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Abstract4

It is shown that the subgroup membership problem for a virtually free group can be decided in5

polynomial time where all group elements are represented by so-called power words, i.e., words of6

the form pz1
1 pz2

2 · · · p
zk
k . Here the pi are explicit words over the generating set of the group and all zi7

are binary encoded integers. As a corollary, it follows that the subgroup membership problem for8

the matrix group GL(2,Z) can be decided in polynomial time when all matrix entries are given in9

binary notation.10
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1 Introduction16

The subgroup membership problem (aka generalized word problem) for a group G asks17

whether for given group elements g0, g1, . . . , gk ∈ G, g0 belongs to the subgroup ⟨g1, . . . , gk⟩18

generated by g1, . . . , gk. To make this a well-defined computational problem, one has to fix19

an input representation of group elements. Here, a popular choice is to restrict to finitely20

generated (f.g. for short) groups. In this case, group elements can be encoded by finite words21

over a finite set of generators. The subgroup membership problem is one of the best studied22

problems in computational group theory. Let us survey some important results on subgroup23

membership problems.24

For symmetric groups Sn, Sims [32] has developed a polynomial time algorithm for the25

uniform variant of the subgroup membership problem, where n is part of the input. In this26

paper, we always consider non-uniform subgroup membership problems, where we consider27

a fixed infinite f.g. group G. For a f.g. free group, the subgroup membership problem can28

be solved using Nielsen reduction (see e.g. [22]); a polynomial time algorithm was found by29

Avenhaus and Madlener [1]. In fact, in [1] it is shown that the subgroup membership problem30

for a f.g. free group is P-complete. Another polynomial time algorithm uses Stallings’s folding31

procedure [33]; an almost linear time implementation can be found in [34]. An extension32

of Stallings’s folding for fundamental groups of certain graphs of groups was developed in33

[14]. The folding procedure from [14] can be used to show that subgroup membership is34

decidable for right-angled Artin groups with a chordal independence graph. Moreover, Friedl35

and Wilton [9] used the results of [14] in combination with deep results from 3-dimensional36

topology in order to decide the subgroup membership problem for 3-manifold groups. Other37

extensions of Stallings’s folding and applications to subgroup membership problems can be38

found in [15, 24, 30]. Using completely different (more algebraic) techniques, the subgroup39

membership problem has been shown to be decidable for polycyclic groups [2, 23] and40

f.g. metabelian groups [28, 29].41

On the undecidability side, Mihăılova [25] has shown that the subgroup membership42

problem is undecidable for the direct product F2 ×F2 (where F2 is the free group of rank two).43

This implies undecidability of the subgroup membership problem for many other groups,44
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26:2 Subgroup membership in GL(2,Z)

e.g., SL(4,Z) (the group of 4 × 4 integer matrices with determinant one) or the 5-strand45

braid group B5. Rips [27] constructed hyperbolic groups with an undecidable subgroup46

membership problem.47

Apart from the above mentioned result of Avenhaus and Madlener [1] for free groups,48

the authors are not aware of other precise complexity results for subgroup membership49

problems in infinite groups. The P-completeness result for free groups from [1] assumes that50

group elements are represented by finite words over the generators of the free group. In51

recent years, group theoretic decision problems have been also studied with respect to more52

succinct representations of group elements. For instance, the so-called compressed word53

problem, where the input group element is represented by a so-called straight-line program54

(a context-free grammar that produces exactly one string) has received a lot of attention; see55

[19] for a survey. For the subgroup membership problem in free groups, Gurevich and Schupp56

studied in [11] a succinct variant, where input group elements are of the form az1
1 az2

2 · · · azk

k .57

Here, the ai are from a fixed free basis of the free group and the zi are binary encoded integers.58

Based on an adaptation of Stallings’s folding, they show that this succinct membership59

problem can be solved in polynomial time. Then, Gurevich and Schupp proceed in [11]60

by showing that their succinct folding algorithm for free groups can be adapted so that61

it works for the free product Z/2Z ∗ Z/3Z. The particular interest in this group comes62

from the fact that it is isomorphic to the modular group PSL(2,Z), which is the quotient63

of SL(2,Z) by ⟨−Id2⟩ ∼= Z/2Z (Id2 is the 2 × 2 identity matrix). As an application of the64

succinct folding algorithm for Z/2Z ∗ Z/3Z, Gurevich and Schupp show that the subgroup65

membership problem for PSL(2,Z) is decidable in polynomial time when all matrix entries66

are encoded in binary notation.67

The polynomial time algorithm for the succinct membership problem for Z/2Z ∗ Z/3Z68

from [11] is tailored towards this group, and it is not clear how to adapt the algorithm to69

related groups. The latter is the goal of this paper. For this it turnes out to be useful70

to consider a more succinct representation of input elements for free groups. Recall that71

Gurevich and Schupp use words of the form az1
1 az2

2 · · · azk

k , where the integers zi are given72

in binary notation and the ai are generators from a free basis. Here, we represent group73

elements by so-called power words which were studied in [20] in the context of group theory.74

A power word has the form pz1
1 pz2

2 · · · pzk

k , where as above the integers zi are given in binary75

notation but the pi are arbitrary words over the group generators. In [20] it was shown that76

the so-called power word problem (does a given power word represent the group identity?)77

for a f.g. free group F is AC0-reducible to the ordinary word problem for F (and hence in78

logspace). In this paper, we prove that the power-compressed subgroup membership problem79

(i.e., the subgroup membership problem with all group elements represented by power words)80

for a free group can be solved in polynomial time by using a folding procedure à la Stallings81

(Theorem 12). This generalizes the above mentioned result of Gurevich and Schupp. At first82

sight, the step from power words of the form az1
1 az2

2 · · · azk

k (with the ai generators) to general83

power words as defined above looks not very spectacular. But apart from the quite technical84

details, the power-compressed subgroup membership problem has a major advantage over85

the restricted version of Gurevich and Schupp: we show that if G is a f.g. group and H86

is a finite index subgroup of G then the power-compressed subgroup membership problem87

for G is polynomial time reducible to the power-compressed subgroup membership problem88

for H (Lemma 13). Hence, the power-compressed subgroup membership problem for every89

f.g. virtually free group (a finite extension of a f.g. free group) can be solved in polynomial90

time. This result opens up new applications to matrix group algorithms. It is well-known91

that the group GL(2,Z) (the group of all 2 × 2 integer matrices with determinant ±1) is92
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f.g. virtually free. Moreover, given a matrix A ∈ GL(2,Z) with binary encoded entries one93

can compute a power word (over a fixed finite generating set of GL(2,Z)) that represents A.94

Hence, the subgroup membership problem for GL(2,Z) with binary encoded matrix entries95

can be decided in polynomial time.96

Related work. Related to the subgroup membership problem is the more general rational97

subset membership problem. A rational subset in a group G is given by a finite automaton,98

where transitions are labelled with elements of G; such an automaton accepts a subset of99

G in the natural way. In the rational subset membership problem for G the input consists100

of a rational subset L ⊆ G and an element g ∈ G and the question is, whether g ∈ L. This101

problem was shown to be decidable for free groups by Benois [4] via an automata saturation102

procedure that moreover can be implemented in cubic time [5]. Stallings’s folding can be103

viewed as a special case of Benois’s construction.104

Rational subset membership problems (and special cases) for matrix groups are a very105

active research field. Some recent results can be found in [3, 6, 8, 17, 26]. Closest to our106

work is [3], where it is shown that the identity problem for SL(2,Z) (does the identity matrix107

belong to a finitely generated subsemigroup of SL(2,Z)?) and the rational subset membership108

problem for PSL(2,Z) are NP-complete (when matrix entries are given in binary notation).109

For this, the authors of [3] use the ideas of Gurevich and Schupp [11]. In [6, 8], first steps110

towards GL(2,Q) are taken: in [8] the authors prove decidability of membership in so-called111

flat rational subsets of GL(2,Q), whereas [6] establishes the decidability of the full rational112

subset membership problem for the Baumslag-Solitar groups BS(1, q) < GL(2,Q) with q ≥ 2.113

2 Preliminaries114

General notations. For an integer z ∈ Z we define its signum as usual: sign(0) = 0, and for115

z > 0, sign(z) = 1 and sign(−z) = −1. As usual, Σ∗ denotes the set of all finite words over116

an alphabet Σ, ε denotes the empty word, and Σ+ = Σ∗ \ {ε} is the set of all non-empty117

words. The length of a word w is denoted by |w|. The word u ∈ Σ∗ is a factor of the word118

w ∈ Σ∗ if w = sut for some s, t ∈ Σ∗.119

Groups. For a group G and a subset A ⊆ G, we denote with ⟨A⟩ the subgroup of G120

generated by A. It is the set of all products of elements from A ∪ A−1. We only consider121

finitely generated (f.g.) groups G, for which there is a finite set A ⊆ G such that G = ⟨A⟩;122

such a set A is called a finite generating set for G. If A = A−1 then we say that A is a123

finite symmetric generating set for G. Clearly, G is f.g. if and only if there exists a finite124

alphabet Γ and a surjective monoid homomorphism π : Γ∗ → G. We also say that the word125

w ∈ Γ∗ represents the group element π(w). For words u, v ∈ Γ∗ we say that u = v in G126

if π(u) = π(v). Sometimes, we also identify a word w ∈ Γ∗ with the corresponding group127

element π(w).128

Fix a finite set Σ of symbols and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal inverses129

of the symbols in Σ with Σ ∩ Σ−1 = ∅. Let Γ = Σ ∪ Σ−1. We define an involution on Γ∗
130

by setting (a−1)−1 = a for a ∈ Σ and (a1a2 · · · ak)−1 = a−1
k · · · a−1

2 a−1
1 for a1, . . . , ak ∈ Γ. A131

word w ∈ Γ∗ is called freely reduced or irreducible if it neither contains a factor aa−1 nor132

a−1a for a ∈ Σ. With red(Γ∗) we denote the set of all irreducible words. For every word133

w ∈ Γ∗ one obtains a unique irreducible word that is obtained from w by deleting factors134

aa−1 and a−1a (a ∈ Σ) as long as possible. We denote this word with red(w).135

STACS 2021
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The free group generated by Σ, F (Σ) for short, can identified with the set red(Γ∗) together136

with the multiplication defined by u · v = red(uv) for u, v ∈ red(Γ∗). A group G that has a137

free subgroup of finite index in G is called virtually free.138

3 Stallings’s folding for power-compressed words139

In this section we present our succinct version of Stallings’s folding. We start with the140

definition of power words and power-compressed graphs. These graphs are basically finite141

automata where the transitions are labelled with power words. We prefer to use the the142

term “graph” instead of “automaton”, since the former is more common in the literature on143

Stallings’s folding.144

A power word over an alphabet Σ is a sequence (p1, n1)(p2, n2) · · · (pk, nk) of pairs where145

p1, . . . , pn ∈ Σ+ and n1, . . . , nk ∈ N \ {0}. Such a power word represents the ordinary word146

pn1
1 pn2

2 · · · pnk

k and we usually identify a power word with the word it represents. In the case147

of an alphabet Γ = Σ ∪ Σ−1 we may also allow negative exponents in a power word. Of148

course, p−n stands for (p−1)n. When a power word is part of the input for a computational149

problem, we always assume that the exponents ni are given in binary notation, whereas150

the words pi (also called the periods of the power word) are written down explicitly by151

listing all symbols in the words. Therefore, we define the input length ∥w∥ of the power152

word w = (p1, n1)(p2, n2) · · · (pk, nk) as
∑k

i=1 |pi| + log ni. A power word should be seen as153

a succinct representation of the word it represents.154

Consider a f.g. group G with the finite generating set Σ. The power-compressed subgroup155

membership problem for G is the following problem:156

input: Power words w0, w1, . . . , wn over the alphabet Σ ∪ Σ−1.157

question: Does g0 belong to the subgroup ⟨g1, . . . , gn⟩ ≤ G, where gi is the group element158

represented by wi?159

The concrete choice of the finite generating set Σ has no influence on the complexity of the160

power-compressed subgroup membership problem: If Θ is another finite generating set, then161

every generator a ∈ Σ ∪ Σ−1 can be expressed as word wa ∈ (Θ ∪ Θ−1)∗. Hence, from a162

power word w over Σ ∪ Σ−1 one can compute a power word w′ over Θ ∪ Θ−1 such that w and163

w′ represent the same group element. For this, one only has to apply the homomorphism164

a 7→ wa to all periods p of the power word w, which can be done in TC0 [18].165

The goal of this section is to show that the power-compressed subgroup membership166

problem can be decided in polynomial time for a f.g. free group. In Section 4 we will extend167

this result to f.g. virtually free groups.168

Our main tool for solving the power-compressed subgroup membership problem for169

f.g. free groups is an extension of Stallings’s folding procedure for power-compressed words.170

First we need some combinatorial results for words. Fix a finite alphabet Σ with the inverse171

alphabet Σ−1 for the rest of Section 3 and let Γ = Σ ∪ Σ−1.172

3.1 Combinatorics on words173

We fix an arbitrary linear order < on Γ. In order to simplify notation later, it is convenient174

to require that a < a−1 for every a ∈ Σ. With ⪯ we denote the lexicographic order with175

respect to <. Let Ω ⊆ red(Γ∗) denote the set of all irreducible words w such that176

w is non-empty,177

w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Γ),178

w is primitive (i.e, w cannot be written as un for some n ≥ 2),179
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w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e., w ⪯ uv180

for all u, v ∈ Γ∗ with vu = w or vu = w−1).181

Note that Σ ⊆ Ω and Σ−1 ∩ Ω = ∅ (since a < a−1 for a ∈ Σ). Since w ∈ Ω is irreducible and182

cyclically reduced, also every power wn is irreducible. The following lemma can be found in183

[20, Lemma 11].184

▶ Lemma 1. Let p, q ∈ Ω, x, y ∈ Z and let u be a factor of px and v a factor of qy. If uv = 1185

in F (Σ) and |u| = |v| ≥ |p| + |q| − 1, then p = q.186

We also need the following statement:187

▶ Lemma 2. If p ∈ Ω, u, v ∈ Γ∗, x ∈ {−1, 1} and upxv = pp then x = 1 and u = ε or v = ε.188

Proof. First assume that upv = pp such that u ≠ ε and v ̸= ε. We obtain a factorization189

p = qr such that q ̸= ε, r ̸= ε and p = rq = qr. Hence, q, r ∈ s∗ for some string s ∈ Γ+ (see190

e.g. [21, Proposition 1.3.2]), which implies that p is not primitive, a contradiction.191

Now assume that up−1v = pp. If u = ε or v = ε then p = p−1 which implies p /∈ red(R).192

If u ≠ ε and v ̸= ε then we obtain a factorization p = qr such that q ̸= ε, r ̸= ε and193

p−1 = rq. Hence, qr = p = q−1r−1, which implies q = q−1 and r = r−1. But the latter194

implies q, r /∈ red(R) and hence p /∈ red(R), a contradiction. ◀195

3.2 Power-compressed graphs196

A power-compressed graph is a tuple G = (V, E, ι, τ, λ, v0), where V is the set of vertices, E is197

the set of edges (V ∩E = ∅), ι : E → V maps an edge to its source vertex, τ : E → V maps an198

edge to its target vertex, λ : E → Γ+ × (Z \ {0}) assigns to every edge its label, and v0 is the199

so-called base point. Moreover, for every edge e such that ι(e) = u, τ(e) = v, and λ(e) = (p, z)200

there is an inverse edge e−1 ̸= e such that ι(e−1) = v, τ(e−1) = u, λ(e−1) = (p, −z), and201

(e−1)−1 = e. When we describe a power-compressed graph we often specify for a pair of202

edges e, e−1 only one of them and implicitly assume the existence of its inverse edge. An203

edge e is called short if λ(e) ∈ Γ × {−1, 1}, otherwise it is called long. If G only contains204

short edges, then G is called an uncompressed graph, or just graph. We define the input205

length of G as |G| =
∑

e∈E ∥λ(e)∥ (here, we view λ(e) = (p, z) as a power word consisting of206

a single power).207

A path in G is a sequence ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1] where e1, . . . , ek ∈ E, ι(ei) =208

vi and τ(ei) = vi+1 for 1 ≤ i ≤ k. If vi ̸= vj for all i, j with 1 ≤ i < j ≤ k + 1 then ρ is209

called a simple path. If v1 = vk+1 then ρ is a cycle. If vi ≠ vj for all i, j with 1 ≤ i < j ≤ k210

and v1 = vk+1 then ρ is a simple cycle. Let ι(ρ) = v1 and τ(ρ) = vk+1. If λ(ei) = (pi, zi)211

then we define λ(ρ) as the power word (p1, z1)(p2, z2) · · · (pk, zk). The path ρ is oriented212

if sign(zi) = sign(zj) for all i, j. The path ρ is without backtracking if ei+1 ̸= e−1
i for all213

1 ≤ i ≤ k − 1.214

In the following, we identify a pair (p, z) ∈ Γ+ × (Z\{0}) with the power pz. In particular,215

in an uncompressed graph every edge is labelled with a symbol from Γ. With a power-216

compressed graph G we can associate an uncompressed graph decompress(G) that is obtained217

by replacing in G every pz-labelled edge e by a path ρ of short edges from ι(e) to τ(e) and218

such that λ(ρ) = pz. Moreover, if ι(e) ̸= τ(e) then ρ is a simple path and if ι(e) = τ(e) then219

ρ is a simple cycle.220

A power-compressed graph G = (V, E, ι, τ, λ, v0) should be viewed as an automaton over221

the alphabet Γ, where transition labels are succinct words of the form pz with z given in222

binary notation: V is the set of states, an edge e corresponds to a transition from ι(e) to223

τ(e) with label λ(e) and v0 is the unique initial and final state. We denote with L(G) the set224

STACS 2021
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of all words w ∈ Γ∗ accepted by the automaton G. With F (G) we denote the image of L(G)225

in the free group F (Σ). Since every edge of G has an inverse edge, it is easy to see that F (G)226

is a subgroup of F (Σ).227

3.3 Folding uncompressed graphs228

Before we continue with power-compressed graphs let us first explain Stallings’s folding229

procedure [33] for uncompressed graphs, which is one of the most powerful techniques for230

subgroups of free groups. Let G and H be two uncompressed graphs as defined in Section 3.2.231

We say that G can be folded into H if there exist two edges e ̸= e′ in G such that ι(e) = ι(e′)232

and λ(e) = λ(e′) and H is obtained from G by merging the two vertices τ(e) and τ(e′) (note233

that we may have already τ(e) = τ(e′) in G) into a single vertex and removing the edges e234

and e−1 (this is an arbitrary choice; we could also keep e and e−1 and remove e′ and e′−1)235

from the graph. One can easily show that F (G) = F (H) holds in this situation. Every vertex236

of G is mapped to a vertex of H in the natural way (τ(e) and τ(e′) are mapped to the same237

vertex of H). If a graph G cannot be folded further then we say that G is folded. In this case,238

G is a deterministic automaton and w ∈ L(G) implies red(w) ∈ L(G).239

To a given finite set of words A = {w1, . . . , wn} ⊆ Γ+ we can associate a so-called240

bouquet graph B(A) such that F (B(A)) = ⟨g1 . . . , gn⟩ ≤ F (Σ), where gi = red(wi) ∈ F (Σ)241

is the free group element represented by wi): to a non-empty word w = a1a2 · · · ak, where242

ai ∈ Γ, we associate the cycle graph C(w) = ({v0, . . . , vk−1}, {e±1
i : 1 ≤ i ≤ k}, ι, τ, v0), where243

ι(ei) = vi−1, λ(ei) = ai, and τ(ei) = vi mod k for 1 ≤ i ≤ k. Then we define the bouquet244

graph B(A) by merging in the disjoint union of the cycle graphs C(wi) the base points.245

Let S(A) be the graph obtained by folding B(A) as long as possible (the outcome of this246

procedure is in fact unique up to graph isomorphism). The graph S(A) is sometimes called247

the Stallings’s graph for A. Note that as an automaton, S(A) is deterministic. The above248

discussion leads to the following crucial fact (see also [13] for a more detailed discussion):249

▶ Lemma 3. Let g ∈ red(Γ∗) be an irreducible word and hence an element of F (Σ). Then g250

is accepted by S(A) if and only if g ∈ ⟨g1 . . . , gn⟩ ≤ F (Σ).251

3.4 Folding power-compressed graphs252

Fix a power-compressed graph G = (V, E, ι, τ, λ, v0) for the rest of this section and let P be253

the set of all words p such that λ(e) = pz for some e ∈ E and z ∈ Z \ {0}. Let us define the254

following numbers:255

α := max{|p| : p ∈ P} ≥ 1,256

β := 2α − 1 ≥ 1,257

γ := 2(α + β) ≥ 4.258

We say that G is normalized if259

P ⊆ Ω (where Ω is defined in Section 3.1), and260

for every e ∈ E, if e is long and λ(e) = pz then |z| ≥ γ.261

Let Eℓ be the set of long edges of G.262

▶ Lemma 4. From a given power-compressed graph G we can compute in polynomial time a263

normalized power-compressed graph G′ such that F (G) = F (G′).264

Proof. We first modify G such that for every edge label λ(e) = pz we have p ∈ Ω. This265

can be done in polynomial time by [20, Lemma 12] which states that a given power word266

w over the alphabet Γ can be transformed in polynomial time (in fact, even in logspace)267
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into a power word w′ over the alphabet Γ such that (i) all periods of w′ belong to Ω and (ii)268

w = w′ in F (Σ). We finally replace every long edge e with λ(e) = pz and |z| < γ by a simple269

path (or simple cycle) ρ of short edges such that λ(ρ) = pz. ◀270

We say that G is weakly folded if none of the following two conditions A and B holds:271

Condition A: There exist two (long or short) edges e1 ̸= e2 such that ι(e1) = ι(e2), λ(e1) = pz1272

and λ(e2) = pz2 for some p ∈ Ω and z1, z2 ∈ Z \ {0} with sign(z1) = sign(z2).273

Condition B: There exist a long edge e with λ(e) = pz and a path ρ consisting of short edges274

such that ι(e) = ι(ρ), λ(ρ) = px, x ∈ {−1, 1}, and sign(x) = sign(z).275

We say that G is strongly folded if the graph decompress(G) is folded in the sense of Section 3.3.276

Clearly, if G is strongly folded then G is also weakly folded.277

▶ Lemma 5. A given normalized power-compressed graph G = (V, E, ι, τ, λ, v0) can be folded278

in polynomial time into a normalized and weakly folded power-compressed graph G′. We have279

F (G) = F (G′).280

Proof. In order to estimate the complexity of our algorithm, we use two termination281

parameters: the number |Eℓ| of long edges and the total number of edges |E|. The algorithm282

performs a sequence of folding steps that are explained below. In each step, the value |Eℓ|283

will not increase. If |Eℓ| does not change then |E| will not increase, but if |Eℓ| decreases then284

|E| may increase by at most γ − 1. The situation becomes difficult because it may happen285

that in a folding step neither |Eℓ| nor |E| changes. We distinguish the following three types286

of folding steps, where G = (V, E, ι, τ, λ, v0) is the power-compressed graph before the folding287

step and G′ = (V ′, E′, ι′, τ ′, λ′, v′
0) is the power-compressed graph after the folding step.288

decreasing (p-edge) fold: If condition A holds with z1 = z2 then we can merge τ(e1) and289

τ(e2) into a single vertex (let us call it v) and replace the two edges e1 and e2 by a single290

edge from ι(e1) = ι(e2) to v with label pz1 .291

More formally: If we define ≡V to be the smallest (with respect to inclusion) equivalence292

relation on V with τ(e1) ≡V τ(e2) and ≡E to be the smallest equivalence relation on293

E with e1 ≡E e2 then we can identify V ′ (respectively, E′) with the set of equivalence294

classes {[v]≡V
: v ∈ V } (respectively, {[e]≡E

: e ∈ V }). Moreover ι′([e]≡E
) = [ι(e)]≡V

,295

τ ′([e]≡E
) = [τ(e)]≡V

, λ′([e]≡E
) = λ(e) (all these mappings are well-defined). The296

surjective mapping µ with µ(v) = [v]≡V
is called the merging function associated with297

the merging step. Note that some of (or all) the vertices ι(e1), τ(e1), τ(e2) can be equal.298

nondecreasing (p-edge) fold: If condition A holds with (w.l.o.g.) |z1| < |z2| then we can299

fold the two edges e1 and e2 by first setting V ′ = V , E′ = E, τ ′ = τ , ι′(e2) = τ(e1) and300

λ′(e2) = pz2−z1 . On all other arguments, ι′ (respectively, λ′) coincides with ι (respectively,301

λ). The resulting graph G′ may be not normalized, namely if e2 is long (in G′) and302

|z2 − z1| < γ. In this case we replace e2 by a simple path (or cycle, in case ι′(e2) = τ ′(e2))303

of fresh short edges from ι′(e2) to τ ′(e2) spelling the word pz−x. Note that after this304

modification we have V ⊆ V ′ and E ⊆ E′. We define the merging function µ : V → V ′
305

as the canonical inclusion mapping.306

nondecreasing (p-path) fold: If the situation in condition B occurs, then we first set V ′ = V ,307

E′ = E, τ ′ = τ , ι′(e) = τ(ρ) and λ′(e) = pz−x. On all other arguments, ι′ (respectively,308

λ′) coincides with ι (respectively, λ). If in the resulting graph G′, e is long and |z − x| < γ309

then we replace the edge e by a simple path (or cycle) of short fresh edges spelling the310

word pz−x. Again we define the merging function µ : V → V ′ as the canonical inclusion311

mapping.312
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Figure 1 Some folding steps, where p = ab ∈ Ω and q = ac ∈ Ω. We assume that γ = 4 and
that all inverse edges are implicitly present. The edges involved in the folding steps are red; dotted
arrows only indicate the direction of foldings and are not part of the graph.

(a) to (b): nondecreasing p-path fold
(b) to (c): decreasing p-edge fold
(c) to (d): nondecreasing q-edge folds (the q6-labelled edge coils once around the q5-labelled
loop and the remaining q-labelled edge is replaced by the two short edges labelled with a and c).
(d) to (e): nondecreasing q-path fold
(e) to (f): decreasing a-edge fold

The finally graph is weakly folded.

Note that each of the above folding steps simulates several folding steps in the corresponding313

uncompressed graph. Figure 1 shows some folding steps.314

Assume we make a sequence of k folding steps, where G is the initial graph, G′ is the315

final graph and µi (1 ≤ i ≤ k) is the merging function for the i-th folding step. Then we can316

define the composition µ = µ1 ◦ µ2 ◦ · · · ◦ µk (where µ1 is applied first); it maps every vertex317

v of G to a vertex µ(v) of G′. We then say that vertex v is mapped to vertex µ(v) during the318

folding. For two vertices u, v of G with µ(u) = µ(v) we say that u and v are merged during319

the folding.320

Note that every folding step preserve the property of being normalized. Clearly, a321

decreasing fold does not increase |Eℓ| but decreases |E| (and possibly |Eℓ| in case e1 and322

e2 are long edges). Therefore, we can always perform decreasing folds if possible. A323

nondecreasing fold can reduce the number of long edges in which case the number of short324

edges increases by at most α · (γ − 1). If a nondecreasing fold does not reduce the number325

of long edges then both |E| and |Eℓ| stay the same. Hence, the total number of decreasing326

folds is bounded by |E| + α · γ · |Eℓ|. Bounding the number of nondecreasing folds is not327

so easy. If we just iteratively fold then we may obtain an exponential running time. In328

order to ensure termination in polynomial time, we arrange the folding steps as follows:329

Assume that P = {p1, p2, . . . , pn}. We say that the current graph if folded with respect to330
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Algorithm 1 (the main folding algorithm)

Data: normalized power-compressed graph G
1 i := 1
2 while true do
3 fold G with respect to pi /* this is explained in the main text */
4 if G is weakly folded then
5 return G
6 else
7 i := smallest j such that G is not folded with respect to pj

8 end
9 end

pj if neither condition A nor condition B holds with p = pj . For the following algorithm it331

is useful to consider the graph Gp where the edge set of Gp contains all long edges from E332

that are labelled with a power of p. In addition, Gp contains a p1-labelled edge from u to v333

if G contains a path ρ of short edges from u to v and such that λ(ρ) = p (note that Gp is334

in general not normalized). Such an edge should be only viewed as an abbreviation of the335

corresponding path ρ (which is unique if no decreasing folds are possible in G).336

The main structure of the folding algorithm is shown in Algorithm 1. In the following,337

we always perform decreasing folds when possible without mentioning this explicitly.338

We now explain how to fold the current graph G with respect to some p = pi (line 3 of339

Algorithm 1). We consider each connected component of the graph Gp separately. For the340

following consideration, we can assume that Gp is connected. We claim that Gp can be folded341

either into a simple oriented path or a simple oriented cycle. Moreover, if Gp is a tree then it342

is folded into a simple oriented path. The case that Gp consists of a single edge is clear. If343

Gp has more than one edge then we consider the following cases.344

Case 1. Gp is a tree: Choose an edge e with ι(e) = u and τ(e) = v where v is a leaf. Let345

G′ be the connected graph obtained from Gp by removing e, e−1 and v. By induction, G′
346

can be folded into a simple oriented path ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1], where w.l.o.g.347

λ(ei) = pai with ai > 0 for all i. Let vi be the vertex to which u = ι(e) is mapped during348

the folding. Assume that λ(e) = pb with b > 0 (the case b < 0 is analogous). If there exists349

j ≥ i such that b = ai + · · · + aj then nothing has to be done (the vertex v is mapped to350

vj+1 during the folding). If there is no such j then we have to add a vertex to the path: if351

there is j ≥ i such that ai + · · · + aj−1 < b < ai + · · · + aj then we replace the edge ej by an352

edge from vj to a fresh vertex v′ and an edge from v′ to vj+1. The label of the first edge353

is pb−(ai+···+aj−1) and the label of the second edge is pai+···+aj−b. If ai + · · · + ak < b then354

we add an edge from vk+1 to the new vertex v′ with label pb−(ai+···+ak). In both cases the355

vertex v = τ(e) is mapped to the new vertex v′ during the folding.356

Case 2. Gp is not a tree. Then we choose an edge e such that G′ := Gp \ e (the graph obtained357

from Gp by removing the edges e and e−1) is still connected.358

Case 2.1. G′ is folded into a simple oriented path ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1], where359

w.l.o.g. λ(ei) = pai with ai > 0 for all i. Let vi (respectively, vl) be the vertex to which ι(e)360

(respectively, τ(e)) is mapped during the folding. We proceed as in case 1. In case there361

exists j ≥ i with b = ai + · · · + aj then we additionally merge vj+1 and vl (we may have362

already vj+1 = vl in which case we end up with a simple oriented path). If there is no such j363
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then we add a new vertex v′ to the path as in case 1 and merge v′ with vl. In both cases we364

get a simple oriented path to which a simple oriented cycle is attached. We then fold the365

two ends of the simple path onto the cycle (by coiling them around the cycle) and obtain a366

simple oriented cycle.367

Case 2.2. G′ is folded into a simple oriented cycle C. We proceed analogously to case 2.1.368

We either obtain a single simple oriented cycle or two simple oriented cycles ρ1 and ρ2 that369

are glued together in a single vertex v (to see this, one can first remove an arbitrary edge370

from the cycle C, which yields a simple oriented path, then carries out the construction from371

case 2.1 and finally adds the removed edge again). Such a pair of cycles can be replaced by372

a single cycle as follows: Let λ(ρ1) = pz1 and λ(ρ2) = pz2 with z1, z2 > 0. Then one can373

replace the two cycles by a single cycle ρ with λ(ρ) = z := gcd(z1, z2) (folding the cycles into374

a single cycle actually corresponds to Euclid’s algorithm). Of course, we also have to map375

the vertices of ρ1 and ρ2 into the cycle ρ. For this we start with a pz-labelled loop at vertex376

v. If v′ ≠ v is a vertex belonging to say ρ1 and the simple path from v to v′ on the cycle ρ1377

is labelled with py, y > 0, then we compute r := y mod z and subdivide the loop into an378

edge from v to v′ with label pr and an edge from v′ back to v with label pz−r. We continue379

in this way with the other vertices on ρ1 and ρ2.380

Let Hp be the outcome of the above procedure. It is a disjoint union of simple oriented381

paths and simple oriented cycles and hence folded with respect to p. The running time of the382

computations in case 1 and 2 is polynomial in ∥Gp∥ and due to the recursion this running383

time has to be charged for every edge of Gp. Recall that edges labelled with p1 in Hp actually384

correspond to paths of short edges in the original graph G. This concludes the description of385

line 3 in Algorithm 1.386

It remains to argue that we make only polynomially many iterations of the while-loop in387

Algorithm 1. For this assume that the current graph (call it G′) is folded with respect to pi388

and that we fold the graph with respect to some pj with j > i. Let us denote the sequence389

of folding steps with respect to pj with Fj and let G′′ be the graph after the execution of Fj .390

Moreover, assume that G′′ is no longer folded with respect to pi. We argue that this implies391

that during the execution of Fj we made progress in the sense that |E| or |Eℓ| decreases.392

Since G′ is folded with respect to pi but G′′ is not, we must have G′
pi

̸= G′′
pi

. But this implies393

that either |E| or |Eℓ| must decrease during Fj . Otherwise we only make non-decreasing394

pj-edge and pj-path folds that do not eliminate long edges. Such folds only change the source395

and target vertices of pz
j -labelled long edges, which does not modify the graph G′

pi
.396

Since we have already bounded the number of decreasing folds by |E| + α · γ · |Eℓ| and397

the number of long edges never increases, the index i in Algorithm 1 can only decrease a398

polynomial number of times (more precisely: |E| + (α · γ + 1) · |Eℓ| times). ◀399

It remains to convert a weakly folded power-compressed graph in polynomial time into a400

strongly folded power-compressed graph. For this, we need several lemmas.401

▶ Lemma 6. Let G be an uncompressed graph and assume that G is folded into G′ by a402

sequence of folding steps. If thereby two vertices u and v of G are merged to a single vertex403

of G′, then there must exist a path ρ without backtracking in G from u to v such that λ(ρ) = 1404

in F (Σ).405

Proof. The lemma can be shown by a straightforward induction over the number of folding406

steps from G to G′. Note that if two different vertices v1 and v2 of an uncompressed graph407

are merged in a single folding step, then there exist two different edges e1 ≠ e2 such that408
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ι(e1) = ι(e2), τ(e1) = v1, τ(e2) = v2, and λ(e1) = λ(e2) = a for some a ∈ Γ. Hence, the path409

ρ = [v1, e−1
1 , ι(e1), e2, v2] is without backtracking and satisfies λ(ρ) = a−1a = 1 in F (Σ). ◀410

▶ Lemma 7. Consider a word pywqz ∈ Γ∗ such that the following hold, where a = sign(y)411

and b = sign(z):412

p, q ∈ P ,413

w ∈ red(Γ∗),414

|y| = |z| = α + β = γ/2 ≥ 2,415

if w = ε, then p ̸= q or a = b,416

p−a is not a prefix of w and q−b is not a suffix of w.417

Then red(pywqz) starts with a non-empty prefix of pa and ends with a non-empty suffix of qb.418

Proof. Since py, w and qz are irreducible, reductions can only occur at the two borders419

between py, w and qz. Let us start to reduce the word pywqz. Since p−a is not a prefix420

of w and q−b is not a suffix of w, the reductions at the two borders can only consume421

|p| − 1 < α symbols from the prefix of w and |q| − 1 < α symbols from the suffix of w. If w422

is not completely cancelled during the reduction, we obtain an irreducible word of the form423

py−arstqz−b, where r is a prefix of pa, t is a suffix of qb and s is a non-empty factor of w.424

The conclusion of the lemma clearly holds in this case.425

Let us now assume that w is completely cancelled during the reduction. Since w is426

irreducible, we obtain factorizations w = u−1v−1, pa = ru, and qb = vs. Moreover, pywqz is427

reduced to py−arsqz−b. We distinguish several cases:428

p ̸= q: then the reduction of py−arsqz−b can proceed for at most |p| + |q| − 2 < β steps429

(otherwise we obtain a contradiction to Lemma 1).430

p = q and |r| ≠ |s|: then the reduction of py−arsqz−b can proceed for at most |p| − 1 < α431

steps (otherwise we obtain a contradiction to Lemma 2).432

p = q, |r| = |s|, and a = b: then the reduction of py−arsqz−b can proceed for at most433

|r| ≤ α steps (otherwise p would be not cyclically reduced).434

p = q, |r| = |s|, and a = −b: w.l.o.g. assume that y > 0 and z < 0. We obtain p = ru435

and p−1 = vs, i.e., ru = s−1v−1. Since |r| = |s| = |s−1| we have r = s−1 and u = v−1.436

Therefore w = u−1v−1 = u−1u. Since w ∈ red(Γ∗), we must have w = ε. But we have437

excluded this case in the assumptions of the lemma.438

In total, the reduction of pywqz consumes strictly less than α + β = γ/2 symbols from py
439

as well as from qz. Hence, red(pywqz) starts with a non-empty prefix of pa and ends with a440

non-empty suffix of qb. ◀441

▶ Lemma 8. Let w = spz1
1 w1pz2

2 w2 · · · p
zk−1
k−1 wk−1pzk

k t be a word with k ≥ 2 and let ai =442

sign(zi). Assume that the following conditions hold:443

p1, . . . , pk ∈ P ,444

z1, . . . , zk ∈ Z,445

|z1|, |zk| ≥ α + β = γ/2,446

|z2|, . . . , |zk−1| ≥ γ,447

w1, . . . , wk−1 ∈ red(Γ∗),448

s is a suffix of pa1
1 , t is a prefix of pak

k ,449

if wi = ε, then pi ̸= pi+1 or ai ̸= −ai+1 (1 ≤ i ≤ k − 1),450

p−ai
i is not a prefix of wi and p

−ai+1
i+1 is not a suffix of wi (1 ≤ i ≤ k − 1).451

Then w ̸= 1 in F (Σ), i.e., red(w) ̸= ε.452
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Proof. For 1 ≤ i ≤ k let ci be such that |ci| = γ/2 and sign(ci) = ai. Let ui = pci
i wip

ci+1
i+1 for453

1 ≤ i ≤ k − 1. We can reduce w = spz1−c1
1 u1pz2−2c2

2 u2 · · · p
zk−1−2ck−1
k−1 uk−1pzk−ck

k t to454

w′ := spz1−c1
1 red(u1) pz2−2c2

2 red(u2) · · · p
zk−1−2ck−1
k−1 red(uk−1) pzk−ck

k t.455

By Lemma 7, red(ui) starts with a non-empty prefix of pai
i and ends with a non-empty suffix456

of p
ai+1
i+1 . This implies that w′ is irreducible and non-empty, which shows w ̸= 1 in F (Σ). ◀457

We also need the following variant of Lemma 8.458

▶ Lemma 9. Let w = spz1
1 w1pz2

2 w2 · · · pzk

k wk be a word with k ≥ 1 and let ai = sign(zi).459

Assume that the following conditions hold:460

p1, . . . , pk ∈ P ,461

z1, . . . , zk ∈ Z,462

|z1| ≥ α + β = γ/2,463

|z2|, . . . , |zk| ≥ γ,464

w1, . . . , wk ∈ red(Γ∗),465

s is a suffix of pa1
1 ,466

if wi = ε, then pi ̸= pi+1 or ai ̸= −ai+1 (1 ≤ i ≤ k − 1),467

p−ai
i is not a prefix of wi (1 ≤ i ≤ k) and p

−ai+1
i+1 is not a suffix of wi (1 ≤ i ≤ k − 1).468

Then w ̸= 1 in F (Σ), i.e., red(w) ̸= ε.469

Proof. The proof is almost the same as for Lemma 8. For 1 ≤ i ≤ k let ci be such that470

|ci| = γ/2 and sign(ci) = ai. Let ui = pci
i wip

ci+1
i+1 for 1 ≤ i ≤ k − 1 and uk = pak

k wk. We can471

reduce w = spz1−c1
1 u1pz2−2c2

2 u2 · · · p
zk−1−2ck−1
k−1 uk−1pzk−ck−1

k uk to472

w′ := spz1−c1
1 red(u1) pz2−2c2

2 red(u2) · · · p
zk−1−2ck−1
k−1 red(uk−1) pzk−ck−1

k red(uk).473

By Lemma 7, every red(ui) with 1 ≤ i ≤ k − 1 starts with a non-empty prefix of pai
i and474

ends with a non-empty suffix of p
ai+1
i+1 . Moreover, red(uk) starts with a non-empty prefix of475

pak

k (since p−ak

k is not a prefix of wk). This implies that w′ is irreducible and non-empty,476

which shows w ̸= 1 in F (Σ). ◀477

▶ Lemma 10. A given normalized and weakly folded power-compressed graph G can be folded478

in polynomial time into a strongly folded power-compressed graph G′. We have F (G) = F (G′).479

Proof. We first construct a power-compressed graph H by partially decompressing G. Con-480

sider a long edge e in G. Let ι(e) = u, τ(e) = v and λ(e) = pz. W.l.o.g. assume that z > 0.481

Since G is normalized, we have z ≥ γ. We then replace e by482

a simple path ρ1 of new short edges going from u to a new vertex u′ and such that483

λ(ρ1) = pγ/2 = pα+β ,484

a new edge from u′ to another new vertex v′ with label pz−γ (if z = γ then u′ = v′ and485

the new edge is not present), and486

a simple path ρ2 of new short edges going from v′ to v and such that λ(ρ2) = pγ/2 = pα+β .487

We then fold H as long as possible. By Lemmas 6, 8 and 9 we can thereby only fold short488

edges. In other words: if H′ = decompress(H) (which is the same as decompress(G)) then a489

vertex of H′ that arises from decompressing a long edge of H cannot be merged with another490

vertex during the folding. To see this, assume the contrary: let u be a vertex of H′ that491

arises from decompressing a long edge of H and that is merged with a vertex v ̸= u during492

the folding. By Lemma 6 there must exist a path ρ in H′ from u to v without backtracking493

such that λ(ρ) = 1 in F (Σ). But since G is weakly folded the word λ(ρ) must be a word w494
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as considered in Lemma 8 (if also v arises from decompressing a long edge of H) or Lemma 9495

(if v is already a vertex in H). The wi in Lemma 8 (resp., Lemma 9) correspond to the496

maximal subpaths of ρ consisting of short edges and the pzi
i correspond to the long edges on497

the path). Hence, λ(ρ) ̸= 1 in F (Σ) which is a contradiction.498

By the above consideration, if we fold short edges in H as long as possible we obtain a499

strongly folded graph G′ which proves the lemma. ◀500

Lemmas 4, 5 and 10 finally yield the main technical result of Section 3.4:501

▶ Corollary 11. A given power-compressed graph G can be folded in polynomial time into a502

strongly folded power-compressed graph G′. We have F (G) = F (G′).503

3.5 Power-compressed subgroup membership problem for free groups504

We can now show the main result of Section 3:505

▶ Theorem 12. The power-compressed subgroup membership problem for a f.g. free group506

can be solved in polynomial time.507

Proof. Let w0, w1, . . . , wn be the input power words. We construct from w1, . . . , wn a power-508

compressed bouquet graph in the same way as in Section 3.3 for uncompressed graphs: to a509

non-empty power word w = pz1
1 pz2

2 · · · pzk

k we associate the power-compressed cycle graph510

C(w) = ({v0, . . . , vk−1}, {e±1
i : 1 ≤ i ≤ k}, ι, τ, v0), where ι(ei) = vi−1, λ(ei) = pzi

i , and511

τ(ei) = vi mod k. We then construct the power-compressed bouquet graph B by taking the512

disjoint union of C(w1), . . . , C(wn) and then merging their base points. Using Corollary 11513

we can fold B in polynomial time into a strongly folded power-compressed graph G. Let v0514

be its base point. As explained at the end of Section 3.2 we can view G as a finite automaton,515

where transitions are labelled with succinct words of the form pz with z given in binary516

notation. By Lemma 3, G accepts an irreducible word g ∈ red(Γ∗) if and only if g represents517

an element from ⟨g1, . . . , gn⟩ ≤ F (Σ) (where wi represents the group element gi). Since G is518

strongly folded, it is a deterministic automaton in the sense that the labels of two outgoing519

transitions of a state do not have a non-empty common prefix.520

For the rest of the proof it is convenient to switch from power words to straight-line521

programs. A straight-line program is a context-free grammar A that produces exactly one522

word that is denoted with val(A). By repeated squaring, our given power word w0 can be523

easily transformed in polynomial time into an equivalent straight-line program. Moreover,524

from a given straight-line program A over the alphabet Γ = Σ ∪ Σ−1 one can compute in525

polynomial time a new straight-line program A′ such that val(A′) = red(val(A)); see [19,526

Theorem 4.11]. Hence, we can compute in polynomial time a straight-line program A′ for527

red(w0). The transition labels of the automaton G can be also transformed into equivalent528

straight-line programs; such automata with straight-line compressed transition labels were529

investigated in [12]. It remains to check in polynomial time whether the deterministic530

automaton G accepts val(A′). This is possible in polynomial time by [12, Theorem 1]. ◀531

4 Power-compressed subgroup membership for virtually free groups532

A main advantage of the power-compressed subgroup membership is that its complexity is533

preserved under finite index group extensions. The proof of the following lemma follows534

[10], where it is shown that the complexity of the (ordinary) subgroup membership problem535

is preserved under finite index group extensions. In order to extend this result to the536
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power-compressed setting, we make us of the conjugate collection process for power words537

from [20, Theorem 6].538

▶ Lemma 13. Let G be a fixed f.g. group and H a fixed subgroup of finite index in G (thus,539

H must be f.g. as well). The power-compressed subgroup membership problem for G is540

polynomial time reducible to the power-compressed subgroup membership problem for H.541

Proof. Using the following standard trick we can assume that H is a normal subgroup542

of finite index in G: Let N be the intersection of all conjugate subgroups g−1Hg. Then543

N ≤ H and N has still finite index in G (the later is a well-known fact). Since N ≤ H, the544

power-compressed subgroup membership problem for N is polynomial time reducible to the545

power-compressed subgroup membership problem for H. Hence, it suffices to show that the546

power-compressed subgroup membership problem for G is polynomial time reducible to the547

power-compressed subgroup membership problem for N .548

By the above consideration, we can assume that H is a normal subgroup of finite index549

in G. Let us fix a symmetric generating Θ for H and let R ⊆ G be a (finite) set of coset550

representatives for H with 1 ∈ R. Then Σ := Θ ∪ (R \ {1}) generates G. On R we can551

define the structure of the quotient group G/H by defining r · r′ ∈ R and r ∈ R for r, r′ ∈ R552

such that rr′ ∈ H(r · r′) and r ∈ Hr−1. Recall that G and H are fixed groups, hence r · r′
553

and r can be computed in constant time. In [20, Theorem 6] it is shown that the power554

word problem for G can be reduced in polynomial time (in fact, in NC1) to the power word555

problem for H. The proof shows the following fact:556

Fact 1. Given a power word w over the alphabet Σ we can compute in polynomial time a557

power word w′ over the alphabet Θ and r ∈ R such that w = w′r in G.558

Let now take finite list of power words w0, w1, . . . , wn over the alphabet Σ and let gi ∈ G be559

the group element represented by wi. We want to check whether g0 ∈ A := ⟨g1, . . . , gn⟩. In560

the following we will not distinguish between gi and wi.561

First we use Fact 1 and rewrite in polynomial time each power word wi as w′
iri with562

w′
i ∈ Θ∗ a power word and ri ∈ R. Let w′

i represent g′
i ∈ H. By computing the closure563

of {r1, r1, . . . , rn, rn} with respect to the multiplication · on R we obtain the set of all564

representatives r ∈ R such that Hr ∩ A ̸= ∅. Let us denote this closure with V . Clearly,565

1 ∈ V . If r0 /∈ V then we have w0 = w′
0r0 /∈ A.566

Let us now assume that r0 ∈ V . First assume that r0 = 1, i.e., w0 = w′
0 ∈ H. Hence,567

w0 ∈ A if and only if w0 ∈ H ∩ A. We now compute a finite list of generators for H ∩ A568

written as power words over Θ. For this we follow [10]: we compute a power-compressed569

graph G = (V, E, ι, τ, λ, 1) (in the sense of Section 3.2) by taking V as the set of vertices. We570

draw an edge from r ∈ V to r′ ∈ V labelled with the power word wi (respectively, w−1
i ) iff571

r · ri = r′ (respectively, r · ri = r′). Note that every edge has an inverse edge. The label of a572

path from 1 ∈ V back to 1 ∈ V in the graph G is a word over {w1, w−1
1 , . . . , wn, w−1

n } and573

hence can be viewed as a power word over the alphabet Σ. As such, it represents an element574

of the group H ∩ A.575

Let T be a spanning tree of G and let E \ T be the set of edges that do not belong576

to T . We then obtain a set of generators for H ∩ A by taking for every edge e ∈ E \ T577

the circuit in G obtained by following the unique simple path in T from 1 to ι(e), followed578

by the edge e, followed by the unique simple path in T from τ(e) back to 1. Let xe ∈579

{w1, w−1
1 , . . . , wn, w−1

n }∗ be the label of this circuit. Every xe represents an element of H ∩A580

and the set of all these elements (for e ∈ E \ T ) is a generating set of H ∩ A; see [10] for581

details. Moreover, every xe can be written as power word over the alphabet Σ of polynomial582

length. Using Fact 1 we can rewrite this power word in polynomial time into x′
ere where x′

e583
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is a power word over the alphabet Θ and re ∈ R. But since xe represents an element of H,584

we must have re = 1. This concludes the case that r0 = 1.585

Finally, the case that r0 ∈ V but r0 ̸= 1 can be easily reduced to the case r0 = 1:586

we use the same graph G defined above. Since r0 ∈ V , there is a path from 1 to r0. Let587

x ∈ {w1, w−1
1 , . . . , wn, w−1

n }∗ be the label of this path. It is a power word over Σ and by588

Fact 1 x can be rewritten into the form yr for a power word y over Θ and r ∈ R. Clearly, we589

must have r = r0. In the group G we have w0x−1 = w′
0r0r−1

0 y−1 = w′
0y−1, where the latter590

can be written as a power word over Θ. Since the word x represents an element of A we have591

w0 ∈ A if and only if w0x−1 ∈ A if and only if w′
0y−1 ∈ A. This concludes the proof. ◀592

From Theorem 12 and Lemma 13 we immediately obtain the following corollary:593

▶ Corollary 14. The power-compressed subgroup membership problem for a fixed f.g. virtually594

free group can be solved in polynomial time.595

The group GL(2,Z) consists of all (2 × 2)-matrices over the integers with determinant −1 or596

1. It is a well-known example of a f.g. virtually free group [31].597

▶ Lemma 15. From a given matrix A ∈ GL(2,Z) with binary encoded entries one can598

compute in polynomial time a power word over a fixed finite generating set of GL(2,Z), which599

evaluates to the matrix A.600

Proof. For the group SL(2,Z) of all (2 × 2)-matrices over the integers with determinant 1601

the result is shown in [11], see also [7, Proposition 15.4]. Now, SL(2,Z) is a normal subgroup602

of index two in GL(2,Z). Fix a matrix B ∈ GL(2,Z) with determinant −1. Given a matrix603

A ∈ GL(2,Z) with binary encoded entries and determinant −1 we first compute the matrix604

AB−1 ∈ SL(2,Z). Using [11] we can compute in polynomial time a power word w for AB−1.605

Hence, wB (where B is taken as an additional generator) is a power word for A. ◀606

▶ Corollary 16. The subgroup membership problem for GL(2,Z) can be solved in polynomial607

time when matrix entries are given in binary encoding.608

Proof. Since GL(2,Z) is f.g. virtually free, the power-compressed subgroup membership609

problem for GL(2,Z) can be solved in polynomial time by Corollary 14. By Lemma 15 this610

shows the corollary. ◀611

5 Future work612

There is not much hope to generalize Corollary 16 to higher dimensions. For SL(4,Z) the613

subgroup membership problem is undecidable and decidability of the subgroup membership614

problem for SL(3,Z) is a long standing open problem [16].615

A more feasible problem concerns the rational subset membership problem for free groups616

when transitions are labelled with power words. It is easy to see that this problem is NP-hard617

(reduction from subset sum) and we conjecture that there exists an NP algorithm. As a618

consequence this would show that the rational subset membership problem for GL(2,Z)619

is NP-complete when the transitions of the automaton are labelled with binary encoded620

matrices. The corresponding statement for PSL(2,Z) was shown in [3].621

Another interesting problem is whether the subgroup membership problem for a free group622

can be solved in polynomial time, when all group elements are represented by straight-line623

programs (which can be more succinct than power words). One might try to show this624

using an adaptation of Stallings’s folding, but controlling the size of the graph during the625

folding seems to be more difficult when the transition labels are represented by straight-line626

programs instead of power words.627
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