24 and Lemma C.3:

Theorem E.25 (Universality from average-case fringe dominance): Let Sfs(p) be an average-
case fringe-dominated fixed-size binary tree source. Then the hypersuccinct code H : T → {0, 1}?
satisfies ∑

t∈Tn
P[t]|H(t)| ≤ Hn(Sfs(p)) + o(n).

For worst-case fringe-dominated fixed-size, respectively, fixed-height binary tree sources (defined
in Definition E.10), we get the following result from Lemma E.24 and Lemma C.3:

Theorem E.26 (Universality from worst-case fringe dominance): Let Sfs(p), respectively,
Sfh(p) be a worst-case fringe-dominated fixed-size or fixed-height binary tree source. Then the
hypersuccinct code H : T → {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+ o(n)

for every binary tree t ∈ Tn with P[t] > 0.

In Section E.5, we have presented several general classes of fixed-size and fixed-height tree
sources, which are average-case or worst-case fringe-dominated. For these classes, we now
obtain the following universality results of our hypersuccinct encoding from Lemma E.24 and
Lemma C.3. With Lemma E.13 we find for ψ-nondegenerate fixed-size binary tree sources (defined
in Definition E.11):

Corollary E.27 (Universality from ψ-nondegeneracy): Let Sfs(p) be a ψ-nondegenerate
fixed-size binary tree source. Then the hypersuccinct code H : T → {0, 1}? satisfies∑

t∈Tn
P[t]|H(t)| ≤ Hn(Sfs(p)) +O(nψ(logn) log logn).
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With Lemma E.14, we obtain for ϕ-weakly-weight-balanced fixed-size binary tree sources (defined
in Definition E.12):

Corollary E.28 (Universality from ϕ-balance): Let Sfs(p) be a ϕ-weakly-weight-balanced
fixed-size binary tree source. Then the hypersuccinct code H : T → {0, 1}? satisfies∑

t∈Tn
P[t]|H(t)| ≤ Hn(Sfs(p)) +O

(
n log logn
ϕ(n) logn

)
.

Moreover, with Lemma E.16, we find for weight-balanced fixed-size binary tree sources (defined in
Definition E.15):

Corollary E.29 (Universality from weight-balance): Let Sfs(p) be a weight-balanced fixed-
size binary tree source. Then the hypersuccinct code H : T → {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+O

(
n log logn

logn

)
for every binary tree t ∈ Tn with P[t] > 0.

Finally, with Lemma E.18, we obtain for δ-height-balanced fixed-height binary tree sources (defined
in Definition E.17):

Corollary E.30 (Universality from height-balance): Let Sfh(p) be a δ-height-balanced fixed-
height binary tree source. Then the hypersuccinct code H : T → {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+O

(
δ(n)n log logn

logn

)
for every binary tree t ∈ Tn with P[t] > 0.

As the fixed-size and fixed-height tree sources from Example E.3, Example E.5, Example E.6
and Example F.4 are (average-case or worst-case) fringe dominated, we obtain the following
corollary from Theorem E.25 and Theorem E.26:

Corollary E.31: The hypersuccinct code H : T → {0, 1}? satisfies the following:

(i) A binary tree of size n randomly generated by the binomial random tree model
Sfs(pbin) from Example E.3 is average-case optimally encoded:∑

t∈Tn
P[t]|H(t)| ≤ Hn(Sfs(pbin)) + o(n).

(ii) A binary tree of size n randomly generated by the random fringe-balanced BST
model Sfs(pbal) from Example E.5 is average-case optimally encoded:∑

t∈Tn
P[t]|H(t)| ≤ Hn(Sfs(pbal)) + o(n).

(iii) An AVL tree t of size n and height h, drawn uniformly at random from the set T h(A)
of all AVL trees of height h, is optimally compressed using |H(t)| ≤ lg(|T h(A)|) + o(n)
many bits (see Example E.6).
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(iv) An α-weight-balanced BST of size n, drawn uniformly at random from the set
Tn(Wα) of all α-weight-balanced binary trees of size n, is optimally compressed using
|H(t)| ≤ lg(|Tn(Wα)|) + o(n) many bits (see Example F.4).

We remark that using Lemma E.14 and Lemma E.13, it is possible to determine a more precise
redundancy term for the results from Corollary E.31, part (i) and part (ii). Moreover, we remark
that the average-case result from Corollary E.22, part (i), also follows from Theorem E.25.

F. Uniform-Subclass Sources
Finally, another class for which we will be able to prove universality of our code are so-called
uniform-subclass sources. Let T (P) (resp. Tn(P)) denote the subset of binary trees t ∈ T (resp.
t ∈ Tn), which satisfy a certain property P (examples will be given below). A uniform subclass
source UP with respect to a property P assigns a probability to a binary tree t ∈ Tn by

P[t] =
{
|Tn(P)|−1 if t ∈ Tn(P);
0 otherwise.

(8)

That is, a uniform subclass source UP induces a uniform probability distribution on the sets
(Tn(P))n of all binary trees of size n which satisfy property P. For technical reasons, we include
the empty binary tree Λ in the set T (P) and set P[Λ] = 1. We cannot hope to obtain universal
codes for uniform-subclass sources in full generality. We therefore restrict our attention to tame
uniform subclass sources UP , which we define to mean the following four conditions:

(i) Fringe-hereditary: We call a property P fringe-hereditary, if every fringe subtree of a binary
tree t ∈ T (P) belongs to T (P) as well. Furthermore, we call a uniform subclass source UP
fringe-hereditary, if the property P is fringe-hereditary.

(ii) Worst-case fringe dominated: Recall that n≥b(t) denotes the number of nodes v of a binary
tree t, for which |t[v]| ≥ b, where b is a parameter. We call a uniform subclass source
UP worst-case B-fringe-dominated for a function B = B(n) with B(n) = Θ(logn), if
n≥B(n)(t) ∈ o(n/ logB(n)) for every binary tree t in Tn(P).

(iii) Log-linear : A uniform subclass source UP is called log-linear, if there is a constant c > 0
and a function ϑ with ϑ(n) ∈ o(n), such that

lg(|Tn(P)|) = c · n+ ϑ(n).

(iv) Heavy twigged: A property P is called B-heavy twigged for a function B = B(n) with
B(n) ∈ Θ(log(n)), if every t in Tn(P) satisfies the following condition: If v is a node of
t with |t[v]| ≥ B = B(n), then both its subtrees satisfy |t`[v]|, |tr[v]| ∈ ω(1). A uniform
subclass source UP is called B-heavy twigged, if P is B-heavy-twigged.

Definition F.1 (Tame uniform-subclass sources): A uniform-subclass source UP is called
tame, if it is fringe-hereditary, worst-case fringe dominated, log-linear, and heavy twigged.



54 Hypersuccinct Trees

Example F.2 (AVL trees): An example of a property which satisfies all of these four
conditions is being an AVL tree: An AVL tree is a binary tree t which is 1-height-balanced,
that is, for every node v of t, we have |h(t`[v])− h(tr[v])| ≤ 1. Let A denote this property of
being an AVL tree, then UA yields the uniform probability distribution on the set of AVL trees
of a given size. By definition, we find that A is fringe-hereditary. Moreover, from Lemma E.19
and [25, Lemma 7], we find that UA is worst-case fringe-dominated for any function B with
B(n) = Θ(logn).

A precise asymptotic for the number an of AVL trees of size n is reported by Odlyzko [67]:
an ∼ α−nn−1u(lnn) as n → ∞, where α = 0.5219024 . . . is a numerically known constant
and u(x) is a fixed, continuous periodic function. (Curiously, a detailed proof does not seem
to have been published.) We obtain lg an ∼ cn with c ≈ 0.938148, that is, UA is log-linear.

Finally, A is heavy-twigged: Let v be a node of t ∈ T (A) with |t[v]| ≥ B. As t[v] is a
binary tree, we have h(t[v]) ≥ lg(B). Moreover, as t is an AVL tree, we have h(t`[v]), h(tr[v]) ≥
lg(B)− 2 and thus |t`(v)|, |tr[v]| ≥ lg(B)− 2, which is in ω(1) for B = Θ(log(n)).

Example F.3 (Red-black trees): Another example is the property R, which holds if t is
the shape of a red-black tree: A (left-leaning) red-black tree is a binary tree in which the
edges are (implicitly) colored red and black, so that the following conditions hold:

(a) The number of black edges on any root-to-leaf path is the same.

(b) No root-to-leaf path contains two consecutive red edges.

(c) If a node has only one red child edge, it must be the left child edge.

It is easy to check that R is fringe-hereditary. One can show inductively that the height of a
red-black tree is at most 2 lgn+O(1), which together with fringe-hereditary and Lemma E.19
implies that UR is worst-case fringe-dominated.

For the log-linearity, we have to determine lg rn, for rn the number of left-leaning red-black
trees of size n. Since left-leaning red-black trees are in bijection with 2-3-4-trees [71], we can
also count the latter. The similar 2-3 trees are enumerated (where the size is the number
of external leaves) in [59, 67] and the same technique allows to determine the exponential
growth rate. We obtain lg rn ∼ cn with c ≈ 0.879146.

For the heavy-twigged property, let t[v] be a fringe subtree in a red-black tree with |t[v]| ≥ B.
We have h(t[v]) ≥ lg(B) (as for any binary tree). Moreover, since black-heights must be equal
and at most every other edge can be red, we have h(t`[v]), h(tr[v]) ≥ 1

2h(t[v])−1 ≥ 1
2 lg(B)−1,

which also lower bounds the size of t`[v] and tr[v]. So t`[v]|, |tr[v]| = ω(1) as B →∞.

Example F.4 (Weight-balanced BSTs): Let T (Wα) denote the set of α-weight-balanced
binary trees (in the sense of BB[α], [66]): A binary tree is α-weight-balanced, if for every node
v of t, we have |t`[v]| + 1 ≥ α(|t[v]| + 1) and |tr[v]| + 1 ≥ α(|t[v]| + 1) (note that this is a
special case of β-balanced binary trees considered in the proof of Lemma E.16). The property
Wα is fringe-hereditary by definition and it is easy to see that Wα is heavy-twigged.

From the proof of Lemma E.16, we furthermore find that α-weight-balanced binary trees
are worst-case fringe dominated. Unfortunately, we are not aware of a counting result for



F. Uniform-Subclass Sources 55

these trees, and so it remains a conjecture that α-weight-balanced binary trees are log-linear
and thus amenable to the same treatment.

However, the uniform subclass source UWα can be modeled as a worst-case fringe dominated
fixed-size source: If we set

p(`, n− `) =


|T`(Wα)||Tn−`(Wα)|
|Tn+1(Wα)| if `+ 1, n− `+ 1 ≥ α(n+ 2),

0 otherwise

for every n ∈ N, then the corresponding fixed-size tree source Sfs(p) corresponds to a uniform
probability distribution on Tn(Wα) for every n ∈ N.

F.1. Universality for Uniform-Subclass Sources
In order to show universality of the hypersuccinct code from Section C.1 with respect to uniform
subclass sources, we first derive a source-specific encoding with respect to the uniform subclass
source, against which we will then compare our hypersuccinct code:

An encoding EP(t) that stores a given binary tree t ∈ Tn(P) in lg(|Tn(P|)+O(logn) many bits
is obtained as follows: Let t1, . . . , t|Tn(P)| denote an enumeration of all elements in Tn(P). In order
to encode a binary tree t ∈ Tn(P), we first encode its size (plus one, in order to incorporate the
case that t is the empty binary tree), in gamma code, γ(n+1), followed by its number i ∈ [|Tn(P)|]
in the enumeration of all binary trees in Tn(P), using blg(|Tn(P)|)c+ 1 many bits. Thus, such an
encoding EP : T (P)→ {0, 1}? spends at most

|EP(t)| ≤ lg(|Tn(P)|) + 2 lg(n+ 1) + 2 = lg
( 1
P[t]

)
+ 2 lg(n+ 1) + 2 (9)

many bits in order to encode t ∈ Tn(P). We remark that EP : T (P)→ {0, 1}? is a single prefix-free
code on T (P). We find the following:

Lemma F.5 (Great-branching lemma for UP): Let UP be a fringe-hereditary, worst-case
fringe-dominated, log-linear, heavy-twigged uniform subclass source and let t ∈ Tn with P[t] > 0.
Then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ o(n),

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm from our tree covering
scheme (see Section C.1).

Proof: The proof works in a similar way as the proof of Lemma E.24: Let µi be an internal
(non-fringe) micro tree. By bough(µi), we again denote the subtree of µi induced by the set of
nodes that are ancestors of µi’s child micro trees (ancestors of the portals); the boughs of a micro
tree are the paths from the portals to the micro tree root. Hanging off the boughs of µi are
(fringe) subtrees fi,1, . . . , fi,|bough(µi)|+1, listed in depth-first order of the bough nulls these subtrees
are attached to. In general, some of these subtrees might be the empty tree – however, as the
uniform subclass source UP we consider is heavy-twigged, and as every node v that belongs to
bough(µi) satisfies |t[v]| ≥ B by Lemma C.2 (where B = B(n) is the parameter from the tree
covering algorithm), we find that |fi,j | ∈ ω(1), except for possibly two exceptions, as the portals
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are replaced by null pointers in µi. Recall that the portal nodes themselves are not part of µi
and hence not part of bough(µi). As in the proof of Lemma E.24, we construct a new encoding
for micro trees against which we can compare the hypersuccinct code, another “ great-branching”
code, G̃B, as follows:

G̃B(µi) =


0 · EP(µi), if µi is a fringe micro tree;

1 · γ(|bough(µi)|) · BP(bough(µi)) ·
EP(fi,1) · · ·EP(fi,|bough(µi)|+1),

otherwise.

Note that G̃B is well-defined: As the encoding EP is only applied to fringe subtrees µi and fi,j of
t, which satisfy property P as U(P) is fringe-hereditary, we find that P[µi],P[fi,j ] > 0. Moreover,
note that formally, G̃B is not a prefix-free code over Σµ: there can be micro tree shapes that are
assigned several codewords by G̃B, depending on which nodes are portals to other micro trees
(if any). But G̃B is uniquely decodable to local shapes of micro trees, and can thus be seen as a
generalized prefix-free code. In terms of the encoding length, assigning more than one codeword
never makes the code worse, thus a Huffman code minimizes the encoding length over the larger
class of generalized prefix-free codes. In particular, the Huffman code C for micro trees used in
the hypersuccinct code achieves no worse encoding length than the great-branching code:

m∑
i=1
|C(µi)| ≤

m∑
i=1
|G̃B(µi)|.

With I0 = {i ∈ [m] : µi is a fringe micro tree in t}, and I1 = [m] \ I0, we have
m∑
i=1
|G̃B(µi)| =

∑
i∈I0

|G̃B(µi)|+
∑
i∈I1

|G̃B(µi)|

≤
∑
i∈I0

(1 + |EP(µi)|)

+
∑
i∈I1

(
2 + 2 lg(|bough(µi)|) + 2|bough(µi)|+

|bough(µi)|+1∑
j=1

|EP(fi,j)|
)
.

With estimate (9) this is upper-bounded by

∑
i∈I0

(
3 + lg 1

P[µi]
+ 2 lg(|µi|+ 1)

)
+
∑
i∈I1

|bough(µi)|+1∑
j=1

(
2 + lg 1

P[fi,j ]
+ 2 lg(|fi,j |+ 1)

)

+
∑
i∈I1

(2 + 2 lg(|bough(µi)|) + 2|bough(µi)|)

≤
∑
i∈I0

lg 1
P[µi]

+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg 1
P[fi,j ]

+ O(m logµ) +O

∑
i∈I1

|bough(µi)| logµ

.
By the log-linearity of the uniform subclass source UP , we find lg(1/P[µi]) = lg

(
|T|µi|(P)|

)
=

c|µi|+ ϑ(|µi|) and lg(1/P[fi,j ]) = lg
(
|T|fi,j |(P)|

)
= c|fi,j |+ ϑ(|fi,j |), with ϑ(n) ∈ o(n) and c > 0

constant, for the fringe subtrees µi and fi,j (if fi,j is the empty binary tree, we simply have
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lg(1/P[fi,j ]) = 0 by assumption). As UP is heavy-twigged, we have |fi,j | ∈ ω(1) for all subtrees
fi,j which are not the empty tree. Furthermore, we find |µi| ∈ ω(1) for all fringe micro trees µi
of t by Lemma C.2. Hence, as ϑ(n) ∈ o(n), and as the trees µi for i ∈ I0 and fi,j are disjoint
subtrees of t, we have

∑
i∈I0

ϑ(|µi|) +
∑
i∈I1

|bough(µi)|+1∑
j=1

ϑ(|fi,j |) = o(n).

Thus, we find

∑
i∈I0

lg 1
P[µi]

+
∑
i∈I1

|bough(µi)|+1∑
j=1

lg 1
P[fi,j ]

= c
∑
i∈I0

(|µi|+ ϑ(|µi|)) + c
∑
i∈I1

|bough(µi)|+1∑
j=1

(|fi,j |+ ϑ(|fi,j |))

≤ c|t|+ o(n) = lg(|Tn(P)|) + o(n) = lg
( 1
P[t]

)
+ o(n).

It remains to upper-bound the error terms: Lemma C.2 implies that any node v in the bough of a
micro tree satisfies |t[v]| ≥ B. Thus, the total number of nodes of t which belong to a bough of t
is therefore upper-bounded by n≥B(t). Altogether, we thus obtain

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ O(m logµ) + O(n≥B(t) logµ) + o(n).

By a pigeon-hole argument, we find n≥B(t) = Ω(n/B) and as P is worst-case fringe-dominated,
we have n≥B(n)(t) ∈ o(n/ log(B(n))). Furthermore, as µ = Θ(logn) and m = Θ(n/ logn) (see
Section C.1), we have

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ o(n). �

Theorem F.6 (Universality for tame uniform sources): Let UP be a fringe-hereditary, worst-
case fringe-dominated, log-linear, heavy-twigged uniform subclass source. The hypersuccinct code
H : T → {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+ o(n)

for every binary tree t of size n with P[t] > 0.

Theorem F.6 follows from Lemma F.5 and Lemma C.3. In particular, we obtain the following
corollary from Theorem F.6 (see Example F.2 and Example F.3):
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Corollary F.7: The hypersuccinct code H : T → {0, 1}? optimally compresses

(i) AVL trees of size n, drawn uniformly at random from the set Tn(A) of all AVL trees
of size n, using

|H(t)| ≤ lg(|Tn(A)|) + o(n) ≈ 0.938148n+ o(n)

many bits and

(ii) red-black trees of size n, drawn uniformly at random from the set Tn(R) of all
red-black trees of size n, using

|H(t)| ≤ lg(|Tn(R)|) + o(n) ≈ 0.879146n+ o(n)

many bits.
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Part II.
Ordinal Trees
Most results for binary trees can be extended to ordinal trees, but some additional arguments
resp. restrictions are necessary because of large-degree nodes. Our results with respect to ordinal
trees are presented in this part.

G. Hypersuccinct Ordinal Trees
The Farzan-Munro tree decomposition algorithm [16] is used to decompose an ordinal tree into
subtrees, so-called micro trees. In the following, we recall the properties of this tree covering
method (for more details, see Section B.3):

Lemma G.1 (Tree covering, [16, Thm. 1]): For any parameter B ≥ 1, an ordinal tree with
n nodes can be decomposed, in linear time, into connected subtrees (so-called micro trees) with
the following properties:

(i) Micro trees are pairwise disjoint except for (potentially) sharing a common micro tree root.
(ii) Each micro tree contains at most 2B nodes.
(iii) The overall number of micro trees is Θ(n/B).
(iv) Apart from edges leaving the micro tree root, at most one other edge leads to a node outside

of this micro tree. This edge is called the “external edge” of the micro tree.

By inspection of the proof in [16], we can say a bit more: If v is a node in the tree and is
also the root of several micro trees of the decomposition, then the way that v’s children (in the
entire tree) are divided among the micro trees is into consecutive blocks. Each micro tree contains
at most two of these blocks. (This case arises when the micro tree root has exactly one heavy
child in the decomposition algorithm.) In binary trees, a micro tree is always an entire fringe
subtree except for at most two entire subtrees, which are removed from it. In ordinal trees, the
possibility of large node degrees makes such a decomposition impossible: here an arbitrary number
of children (and their subtrees) can be missing in a micro tree root, and a single node in the
original tree can be the (shared) root of many micro trees.

G.1. Hypersuccinct Code
In this section, we describe a universal code for ordinal trees based on the Farzan-Munro algorithm
using just one level of micro trees. The purpose is to give a self-contained description of the mere
representation of an ordinal tree (as opposed to a succinct data structure) that admits compression
as a universal code. The exposition in [16] mixes this description with the details of the data
structures needed for navigation.

We fix the parameter B, so that the maximal micro tree size is µ = d1
4 lgne i.e., we set

B = d1
8 lgne. The code of the ordinal tree t ∈ Tn is then obtained as follows: Decompose the tree

into micro trees µ1, . . . , µm where m = Θ(n/B) = Θ(n/ logn). Recall that each micro tree µi can
have the following connections to other micro trees:
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Micro tree id nodes (preorder ids)
0 0, 1, 2, 3, 4, 5, 6
1 0, 7, 8, 9, 34
2 10, 23, 24, 25, 26, 27
3 11, 12, 13, 14, 22
4 15, 16, 17, 18, 19, 20
5 15, 21
6 28, 29, 30, 31, 32, 33

Figure 4: Example tree with n = 34 nodes, partitioned using B = 6.

• an edge to one parent micro tree,

• an external edge to one child micro tree, leaving from some node of the micro tree (and
inserted at some child rank),

• an arbitrary number of other subtrees of the shared root; these micro trees can contain the
shared root or not.

The top-tier Υ of the tree is obtained by contracting each micro tree into a single node; shared
roots are copied to each micro tree. Two micro trees are connected by an edge in Υ if there is an
edge between some nodes in these micro trees in t. Since several micro trees can contain the root
of the tree, we add a dummy root to Υ to turn it into a single tree. Figure 5 shows an example.

To be able to distinguish the different forms of interactions listed above, additional information
for parent-child edges in Υ is stored. By construction, edges between micro trees always lead to
the root of the child micro tree, but the other endpoint will have to be encoded. We observe that
there are the following types of edges between a parent micro tree P and its child C:

(i) new leftmost root child
The root of C is a child of the root of P and comes before all children of P’s root that lie
inside P in the left-to-right order of the children. Moreover, there is no other child component
C′ of P that shares the root with C and comes before C in the child order.

(ii) continued leftmost root child
The root of C is a child of the root of P and comes before all children of P’s root that lie inside
P in the left-to-right order of the children, but it shares its root with the child component
immediately before C in the child order.
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Figure 5: The tree from Figure 4 (left) and the top-tier tree Υ (right) corresponding to the covering
with the edge types. Edge types are also visualized through different exit points for leftmost,
rightmost, and external edges for illustration purposes.

(iii) new rightmost root child
The root of C is a child of the root of P and C’s root comes after all root children included in
P. Moreover, there is no other child component C′ of P that shares the root with C.

(iv) continued rightmost root child
The root of C is a child of the root of P and C’s root comes after all root children included in
P, but it shares its root with the child component immediately before C in the child order.

(v) external-edge child
Any other edge. By construction, all external-edge child components of P share a common
root, so there is no need to distinguish new and continued external edges.
We note that path nodes can give rise to an external-edge child C whose root is a child of
P’s root. This happens only when we greedily pack across the gap left by the permanent
component of a single heavy child. P cannot have another external edge then, so we are free
to use P ’s external-edge “slot” to link to C.

The top tier is again an ordinal tree, Υ ∈ Tm+1. For the micro trees, we observe that because
of their limited size, there are fewer different possible shapes of ordinal trees than we have
micro trees. The crucial idea of our hypersuccinct encoding is again to treat each shape of a
micro tree as a letter in the alphabet Σµ ⊆

⋃
s≤µ Ts of micro tree shapes and to compute a

Huffman code C : Σµ → {0, 1}? based on the frequency of occurrences of micro tree shapes in the
sequence µ1, . . . , µm ∈ Σm

µ . For our hypersuccinct code, we then use a length-restricted version
C̄ : Σµ → {0, 1}? obtained from C using a variant of the simple cutoff technique from Definition B.4
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for ordinal trees (using the balanced parenthesis encoding for ordinal trees). Furthermore, for
each micro tree, we have to encode the portal for the external edges (if they exist) and the type of
its parent edge (i)–(v). For that, we store the micro-tree-local preorder rank of the node and the
child rank at which the external edges have to be inserted using dlg(µ+ 1)e bits each.

We can thus encode an ordinal tree t ∈ Tn as follows:

1. Store n and m in Elias gamma code,

2. followed by the balanced-parenthesis (BP) bitstring for Υ .

3. Next comes an encoding for C̄; for simplicity, we simply list all possible codewords and their
corresponding ordinal trees by storing the size (in Elias-gamma code) followed by their BP
sequence.

4. Then, we list the Huffman codes C̄(µi) of all micro trees in DFS order (of Υ ).

5. Then, we store 2 dlg(µ + 1)e-bit integers to encode the portal of each micro tree in DFS
order (of Υ ).

6. Finally, we encode the type of the parent edge using 3 bits of each micro tree, again in DFS
order.

Altogether, this yields our hypersuccinct code H : T → {0, 1}? for ordinal trees. Decoding is
possible by first recovering n, m, and Υ from the BP, then reading the Huffman code. We then
replace each node in Υ by its micro tree in a depth-first traversal. Herein, we use the information
about edge types in Υ to correctly connect the micro trees: partitioning children into leftmost and
rightmost root children places them in the appropriate order into the list of children of the parent
component’s root. For type (ii) and (iv) children, we delete the component root and instead add
its children to the next type (i) resp. (iii) siblings component’s root. Finally, for type (v) children,
we use the information about portals to find their place in a node’s child list, and for all but the
leftmost of them, also merge their roots with the left sibling component. With respect to the
length of the hypersuccinct code, we find the following:

Lemma G.2 (Hypersuccinct ordinal tree code): Let t ∈ Tn be an ordinal tree of n nodes,
decomposed into micro trees µ1, . . . , µm by the Farzan-Munro algorithm. Let C be an ordinary
Huffman code for the string µ1 . . . µm, the local shapes of the micro trees. Then, the hypersuccinct
code encodes t with a binary codeword of length

|H(t)| ≤
m∑
i=1
|C(µi)|+O

(
n

log logn
logn

)
.

Proof: It is easy to check that all parts of the hypersuccinct ordinal-tree code except Part 4
require O(n log logn/ logn) bits of space. Let t ∈ Tn. The analysis of the number of bits needed
to store parts 1–5 is identical to the binary-tree case: Part 1 needs O(logn) bits and Part 2
requires 2m+ 2 = Θ(n/ logn) bits. For Part 3, observe that

|Σµ| ≤
∑

s≤dlgn/4e
4s <

4
3 · 4

lgn/4+1 = 16
3
√
n.
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With the worst-case cutoff technique (adapted to ordinal trees) from Definition B.4, C̄(µi) ≤
1 + 2µ ∼ 1

2 lgn, so we need asymptotically O(
√
n) entries / codewords in the table, each of

size O(µ) = O(logn), for an overall table size of O(
√
n logn). Part 5 uses m · 2dlg(µ + 1)e =

Θ( nB logB) = Θ(n · log logn
logn ) = o(n) bits of space. Part 6 uses 3m = Θ(n/ logn) bits. It remains

to analyze Part 4, which is again similar to the binary-tree case: We note that by applying the
worst-case pruning scheme of Definition B.4, we waste 1 bit per micro tree compared to a pure,
non-restricted Huffman code. But the wasted bits amount to m = O(n/ logn) bits in total:

m∑
i=1

C̄(µi) =
m∑
i=1

min{|C(µi)|+ 1, 2|µi|+ 2dlg |µi|+ 1e+ 2}

≤
m∑
i=1

(|C(µi)|+ 1)

=
m∑
i=1
|C(µi)|+O(n/ logn).

This finishes the proof. �

parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v
child(v, i) the ith child of node v (i ∈ {1, . . . , degree(v)})
child_rank(v) the number of siblings to the left of node v plus 1
depth(v) the depth of v, i.e., the number of edges between the root and v
anc(v, i) the ancestor of node v at depth depth(v)− i
nbdesc(v) the number of descendants of v
height(v) the height of the subtree rooted at node v
LCA(v, u) the lowest common ancestor of nodes u and v
leftmost_leaf(v) the leftmost leaf descendant of v
rightmost_leaf(v) the rightmost leaf descendant of v
level_leftmost(`) the leftmost node on level `
level_rightmost(`) the rightmost node on level `
level_pred(v) the node immediately to the left of v on the same level
level_succ(v) the node immediately to the right of v on the same level
node_rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN, DFUDS}, i.e., in a

preorder, postorder, inorder, DFUDS order, or level-order traversal of the tree
node_selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN, DFUDS}
leaf_rank(v) the number of leaves before and including v in preorder
leaf_select(i) the ith leaf in preorder

Table 6: Navigational operations on succinct ordinal trees. (v denotes a node and i an integer).

As for binary trees, the representation of ordinal trees based on the hypersuccinct code can be
turned into a data structure:

Theorem G.3 (Tree covering index for ordinal trees [16]): Let t ∈ Tn denote an ordinal
tree, decomposed into micro trees µ1, . . . , µm with the tree covering algorithm. Assuming access
to a data structure that maps i to BP(µi) in constant-time, there is a data structure occupying
o(n) additional bits of space that supports all operations from Table 6 in constant time.
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H. Memoryless Ordinal Tree Sources
For an ordinal tree t ∈ T and a node v of t, let degt(v) denote the (out-)degree of v. We leave out
the subscript t, if the tree t is clear from the context. With νti we denote the number of nodes of
degree i of t. A degree distribution d = (di)i∈N0 is a sequence of non-negative real numbers, such
that

∑∞
i=0 di = 1. A degree distribution assigns a probability P[t] to an ordinal tree by

P[t] =
∏
v∈t

ddeg(v) =
|t|∏
i=0

(di)ν
t
i . (10)

That is, a degree distribution d can be used to randomly construct an ordinal tree as follows: In a
top-down way, starting at the root node, we determine for each node its degree i: The probability
that a node is of degree i is given by di. If i = 0, then this node becomes a leaf, otherwise we
attach i many children to the node and continue the process at these children. Note that this
process might produce infinite trees with non-zero probability. In order to obtain finite trees with
non-zero probability, we assume that d0 > 0. In [49], the following notion of empirical entropy for
trees was introduced:

Definition H.1 (Degree-entropy): Let t ∈ T. The (unnormalized) degree-entropy Hdeg(t) of
t is the zeroth order entropy of the node degrees:

Hdeg(t) =
|t|∑
i=0

νti lg
(
|t|
νti

)
.

We say that a degree distribution is the empirical degree distribution of an ordinal tree t, if
di = νti/|t| for every index 0 ≤ i ≤ |t|. In particular, if d is the empirical degree distribution of an
ordinal tree t ∈ T, we have

lg
( 1
P[t]

)
=

|t|∑
i=0

νti lg
( 1
di

)
=

|t|∑
i=0

νti lg
(
|t|
νti

)
= Hdeg(t).P

Example H.2 (Full m-ary trees): Probability distributions over full m-ary trees, i.e.,
trees where each node has either exactlym or 0 children, are obtained from degree distributions
(di)i∈N0 with d0, dm > 0 and di = 0 for i 6= m, 0. It is easy to see that a full m-ary tree t with
νtm many inner nodes (of degree m) always consists of νt0 = (m− 1)νtm + 1 many leaves, and
is thus always of size mνtm + 1. The number of full m-ary trees of size n = mν + 1, for ν ∈ N,
is given by [22]:

1
mν + 1

(
mν + 1
ν

)
. (11)

Let d be the degree distribution with d0 = 1/m and dm = (m− 1)/m. We have

lg
( 1
P[t]

)
= ν lg(m) +

(
(m− 1)ν + 1

)
lg
(

m

m− 1

)
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for every full m-ary tree t of size mν + 1, which is asymptotically, by (11), the minimum
number of bits needed to represent a full m-ary tree of size mν + 1.

Given a degree distribution d, Equation (10) suggests a route for an encoding that encodes an
ordinal tree t ∈ T with P[t] > 0 in lg(1/P[t]) (plus lower-order terms) many bits: Such an encoding
may spend lg(1/di) many bits per node v of t of degree deg(v) = i. Assuming that the degree
distribution is known (and need not be stored as part of the encoding), we can use arithmetic
coding to encode the degree of node v in that many bits: However, d can possibly consist of
countably many positive coefficients, thus, we have to adapt the process of arithmetic coding
slightly: In order to encode the degree deg(v) ∈ N0 of a node v, we consider deg(v) as a unary
string s = 0deg(v)1, which we encode using arithmetic coding as follows: In order to encode the
kth symbol of s, we feed the arithmetic coder with the model that the next symbol is a number
s[k] ∈ {0, 1}, the probability for s[k] = 1 being dk−1/(dk−1 + dk + dk+1 + . . . ). Thus, arithmetic
coding uses

deg(v)−1∑
k=0

lg

(1− dk∑
i≥k di

)−1
+ lg

(∑
i≥deg(v) di

ddeg(v)

)

=
deg(v)−1∑
k=0

lg

∑
i≥k

di

− lg

 ∑
i≥k+1

di

+ lg

 ∑
i≥deg(v)

di

+ lg
(

1
ddeg(v)

)

= lg
(

1
ddeg(v)

)

many bits to encode s = 0deg(v)1. An encoding Dd, dependent of a given degree-distribution d,
stores a tree t as follows: While traversing the tree in depth-first order, we encode the degree
deg(v) of each node v, using arithmetic encoding as described above. We can reconstruct the tree
t recursively from its code Dd(t), as we always know the degrees of the nodes we have already
visited in the depth-first order traversal of the tree. As arithmetic encoding needs lg(1/ddeg(v))
bits per node v, plus at most 2 bits of overhead, the total number of bits needed in order to store
an ordinal tree t ∈ T with P[t] > 0 is thus

|Dd(t)| ≤
∑
v∈t

lg
(

1
ddeg(v)

)
+ 2.

If a degree distribution d is the empirical degree distribution of an ordinal tree t, i.e., di = νti/|t|
for every i ∈ [t], we find in particular:

|Dd(t)| ≤
|t|∑
i=0

νti lg
(
|t|
νti

)
+ 2 = Hdeg(t) + 2.

The encoding Dd yields a prefix-free code for the set of ordinal trees which satisfy P[t] > 0
with respect to the degree distribution d. In order to show that our hypersuccinct code is universal
with respect to degree-distribution sources, we start with the following lemma:
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Lemma H.3 (Micro tree code bound): Let d be a degree distribution and let t ∈ Tn be an
ordinal tree of size n with P[t] > 0. Then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
n log logn

logn

)

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm from our tree covering
scheme (see Section G.1).

Proof: Recall that the micro trees µ1, . . . , µm from our tree partitioning scheme for ordinal trees
are pairwise disjoint except for (potentially) sharing a common subtree root and that apart from
edges leaving the subtree root, at most one other edge leads to a node outside of the subtree
(Lemma G.1). Thus, there are at most two nodes in each micro tree µi, whose degree in µi might
not coincide with their degree in t: The root of µi, which we denote with ρi, and a node πi 6= ρi.
In particular, for every node v 6= πi, ρi of µi, we have degµi(v) = degt(v). Let pos(πi) denote the
depth-first order position of πi in µi. With Dd(µi \ ρi) (respectively, Dd(µi \ ρi, πi)), we denote
the following modification of Dd: While traversing the tree µi in depth-first order, we encode the
degree degµi(v) of each node v of µi, using arithmetic coding as in the encoding Dd, except that
we skip the root ρi of µi (respectively, we skip the root ρi of µi and the node πi 6= ρi in µi from
which an edge to a node outside of µi emerges). This is well-defined: We have ddeg(v) > 0 for every
node v 6= ρi, πi of µi whose degree we encode, as its degree in µi coincides with its degree in t and
as P[t] > 0. If we know degµi(ρi), respectively, degµi(ρi), degµi(πi) and pos(πi), we are able to
recover µi from Dd(µi \ ρi), respectively, Dd(µi \ ρi, πi). Let I0 denote the set of indexes i ∈ [m]
for which µi does not contain a node other than (possibly) the root node from which an edge to a
node outside of µi emerges, and let I1 = [m] \ I0. We define the following modified encoding:

D̃d(µi) =
{

0 · γ(degµi(ρi)) ·Dd(µi \ ρi) if i ∈ I0,

1 · γ(degµi(ρi)) · γ(degµi(πi) + 1) · γ(pos(πi)) ·Dd(µi \ ρi, πi) otherwise.

Note that formally, D̃d is not a prefix-free code over Σµ, as there can be micro tree shapes that
are assigned several codewords by D̃d. But D̃d can again be seen as a generalized prefix-free
code, where more than one codeword per symbol is allowed, as D̃d is uniquely decodable to local
shapes of micro trees. Thus, as a Huffman code minimizes the encoding length over the class of
generalized prefix-free codes, we find:

m∑
i=1
|C(µi)| ≤

m∑
i=1
|D̃d(µi)| =

∑
i∈I0

|D̃d(µi)|+
∑
i∈I1

|D̃d(µi)|

≤
∑
i∈I0

(|Dd(µi \ ρi)|+ 2 lgµ+ 2) +
∑
i∈I1

(|Dd(µi \ ρi, πi)|+ 6 lgµ+ 4),

as degµi(ρi),degµi(πi) + 1,pos(πi) ≤ µ. By definition of |Dd(µi \ ρi)| and |Dd(µi \ ρi, πi)|, and as
|I0|+ |I1| = m, this is upper-bounded by

∑
i∈I0

∑
v∈µi
v 6=ρi

lg
(

1
ddegµi (v)

)
+
∑
i∈I1

∑
v∈µi
v 6=ρi,πi

lg
(

1
ddegµi (v)

)
+ 6m lgµ+ 6m.
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As every node v of t which is not the root node of a micro tree µi is contained in at most one
subtree µi and as degµi(v) = degt(v) for every node v 6= πi, ρi, we have

m∑
i=1
|C(µi)| ≤

∑
v∈t

lg
(

1
ddegt(v)

)
+ 6m lgµ+ 6m = lg

( 1
P[t]

)
+O

(
n log logn

logn

)
,

as m = Θ(n/ logn) and µ = Θ(logn) (see Section G.1). This finishes the proof. �

Theorem H.4 (Universality for degree distribution): Let d be a degree distribution. The
hypersuccinct code H : T→ {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+O

(
n log logn

logn

)
for every t ∈ Tn with P[t] > 0. In particular, if d coincides with the empirical degree distribution
of t, we have

|H(t)| ≤ Hdeg(t) +O

(
n log logn

logn

)
.

follows from Lemma H.3 and Lemma G.2.
In particular, for full m-ary trees from Example H.2, we obtain the following corollary from

Theorem H.4:

Corollary H.5: The hypersuccinct code H : T→ {0, 1}? optimally compresses encodes full
m-ary trees t of size n = mν + 1, drawn uniformly at random from the set of all full m-ary
trees of size n, using |H(t)| ≤ ν lg(m) + (m− 1)ν lg(m/(m− 1)) +O(n log logn/ logn) many
bits.

I. Fixed-Size Ordinal Tree Sources
For ordinal trees, we can define fixed-size sources in a similar way as for binary trees; such a
source is characterized by a function p : N+ → [0, 1] with∑

k∈N
n1,...,nk∈N

n1+···+nk=n−1

p(n1, . . . , nk) = 1

for all n ∈ N. The function p assigns a probability to each possible grouping of the n − 1
descendants of an n-node ordinal tree into subtrees of the root. Note that the choice of subtree
sizes of the root is equivalent to choosing a composition of n− 1 into strictly positive summands;
there are 2n−2 of these compositions (between each consecutive pair of n− 1 dots, we can either
place a barrier or not) – a lot more than the n choices for binary trees.

I.1. Monotonic Fixed-Size Sources
Definition I.1 (Monotonic source): A fixed-size ordinal-tree source Sfs(p) is called monotonic
if p is
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(i) weakly decreasing in every component,

p(n1, . . . , ni−1, ni, ni+1, . . . , nk) ≥ p(n1, . . . , ni−1, ni + 1, ni+1, . . . , nk),

(ii) weakly decreasing upon adding new subtrees,

p(n1, . . . , ni, ni+1, . . . , nk) ≥ p(n1, . . . , ni, 1, ni+1, . . . , nk),

(iii) and sub-multiplicative

p(n1, . . . , ni, ni+1, . . . , nk) ≤ p(n1, . . . , ni) · p(ni+1, . . . , nk).

The sub-multiplicativity allows us to handle shared roots in micro trees.

Example I.2 (Uniform composition trees): A simple example of a monotonic fixed-size
ordinal-tree source is obtained by setting

p(n1, . . . , nk) = 1
2n1+···+nk−2 = 2−(n−2).

In a sense, this is the analog of random BSTs (Example E.1) in the world of ordinal trees.
The distribution is very skewed to wide and short trees.

Example I.3 (Random LRM-trees / Uniform random recursive trees):
Let p(n1, . . . , nk) =

∏k
j=1

1
n1+···+nj . It is easy to check that Sfs(p) is a monotonic ordinal-tree

source. Trees with this distribution arise in several interesing ways.

• They are the shape of LRM-trees [4] built on a random permutation; here, the children
of the root are the indices of left-to-right minima (records) in the permutation, and
the subtree is constructed recursively from the subpermutation following a left-to-right-
minimum up to (excluding) the next one.

• They are also the shapes of (plane/ordered) random recursive trees which are grown
inductively: when the ith node is added, it selects its parent uniformly among the
i− 1 existing nodes and becomes that node’s leftmost child. This process is also called
uniform attachment.

• The distribution is also obtained by applying the FCNS mapping to random BSTs;
hence Lemma I.5 below provides another proof of monotonicity.

Let Sfs(p) be a fixed-size binary-tree source. The first-child next-sibling encoding fcns : T→ T ,
defined in Definition B.2, transforms an ordinal tree t ∈ Tn into a binary tree fcns(t) ∈ Tn.
However, this mapping is not surjective onto Tn: As the root node of an ordinal tree t ∈ Tn does
not have a next sibling, we find that the left subtree of fcns(t) ∈ Tn is always of size n− 1, whereas
the right subtree is empty. In particular, Sfs(p) is not a probability distribution on fcns(Tn). Thus,
for a given fixed-size binary-tree source Sfs(p), we define

P̃S [t] =
∏
v∈t
v 6=ρ

p(|t`[v]|, |tr[v]|),
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for binary trees t ∈ fcns(Tn), where the product ranges over all nodes v of t except for the root
node ρ. We then find that P̃S : fcns(Tn)→ [0, 1] is a probability distribution. Moreover, we define:

Definition I.4 (FCNS source): Let S be a fixed-size binary-tree source. BySfcns(S) we denote
the ordinal tree source that yields PS[t] = P̃S [fcns(t)] for every t ∈ Tn.

That is, in order to generate a random tree in Tn, we can let S generate a binary tree t′ ∈ Tn−1
with probability PS [t′], then add a new root node to t′ in order to obtain a tree t′′, such that t′ is
the left subtree of t′′, and compute t = fcns−1(t′) ∈ Tn. We find that PS [t′] = P̃S [t′′].

Lemma I.5 (FCNS preserves monotonicity): Let Sfs(p) be a monotonic fixed-size binary
tree source. Then, Sfcns(Sfs(p)) is a monotonic fixed-size ordinal-tree source.

Proof: We show that Sfcsn(Sfs(p)) can be written as Sfs(p′) for a p′ that fulfills the conditons of
Definition I.1. By definition of fcns, we have

p′(n1, . . . , nk) = p(n1 − 1, n2 + · · ·+ nk) · p(n2 − 1, n3 + · · ·+ nk) · · · ·
· p(nk−1 − 1, nk) · p(nk − 1, 0).

The monotonicity conditions follow by directly from monotonicity of p. �

Lemma I.6 (monotonicity implies submultiplicativity): Let Sfs(p) be monotonic and t ∈
T be decomposed into micro trees µ1, . . . , µm. Then P[t] ≤

∏m
i=1 P[µi].

Proof: Let v be a node of t with children u1, . . . , uk and let µi be a micro tree that v belongs
to. As µi is a subtree of t, we find |µi[uj ]| ≤ |t[uj ]|. Note that µi might contain only some of the
nodes uj ; if a node uj does not belong to µi, we define µi[uj ] = Λ and hence |µi[uj ]| = 0. There
are 3 cases for v:

1. v occurs in only one micro tree µi.
Then, its contribution to P[t] satisfies p(|t[u1]|, . . . , |t[uk]|) ≤ p(|µi[u1], . . . , |µi[uk]|) by mono-
tonicity of the source.

2. v is a branching node.
Assume u1, . . . , uk are spread over s micro trees µi1 , . . . , µis that also contain v. Then,
these micro trees each contain an interval of children (Fact B.7–(iv)), i.e., there are indices
1 ≤ l1 ≤ r1 ≤ l2 ≤ r2 ≤ · · · ≤ ls ≤ rs ≤ k so that µij contains ulj , . . . , urj . By monotonicity
and since p(·) ≤ 1, we have

p(|t[u1]|, . . . , |t[uk]|) ≤
s∏
j=1

p(|t[ulj ]|, . . . , |t[urj ]|)

≤
s∏
j=1

p(|µij [ulj ]|, . . . , |µij [urj ]|).

3. v is a path node.
As above, u1, . . . , uk will be spread over s micro trees µi1 , . . . , µis that also contain v, but
one of them, µih can be missing a child from its interval (Fact B.7–(v)). With indices as
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above, µij , j 6= h, contains ulj , . . . , urj , and µih contains ulh , . . . , uq−1, uq+1, . . . , urh for a
q ∈ [k]. We obtain by monotonicity

p(|t[ulh ]|, . . . , |t[uq−1]|, |t[uq]|, |t[uq+1]|, . . . , |t[urh ]|)
≤ p(|t[ulh ]|, . . . , |t[uq−1]|, 1 , |t[uq+1]|, . . . , |t[urh ]|)
≤ p(|t[ulh ]|, . . . , |t[uq−1]|, |t[uq+1]|, . . . , |t[urh ]|);

and hence

p(|t[u1]|, . . . , |t[uk]|) ≤
s∏
j=1

p(|t[ulj ]|, . . . , |t[urj ]|)

≤ p(|t[ulh ]|, . . . , |t[uq−1]|, |t[uq+1]|, . . . , |t[urh ]|)·∏
j=1,...,s
j 6=h

p(|t[ulj ]|, . . . , |t[urj ]|)

≤ p(|µih [ulh ]|, . . . , |µih [uq−1]|, |µih [uq+1]|, . . . , |µih [urh ]|)·∏
j=1,...,s
j 6=h

p(|µij [ulj ]|, . . . , |µij [urj ]|).

In all three cases we could bound the contribution of v to P[t] by the product of its contributions
to the micro trees it belongs to. Therefore we find

P[t] =
∏
v∈t

p(|t1[v]|, . . . , |tdegt(v)[v]|)

≤
m∏
i=1

∏
v∈µi

p(|(µi)1[v]|, . . . , |(µi)degµi (v)[v]|)

=
m∏
i=1

P[µi]. �

I.1.1. Universality of Monotonic Fixed-Size Ordinal Tree Sources

In order to show universality of our hypersuccinct code for ordinal trees from Section G.1 with
respect to fixed-size ordinal tree sources, we start again with a source-specific encoding for ordinal
trees: As for binary trees, we define a depth-first order arithmetic code Dp for ordinal trees,
dependent on a given ordinal tree source Sfs(p). Let t ∈ T denote an ordinal tree with P[t] > 0.
Assuming that the fixed-size source p need not be stored as part of the encoding, we again make
use of arithmetic coding in order to store t’s subtree sizes: Recall that the function p assigns a
probability to each possible grouping of the n− 1 descendants of a tree of size n into subtrees,
and that there are 2n−2 many choices for these groupings: the compositions of n− 1 into positive
integers. Fix an enumeration of these compositions for every n, such that if we know n, every
number ` ∈ {1, . . . , 2n−2} represents one of these possible groupings.

The depth-first arithmetic code Dp now stores an ordinal tree t as follows: We initially encode
the size of the tree in Elias gamma code: If the tree consists of n nodes, we store the Elias
gamma code of n+ 1, γ(n+ 1), in order to take the case into account that t is the empty binary
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tree. Additionally, while traversing the tree in depth-first order, we encode the grouping of the
|t[v]| − 1 many descendants of v into subtrees for every node v using arithmetic coding: To
encode these subtree sizes, we feed the arithmetic coder with the model that the next symbol is
a number ` ∈ {0, . . . , 2|t[v]|−1}, representing a composition (|t[v1]|, . . . , |t[vk]|) of |t[v]| − 1 by our
fixed enumeration of all compositions of |t[v]| − 1, with probability p(|t[v1]|, . . . , |t[vk]|). We can
reconstruct the tree t recursively from its code Dp(t), as we always know the subtree size of the
current node. This yields an encoding Dp which stores an ordinal tree t with P[t] > 0 in

|Dp(t)| ≤ lg
( 1
P[t]

)
+ 2blg(|t|+ 1)c+ 3 (12)

many bits.

Lemma I.7 (micro tree code): Let Sfs(p) be a fixed-size tree source and let t ∈ Tn with
P[t] > 0. If Sfs(p) is monotonic, then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
n log logn

logn

)
,

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm from our tree covering
scheme (see Section G.1).

Proof: As Sfs(p) is monotonic, we have 0 < P[t] ≤ P[µi] by Lemma I.6 for every i ∈ [m]: Thus,
|Dp(µi)| is well-defined for every micro tree µi. By optimality of Huffman codes, we find that

m∑
i=1
|C(µi)| ≤

m∑
i=1
|Dp(µi)|,

where Dp is the depth-first arithmetic code for ordinal tree sources. By our estimate (12) for |Dp|,
we find that

m∑
i=1
|Dp(µi)| ≤

m∑
i=1

(
lg
( 1
P[µi]

)
+ 3 + 2blg(|µi|+ 1)c

)

≤
m∑
i=1

lg
( 1
P[µi]

)
+O(m logµ).

As Sfs(p) is monotonic, we find by Lemma I.6:

m∑
i=1

lg
( 1
P[µi]

)
+O(m logµ) ≤ lg

( 1
P[t]

)
+O(m logµ).

Altogether, with m = Θ(n/ logn) and µ = Θ(logn) (see Section G.1), we thus obtain

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
n log logn

logn

)
. �

From Lemma I.7 and Lemma G.2, we find the following:
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Theorem I.8 (Universality for monotonic sources): Let Sfs(p) be a monotonic fixed-size
tree source. The hypersuccinct code H : T→ [0, 1] satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+O

(
n log logn

logn

)
for every t ∈ Tn with P[t] > 0.

As the ordinal tree sources from Example I.2 and Example I.3 are both monotonic, we obtain
the following corollary from Theorem I.8:

Corollary I.9: The hypersuccinct code H : T→ {0, 1}? encodes

(i) Uniform composition trees of size n (see Example I.2) using

|H(t)| ≤ lg(1/P[t]) +O(n log logn/ logn)

many bits,

(ii) Random LRM trees of size n (see Example I.3) using

|H(t)| ≤ lg(1/P[t]) +O(n log logn/ logn)

many bits.

I.2. Fringe-Dominated Fixed-Size Ordinal Tree Sources
As for binary trees, we consider a second class of fixed-size sources, fringe-dominated ordinal
tree sources, for which we will be able to prove universality of the hypersuccinct code: Recall
that a node v is called heavy, if |t[v]| ≥ B for the fixed parameter B, and light, otherwise. With
n≥B(t) we again denote the number of heavy nodes of t. Moreover, we call a fringe subtree heavy,
if its root is heavy, and light otherwise. With `B(t), we denote the total number of maximal
(non-empty) light fringe subtrees of t, i.e., of light nodes v of t, such that parent(v) is heavy. Note
that for binary trees, we have `B(t) ≤ n≥B(t) + 1, as the set of heavy nodes of a binary tree t
induces a (binary, non-fringe) subtree t′ of t, and every leaf of this subtree t′ of t can have at most
two children. For ordinal trees, this relation does not hold (consider, for example, an ordinal tree
of size n consisting of a root node with n− 1 children).

Definition I.10 (Average-case fringe-dominated): We call a fixed-size ordinal tree source
average-case B-fringe-dominated, for a function B with B(n) = Θ(logn), if∑

t∈Tn
P[t] · `B(t) = o

(
n

logB

)
and

∑
t∈Tn

P[t] · n≥B(t) = o

(
n

logB

)
.

Definition I.11 (Worst-case fringe-dominated): We call a fixed-size ordinal tree source
worst-case B-fringe-dominated, for a function B with B(n) = Θ(logn), if

`B(t) = o(n/ logB) and n≥B(t) = o(n/ logB)

for every t ∈ Tn with P[t] > 0.
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Note that for binary trees, these definitions accord with Definition E.9 and Definition E.10 of fringe-
dominated binary tree sources, as in this case `B(t) ≤ n≥B(t) + 1, by the above considerations.
The parameter B will again be chosen as B = Θ(logn).

Fringe-dominated sources can be handled similarly as binary trees using a great-branching
code. We start with the following lemma:

Lemma I.12 (micro tree code): Let Sfs(p) be a fixed-size tree source and let t ∈ Tn with
P[t] > 0. Then

m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+ O(n log logn/ logn) + O(`B(n)(t) log logn)

+O(n≥B(t) log logn),

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm and B(n) ∈ Θ(logn) is the
parameter from our tree covering scheme (see Section G.1).

Proof: As in the case of binary trees, we first observe that some of the micro trees µ1, . . . , µm
from the tree covering scheme might be fringe, but many will be internal micro trees, i.e., have
child micro trees in the top tier tree Υ . Let I0 = {i ∈ [m] | µi is fringe} and let I1 = [m] \ I0. If
µi is a fringe micro tree, then all micro-tree local subtree sizes and node degrees coincide with the
corresponding global subtree sizes and node degrees, except for (possibly) the root node’s degree:
The root node of µi might be contained in several micro trees, in that case its global degree and
its micro-tree local node degree do not coincide (however, the respective subtree sizes do). Let ρi
denote the root node of micro tree µi and let fi,1, . . . , fi,deg(ρi) denote the fringe subtrees of µi
rooted in ρi’s children, listed in preorder. By definition of the tree covering scheme (Section B.3),
we find that all the subtrees fi,1, . . . , fi,deg(ρi) are maximal light subtrees of t, and ρi corresponds
to a heavy node of t.

If µi is an internal micro tree, then its root node might be contained in several micro trees
as well, resulting in different global and micro-tree local node degrees. Furthermore, the subtree
sizes of the ancestors of portal nodes change. By Lemma G.1, there is at most one other edge
leading to a node outside of the micro tree µi apart from edges leaving the subtree root: Thus,
the ancestors of portals in an internal micro tree µi form a unary path from the root node to the
(non-root-node) portal, if it exists. Let bough(µi) denote the subtree of µi induced by the set of
nodes that are ancestors of µi’s child micro trees (ancestors of the portals), including the root node.
As observed above, bough(µi) is always a unary path – thus, if we know the length of bough(µi), we
also know its shape. With gi,1,1, . . . , gi,1,ki,1 . . . gi,|bough(µi)|,1, . . . , gi,|bough(µi)|,ki,|bough(µi)|

we denote
the non-empty fringe subtrees of µi hanging off the boughs of µi, where gi,j,1, . . . , gi,j,ki,j denote
the fringe subtrees attached to the jth node of bough(µi) (listed in preorder), and ki,j denotes
their respective number. Moreover, with ri,j we denote how many of them are right siblings of the
(j + 1)st node of bough(µi) (if j = |bough(µi)|, we set ri,|bough(µi)| = 0). As those fringe subtrees
gi,j,k of µi are fringe subtrees of t as well and pairwise-disjoint, we find that their micro-tree local
subtree sizes and micro-tree local node degrees coincide with the corresponding global subtree
sizes and global node degrees. Altogether, we thus have

∑
i∈I0

deg(ρi)∑
k=1

lg
(

1
P[fi,k]

)
+
∑
i∈I1

|bough(µi)|∑
j=1

ki,j∑
k=1

lg
(

1
P[gi,j,k]

)
≤ lg

( 1
P[t]

)
. (13)
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Moreover, the fringe subtrees gi,j,k are maximal light subtrees of t, as by definition of the tree
covering scheme, bough-nodes are heavy.

As in the proof of Lemma E.24, we now construct a new encoding, similar to the “great-
branching” code, for ordinal trees: Let

Ei,j = γ(ki,j + 1) · γ(ri,j + 1) ·Dp(gi,j,1) . . . Dp(gi,j,ki,j ) ∈ {0, 1}?,

where Dp(gi,k) denotes the depth-first order arithmetic code for ordinal fixed-size tree sources
from Section I.1. That is, Ei,j stores the number of fringe subtrees attached to the jth node of
bough(µi), followed by the number ri,j which states how many of them are right siblings of the
j + 1st node of bough(µi), followed by their depth-first order arithmetic codes, listed in preorder.
We set

ĜB(µi) =
{

0 · γ(deg(ρi)) ·Dp(fi,1) · · ·Dp(fi,deg(ρi)), if µi is a fringe micro tree;
1 · γ(|bough(µi)|) · Ei,1 · · ·Ei,|bough(µi)|, otherwise,

Note that this is well-defined, as the encoding Dp is only applied to fringe subtrees fi,k and gi,j,k
of t, for which P[fi,k],P[gi,j,k] > 0 follows from P[t] > 0. We can reconstruct µi from ĜB(µi) as
follows: If µi is a fringe subtree, we know the degree of the root of µi, followed by the (uniquely
decodable) encodings of the root node’s subtrees, Dp(fi,1), . . . , , Dp(fi,deg(ρi)). If µi is an internal
micro tree, we first decode the size (and thus, the shape) of bough(µi). Then, for each node
of bough(µi), we decode the number of fringe subtrees (which can be zero) attached to that
node, followed by how many of them are right siblings of the next bough-node, followed by their
depth-first order arithmetic code, which tells us their sizes and shapes, listed in preorder. The
code ĜB is not a prefix-free code over Σµ: there can be micro tree shapes that are assigned several
codewords by ĜB, depending on which nodes are portals to other micro trees (if any). But ĜB is
uniquely decodable to local shapes of micro trees, and can thus be seen as a generalized prefix-free
code, where more than one codeword per symbol is allowed: Thus, the Huffman code C for micro
trees used in the hypersuccinct code achieves no worse encoding length than the great-branching
code ĜB:

m∑
i=1
|C(µi)| ≤

m∑
i=1
|ĜB(µi)| =

∑
i∈I0

|ĜB(µi)|+
∑
i∈I1

|ĜB(µi)|.

By definition of ĜB and Ei,j , we find

∑
i∈I0

|ĜB(µi)|+
∑
i∈I1

|ĜB(µi)| =
∑
i∈I0

1 + |γ(deg(ρi))|+
deg(ρi)∑
k=1

|Dp(fi,k)|


+
∑
i∈I1

1 + |γ(|bough(µi)|)|+
|bough(µi)|∑

j=1

|γ(ki,j + 1)|+ |γ(ri,j + 1)|+
ki,j∑
k=1
|Dp(gi,j,k)|

.
With deg(ρi), ki,j , ri,j ≤ µ− 1, this is upper-bounded by

∑
i∈I0

2 + 2 lg(µ) +
deg(ρi)∑
k=1

|Dp(fi,k)|


+
∑
i∈I1

2 + 2 lg(|bough(µi)|) + |bough(µi)|(4 lg(µ) + 2) +
|bough(µi)|∑

j=1

ki,j∑
k=1
|Dp(gi,j,k)|

.
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Using the estimate (12) for |Dp|, we can upper-bound this by

∑
i∈I0

2 + 2 lg(µ) +
deg(ρi)∑
k=1

(
lg
(

1
P[fi,k]

)
+ 2 lg(|fi,k|+ 1) + 3

)
+
∑
i∈I1

(2 + 2 lg(|bough(µi)|) + |bough(µi)|(4 lg(µ) + 2))

+
∑
i∈I1

|bough(µi)|∑
j=1

ki,j∑
k=1

(
lg
(

1
P[gi,j,k]

)
+ 2 lg(|gi,j,k|+ 1) + 3

)
.

With |I0| ≤ m and by inequality (13), this is smaller than

lg
( 1
P[t]

)
+ 4m lg(µ) + 5

∑
i∈I0

deg(ρi)∑
k=1

lg(|fi,k|+ 1) + 10
∑
i∈I1

|bough(µi)| lg(µ)

+ 5
∑
i∈I1

|bough(µi)|∑
j=1

ki,j∑
k=1

lg(|gi,j,k|+ 1).

Recall that all fringe subtrees fi,k and gi,j,k are distinct maximal light subtrees of t. Thus, their
total number is upper-bounded by the number `B(t) of maximal light fringe subtrees:

∑
i∈I0

deg(ρi) +
∑
i∈I1

|bough(µi)|∑
j=1

ki,j ≤ `B(t). (14)

Furthermore, every bough-node is heavy. However, the paths bough(µi) are not necessarily disjoint
subtrees of t, as possibly many micro tree root nodes correspond to the same node of t: Thus, at
most one node per micro tree is counted multiple times if we add up the sizes of the boughs. We
thus have ∑

i∈I1

|bough(µi)| ≤ n≥B(t) +m. (15)

With the bounds (14) and (15), and as |fi,j |, |gi,j,k| ≤ µ, we find altogether:
m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O(m log(µ)) +O(`B(t) log(µ)) +O(n≥B(t) log(µ)).

As m = Θ(n/ logn) and µ = Θ(logn) (see Section G.1), we have
m∑
i=1
|C(µi)| ≤ lg

( 1
P[t]

)
+O

(
n log logn

logn

)
+O(`B(t) log logn) +O(n≥B(t) log logn). �

From Lemma I.12 and Lemma G.2, we find the following:

Theorem I.13 (Universality from fringe dominance): LetSfs(p) be an average-case fringe-
dominated fixed-size ordinal tree source. Then the hypersuccinct code H : T→ {0, 1}? satisfies∑

t∈Tn
P[t]|H(t)| ≤

∑
t∈Tn

P[t] lg
( 1
P[t]

)
+ o(n).
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Let Sfs(p) be a worst-case fringe-dominated fixed-size ordinal tree source. Then the hypersuccinct
code H : T→ {0, 1}? satisfies

|H(t)| ≤ lg
( 1
P[t]

)
+ o(n)

for every ordinal tree t ∈ Tn with P[t] > 0.

Remark I.14 (Fixed-height sources?): Fixed-height sources for ordinal trees could in princi-
ple be handled similar to the fixed-size ones below; but unless node degrees are bounded, there are
infinitely many ordinal trees of a given height, which makes the utility of such sources questionable
(and would not satisfy to the filter definitions in [80]). We will therefore not explore this route.

J. Label-Shape Entropy
In [44] (see also [45]), another measure of empirical entropy for (node-labeled) ordinal trees was
introduced that we denote with Hsk: In [45], the authors refer to this measure as label-shape-entropy,
as it considers both labels and structure of the tree, but this notion of empirical entropy is also a
suitable entropy measure for unlabeled ordinal trees. Since we do not consider labeled trees in
this work, we refer to this notion of empirical entropy for trees as shape-entropy for short. In this
section, we show that the length of our hypersuccinct code H for binary trees (see Section C.1) can
be upper-bounded in terms of the kth-order shape entropy Hsk of an ordinal tree (for suitable k),
plus lower-order terms.

Remark J.1 (Relation to degree entropy): In [45], it is shown that kth order shape entropy
Hsk can be exponentially smaller than the degree entropy Hdeg (see Definition H.1), but that a
reverse statement cannot hold, that is, the following two statements are shown:

Lemma J.2 (Lemmas 4 and 5, [45]): There exists a family of trees (tn)n∈N, such that |tn| =
Θ(n), Hdeg(tn) = (2− o(1))n and Hsk(tn) ≤ lg(en).

Theorem J.3 (Theorem 4, [45]): For every ordinal tree t ∈ T of size |t| ≥ 2 and integer k ≥ 1,
we have Hsk(t) ≤ 2Hdeg(t) + 2 lg(|t|) + 4.

We need some additional notation. We introduce two additional types of tree processes to
apply our proof template for universality. We call them shape-processes (as considered before in
[44]) and childtype-processes. The childtype-processes will allow us to write Hsk(t) as lg(1/P[t]),
where P[t] is the probability that a certain tree process (a childtype process) generates t, which
then can be written as a product of contributions of the nodes of the tree.

Let T � denote the set of full binary trees, and let T �n likewise denote the set of full binary
trees of size n. Let v be a node of a full binary tree t ∈ T �. We define the shape-history hs(v) of
v inductively as follows: If v is the root node of t, we set hs(v) = ε (the empty string). If v is the
left child of a node w of t, we set hs(v) = hs(w)0 and if v is a right child of a node w of t, we set
hs(v) = hs(w)1. In other words, in order to obtain hs(v), we walk downwards in the tree from the
root node to node v, and concatenate bits 0 and 1 for each edge we traverse, where a number 0
(resp., 1) states that we move on to a left (resp. right) child node. Morever, we define the k-th
order shape history hsk(v) ∈ {0, 1}k of a node v of a full binary tree t ∈ T � as the length-k-suffix
of the string 0khs(v), that is, if |hs(v)| ≥ k, we take the last k directions 0 and 1 on the path
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from the root to the node v, and if |hs(v)| < k, we pad this too short history with 0’s, in order to
obtain a string of length k. (This accords with the definition in [44]: Several alternatives of how
to define k-shape histories of nodes v for which |hs(v)| < k are discussed in the long version of
[44]). Recall the definition of type(v) for a node v of a binary tree t from Section D: In particular,
we find that type(v) ∈ {0, 2} if v is a node of a full binary tree. For a string z ∈ {0, 1}k and an
integer i ∈ {0, 2}, we define mt

z as the number of nodes v of t, for which hsk(v) = z, and mt
z,i

as the number of nodes v of t, for which hsk(v) = z and type(v) = i. A kth order shape process
ϑ = (ϑz)z∈{0,1}k is a tuple of probability distributions ϑz : {0, 2} → [0, 1] (see [44]). A kth order
shape process ϑ assigns a probability Pϑ(t) to a full binary tree t ∈ T � by

Pϑ[t] =
∏
v∈t

ϑhs
k

(v)(type(v)) =
∏

z∈{0,1}k

∏
i∈{0,2}

(ϑz(i))m
t
z,i . (16)

A kth order shape process randomly generates a full binary tree as follows: In a top-down way,
starting at the root node, we determine for each node v its type type(v) ∈ {0, 2}, where this
decision depends on the k-shape-history hsk(v): The probability that a node v is of type i is given
by ϑhs

k
(v)(i). If i = 0, this node becomes a leaf and the process stops at this node. Otherwise, i.e.,

if i = 2, we attach a left and a right child to the node and continue the process at these child
nodes. Note that this process might generate infinite trees with non-zero probability. In [44], the
kth order empirical shape entropy of a full binary tree t is defined as follows:

Definition J.4 (Shape entropy for full binary trees, [44]): Let k ≥ 0 be an integer and let
t ∈ T � be a full binary tree. The (unnormalized) kth-order shape entropy of t is defined as

Hsk(t) =
∑

z∈{0,1}k

∑
i∈{0,2}

mt
z,i lg

(
mt
z

mt
z,i

)
.

The corresponding normalized tree entropy is obtained by dividing by the tree size. Note that
shape entropy for full binary trees was already considered in Remark D.11. For a full binary
tree t ∈ T �, we define the corresponding empirical kth order shape process as the shape process
(ϑtz)z∈{0,1}k with ϑtz(i) = mt

z,i/m
t
z for every z ∈ {0, 1}k and i ∈ {0, 2}. In particular, for the kth

order empirical shape process (ϑtz)z∈{0,1}k of a full binary tree t ∈ T �, we find

lg
( 1
Pϑt [t]

)
=

∑
z∈{0,1}k

∑
i∈{0,2}

mt
z,i lg

( 1
ϑtz(i)

)
=

∑
z∈{0,1}k

∑
i∈{0,2}

mt
z,i lg

(
mt
z

mt
z,i

)
= Hsk(t). (17)

Next, we define a modified first-child next-sibling encoding fcns� : F→ T �, which maps a forest
to a full binary tree, as follows:

Definition J.5 (Modified fcns): The modified first-child next-sibling encoding fcns� : F→ T �
is recursively defined by fcns�(ε) = • for the empty forest ε, and

fcns�(•(f)g) = •(fcns�(f), fcns�(g))

for forests f, g ∈ F.

That is, the left child (resp. right child) of a node in fcns�(f) is its first child (resp. next sibling)
in f or a newly-added leaf, if it does not exist. In particular, we find that fcns�(f) is always a full
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binary tree, and that fcns� : F→ T � is a bijection. Moreover, we find that we obtain the modified
first-child next-sibling encoding fcns�(f) from fcns(f) (as defined in Definition B.2) by adding
a leaf to each null-pointer of fcns(f). Furthermore, we find that each node v of a forest f ∈ F
uniquely corresponds to an inner node of fcns�(f), which we denote with id�fcns(v). The shape
entropy of an ordinal tree is defined as the shape entropy of its corresponding modified first-child
next-sibling encoding in [44]:

Definition J.6 (Shape entropy for ordinal trees, [44]): Let k ≥ 0 be an integer and let
t ∈ T be an ordinal tree. The (unnormalized) kth order shape entropy of t is defined as

Hsk(t) = Hsk(fcns�(t)).

For an inner node v of a full binary tree t ∈ T �, we define its childtype as follows:

childtype(v) =


0 if v’s children are both leaves,
1 if only v’s left child is a leaf,
2 if only v’s right child is a leaf,
3 if v’s children are both inner nodes.

Moreover, for a node v of a forest f ∈ F, we set childtype(v) = childtype(id�fcns(v)). In particular,
we find:

Lemma J.7: Let v be a node of a forest f ∈ F, then

childtype(v) =


0 if v is a leaf and does not have a next sibling,
1 if v is a leaf and has a next sibling,
2 if v is not a leaf and does not have a next sibling,
3 if v is not a leaf and has a next sibling.

The proof of Lemma J.7 follows immediately from Definition J.5 and the definition of the childtype-
mapping. Furthermore, for a node v of a forest f ∈ F, we define the shape-history hs(v) as
hs(id�fcns(v)), i.e., as the shape-history of its corresponding node in fcns�(f). We find that if v is
the root node of the first tree in f , then hs(v) = ε (the empty string). Otherwise, if v is the first
child of a node w of f , then hs(v) = hs(w)0 and if v is the next sibling of a node w of f , then
hs(v) = hs(w)1. Note that basically, for a node v of a forest f , hs(v) represents the numbers of v’s
left siblings and of v’s ancestors’ left siblings in unary. Similarly, we define hsk(v) as hsk(id

�
fcns(v)).

A kth order childtype process ζ = (nζ , (ζz)z∈{0,1}k) is a tuple of probability distributions
ζz : {0, 1, 2, 3} → [0, 1] together with a number nζ ∈ [0, 1]. A kth order childtype process ζ assigns
a probability Pζ to a full binary tree t ∈ T � by

Pζ [t] =


1− nζ if |t| = 1,
nζ ·

∏
v∈t

v inner node of t

ζhs
k

(v)(childtype(v)) otherwise. (18)

A kth order childtype process randomly generates a full binary tree t as follows: With probability
1 − nζ , t consists of just one node. Otherwise, in a top-down way, starting at the root node,
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we determine for each node v its childtype(v) ∈ {0, 1, 2, 3}, where this decision depends on the
k-shape-history hsk(v): The probability that a node v is of childtype i is given by ζhs

k
(v)(i). We

add a left child and a right child to the node and if i = 0, we (implicitly) mark both of them as
leaves, if i = 1, we mark the left child as a leaf, if i = 2, we mark the right child as a leaf and if
i = 3, we do not mark the children as leaves. The process then continues at child nodes which are
not marked as leaves. For a forest f ∈ F, we set

Pζ [f ] = Pζ [fcns�(f)]. (19)

Thus, via the fcns�-encoding, a kth order childtype process can be seen as a process randomly
generating a forest f as follows: With probability 1 − nζ , the forest is empty. Otherwise, in a
top-down left-to-right way, starting at the root node of the first tree in the forest, we determine
for each node v its childtype(v) ∈ {0, 1, 2, 3} (i.e., whether this node has a first child and whether
this node has a next sibling), where this decision depends on the k-shape-history hsk(v): Note that
as we generate f in a top-down left-to-right way, we always know hsk(v) at every node we visit. If
childtype(v) = 0, the process stops at this node. If childtype(v) = 1, then we add a new child
node to v’s parent (respectively, if v is a root node itself, we add a new tree of size one to the
forest), if childtype(v) = 2, we add a new child to v, and if childtype(v) = 3, we add a new child
to v and a new child to v’s parent node. The process then continues at these newly added nodes.
In particular, we find

Lemma J.8: Let t ∈ T be a non-empty ordinal tree, then

Pζ [t] = nζ ·
∏
v∈t

ζhs
k

(v)(childtype(v)).

Proof: We find by the definition of Pζ (see (18)), the definition of the k-shape-history and the
definition of the mapping childtype:

Pζ [t] = Pζ [fcns�(t)] = nζ ·
∏

v∈fcns�(t)
v inner node

ζhs
k

(v)(childtype(v))

= nζ ·
∏
v∈t

ζhs
k

(id�fcns(v))(childtype(id�fcns(v))) = nζ ·
∏
v∈t

ζhs
k

(v)(childtype(v)). �

Finally, we make the following definition:

Definition J.9: Let ϑ = (ϑz)z∈{0,1}k be a kth order shape process. We define the corresponding
k − 1st-order childtype process ζϑ = (nϑζ , (ζϑz )z∈{0,1}k−1) by setting nζϑ = ϑ0k(2) and

ζϑz (0) = ϑz0(0) · ϑz1(0), ζϑz (1) = ϑz0(0) · ϑz1(2),
ζϑz (2) = ϑz0(2) · ϑz1(0), ζϑz (3) = ϑz0(2) · ϑz1(2),

for every z ∈ {0, 1}k−1.

It is easy to see that ζϑz is well-defined. In particular, we find

Lemma J.10: Let t ∈ T � be a full binary tree. Then

Pϑ[t] = Pζϑ [t].
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Proof: First, let |t| = 1: Then t consists of only one leaf node v of k-history 0k, and thus, we
have

Pϑ[t] = ϑ0k(0) = 1− nζϑ = Pζϑ [t].

In the next part of the proof, assume that |t| > 1. Let m̃t
z,i denote the number of inner nodes of t

with k-shape-history z ∈ {0, 1}? and of childtype i ∈ {0, 1, 2, 3}, and recall that mt
z,i denotes the

number of nodes of t with k-shape-history z and with type(v) = i ∈ {0, 2}. Let v be a node of t.
First, we assume that hsk(v) = z0 for some z ∈ {0, 1}k−1 with z 6= 0k−1 (thus, v is not the root
node of t), and that v is a leaf: Then v’s parent w is of k− 1-shape-history z, and w’s childtype is
either 0 or 1. In particular, the correspondence between leaves v of t with k-shape-history z0 and
inner nodes w = parent(v) of t with k − 1-shape-history z and childtype 0 or 1 is bijective, as
every node v with k-shape-history z0 is a left child of its parent node. We thus have

mt
z0,0 = m̃t

z,0 + m̃t
z,1.

In a similar way, we find that inner nodes v of t with k-shape-history z0 for z 6= 0k−1 correspond
to inner nodes w = parent(v) of t with k − 1-shape-history z and childtype i ∈ {2, 3}: We find

mt
z0,2 = m̃t

z,2 + m̃t
z,3.

Furthermore, we obtain the following relations in the same way:

mt
z1,0 = m̃t

z,0 + m̃t
z,2,

mt
z1,2 = m̃t

z,1 + m̃t
z,3,

for every z ∈ {0, 1}k. It remains to deal with nodes of k-shape-history z = 0k: We find that every
inner node v of t of k-shape-history 0k uniquely corresponds to an inner node w = parent(v) of t
of k − 1-shape-history 0k−1 and childtype i ∈ {2, 3}, except for the root node: We thus have

mt
0k,2 − 1 = m̃t

0k−1,2 + m̃t
0k−1,3.

Finally, every leaf v of t of k-shape-history 0k uniquely corresponds to an inner node w = parent(v)
of t of k − 1-shape-history 0k−1 and childtype i ∈ {1, 2}, as the root node is an inner node by
assumption:

mt
0k,0 = m̃t

0k−1,0 + m̃t
0k−1,1.

Altogether, we thus have for trees t with |t| > 1:

Pϑ[t] =
∏

z∈{0,1}k

∏
i∈{0,2}

(ϑz(i))m
t
z,i = (ϑ0k(0))m̃

t
0k−1,0

+m̃t
0k−1,1 · (ϑ0k(2))m̃

t
0k−1,2

+m̃t
0k−1,3

+1

·
∏

z∈{0,1}k−1
z 6=0k−1

(ϑz0(0))m̃
t
z,0+m̃tz,1 · (ϑz0(2))m̃

t
z,2+m̃tz,3

·
∏

z∈{0,1}k−1

(ϑz1(0))m̃
t
z,0+m̃tz,2 · (ϑz1(2))m̃

t
z,1+m̃tz,3
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= ϑ0k(2) ·
∏

z∈{0,1}k−1

(ϑz0(0) · ϑz1(0))m̃
t
z,0 ·

∏
z∈{0,1}k−1

(ϑz0(0) · ϑz1(2))m̃
t
z,1

·
∏

z∈{0,1}k−1

(ϑz0(2) · ϑz1(0))m̃
t
z,2 ·

∏
z∈{0,1}k−1

(ϑz0(2) · ϑz1(2))m̃
t
z,3

= nζ ·
∏

z∈{0,1}k−1

(
ζϑz (0)

)m̃tz,0 · ∏
z∈{0,1}k−1

(
ζϑz (1)

)m̃tz,1
·

∏
z∈{0,1}k−1

(
ζϑz (2)

)m̃tz,2 · ∏
z∈{0,1}k−1

(
ζϑz (3)

)m̃tz,3 = Pζϑ [t].

This finishes the proof. �

Corollary J.11: Let t ∈ T be an ordinal tree, and let ϑt := ϑfcns�(t) denote the empirical shape
process of its corresponding first-child next-sibling encoding. Then

Hsk(t) = lg
(

1
Pζϑt [t]

)
.

Proof: We have

Hsk(t) = Hsk(fcns�(t)) = lg
( 1
Pϑt [fcns�(t)]

)
= lg

(
1

Pζϑt [fcns�(t)]

)
= lg

(
1

Pζϑt [t]

)
,

where the first equality follows from Definition J.6, the second equality follows from the fact that
ϑt is the empirical kth order shape-process of fcns�(t) (see (17)), the third equality follows from
Lemma J.10 and the last equality follows from (19). �

In order to show that our hypersuccinct encoding from Section C.1 achieves the shape-entropy
defined in [44] for ordinal trees, we start with defining a source-specific encoding (called depth-first
order arithmetic code) with respect to a given kth order childtype process ζ, against which we
will compare the hypersuccinct code: The formula for Pζ [t] from Lemma J.8 suggests a route
for an (essentially) optimal source-specific encoding of any ordinal tree t ∈ T with Pζ [t] > 0,
that, given a kth order childtype process ζ, spends lg(1/P[t]) (plus lower-order terms) many
bits in order to encode an ordinal tree t ∈ T with Pζ [t] > 0: Such an encoding may spend
lg
(
1/ζhs

k
(v)(childtype(v))

)
many bits per node v of t, plus lg(1/nζ) many bits, if t is non-empty,

respectively, lg(1/(1− nζ)) many bits, if t is the empty tree. (Note that as Pζ [t] > 0 by assumption,
we have ζhs

k
(v)(childtype(v)) > 0 for every node v of t.) Assuming that we know the childtype

process ζ = (ζz)z∈{0,1}k , i.e., that we need not store it as part of the encoding, we can make use of
arithmetic coding in order to devise a simple (source-dependent) encoding Dζ , dependent on ζ,
that stores an ordinal tree t as follows: First, we store a number i ∈ {1, 2} which tells us whether t
is empty (i = 1) or non-empty (i = 2) using arithmetic encoding, i.e., we feed the arithmetic coder
with the model that the next symbol is a number i ∈ {1, 2} with probability 1−nζ , respectively, nζ .
Next, while traversing the tree in depth-first order, we encode childtype(v) ∈ {0, 1, 2, 3} for each
node v of t that we pass, using arithmetic coding: To encode childtype(v) (i.e., whether v is a leaf
or not and whether v has a next sibling or not, see Lemma J.7), we feed the arithmetic coder with
the model that the next symbol is a number i ∈ {0, 1, 2, 3} with probability ζhs

k
(v)(i). Note that we

always know hsk(v) at each node v we traverse: By definition, we have hsk(v) = hsk(id
�
fcns(v)). If v
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is the root node of t, then id�fcns(v) is the root node of fcns�(t) and thus hsk(v) = hsk(id�fcns(v)) = 0k.
Otherwise, hs(id�fcns(v)) = hs(id�fcns(w))0 or hs(id�fcns(v)) = hs(id�fcns(w))1 for a node w of t, which
is either v’s left sibling or, if v is the first child of its parent node in t, v’s parent in t, as id�fcns(w) is
id�fcns(v)’s parent. Thus, as we visit the nodes of t is depth-first order, we have already visited w and
know hsk(w), from which we can compute hsk(v). Altogether, this yields a source dependent code
Dζ(t), which we refer to as the depth-first arithmetic code with respect to the childtype-process ζ.
Note that an ordinal tree t is always uniquely decodable from Dζ(t). As arithmetic coding uses at
most lg

(
1/ζhs

k
(v)(childtype(v))

)
many bits per node v, plus lg(1/nζ) many bits if t is non-empty,

plus at most 2 bits of overhead, we find

|Dζ(t)| ≤


∑
v∈t

lg
(
1/ζhs

k
(v)(childtype(v))

)
+ lg(1/nζ) + 2 if t is non-empty,

lg(1/(1− nζ)) + 2 otherwise.

We now start with the following lemma:

Lemma J.12: Let (ζz)z∈{0,1}k be a kth order childtype process and let t ∈ T be an ordinal tree
of size n with Pζ [t] > 0. Then

m∑
i=1
|C(µi)| ≤ lg

(
1

Pζ [t]

)
+O

(
2kn log logn

logn

)
,

where C is a Huffman code for the sequence of micro trees µ1, . . . , µm obtained from the tree-
covering scheme.

Proof: Recall that the micro trees µ1, . . . , µm from our tree partitioning scheme for ordinal trees
are pairwise disjoint except for (potentially) sharing a common subtree root and that apart from
edges leaving the subtree root, at most one other edge leads to a node outside of the subtree (see
Fact B.7). The probability Pζ [t] consists of the contributions ζhs

k
(v)(childtype(v)) for every node v

of t. However, ζhs
k

(v)(childtype(v)) depends on the childtype and k-shape-history of each node v,
and there might be nodes, for which childtype and k-shape-history differ in t and µi. Thus, we will
first upper-bound the number of nodes v per micro tree µi, for which childtype(v), respectively,
hsk(v) in µi is different from childtype(v), respectively, hsk(v) in t. We find:

(i) If v is the root node of a micro tree µi, then it might have left, respectively, right siblings in
t, which it does not have in µi: Thus, its childtype and its k-shape-history might change.

(ii) If v is the first child of the root of µi, then it might have left siblings in t, which it does
not have in µi. Thus, its k-shape-history changes. Furthermore, the k-shape-history of its
close descendants and right siblings thus changes as well, i.e., the k-shape-history of the
descendants of order less than k of id�fcns(v): As fcns�(t) is a full binary tree, there are at
most 2k − 1 many descendants of order less than k of id�fcns(v) in fcns�(t), and thus, at most
2k − 1 many nodes, for which the k-shape history changes as the first child of the root in µi
loses its left siblings.

(iii) If v is the last child of the root of µi, then it might have right siblings in t, which it does
not have in µi: Thus, its childtype might change.
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(iv) The root node’s children in µi are consecutive children of this node in t, except for possibly
one child node x, which might be missing in µi (see Fact B.7). Thus, if v is the right sibling
of x in t, its k-shape-history in µi might differ from its k-shape-history in t. Furthermore, the
k-shape-histories of nodes corresponding to the descendants of order at most k of id�fcns(v)
in fcns�(t) might change as well. Again, as fcns�(t) is a full binary tree, there are at most
2k − 1 such nodes.

(v) There is at most one other edge which leads to a node outside of the micro tree µi, besides
edges emanating from the root of µi (see Fact B.7). Let v be the node in µi, from which this
other edge emanates: If v has only one child in t, then it does not have a child node in µi,
and thus, its childtypes in t and µi do not coincide. Otherwise, the degree of v in t is greater
than one and in particular, there might be a child node w of v, whose left sibling in t does
not belong to µi. Thus, w’s k-shape-history might change, as well as the k-shape-history
of the at most 2k − 1 many nodes corresponding to the descendants of order less than k
of id�fcns(w). Finally, there might be a child node u of v, which has a right sibling in t and
which does not have a right sibling in µi; thus, its childtype changes.

Let `i denote the number of nodes v of µi, for which childtype(v), respectively, hsk(v) in µi do
not coincide with childtype(v), respectively, hsk(v) in t, and let vi,1, . . . , vi,`i denote those nodes,
listed in preorder of µi (by default, we always include the root node the micro trees µi). By the
above considerations, we have `i ∈ O(2k). With Dζ(µi \ vi,1, . . . , vi,`i), we denote the following
modification of the depth-first arithmetic code Dζ : While traversing the tree µi in depth-first
order, we encode the childtype childtype(v) of each node v of µi, using arithmetic coding as in
the encoding Dζ , except that we skip the nodes vi,1, . . . , vi,`i of µi. Furthermore, we leave out the
lg(1/nζ) many bits which encode the number i ∈ {1, 2} which tells us whether µi is empty or not
(by definition, every micro tree µi of a non-empty tree t is non-empty). Note that as childtype and
k-shape history of the nodes v 6= vi,1, . . . , vi,`i of µi coincide with their corresponding childtype
and k-shape-history in t, we have ζhs

k
(v)(childtype(v)) > 0 for every node v 6= vi,1, . . . , vi,`i , thus,

the encoding Dζ(µi \ vi,1, . . . , vi,`i) is well-defined. Let pos(vi,j) denote the preorder position of a
node vi,j ∈ {vi,1, . . . , vi,`i}. If we know the preorder positions pos(vi,1), . . . ,pos(vi,`i) of the nodes
vi,1, . . . , vi,`i and their childtypes, we are able to recover µi from Dζ(µi \ vi,1, . . . , vi,`i). We now
define

Si = γ(`i) · γ(pos(vi,1)) · · · γ(pos(vi,`i)) · γ(childtype(vi,1) + 1) · · · γ(childtype(vi,`i) + 1),

that is, Si ∈ {0, 1}? encodes the number `i of nodes vi,1, . . . , vi,`i in Elias gamma code, followed
by their preorder positions in µi, encoded in gamma code, and their childtypes. Furthermore, we
define

D̃ζ(µi) = Si · Dζ(µi \ vi,1, . . . , vi,`i).

Note that we can uniquely recover a micro tree shape µi from the encoding D̃ζ(µi). Furthermore,
note that formally, D̃ζ is not a prefix-free code over Σµ, as as there can be micro tree shapes
that are assigned several codewords by D̃ζ . But D̃ζ can again be seen as a generalized prefix-free
code, where more than one codeword per symbol is allowed, as D̃ζ is uniquely decodable to local
shapes of micro trees. Thus, as a Huffman code minimizes the encoding length over the class of
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generalized prefix-free codes, we find:
m∑
i=1
|C(µi)| ≤

m∑
i=1
|D̃ζ(µi)| =

m∑
i=1

(|Si|+ |Dζ(µi \ vi,1, . . . , vi,`i)|).

In order to estimate the length of the string Si, we recall that the number `i of nodes vi,1, . . . , vi,`i ,
for which the childtype or k-shape-history differs in µi and t, is in O(2k), thus, γ(`i) = O(k).
Furthermore, we have γ(pos(vi,j)) ∈ O(log(µ)) and γ(childtype(vi,j)) ∈ O(1) for every node vi,j .
Thus, we find

m∑
i=1
|C(µi)| ≤

m∑
i=1

(
|Si|+

m∑
i=1
|Dζ(µi \ vi,1, . . . , vi,`i)|

)

≤
m∑
i=1

 ∑
v∈µi

v 6=vi,1,...,vi,`i

lg
(

1
ζhs
k

(v)(childtype(v))

)
+ 2

+O
(
2km logµ

)
.

Recall that the micro trees µi are disjoint except for possibly sharing a common root node, and that
the root node of each micro tree is included in the list vi,1, . . . , vi,`i . Furthermore, recall that the
respective values of hsk(v) and childtype(v) in t and in µi coincide for every node v 6= vi,1, . . . , vi,`i
of µi. Thus, we have

m∑
i=1

 ∑
v∈µi

v 6=vi,1,...,vi,`i

lg
(

1
ζhs
k

(v)(childtype(v))

) ≤
∑
v∈t

lg
(

1
ζhs
k

(v)(childtype(v))

)
.

Altogether, we thus find
m∑
i=1
|C(µi)| ≤

∑
v∈t

lg
(

1
ζhs
k

(v)(childtype(v))

)
+ 2m+O(2km logµ)

≤
∑
v∈t

lg
(

1
ζhs
k

(v)(childtype(v))

)
+ lg

(
1
nζ

)
+O(2km logµ)

= lg
( 1
P[t]

)
+O

(
2km logµ

)
.

With m = Θ(n/ logn) and µ = Θ(logn) (see Section G.1), we have
m∑
i=1
|C(µi)| ≤ log

( 1
P[t]

)
+O

(
2kn log logn

logn

)
.

This finishes the proof. �

From Lemma G.2, Lemma J.12 and Corollary J.11, we now find the following:

Corollary J.13: The hypersuccinct code H : T→ {0, 1}? satisfies

|H(t)| ≤ Hsk(t) +O

(
2kn log logn

logn

)
for every ordinal tree t ∈ T of size n.
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It remains to remark that the above result from Corollary J.13 requires 2k ∈ o(logn/ log logn) in
order to be non-trivial, whereas the tree-encoding based on TSLPs from [44] achieves Hsk plus
lower-order terms for k ∈ o(logn). However, the encoding from [44] is not known to support
queries in constant time, whereas our hypersuccinct code can be turned into a data structure
which allows constant time for a large number of tree queries (see Table 6).
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K. Notation Index
We collect used notation here for reference.

K.1. Elementary Notation
N, N0 . . . . . . . . . . . . . . natural numbers without 0 (resp., with 0), N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}
ln(n), lg(n) . . . . . . . . . .natural and binary logarithm; ln(n) = loge(n), lg(n) = log2(n).
[m..n], [n] . . . . . . . . . . . integer intervals, [k..n] = {k, k + 1, . . . , n}; [n] = [1..n].
O(f(n)), Ω, Θ, ∼ . . . . asymptotic notation as defined, e.g., in [22, §A.2]; in particular, f ∼ g means

f = g(1 + o(1)); f = g ±O(h) is equivalent to |f − g| ∈ O(|h|).
x± y . . . . . . . . . . . . . . .x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as with

O-terms, we use “one-way equalities”: z = x± y instead of z ∈ x± y.

K.2. Tree Notation
Tn, T . . . . . . . . . . . . . . . set of binary tree over n nodes, T =

⋃
n≥0 Tn

T h . . . . . . . . . . . . . . . . . set of binary tree of height h
Tn, T . . . . . . . . . . . . . . . set of ordinal tree over n nodes, T =

⋃
n≥0 Tn

Th . . . . . . . . . . . . . . . . . set of ordinal trees of height h
F . . . . . . . . . . . . . . . . . . the set of all forests, i.e., (possibly empty) sequences of trees from T

Λ . . . . . . . . . . . . . . . . . . the empty tree “null”
v ∈ t . . . . . . . . . . . . . . .v is a node in tree t; unless indicated otherwise, we identify nodes with their

preorder rank
|t| . . . . . . . . . . . . . . . . . .number of nodes in t, i.e., t ∈ Tn or t ∈ Tn implies |t| = n

h(t) . . . . . . . . . . . . . . . . height of the tree t
type(v) . . . . . . . . . . . . . type of a node of a binary tree (leaf, left-unary, right-unary or binary)
deg(v) . . . . . . . . . . . . . .degree of v, i.e., the number of children of v
t[v] . . . . . . . . . . . . . . . . . subtree of t rooted at v; if v does not occur in t, t[v] = Λ

t`[v], tr[v] . . . . . . . . . . . left resp. right subtree of v ∈ t ∈ T
t`, tr . . . . . . . . . . . . . . . left resp. right subtree of the root of tree t ∈ T
tk[v] . . . . . . . . . . . . . . . .kth subtree of v ∈ t ∈ T, for k ∈ [deg(v)]
BP(t) . . . . . . . . . . . . . . balanced parenthesis encoding of the binary tree t ∈ T , see Definition B.1
BPo(t) . . . . . . . . . . . . . balanced parenthesis encoding of the ordinal tree t ∈ T, see Definition B.1
fcns(t) . . . . . . . . . . . . . . the first-child next-sibling encoding of the binary tree t, see Definition B.2
h(v), hk(v) . . . . . . . . . . (k-) history of a node v of a binary tree: string consisting of the node types of v’s

(k closest) ancestors
ntz . . . . . . . . . . . . . . . . . number of nodes of t with k-history z
ntz,i . . . . . . . . . . . . . . . . number of nodes of t with k-history z and type i
νti . . . . . . . . . . . . . . . . . .number of nodes of degree i of t
nb(t), n≥b(t) . . . . . . . . . number of nodes of t with |t[v]| = b, resp. |t[v]| ≥ b
height etc . . . . . . . . . . operations on trees; see Table 4 and Table 6
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K.3. Tree Covering
B . . . . . . . . . . . . . . . . . .parameter of micro tree size, B = d 1

8 lgne

µ . . . . . . . . . . . . . . . . . .µ = 1
4 lgn maximal micro tree size

m . . . . . . . . . . . . . . . . . .number of micro trees, m = Θ(n/B)

µ1, . . . , µm . . . . . . . . . .micro trees in preorder of their roots, with ties broken by next node in micro tree

Υ . . . . . . . . . . . . . . . . . . top tier tree, obtained by contracting each micro tree into a single node

Σµ . . . . . . . . . . . . . . . . . set consisting of (the different shapes of) micro trees µ1, . . . , µm

K.4. Tree Sources
Tn . . . . . . . . . . . . . . . . . a random tree of size n, i.e., a random variable taking values in Tn or Tn with

respect to some probability distribution

τ = (τz)z∈{1,2,3}k . . . . .a kth-order type process, see Section D

Htype
k (t) . . . . . . . . . . . .kth-order empirical type entropy of a binary tree t, see Definition D.1

d = (di)i∈N0 . . . . . . . . . a degree distribution, see Section H

Hdeg(t) . . . . . . . . . . . . . the degree entropy of an ordinal tree t, see Definition H.1

Sfs(p) . . . . . . . . . . . . . . fixed-size binary tree source induced by p, see Section E.1

Sfh(p) . . . . . . . . . . . . . . fixed-height binary tree source induced by p, see Section E.2

Sfs(p) . . . . . . . . . . . . . . fixed-size ordinal tree source induced by p, see Section I

Sfcns(S) . . . . . . . . . . . .FCNS-source of the fixed-size binary tree source S, see Definition I.4

Hn(Sfs(p)) . . . . . . . . . . entropy induced by the fixed-size source Sfs(p) over the set Tn, Section E.3

Hh(Sfh(p)) . . . . . . . . . . entropy induced by the fixed-height source Sfh(p) over the set T h, see Section E.3

Tn(P), T (P) . . . . . . . . set of binary trees of size n which satisfy property P, T (P) =
⋃
n≥0 Tn(P)

UP . . . . . . . . . . . . . . . . .uniform subclass source with respect to property P, see Section F

T (A) . . . . . . . . . . . . . . . set of AVL trees, see Example E.6 and Example F.2

T (R) . . . . . . . . . . . . . . . set of red-black trees, see Example F.3

T (Wα) . . . . . . . . . . . . . set of α-weight-balanced trees, see Example F.4
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