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ABSTRACT
We consider exponent equations in finitely generated groups. These

are equations, where the variables appear as exponents of group

elements and take values from the natural numbers. Solvability of

such (systems of) equations has been intensively studied for various

classes of groups in recent years. In many cases, it turns out that

the set of all solutions on an exponent equation is a semilinear set

that can be constructed effectively. Such groups are called knapsack

semilinear. The class of knapsack semilinear groups is quite rich and

it is closed under many group theoretic constructions, e.g., finite

extensions, graph products, wreath products, amalgamated free

products with finite amalgamated subgroups, and HNN-extensions

with finite associated subgroups. On the other hand, arbitrary HNN-

extensions do not preserve knapsack semilinearity. In this paper,

we consider the knapsack semilinearity of HNN-extensions, where

the stable letter 𝑡 acts trivially by conjugation on the associated

subgroup 𝐴 of the base group 𝐺 . We show that under some addi-

tional technical conditions, knapsack semilinearity transfers from

the base group𝐺 to the HNN-extension. These additional technical

conditions are satisfied in many cases, e.g., when 𝐴 is a centralizer

in 𝐺 or 𝐴 is a quasiconvex subgroup of the hyperbolic group 𝐺 .
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1 INTRODUCTION
For an infinite finitely generated group 𝐺 and so-called exponent

variables 𝑥1, . . . , 𝑥𝑘 we consider equations of the form

ℎ0𝑔
𝑥1

1
ℎ1𝑔

𝑥2

1
· · ·ℎ𝑘−1

𝑔
𝑥𝑘
𝑘
ℎ𝑘 = 1 (1)

where the 𝑔𝑖 and ℎ𝑖 are elements of𝐺 (given as words over a gener-

ating set) and the every 𝑥𝑖 ranges overN. Equations of this form are

known as knapsack equations and have received a lot of attention

in recent years, see e.g. [1–5, 8, 10–12, 22–25, 27, 28]. Note that

in a knapsack equation, the exponent variables are assumed to be

pairwise different. If this is not assumed, i.e., if 𝑥𝑖 = 𝑥 𝑗 for 𝑖 ≠ 𝑗 is

allowed, then one speaks of an exponent equation. Several variants
and problems have been studied in this context. The most general

decision problem is to decide whether a given system of exponent

equations has a solution where natural numbers are assigned to the

variables 𝑥𝑖 . This problem is known to be decidable in hyperbolic

groups [23], virtually special groups (finite extensions of subgroups

of right-angled Artin groups)
1
[24], co-context-free groups (groups

where the complement of the word problem is context-free) [22],

and free solvable groups [8]. A simpler problem is the so-called

knapsack problem, where it is asked whether a single knapsack

equation has a solution. There are groups, with a decidable knap-

sack problem, but an undecidable solvability problem for systems

of exponent equations. Examples are the discrete Heisenberg group

[22] and the Baumslag-Solitar group BS(1, 2) [2, Theorem E.1]. Let

us also remark that the variants of these problems, where the vari-

ables 𝑥𝑖 range over Z are not harder (one can replace a power 𝑔
𝑥𝑖
𝑖

with 𝑥𝑖 ∈ Z by 𝑔𝑥𝑖𝑖 (𝑔−1

𝑖
)𝑦𝑖 with 𝑥𝑖 , 𝑦𝑖 ∈ N).

Another problem is to describe the set of all solutions of a knap-

sack equation. It turned out that for many groups this set is ef-

fectively semilinear for every knapsack equation;
2
such groups

are called knapsack semilinear. For instance, the above mentioned

groups (hyperbolic groups, virtually special groups, co-context-free

groups and free solvable groups) are knapsack semilinear and the

class of knapsack semilinear groups is closed under the following

operations: finite extensions [10], graph products [10], wreath prod-

ucts [12], amalgamated free products with finite amalgamated sub-

groups [10], and HNN-extensions with finite associated subgroups

[10]. For a knapsack semilinear group one can decide whether a

given system of exponent equations has a solution. Moreover, for

1
Many groups are known to be virtually special, e.g., Coxeter groups, fully residually

free groups, one-relator groups with torsion, and fundamental groups of hyperbolic

3-manifolds.

2
A subset of N𝑛 is semilinear if it is a finite union of sets of shifted subsemigroups of

(N𝑛, +) ; see Section 2.1 for more details. Effectively semilinear means that the finitely

many vectors from a semilinear description of the solution set of (1) can be computed

from words representing the group elements 𝑔𝑖 and ℎ𝑖 in (1).
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a knapsack semilinear group also the set of all solutions of an ex-

ponent equations is effectively semilinear; this follows easily from

well-known closure properties of semilinear sets.

In this paper we want to further elaborate HNN-extensions.

HNN-extension is a fundamental operation in all areas of geometric

and combinatorial group theory. A theorem of Seifert and van

Kampen links HNN-extensions to algebraic topology, see e.g. [34,

p. 407]. Moreover, HNN-extensions are used in all modern proofs

for the undecidability of the word problem in finitely presented

groups; see e.g. [36, Section 9.3]. For a base group 𝐺 with two

isomorphic subgroups 𝐴 and 𝐵 and an isomorphism 𝜑 : 𝐴 → 𝐵, the

corresponding HNN-extension is the group

𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝜑 (𝑎) (𝑎 ∈ 𝐴)⟩. (2)

Intuitively, it is obtained by adjoing to 𝐺 a new generator 𝑡 (the

stable letter) in such a way that conjugation of 𝐴 by 𝑡 realizes 𝜑 .

The subgroups 𝐴 and 𝐵 are also called the associated subgroups.
Recall from the above discussion that if𝐺 is knapsack semilinear

and 𝐴 and 𝐵 are finite then also 𝐻 is knapsack semilinear [10].

For arbitrary HNN-extensions, this is not true. For instance, the

Baumslag-Solitar group BS(1, 2) = ⟨𝑎, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎2⟩ is not knap-
sack semilinear [25] but it is an HNN-extension of the knapsack

semilinear group ⟨𝑎⟩ � Z. This example shows that we have to

drastically restrict HNN-extensions in order to get a transfer re-

sult for knapsack semilinearity beyond the case of finite associated

subgroups. In this paper we study HNN-extensions of the form

𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎 (𝑎 ∈ 𝐴)⟩, (3)

where 𝐴 ≤ 𝐻 is a subgroup. In other words, we take in (2) for

𝜑 : 𝐴 → 𝐵 the identity on 𝐴. Intuitively: we add to the group 𝐺

a free generator 𝑡 together with commutation identities 𝑎𝑡 = 𝑡𝑎

for all 𝑎 ∈ 𝐴. This operation interpolates between the free product

𝐺 ∗ ⟨𝑡⟩ � 𝐺 ∗ Z and the direct product 𝐺 × ⟨𝑡⟩ � 𝐺 × Z.
Even HNN-extensions of the form (3) with f.g. 𝐴 are too general

for our purpose: if the subgroup membership problem for 𝐴 is

undecidable then 𝐻 has an undecidable word problem. Hence, we

also need some restriction on the subgroup 𝐴 ≤ 𝐺 .

Definition 1.1. We say that 𝐺 is knapsack semilinear relative to

the subset 𝑆 ⊆ 𝐺 if for all ℎ0, 𝑔1, ℎ1, 𝑔2, . . . , ℎ𝑘−1
, 𝑔𝑘 , ℎ𝑘 ∈ 𝐺 the set

of all tuples (𝑛1, . . . , 𝑛𝑘 ) ∈ N𝑛 with ℎ0𝑔
𝑛1

1
ℎ1𝑔

𝑛2

1
· · ·ℎ𝑘−1

𝑔
𝑛𝑘
𝑘
ℎ𝑘 ∈ 𝑆

is effectively semilinear (we are mainly interested in the case where

𝑆 is a subgroup of 𝐺). For sets 𝑆1, . . . , 𝑆𝑘 ⊆ 𝐺 we say that 𝐺 is

knapsack semilinear relative to {𝑆1, . . . , 𝑆𝑘 } if for every 1 ≤ 𝑖 ≤ 𝑘 ,

𝐺 is knapsack semilinear relative to 𝑆𝑖 .

Note that𝐺 is knapsack semilinear iff it is knapsack semilinear

relative to 1. Our first main result is:

Theorem 1.2. If𝐺 is knapsack semilinear relative to {1, 𝐴} then
𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎 (𝑎 ∈ 𝐴)⟩ is knapsack semilinear.

In some situations we can even avoid the explicit assumption

that 𝐺 is knapsack semilinear relative to the subgroup 𝐴. HNN-

extensions of the form (3), where 𝐴 is the centralizer of a single

element 𝑔 ∈ 𝐺 are known as free rank one extensions of centralizers
and were first studied in [29] in the context of so-called exponential

groups. It is easy to observe that if 𝐺 is knapsack semilinear and

𝐴 ≤ 𝐺 is the centralizer of a finite set of elements, then 𝐺 is also

knapsack semilinear relative to𝐴. In particular the operation of free

rank one extension of centralizers preserves knapsack semilinearity.

A corollary of this result is that every fully residually free group

is knapsack semilinear. The class of fully residually free groups is

exactly the class of all groups that can be constructed from Z by
the following operations: taking finitely generated subgroups, free

products and free rank one extensions of centralizers. Knapsack

semilinearity of fully residually free groups also follows from the

fact that every fully residually free group is virtually special [37].

In the second part of the paper, we study HNN-extensions of the

form (3), where 𝐺 is a hyperbolic group. A group is hyperbolic if

all geodesic triangles in the Cayley-graph are 𝛿-slim for a constant

𝛿 . The class of hyperbolic groups has several alternative charac-

terizations (e.g., it is the class of finitely generated groups with a

linear Dehn function), which gives hyperbolic groups a prominent

role in geometric group theory. Moreover, in a certain probabilistic

sense, almost all finitely presented groups are hyperbolic [14, 31].

Also from a computational viewpoint, hyperbolic groups have nice

properties: it is known that the word problem and the conjugacy

problem can be solved in linear time [7, 18]. In [23] it was shown

that hyperbolic groups are knapsack semilinear. Here we extend

this result by showing the following:

Theorem 1.3. Let 𝐺 be hyperbolic and let 𝐻 be a quasiconvex
subgroup of 𝐺 . Then 𝐺 is knapsack semilinear relative to 𝐻 .

Quasiconvex subgroups in hyperbolic groups are known to

have nice properties. Many algorithmic problems are decidable

for quasiconvex subgroups, including the membership problem

[21], whereas Rips constructed finitely generated subgroups of

hyperbolic groups with an undecidable membership problem [33].

A more detailed version of this paper can be found in [9].

2 PRELIMINARIES
In the following three subsections we introduce some definitions

concerning semilinear sets, finite automata, and groups.

2.1 Semilinear sets
Fix a dimension 𝑑 ≥ 1. A linear subset of N𝑑 is a set of the form

𝐿(𝑏0, . . . , 𝑏𝑘 ) = {𝑏0 + 𝑎1𝑏1 + · · ·𝑎𝑘𝑏𝑘 | 𝑎1, . . . , 𝑎𝑘 ∈ N} with

𝑏0, . . . , 𝑏𝑘 ∈ N𝑑 . A subset 𝑆 ⊆ N𝑑 is semilinear, if it is a finite

union of linear sets. The class of semilinear sets is known to be

effectively closed under boolean operations, projections, and point-

wise addition. For a semilinear set 𝑆 =
⋃

1≤𝑖≤𝑛 𝐿(𝑏𝑖,0, . . . , 𝑏𝑖,𝑘𝑖 ), we
call the tuple (𝑏𝑖, 𝑗 )1≤𝑖≤𝑛,1≤ 𝑗≤𝑘𝑖 a semilinear representation of 𝑆 .

The semilinear sets are exactly those sets that are definable in

first-order logic over the structure (N, +) (the so-called Presburger
definable sets). All the known closure properties of semilinear sets

follow from this characterization. A good survey on semilinear

results and Presburger arithmetic with references for the above

mentioned results is [15].

2.2 Regular languages and rational relations
More details on finite automata can be found in the standard text

book [20]. Let Σ be a finite alphabet of symbols. As usual, Σ∗ denotes
the set of all finite words over the alphabet Σ. For a word 𝑤 =

𝑎1𝑎2 · · ·𝑎𝑛 with 𝑎1, . . . , 𝑎𝑛 ∈ Σ we denote with |𝑤 | = 𝑛 the length
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of𝑤 . We denote the empty word (the unique word of length 0) with

𝜀; in group theoretic contexts we also write 1 for the empty word.

A finite automaton over the alphabet Σ is a tupleA = (𝑄, 𝐼, 𝛿, 𝐹 ),
where 𝑄 is a finite set of states, 𝐼 ⊆ 𝑄 is the set of initial states,

𝛿 ⊆ 𝑄 × Σ × 𝑄 is the set of transitions, and 𝐹 ⊆ 𝑄 is the set of

final states. A word 𝑤 = 𝑎1𝑎2 · · ·𝑎𝑛 is accepted by A if there are

transitions (𝑞𝑖−1, 𝑎𝑖 , 𝑞𝑖 ) ∈ 𝛿 for 1 ≤ 𝑖 ≤ 𝑛 such that 𝑞0 ∈ 𝐼 and

𝑞𝑛 ∈ 𝐹 . With 𝐿(A) (the language accepted by A) we denote the

set of all words accepted by A. A language 𝐿 is called regular if it
is accepted by a finite automaton.

We fix an arbitrary enumeration 𝑎1, . . . , 𝑎𝑘 of the alphabet Σ. For
𝑤 ∈ Σ∗ and 1 ≤ 𝑖 ≤ 𝑘 let |𝑤 |𝑎𝑖 be the number of occurrences of

𝑎𝑖 in𝑤 . The Parikh image of𝑤 is 𝑃 (𝑤) = ( |𝑤 |𝑎1
, . . . , |𝑤 |𝑎𝑘 ) ∈ N𝑘 .

The Parikh image of a language 𝐿 ⊆ Σ∗ is 𝑃 (𝐿) = {𝑃 (𝑤) | 𝑤 ∈ 𝐿}.
The following important result was shown by Parikh [32].

Theorem 2.1. The semilinear sets are exactly the Parikh images
of the regular languages. From a given finite automaton A one can
compute a semilinear representation of 𝑃 (𝐿(A)).

We will also use the following simple lemma:

Lemma 2.2 (c.f. [10, Lemma 5.8]). Let 𝑝, 𝑞, 𝑟, 𝑠,𝑢, 𝑣 ∈ Σ∗. Then the
set {(𝑥,𝑦) ∈ N × N | 𝑝𝑞𝑥𝑟 = 𝑠𝑢𝑦𝑣} is semilinear and a semilinear
representation can be computed from 𝑝, 𝑞, 𝑟, 𝑠,𝑢, 𝑣 .

A finite state transducer T over the alphabet Σ is a tuple T =

(𝑄, 𝐼, 𝛿, 𝐹 ) where 𝑄 , 𝐼 and 𝐹 have the same meaning as in a finite

automaton and 𝛿 ⊆ 𝑄 × ((Σ×{𝜀})∪ ({𝜀} × Σ))×𝑄 . A pair (𝑢, 𝑣) ∈
Σ∗ ×Σ∗ is accepted by T if there are transitions (𝑞𝑖−1, 𝑎𝑖 , 𝑏𝑖 , 𝑞𝑖 ) ∈ 𝛿

for 1 ≤ 𝑖 ≤ |𝑢 | + |𝑣 | (𝑎𝑖 , 𝑏𝑖 ∈ Σ ∪ {𝜀}) such that 𝑢 = 𝑎1 · · ·𝑎 |𝑢 |+ |𝑣 | ,
𝑣 = 𝑏1 · · ·𝑏 |𝑢 |+ |𝑣 | , 𝑞0 ∈ 𝐼 and 𝑞 |𝑢 |+ |𝑣 | ∈ 𝐹 . With 𝑅(T ) we denote
the set of all pairs accepted by T . A relation 𝑅 ⊆ Σ∗×Σ∗ is a rational
relation if it is accepted by a finite state transducer.

2.3 Groups
For more details on group theory we refer to [26]. Infinite groups

are usually given by presentations. Take a non-empty set Ω and let

Ω−1 = {𝑎−1 | 𝑎 ∈ Ω} be a set of formal inverses such that Ω∩Ω−1 =

∅. Let Σ = Ω∪Ω−1
. On the set Σ∗ there is a natural involution (·)−1

defined by (𝑎−1)−1 = 𝑎 for 𝑎 ∈ Ω and (𝑎1 · · ·𝑎𝑛)−1 = 𝑎−1

𝑛 · · ·𝑎−1

1

for 𝑎1, . . . , 𝑎𝑛 ∈ Σ. A word 𝑤 ∈ Σ∗ is called reduced if it does not

contain an occurrence of a word 𝑎𝑎−1
or 𝑎−1𝑎 (𝑎 ∈ Σ). Applying the

cancellation rules 𝑎𝑎−1 → 𝜀 or 𝑎−1𝑎 → 𝜀 as long as possible, every

word 𝑤 ∈ Σ∗ can be mapped to a unique reduced word red(𝑤).
The free group 𝐹 (Σ) consists of all reduced words together with the

group multiplication 𝑢 · 𝑣 = red(𝑢𝑣) for reduced words 𝑢, 𝑣 . The

mapping red can be also viewed as a monoid morphism from Σ∗

to 𝐹 (Σ). For a subset 𝑅 ⊆ Σ∗ one defines the group ⟨Σ | 𝑅⟩ as the
quotient group 𝐹 (Σ)/𝑁𝑅 , where 𝑁𝑅 is the intersection of all normal

subgroups of 𝐹 (Σ) that contain red(𝑅) (the normal closure of 𝑅).

Clearly, every group is isomorphic to a group of the form ⟨Σ | 𝑅⟩.
Let 𝐺 = ⟨Σ | 𝑅⟩ in the following. If Σ is finite then 𝐺 is called

finitely generated (f.g. for short) and Σ is called a finite symmetric
generating set for 𝐺 . If both Σ and 𝑅 are finite, then 𝐺 is called

finitely presented. The surjective monoid morphism red : Σ∗ →
𝐹 (Σ) extends to a surjective monoid morphism ℎ : Σ∗ → 𝐺 , called

the evaluation morphism. For two words 𝑢, 𝑣 ∈ Σ∗ we write 𝑢 =𝐺 𝑣

if ℎ(𝑢) = ℎ(𝑣). For a subset 𝑆 ⊆ 𝐺 we write 𝑢 ∈𝐺 𝑆 if ℎ(𝑢) ∈ 𝑆 .

3 KNAPSACK AND EXPONENT EQUATIONS
Let 𝐺 be a f.g. group with the finite symmetric generating set Σ.
Recall the notion of knapsack semilinearity relative to a subset

𝑆 ⊆ 𝐺 from Definition 1.1. If 𝐺 is knapsack semilinear relative to

1 then 𝐺 is called knapsack semilinear. All group elements in a

knapsack (or exponent) equation will be given by words over the

alphabet Σ.
We introduce a few additional notations for knapsack and expo-

nent equations. Fix pairwise different exponent variables 𝑥1, . . . , 𝑥ℓ .

An exponent expression over Σ is a formal expression of the form

𝑒 = 𝑣0𝑢
𝑦1

1
𝑣1𝑢

𝑦2

2
· · · 𝑣𝑘−1

𝑢
𝑦𝑘
𝑘

𝑣𝑘 (4)

with 𝑘 ≥ 1, words 𝑢𝑖 , 𝑣𝑖 ∈ Σ∗ and 𝑦1, . . . , 𝑦𝑘 ∈ {𝑥1, . . . , 𝑥ℓ }. We

also write 𝑒 (𝑥1, . . . , 𝑥ℓ ) in order to make the exponent variables

explicit. For natural numbers 𝑛1, . . . , 𝑛ℓ ∈ N let 𝑒 (𝑛1, . . . , 𝑛ℓ ) ∈ Σ∗

be the word obtained by replacing in 𝑒 every exponent variable

𝑥𝑖 by 𝑛𝑖 . A tuple (𝑛1, . . . , 𝑛ℓ ) is called a 𝐺-solution (or simply a

solution if 𝐺 is clear from the context) of the knapsack equation

𝑒 = 1 if 𝑒 (𝑛1, . . . , 𝑛ℓ ) =𝐺 1 holds. We can assume that 𝑢𝑖 ≠ 𝜀 for all

1 ≤ 𝑖 ≤ 𝑘 . If all exponent variable in (4) are pairwise different then

𝑒 is called a knapsack expression. If 𝐺 is knapsack semilinear, then

also for every exponent expression 𝑒 the set of all 𝐺-solutions of

𝑒 = 1 is effectively semilinear. This is a consequence of the effective

closure properties of semilinear sets; see e.g. [10].

As mentioned in the introduction, the class of knapsack semi-

linear groups is very rich. Groups that are not knapsack semilin-

ear are the 3-dimensional Heisenberg group 𝐻3 (Z) [22] and the

Baumslag-Solitar group BS(1, 2) [2, 25]. These groups are not knap-
sack semilinear in a strong sense: there are knapsack expressions 𝑒

such that the set of all 𝐻3 (Z)-solutions (resp., BS(1, 2)-solutions)
of 𝑒 = 1 is not semilinear.

4 HNN-EXTENSIONS
In this section we introduce HNN-extensions. Suppose 𝐺 = ⟨Σ | 𝑅⟩
is a f.g. group with the finite symmetric generating set Σ = Ω∪Ω−1

and 𝑅 ⊆ Σ∗. Fix two isomorphic subgroups 𝐴 and 𝐵 of 𝐺 together

with an isomorphism 𝜑 : 𝐴 → 𝐵. Let 𝑡 ∉ Σ be a new letter. Then

the corresponding HNN-extension is the group

𝐻 = ⟨Σ ∪ {𝑡, 𝑡−1} | 𝑅 ∪ {𝑡−1𝑎−1𝑡𝜑 (𝑎) | 𝑎 ∈ 𝐴}⟩

(formally, we identify here every element 𝑔 ∈ 𝐴 ∪ 𝐵 with a word

over Σ that evaluates to 𝑔). This group is usually denoted by

𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝜑 (𝑎) (𝑎 ∈ 𝐴)⟩. (5)

Intuitively, 𝐻 is obtained from 𝐺 by adding a new element 𝑡 such

that conjugating elements of 𝐴 with 𝑡 applies the isomorphism 𝜑 .

Here, 𝑡 is called the stable letter and the groups 𝐴 and 𝐵 are the

associated subgroups. A basic fact about HNN-extensions is that the

group 𝐺 embeds naturally into 𝐻 [17].

In this paper, we consider HNN-extensions 𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 =

𝜑 (𝑎) (𝑎 ∈ 𝐴)⟩, where 𝐴 ≤ 𝐺 is a subgroup of 𝐺 = ⟨Σ | 𝑅⟩ and
𝜑 : 𝐴 → 𝐴 is the identity mapping. Thus, 𝐻 can be written as

𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎 (𝑎 ∈ 𝐴)⟩. (6)

Let us fix this HNN-extension for the further consideration. Let us

denote with ℎ : (Σ ∪ {𝑡, 𝑡−1})∗ → 𝐻 the evaluation morphism.
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A word 𝑢 ∈ (Σ∪ {𝑡, 𝑡−1})∗ is called Britton-reduced if it does not

contain a factor of the form 𝑡−𝛼𝑤𝑡𝛼 with 𝛼 ∈ {−1, 1},𝑤 ∈ Σ∗ and
𝑤 ∈𝐺 𝐴. A factor of the form 𝑡−𝛼𝑤𝑡𝛼 with 𝛼 ∈ {−1, 1}, 𝑤 ∈ Σ∗

and𝑤 ∈𝐺 𝐴 is also called a pin, which we can replace by𝑤 . Since

this decreases the number of 𝑡 ’s in the word, we can reduce every

word to an equivalent Britton-reduced word. We denote the set

of all Britton-reduced words in the HNN-extension (6) by BR(𝐻 ).
For 𝑢 ∈ (Σ ∪ {𝑡, 𝑡−1})∗ we define 𝜋𝑡 (𝑢) as the projection of the

word𝑢 onto the alphabet {𝑡, 𝑡−1} and 𝜋Σ (𝑢) as the projection of the

word 𝑢 into the monoid Σ∗. Britton’s lemma states that if 𝑢 =𝐻 1

(𝑢 ∈ (Σ ∪ {𝑡, 𝑡−1})∗) then 𝑢 contains a pin or 𝑢 ∈ Σ∗ and 𝑢 =𝐺 1.

Note that a consequence of this is that if 𝑢 ∈𝐻 𝐺 (which means

that 𝑢𝑣 =𝐻 1 for a word 𝑣 ∈ Σ∗), then 𝑢 contains a pin or 𝑢 ∈
Σ∗. In particular a Britton-reduced word that contains 𝑡±1

cannot

represent an element of the base group 𝐺 .

Note that 𝐻/𝑁 (𝑡) � 𝐺 , where 𝑁 (𝑡) is the normal subgroup

generated by 𝑡 . By 𝜋𝐺 : 𝐻 → 𝐺 we denote the canonical projection.

We have 𝜋𝐺 (𝑔0𝑡
𝛿1𝑔1 · · · 𝑡𝛿𝑘𝑔𝑘 ) = 𝑔0𝑔1 · · ·𝑔𝑘 for 𝑔0, . . . , 𝑔𝑘 ∈ 𝐺 .

Hence, on the level of words, 𝜋𝐺 is computed by the projection

𝜋Σ : (Σ ∪ {𝑡, 𝑡−1})∗ → Σ∗.

Lemma 4.1. Let𝑤 ∈ (Σ ∪ {𝑡, 𝑡−1})∗. Then𝑤 =𝐻 1 if and only if
𝑤 ∈𝐻 𝐺 and 𝜋Σ (𝑤) =𝐺 1.

Proof. If𝑤 =𝐻 1 then𝑤 ∈𝐻 𝐺 . Moreover, by Britton’s lemma,

𝑤 can be reduced to a word from Σ∗ using Britton reduction. But

this word must be 𝜋Σ (𝑤), which implies 𝜋Σ (𝑤) =𝐺 1. On the other

hand, if𝑤 ∈𝐻 𝐺 and 𝜋Σ (𝑤) =𝐺 1, then, again,𝑤 can be reduced to

𝜋Σ (𝑤) =𝐺 1 using Britton reduction, which yields𝑤 =𝐻 1. □

We will also need the following lemma; see [16, Lemma 2.3].

Lemma 4.2. Let 𝑢 = 𝑢0𝑡
𝛿1𝑢1 · · · 𝑡𝛿𝑘𝑢𝑘 and 𝑣 = 𝑣0𝑡

𝜀1𝑣1 · · · 𝑡𝜀ℓ 𝑣ℓ be
Britton-reduced words with 𝑢𝑖 , 𝑣 𝑗 ∈ Σ∗. Let 0 ≤ 𝑟 ≤ max{𝑘, ℓ} be the
largest number such that

• 𝛿𝑘−𝑖 = −𝜀𝑖+1 for all 0 ≤ 𝑖 ≤ 𝑟 − 1 and
• 𝑢𝑘−𝑖+1

· · ·𝑢𝑘𝑣0 · · · 𝑣𝑖−1 ∈𝐺 𝐴 for all 0 ≤ 𝑖 ≤ 𝑟 (for 𝑖 = 0 this
condition is trivially satisfied).

Then 𝑤 = 𝑢0𝑡
𝛿1𝑢1 · · · 𝑡𝛿𝑘−𝑟𝑢𝑘−𝑟 · · ·𝑢𝑘𝑣0 · · · 𝑣𝑟 𝑡𝜀𝑟+1𝑣𝑟+1 · · · 𝑡𝜀ℓ 𝑣ℓ is a

Britton-reduced word with𝑤 =𝐻 𝑢𝑣 .

5 KNAPSACK SEMILINEAR HNN-EXTENSIONS
In this section we show that the HNN-extension (6) is knapsack

semilinear if 𝐺 is knapsack semilinear relative to {1, 𝐴}. We first

introduce some concepts that can be found in a similar form in [10].

We call a word𝑤 ∈ BR(𝐻 ) well-behaved, if𝑤𝑛
is Britton-reduced

for every 𝑛 ≥ 0. Note that𝑤 is well-behaved if and only if𝑤 and

𝑤2
are Britton-reduced. Every word𝑤 ∈ Σ∗ is well-behaved.

Lemma 5.1 (c.f. [10, Lemma 6.3]). From a given word 𝑢 ∈ BR(𝐻 )
we can compute words 𝑠, 𝑝, 𝑣 ∈ BR(𝐻 ) such that 𝑢𝑛 =𝐻 𝑠𝑣𝑛𝑝 for
every𝑚 ≥ 0 and 𝑣 is well-behaved.

In the following we assume that𝐺 is knapsack semilinear relative

to {1, 𝐴}. Let 𝑒 (𝑥1, . . . , 𝑥𝑛) = 𝑣0𝑢
𝑥1

1
· · · 𝑣𝑘−1

𝑢
𝑥𝑘
𝑘
𝑣𝑘 be a knapsack

expression over the alphabet Σ ∪ {𝑡, 𝑡−1}. We define the knapsack

expression 𝜋Σ (𝑒) = 𝜋Σ (𝑣0)𝜋Σ (𝑢1)𝑥1 · · · 𝜋Σ (𝑣𝑘−1
)𝜋Σ (𝑢𝑘 )𝑥𝑘𝜋Σ (𝑣𝑘 )

over the alphabet Σ. The assertion 𝑒 (𝑥1, . . . , 𝑥𝑛) ∈𝐻 𝐺 is called a

𝐺-constraint. If 𝑒 is a knapsack expression over the alphabet Σ, then

𝑒 ∈𝐺 𝐴 is called an 𝐴-constraint. Since 𝐺 is knapsack semilinear

relative to 𝐴, the set of solutions of an 𝐴-constraint is semilinear.

Lemma 5.2. Let 𝑢, 𝑣 ∈ BR(𝐻 ) be well-behaved, 𝑢 ′ (resp., 𝑣 ′′) be
a proper prefix of 𝑢 (resp., 𝑣) and 𝑢 ′′ (resp., 𝑣 ′) be a proper suffix of
𝑢 (resp., 𝑣). Let 𝑒 = 𝑒 (𝑧1, . . . , 𝑧𝑘 ) be a knapsack expression over the
alphabet Σ. Then the set of all (𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘 ) ∈ N𝑘+2 such that the
𝐺-constraint

𝑢 ′′𝑢𝑥𝑢 ′𝑒 (𝑧1, . . . , 𝑧𝑘 ) 𝑣 ′𝑣𝑦𝑣 ′′ ∈𝐻 𝐺 (7)

holds is semilinear and a semilinear representation can be effectively
computed from 𝑢, 𝑣,𝑢 ′, 𝑢 ′′, 𝑣 ′, 𝑣 ′′, 𝑒 .

Proof. By cyclically rotating 𝑢 and 𝑣 we can assume that 𝑢 ′′ =
𝑣 ′′ = 𝜀. Thus, we have to consider the set of solutions of the 𝐺-

constraint 𝑢𝑥𝑢 ′𝑒 (𝑧1, . . . , 𝑧𝑘 ) 𝑣 ′𝑣𝑦 ∈𝐻 𝐺 . This equation holds (for

certain values of 𝑥,𝑦, 𝑧1, . . . , 𝑧𝑘 ) iff the word 𝑢𝑥𝑢 ′𝑒 (𝑧1, . . . , 𝑧𝑘 ) 𝑣 ′𝑣𝑦
can be Britton-reduced to a word from Σ∗ (this word must be

𝜋Σ (𝑢𝑥𝑢 ′𝑒 (𝑧1, . . . , 𝑧𝑘 ) 𝑣 ′𝑣𝑦)). Since 𝑢𝑥 and 𝑣𝑦 are Britton-reduced

for every 𝑥,𝑦 ∈ N we can apply Lemma 4.2.

Let 𝑆𝑢 be the set of suffixes of 𝑢 that start with 𝑡±1
and let 𝑃𝑣

be the set of prefixes of 𝑣 that end with 𝑡±1
. We define 𝑆𝑢′ and 𝑃𝑣′

analogously. Then by Lemma 4.2 the following formula is equivalent

to 𝑢𝑥𝑢 ′𝑒 (𝑧1, . . . , 𝑧𝑛) 𝑣 ′𝑣𝑦 ∈𝐻 𝐺 :

𝜋𝑡 (𝑢𝑥𝑢 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦)−1 ∧
∀𝑥 ′ < 𝑥 ∀𝑦′ < 𝑦 ∀𝑠 ∈ 𝑆𝑢 ∀𝑝 ∈ 𝑃𝑣 ∀𝑠 ′ ∈ 𝑆𝑢′ ∀𝑝 ′ ∈ 𝑃𝑣′ :

𝜋𝑡 (𝑠 𝑢𝑥
′
𝑢 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦

′
𝑝)−1 → 𝜋Σ (𝑠 𝑢𝑥

′
𝑢 ′𝑒 𝑣 ′𝑣𝑦

′
𝑝) ∈𝐺 𝐴 ∧

𝜋𝑡 (𝑠 𝑢𝑥
′
𝑢 ′) = 𝜋𝑡 (𝑝 ′)−1 → 𝜋Σ (𝑠 𝑢𝑥

′
𝑢 ′𝑒 𝑝 ′) ∈𝐺 𝐴 ∧

𝜋𝑡 (𝑠 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦
′
𝑝)−1 → 𝜋Σ (𝑠 ′𝑒 𝑣 ′𝑣𝑦

′
𝑝) ∈𝐺 𝐴 ∧

𝜋𝑡 (𝑠 ′) = 𝜋𝑡 (𝑝 ′)−1 → 𝜋Σ (𝑠 ′𝑒 𝑝 ′) ∈𝐺 𝐴

Note that ∀𝑠 ∈ 𝑆𝑢 ∀𝑝 ∈ 𝑃𝑣 ∀𝑠 ′ ∈ 𝑆𝑢′ ∀𝑝 ′ ∈ 𝑃𝑣′ can be writ-

ten as a finite conjunction. By Lemma 2.2 the solution set of the

equation 𝜋𝑡 (𝑢𝑥𝑢 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦)−1
(which is interpreted over the

free monoid {𝑡, 𝑡−1}∗) is semilinear. To see this let 𝑤 = 𝑣−1
and

𝑤 ′ = (𝑣 ′)−1
. Then 𝜋𝑡 (𝑢𝑥𝑢 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦)−1

is equivalent to the equa-

tion 𝜋𝑡 (𝑢)𝑥𝜋𝑡 (𝑢 ′) = 𝜋𝑡 (𝑤)𝑦𝜋𝑡 (𝑤 ′). For the same reason, also the

equations 𝜋𝑡 (𝑠 𝑢𝑥
′
𝑢 ′) = 𝜋𝑡 (𝑣 ′𝑣𝑦

′
𝑝)−1

is equivalent to a semilinear

constraint. The solution sets of the equations 𝜋𝑡 (𝑠) = 𝜋𝑡 (𝑣 ′𝑣𝑦
′
𝑝)−1

and 𝜋𝑡 (𝑠) = 𝜋𝑡 (𝑣 ′𝑣𝑦
′
𝑝)−1

are finite. Moreover, each of the 𝐴-

constraints (𝜋Σ (𝑠 𝑢𝑥
′
𝑢 ′ 𝑒 𝑣 ′𝑣𝑦

′
𝑝) ∈𝐺 𝐴 etc.) is equivalent to a semi-

linear constraint because 𝐺 is knapsack semilinear relative to 𝐴.

Hence, the above formula is equivalent to a Presburger formula

and therefore defines a semilinear set. □

Remark 5.3. There are variations of Lemma 5.2, where in the

𝐺-constraint (7), the subexpression 𝑢 ′′𝑢𝑥𝑢 ′ or 𝑣 ′𝑣𝑦𝑣 ′′ (or both of

them) is replaced by a single word from BR(𝐻 ) (which does not

contain an exponent variable). In all cases, the set of solutions of

the 𝐺-constraint can be shown to be effectively semilinear using

the arguments from the proof of Lemma 5.2.

Definition 5.4. We define a reduction relation on tuples over

BR(𝐻 ) of arbitrary length. A tuple (𝑢1, . . . , 𝑢𝑚) with 𝑢1, . . . , 𝑢𝑚 ∈
BR(𝐻 ) can be rewritten into

(𝑢1, . . . , 𝑢𝑖−1, 𝜋Σ (𝑢𝑖 ), 𝑢𝑖+1, . . . , 𝑢 𝑗−1, 𝜋Σ (𝑢 𝑗 ), 𝑢 𝑗+1, . . . , 𝑢𝑚)
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if 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, 𝜋𝑡 (𝑢𝑖 ) ≠ 𝜀 ≠ 𝜋𝑡 (𝑢 𝑗 ), 𝑢𝑖+1 · · ·𝑢 𝑗−1 ∈ Σ∗ and

𝑢𝑖𝑢𝑖+1 · · ·𝑢 𝑗−1𝑢 𝑗 ∈𝐻 𝐺 . Note that this implies

𝑢𝑖𝑢𝑖+1 · · ·𝑢 𝑗−1𝑢 𝑗 =𝐻 𝜋Σ (𝑢𝑖 )𝑢𝑖+1 · · ·𝑢 𝑗−1𝜋Σ (𝑢 𝑗 ).

A concrete sequence of such rewrite steps leading to a tuple of

words over Σ is a 𝐺-reduction of the initial tuple, and the initial

tuple is called 𝐺-reducible. We also say that 𝑢𝑖 and 𝑢 𝑗 are matched
in a 𝐺-reduction.

A 𝐺-reduction of a tuple (𝑢1, . . . , 𝑢𝑚) can be seen as a witness

for the fact that𝑢1 · · ·𝑢𝑚 ∈𝐻 𝐺 . On the other hand,𝑢1 · · ·𝑢𝑚 ∈𝐻 𝐺

does not necessarily imply that (𝑢1, . . . , 𝑢𝑚) has a𝐺-reduction. But

we can show that 𝑢1 · · ·𝑢𝑚 ∈𝐻 𝐺 implies that (𝑢1, . . . , 𝑢𝑚) can
refined (by factorizing the 𝑢𝑖 ) such that the resulting refined tuple

has a 𝐺-reduction. Moreover, it is important that the length of the

refined tuple only depends on𝑚 and not in the words 𝑢1, . . . , 𝑢𝑚 .

We say that the tuple (𝑣1, 𝑣2, . . . , 𝑣𝑛) is a refinement of the tuple
(𝑢1, 𝑢2, . . . , 𝑢𝑚) if there exist factorizations 𝑢𝑖 = 𝑢𝑖,1 · · ·𝑢𝑖,𝑘𝑖 in the

free monoid (Σ ∪ {𝑡, 𝑡−1})∗ such that 𝑘𝑖 = 1 whenever 𝑢𝑖 ∈ Σ∗ and
(𝑣1, 𝑣2, . . . , 𝑣𝑛) = (𝑢1,1, . . . , 𝑢1,𝑘1

, . . . , 𝑢𝑚,1, . . . , 𝑢𝑚,𝑘𝑚 ).

Lemma 5.5. Assume that 𝑚 ≥ 2 and 𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ BR(𝐻 ).
If 𝑢1𝑢2 · · ·𝑢𝑚 ∈𝐻 𝐺 , then there exists a 𝐺-reducible refinement of
(𝑢1, 𝑢2, . . . , 𝑢𝑚) that has length at most 4𝑚.

Proof. Let𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑚). Let us define𝛾 (𝑢) as the number

of pairs (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that 𝑢𝑖𝑢𝑖+1 · · ·𝑢 𝑗 is not
Britton-reduced and 𝑢𝑖+1 · · ·𝑢 𝑗−1 ∈ Σ∗. Note that 𝜋𝑡 (𝑢𝑖 ) ≠ 𝜀 ≠

𝜋𝑡 (𝑢 𝑗 ) for such a pair (𝑖, 𝑗). Moreover, if we have two pairs (𝑖, 𝑗)
and (𝑘, ℓ) of this form, then either 𝑗 ≤ 𝑘 or ℓ ≤ 𝑖 . Let 𝜏 (𝑢) be the
number of 𝑖 such that 𝜋𝑡 (𝑢𝑖 ) ≠ 𝜀.

We prove by induction over 𝛾 (𝑢) + 𝜏 (𝑢) that there exists a 𝐺-
reducible refinement of 𝑢 of length at most 2𝛾 (𝑢) + 𝜏 (𝑢) +𝑚 ≤ 4𝑚.

The case 𝑚 = 2 is trivial: either 𝛾 (𝑢1, 𝑢2) = 𝜏 (𝑢1, 𝑢2) = 0

and 𝑢1, 𝑢2 ∈ Σ∗ or 𝛾 (𝑢1, 𝑢2) = 1, 𝜏 (𝑢1, 𝑢2) = 2 in which case

(𝑢1, 𝑢2) must reduce in one step to (𝜋Σ (𝑢1), 𝜋Σ (𝑢2)). If𝑚 ≥ 3 then

𝑢1𝑢2 · · ·𝑢𝑚 must contain a pin. Since every 𝑢𝑖 is Britton-reduced,

there must exist 𝑖 < 𝑗 such that 𝑢𝑖𝑢𝑖+1 · · ·𝑢 𝑗 is not Britton-reduced
and 𝑢𝑖+1 · · ·𝑢 𝑗−1 ∈ Σ∗. By Lemma 4.2 we can factorize 𝑢𝑖 and 𝑢 𝑗

in (Σ ∪ {𝑡, 𝑡−1})∗ as 𝑢𝑖 = 𝑢 ′
𝑖
𝑟 and 𝑢 𝑗 = 𝑠𝑢 ′

𝑗
such that 𝑟𝑠 ∈𝐻 𝐺

and 𝑢𝑖𝑢𝑖+1 · · ·𝑢 𝑗−1𝑢 𝑗 =𝐻 𝑢 ′
𝑖
𝜋Σ (𝑟 )𝑢𝑖+1 · · ·𝑢 𝑗−1𝜋Σ (𝑠)𝑢 ′𝑗 is Britton-

reduced. Note that 𝑟 and 𝑠 must contain 𝑡 or 𝑡−1
. Moreover, we can

assume that either 𝑢 ′
𝑖
= 𝜀 or 𝑢 ′

𝑖
ends with 𝑡±1

and, similarly, either

𝑢 ′
𝑗
= 𝜀 or 𝑢 ′

𝑗
begins with 𝑡±1

.

Case 1. 𝑢 ′
𝑖
and 𝑢 ′

𝑗
both contain 𝑡±1

. Let

𝑢 ′ = (𝑢1, . . . , 𝑢𝑖−1, 𝑢
′
𝑖 , 𝜋Σ (𝑟 ), 𝑢𝑖+1, . . . , 𝑢 𝑗−1, 𝜋Σ (𝑠), 𝑢 ′𝑗 , 𝑢 𝑗+1, . . . , 𝑢𝑚) .

We then have 𝛾 (𝑢 ′) < 𝛾 (𝑢) since 𝑢 ′
𝑖
𝜋Σ (𝑟 )𝑢𝑖+1 · · ·𝑢 𝑗−1𝜋Σ (𝑠)𝑢 ′𝑗 is

Britton-reduced and 𝑢 ′
𝑖
and 𝑢 ′

𝑗
both contain 𝑡±1

. Moreover, 𝜏 (𝑢 ′) =
𝜏 (𝑢). Hence, we can apply the induction hypothesis to the tuple 𝑢 ′.
It must have a 𝐺-reducible refinement of length at most

2(𝛾 (𝑢) − 1) + 𝜏 (𝑢) +𝑚 + 2 = 2𝛾 (𝑢) + 𝜏 (𝑢) +𝑚.

In this refinement 𝜋Σ (𝑟 ), 𝜋Σ (𝑠) ∈ Σ∗ will not be factorized into

more than one factor. We therefore can take the refinement of 𝑢 ′

and replace 𝜋Σ (𝑟 ) and 𝜋Σ (𝑠) by 𝑟 and 𝑠 , respectively. This leads

to a 𝐺-reducible of our original tuple 𝑢 having length at most

2𝛾 (𝑢) + 𝜏 (𝑢) +𝑚.

Case 2. 𝑢 ′
𝑖
= 𝜀 and 𝑢 ′

𝑗
begins with 𝑡±1

. Let

𝑢 ′ = (𝑢1, . . . , 𝑢𝑖−1, 𝜋Σ (𝑢𝑖 ), 𝑢𝑖+1, . . . , 𝑢 𝑗−1, 𝜋Σ (𝑠), 𝑢 ′𝑗 , 𝑢 𝑗+1, . . . , 𝑢𝑚) .

We have 𝛾 (𝑢 ′) ≤ 𝛾 (𝑢) and 𝜏 (𝑢 ′) < 𝜏 (𝑢). We can therefore apply

the induction hypothesis to the tuple 𝑢 ′ and obtain a𝐺-reducible

refinement of length at most 2𝛾 (𝑢)+𝜏 (𝑢)−1+𝑚+1 = 2𝛾 (𝑢)+𝜏 (𝑢)+𝑚.

Replacing 𝜋Σ (𝑢𝑖 ) by 𝑢𝑖 and 𝜋Σ (𝑠) by 𝑠 in this refinement yields a

𝐺-reducible refinement of 𝑢.

The remaining cases where (i) 𝑢 ′
𝑗
= 𝜀 and 𝑢 ′

𝑖
ends with 𝑡±1

or (ii)

𝑢 ′
𝑖
= 𝑢 ′

𝑗
= 𝜀 are analogous to case 2. □

Now we are able to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is based on ideas from [10].

Consider a knapsack expression

𝑒 (𝑥2, 𝑥4, . . . , 𝑥𝑚) = 𝑢1𝑢
𝑥2

2
𝑢3𝑢

𝑥4

4
· · ·𝑢𝑚−1𝑢

𝑥𝑚
𝑚 𝑢𝑚+1

with𝑚 even (later it will convenient to have only variables with

an even index). We can assume that all 𝑢𝑖 are Britton reduced.

Moreover, by Lemma 5.1, we can assume that every 𝑢𝑖 with 𝑖 even

is well-behaved and non-empty (otherwise we can remove 𝑢
𝑥𝑖
𝑖
).

In the following we describe an algorithm that computes a semi-

linear representation for the set of all 𝐻 -solutions of 𝑒 = 1. The al-

gorithm transforms logical statements into equivalent logical state-

ments (we do not have to define the precise logical language; the

meaning of the statements should be always clear). Every statement

contains the free variables 𝑥2, 𝑥4, . . . , 𝑥𝑚 from our knapsack expres-

sion and equivalence of two statements means that for all values in

N that 𝑥2, 𝑥4, . . . , 𝑥𝑚 can take, the two statements yield the same

truth value. We start with the statement 𝑒 (𝑥2, 𝑥4, . . . , 𝑥𝑚) =𝐻 1

and end with a Presburger formula. In each step we transform the

current statement Φ into an equivalent disjunction

∨𝑛
𝑖=1

Φ𝑖 . In the

next step, we will then concentrate on a single Φ𝑖 .
Let 𝑁Σ ⊆ [1,𝑚 + 1] be the set of indices such that 𝑢𝑖 ∈ Σ∗ and

let 𝑁𝑡 = [1,𝑚 + 1] \ 𝑁Σ be the set of indices such that 𝜋𝑡 (𝑢𝑖 ) ≠ 𝜀.

Moreover, let us define𝑤𝑖 = 𝑢𝑖 for 𝑖 odd and𝑤𝑖 = 𝑢
𝑥𝑖
𝑖

for 𝑖 even.

By Lemma 4.1, 𝑒 =𝐻 1 is equivalent to 𝑒 ∈𝐻 𝐺 ∧ 𝜋Σ (𝑒) =𝐺 1.

Since 𝐺 is knapsack semilinear, the set of all solutions of 𝜋Σ (𝑒) =𝐺
1 is semilinear. It therefore suffices to show that the set of all

(𝑥2, 𝑥4, . . . , 𝑥𝑚) ∈ N𝑚/2
with 𝑒 (𝑥2, 𝑥4 . . . , 𝑥𝑚) ∈𝐻 𝐺 is semilin-

ear. Here, we will use the assumption that𝐺 is knapsack semilinear

relative to 𝐴.

Step 1: Applying Lemma 5.5. We construct a disjunction Ψ from

the knapsack expression 𝑒 using Lemma 5.5. More precisely, Ψ is

obtained by taking the disjunction over the following choices:

(i) symbolic factorizations𝑤𝑖 = 𝑦𝑖,1 · · ·𝑦𝑖,𝑘𝑖 in (Σ ∪ {𝑡, 𝑡−1})∗ for
all 𝑖 ∈ [1,𝑚 + 1]. Here the 𝑦𝑖, 𝑗 are existentially quantified

variables that take values in BR(𝐻 ). Later, these variables will
be eliminated. The 𝑘𝑖 must satisfy 𝑘𝑖 ≥ 1 for all 𝑖 , 𝑘𝑖 = 1 for

all 𝑖 ∈ 𝑁Σ, and
∑

1≤𝑖≤𝑚+1
𝑘𝑖 ≤ 4(𝑚 + 1).

(ii) a 𝐺-reduction (according to Definition 5.4) of the tuple

(𝑦1,1 · · ·𝑦1,𝑘1
, . . . , 𝑦𝑚+1,1 · · ·𝑦𝑚+1,𝑘𝑚+1

).
For every specific choice in (i) and (ii) we write down the conjunc-

tion of the following formulas:
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• the equation𝑤𝑖 = 𝑦𝑖,1 · · ·𝑦𝑖,𝑘𝑖 from (i) (every variable 𝑦𝑖, 𝑗 is

existentially quantified) and

• all 𝐺-constraints that result from 𝐺-reduction steps in the

𝐺-reduction from (ii) (this will made precise in Step 2 below).

The formula Ψ is the disjunction of the above existentially quanti-

fied conjunctions, taken over all possible choices in (i) and (ii). This

formula is equivalent to the 𝐺-constraint 𝑒 ∈𝐻 𝐺 .

Step 2: Eliminating the equations𝑤𝑖 = 𝑦𝑖,1 · · ·𝑦𝑖,𝑘𝑖 . For an odd 𝑖 (i.e.,

𝑤𝑖 = 𝑢𝑖 ) we can eliminate this equation by taking a disjunction

over all concrete factorizations 𝑢𝑖 = 𝑢𝑖,1 · · ·𝑢𝑖,𝑘𝑖 and then replace

the equation𝑤𝑖 = 𝑦𝑖,1 · · ·𝑦𝑖,𝑘𝑖 by the conjunction of all equations

𝑦𝑖, 𝑗 = 𝑢𝑖, 𝑗 for 1 ≤ 𝑗 ≤ 𝑘𝑖 . For an even 𝑖 (i.e., 𝑤𝑖 = 𝑢
𝑥𝑖
𝑖
) we can

eliminate the equation 𝑤𝑖 = 𝑦𝑖,1 · · ·𝑦𝑖,𝑘𝑖 by taking a disjunction

over all symbolic factorizations of 𝑢
𝑥𝑖
𝑖

into 𝑘𝑖 factors. A specific

factorization leads to a formula

𝑘𝑖∧
𝑗=1

𝑦𝑖, 𝑗 = 𝑢 ′′𝑖, 𝑗𝑢
𝑥𝑖,𝑗
𝑖

𝑢 ′𝑖, 𝑗+1
∧ 𝑥𝑖 = 𝑐𝑖 +

𝑘𝑖∑︁
𝑗=1

𝑥𝑖, 𝑗 . (8)

Here, every 𝑢 ′
𝑖, 𝑗

(2 ≤ 𝑗 ≤ 𝑘𝑖 ) is a proper prefix of 𝑢𝑖 and every 𝑢 ′′
𝑖, 𝑗

(2 ≤ 𝑗 ≤ 𝑘𝑖 ) is a proper suffix of 𝑢𝑖 such that either 𝑢𝑖 = 𝑢 ′
𝑖, 𝑗
𝑢 ′′
𝑖, 𝑗

or 𝑢 ′
𝑖, 𝑗

= 𝑢 ′′
𝑖, 𝑗

= 𝜀 for all 2 ≤ 𝑗 ≤ 𝑘𝑖 . We set 𝑢 ′
𝑖,𝑘𝑖+1

= 𝑢 ′′
𝑖,1

= 𝜀 in

the above formula. Moreover, 𝑐𝑖 is the number of 2 ≤ 𝑗 ≤ 𝑘𝑖 for

which 𝑢 ′
𝑖, 𝑗

≠ 𝜀 ≠ 𝑢 ′′
𝑖, 𝑗

holds. The disjunction has to be taken over all

choices for the𝑢 ′
𝑖, 𝑗

and𝑢 ′′
𝑖, 𝑗
. The 𝑥𝑖, 𝑗 are new existentially quantified

exponent variables.

We also take for every 𝑥𝑖, 𝑗 a disjunction over the two choices

𝑥𝑖, 𝑗 = 0 and 𝑥𝑖, 𝑗 > 0. If 𝑥𝑖, 𝑗 = 0, then we replace 𝑥𝑖, 𝑗 in (8) by 0.

This yields the equation 𝑦𝑖, 𝑗 = 𝑢 ′′
𝑖, 𝑗
𝑢 ′
𝑖, 𝑗+1

. If 𝑥𝑖, 𝑗 > 0, then we add

this constraint to (8). After this step, it is determined whether a 𝑦𝑖, 𝑗

contains 𝑡 or 𝑡−1
(for 𝑖 even as well as for 𝑖 odd). Those 𝑦𝑖, 𝑗 must

be matched by 𝐺-reduction steps in the 𝐺-reduction from Step 1.

In fact, the disjunction in Step 1 is taken over all such matchings.

Step 3: Eliminating 𝐺-constraints. Assume that 𝑦𝑖, 𝑗 and 𝑦𝑘,ℓ are

matched in the 𝐺-reduction from Step 1. W.l.o.g. assume that 𝑖 < 𝑘

or 𝑖 = 𝑘 and 𝑗 < ℓ , i.e., (𝑖, 𝑗) is lexicographically before (𝑘, ℓ). Then
our formula contains the 𝐺-constraint

𝑦𝑖, 𝑗

( ∏
(𝑖, 𝑗) ≺(𝑝,𝑞) ≺(𝑘,ℓ)

𝜋Σ (𝑦𝑝,𝑞)
)
𝑦𝑘,ℓ ∈𝐻 𝐺,

where ≺ is the strict lexicographic order on pairs of natural num-

bers. In this constraint, we can replace every 𝑦𝑎,𝑏 with 𝑎 even by

𝑢 ′′
𝑖, 𝑗
𝑢
𝑥𝑖,𝑗
𝑖

𝑢 ′
𝑖, 𝑗+1

(or 𝑢 ′′
𝑎,𝑏

𝑢 ′
𝑎,𝑏+1

in case 𝑥𝑖, 𝑗 = 0), whereas every 𝑦𝑎,𝑏

with 𝑎 odd can be replaced by the concrete word 𝑢𝑎,𝑏 . This leads

either to a𝐺-constraint of the form (7) (if 𝑦𝑖, 𝑗 and 𝑦𝑘,ℓ both contain

an exponent variable) or to a simpler 𝐺-constraint, where 𝑦𝑖, 𝑗 or

𝑦𝑘,ℓ is a concrete word. In the former case the set of solutions of the

𝐺-constraint is semilinear by Lemma 5.2. The latter case is covered

by Remark 5.3. In this way we finally obtain a Presburger formula

equivalent to 𝑒 (𝑥2, 𝑥4 . . . , 𝑥𝑚) ∈𝐻 𝐺 . This concludes the proof. □

For a subset 𝑆 ⊆ 𝐺 of the group 𝐺 one defines the centralizer of
𝑆 as the subgroup 𝐶 (𝑆) = {ℎ ∈ 𝐺 | 𝑔ℎ = ℎ𝑔 for all 𝑔 ∈ 𝑆} ≤ 𝐺 . The

HNN-extension 𝐻 = ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎 (𝑎 ∈ 𝐶 (𝑆))⟩ is an extension of
the centralizer 𝐶 (𝑆). Extensions of centralizers were first studied in

[29] in the context of exponential groups.

Theorem 5.6. If 𝐺 is knapsack semilinear and 𝐻 is an extension
of a centralizer𝐶 (𝑆) with 𝑆 finite, then also 𝐻 is knapsack semilinear.

Proof. We show that 𝐺 is knapsack semilinear relative to 𝐶 (𝑆).
Let 𝑒 = 𝑒 (𝑥1, . . . , 𝑥𝑛) be a knapsack expression. Then 𝑒 ∈𝐺 𝐶 (𝑆) is
equivalent to

∧
𝑎∈𝑆 𝑒𝑎 =𝐺 𝑎𝑒 . Note that 𝑒𝑎 =𝐺 𝑎𝑒 is equivalent to

𝑒𝑎𝑒−1𝑎−1 =𝐺 1 and 𝑒𝑎𝑒−1𝑎−1
is an exponent expression. Since 𝐺

is knapsack semilinear and semilinear sets are closed under finite

intersections, the set of solutions of

∧
𝑎∈𝑆 𝑒𝑎 = 𝑎𝑒 is semilinear. □

Remark 5.7. Theorem 1.2 can be generalized to multiple HNN-

extensions 𝐻 = ⟨𝐺, 𝑡1, . . . , 𝑡𝑛 | 𝑡−1

𝑖
𝑎𝑡𝑖 = 𝑎 (𝑎 ∈ 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛)⟩.

If 𝐺 is knapsack semilinear relative to {1, 𝐴1, . . . , 𝐴𝑛} then 𝐻 is

knapsack semilinear.

6 APPLICATION TO HYPERBOLIC GROUPS
In this section we show that hyperbolic groups are knapsack semi-

linear relative to quasiconvex subgroups. We start with the defini-

tion of hyperbolic groups.

6.1 Cayley-graphs and hyperbolic groups
Let𝐺 be a f.g. group with the finite symmetric generating set Σ and

let ℎ : Σ∗ → 𝐺 be the evaluation morphism. The Cayley-graph of

𝐺 with respect to Σ is the undirected graph Γ = Γ(𝐺) with node

set 𝐺 and all edges (𝑔,𝑔𝑎) for 𝑔 ∈ 𝐺 and 𝑎 ∈ Σ. We view Γ as a

geodesic metric space, where every edge (𝑔,𝑔𝑎) is identified with a

unit-length interval. It is convenient to label the directed edge from

𝑔 to 𝑔𝑎 with the generator 𝑎. The distance between two points 𝑝, 𝑞

is denoted with 𝑑Γ (𝑝, 𝑞).
Paths can be defined in a very general way for metric spaces, but

we only need paths that are induced by words over Σ. Given a word

𝑤 = 𝑎1𝑎2 · · ·𝑎𝑛 (with 𝑎𝑖 ∈ Σ), one obtains a unique path 𝑃 [𝑤] :

[0, 𝑛] → Γ, which is a continuous mapping from the real interval

[0, 𝑛] to Γ. It maps the subinterval [𝑖, 𝑖 + 1] ⊆ [0, 𝑛] isometrically

onto the edge (ℎ(𝑎1 · · ·𝑎𝑖 ), ℎ(𝑎1 · · ·𝑎𝑖+1)) of Γ. The path 𝑃 [𝑤] starts
in 1 and ends in ℎ(𝑤) (the group element represented by 𝑤 ). We

also say that 𝑃 [𝑤] is the unique path that starts in 1 and is labelled

with the word𝑤 . More generally, for 𝑔 ∈ 𝐺 we denote with 𝑔 ·𝑃 [𝑤]
the path that starts in 𝑔 and is labelled with 𝑤 . When writing

𝑢 · 𝑃 [𝑤] for a word 𝑢 ∈ Σ∗, we mean the path ℎ(𝑢) · 𝑃 [𝑤]. A path

𝑃 : [0, 𝑛] → Γ of the above form is geodesic if 𝑑Γ (𝑃 (0), 𝑃 (𝑛)) = 𝑛

and it is a (𝜆, 𝜖)-quasigeodesic if for all points 𝑝 = 𝑃 (𝑎) and 𝑞 = 𝑃 (𝑏)
we have |𝑎 − 𝑏 | ≤ 𝜆 · 𝑑Γ (𝑝, 𝑞) + 𝜀.

A word𝑤 ∈ Σ∗ is geodesic if the path 𝑃 [𝑤] is geodesic, which
means that there is no shorter word representing the same group ele-

ment from𝐺 . Similarly, we define the notion of (𝜆, 𝜖)-quasigeodesic
words. A set of words 𝐿 ⊆ Σ∗ is called ((𝜆, 𝜖)-quasi)geodesic, if ev-
ery𝑤 ∈ 𝐿 is ((𝜆, 𝜖)-quasi)geodesic.

A geodesic triangle in Γ is a triangle whose three sides are geo-

desic paths. A geodesic triangle is 𝛿-slim for 𝛿 ≥ 0, if every point

on each side of the triangle has distance at most 𝛿 to a point that

belongs to one of the two other sides. The group 𝐺 is called 𝛿-
hyperbolic, if every geodesic triangle is 𝛿-slim. Finally, 𝐺 is hy-

perbolic, if it is 𝛿-hyperbolic for some 𝛿 ≥ 0. This property is

independent of the chosen generating set Σ. Finitely generated free

groups are for instance 0-hyperbolic. The word problem for every

hyperbolic group can be decided in real time [18].
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6.2 Asynchronous biautomatic structures
Let 𝐺 be a f.g. group with the finite symmetric generating set Σ
and let ℎ : Σ∗ → 𝐺 be the evaluation morphism. An asynchronous
biautomatic structure for 𝐺 consists of a regular language 𝐿 ⊆ Σ∗

such that 𝐺 = ℎ(𝐿) and for all 𝑎, 𝑏 ∈ Σ ∪ {𝜀} with |𝑎𝑏 | ≤ 1 the

relation {(𝑢, 𝑣) ∈ 𝐿×𝐿 | 𝑎𝑢𝑏 =𝐺 𝑣} is rational; see also [6, 30]. If we
only require rationality of {(𝑢, 𝑣) ∈ 𝐿×𝐿 | 𝑢𝑎 =𝐺 𝑣} for 𝑎 ∈ Σ∪{𝜀},
then 𝐿 is an asynchronous automatic structure for 𝐺 . A f.g. group

𝐺 is called asynchronously (bi)automatic if it has an asynchronous

(bi)automatic structure. We need the following lemma.

Lemma 6.1. Let 𝐿 be an asynchronous biautomatic structure for
𝐺 , let 𝐿1 and 𝐿2 be regular subsets of 𝐿 and let 𝑣1, 𝑣2 ∈ Σ∗. Then the
relation {(𝑢1, 𝑢2) ∈ 𝐿1 × 𝐿2 | 𝑣1𝑢1 =𝐺 𝑢2𝑣2} is rational. Moreover, a
finite state transducer for this relation can be effectively computed
from the words 𝑣1, 𝑣2 and finite automata for 𝐿1 and 𝐿2.

Proof. It suffices to show that the relation

𝑅 := {(𝑢1, 𝑢2) ∈ 𝐿 × 𝐿 | 𝑣1𝑢1 =𝐺 𝑢2𝑣2}

is rational. The corresponding finite state transducer can in addition

simulate the automaton for 𝐿1 (resp., 𝐿2) on the first (resp., second)

tape. Rationality of the relation 𝑅 can be shown by induction on

|𝑣1 | + |𝑣2 |. The case 𝑣1 = 𝑣2 = 𝜀 is clear. Assume w.l.o.g. that

𝑣1 ≠ 𝜀 and let 𝑣1 = 𝑣 ′
1
𝑎 with 𝑎 ∈ Σ. By induction, the relation

𝑅1 = {(𝑢 ′
1
, 𝑢2) ∈ 𝐿 × 𝐿 | 𝑣 ′

1
𝑢 ′

1
=𝐺 𝑢2𝑣2} is rational. Moreover, the

relation 𝑅2 = {(𝑢1, 𝑢
′
1
) ∈ 𝐿 × 𝐿 | 𝑎𝑢1 =𝐺 𝑢 ′

1
} is rational as well.

Finally, we have 𝑅 = 𝑅2 ◦𝑅1, where ◦ is relational composition. The

lemma follows since the class of rational relations is closed under

relational composition [35]. □

We also need the following result from [19]:

Lemma 6.2. Let 𝐺 be a hyperbolic group and let Σ be a finite
symmetric generating set for 𝐺 . Let 𝜆 and 𝜖 be fixed constants. Then
the set of all (𝜆, 𝜖)-quasigeodesic words over the alphabet Σ is an
asynchronous biautomatic structure for 𝐺 .

In [19] it is only stated that the set of all (𝜆, 𝜖)-quasigeodesic
words is an asynchronous automatic structure for 𝐺 . But since

for every (𝜆, 𝜖)-quasigeodesic word 𝑤 ∈ Σ∗ also 𝑤−1
is (𝜆, 𝜖)-

quasigeodesic, it follows easily that the set of all (𝜆, 𝜖)-quasigeodesic
words is an asynchronous biautomatic structure for 𝐺 . Lemma 6.1

yields the following lemma.

Lemma 6.3. Assume that 𝜆 and 𝜖 are fixed constants, 𝐿1, 𝐿2 ⊆ Σ∗

are (𝜆, 𝜖)-quasigeodesic regular languages, and 𝑣1, 𝑣2 ∈ Σ∗. Then the
relation {(𝑢1, 𝑢2) ∈ 𝐿1 × 𝐿2 | 𝑣1𝑢1 =𝐺 𝑢2𝑣2} is rational. Moreover, a
finite state transducer for this relation can be effectively computed
from the words 𝑣1, 𝑣2 and finite automata for 𝐿1 and 𝐿2.

6.3 Parikh images in hyperbolic groups
Let us fix a hyperbolic group𝐺 with the finite symmetric generating

set Σ for the rest of the section. We fix an arbitrary enumeration

𝑎1, . . . , 𝑎𝑘 of the alphabet Σ in order to make Parikh images well-

defined. Recall that the semilinear sets are exactly the Parikh images

of regular languages; see Theorem 2.1. Together with Lemma 6.3

we obtain the next result.

Lemma 6.4. Assume that 𝜆, 𝜖 are fixed constants, 𝐿1, 𝐿2 ⊆ Σ∗ are
(𝜆, 𝜖)-quasigeodesic regular languages, and 𝑣1, 𝑣2 ∈ Σ∗. Then the set

{(𝑃 (𝑢1), 𝑃 (𝑢2)) ∈ N2𝑘 | 𝑢1 ∈ 𝐿1, 𝑢2 ∈ 𝐿2, 𝑣1𝑢1 =𝐺 𝑢2𝑣2} (9)

is semilinear and a semilinear representation can be effectively com-
puted from the words 𝑣1, 𝑣2 and finite automata for 𝐿1 and 𝐿2.

Proof. Let Σ′ = {𝑎′ | 𝑎 ∈ Σ} be a disjoint copy of the alphabet

Σ. By Lemma 6.3 there is a finite state transducer T for the relation

{(𝑢1, 𝑢2) ∈ 𝐿1 × 𝐿2 | 𝑣1𝑢1 =𝐺 𝑢2𝑣2}. From T we obtain a finite

automatonA over the alphabet Σ∪Σ′ by replacing every transition
(𝑝, 𝑎, 𝜀, 𝑞) by (𝑝, 𝑎, 𝑞) and every transition (𝑝, 𝜀, 𝑎, 𝑞) by (𝑝, 𝑎′, 𝑞). For
the alphabet Σ ∪ Σ′ we take the enumeration 𝑎1, . . . , 𝑎𝑘 , 𝑎

′
1
, . . . , 𝑎′

𝑘
.

With this enumeration, the set (9) is the Parikh image of the lan-

guage 𝐿(A). Hence, the lemma follows from Theorem 2.1. □

6.4 The main result
We now come to the main technical result of this section.

Theorem 6.5. Let𝐺 be a hyperbolic group with the finite symmet-
ric generating set Σ = {𝑎1, . . . , 𝑎𝑘 }. Fix constants 𝜖, 𝜆. For 1 ≤ 𝑖 ≤ 𝑛

let 𝐿𝑖 ⊆ Σ∗ be a regular (𝜆, 𝜖)-quasigeodesic language. Then, the set

{(𝑃 (𝑤1), . . . , 𝑃 (𝑤𝑛)) ∈ N𝑛𝑘 | 𝑤𝑖 ∈ 𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑛),𝑤1 · · ·𝑤𝑛 =𝐺 1}
is semilinear and a semilinear representation of this set can be com-
puted from finite automata for 𝐿1, . . . , 𝐿𝑛 .

Proof. Let 𝐺 be 𝛿-hyperbolic. For 1 ≤ 𝑖 ≤ 𝑛 let 𝐿𝑖 ⊆ Σ∗ be a
regular (𝜆, 𝜖)-quasigeodesic language. We want to show that the

subset of N𝑛𝑘 is semilinear. For this, we prove a slightly more

general statement: For words 𝑣1, . . . , 𝑣𝑛 ∈ Σ∗ we consider the set

{(𝑃 (𝑤1), . . . , 𝑃 (𝑤𝑛)) ∈ N𝑛𝑘 | 𝑤𝑖 ∈ 𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑛),
𝑤1𝑣1 · · ·𝑤𝑛𝑣𝑛 =𝐺 1}.

By induction over 𝑛 we show that this set is semilinear. For the

case 𝑛 = 2 we can directly use Lemma 6.4. This also covers the case

𝑛 = 1 since we can take 𝐿2 = {1}.
Now assume that 𝑛 ≥ 3. We can assume that the words 𝑣𝑖 are

geodesic. We can also assume that there is a single finite automaton

A with state set𝑄 such that for every 𝐿𝑖 there are subsets 𝑆𝑖 ,𝑇𝑖 ⊆ 𝑄

such that 𝐿𝑖 is the set of all words that label a path from a state in 𝑆𝑖
to a state in𝑇𝑖 . Let us denote for 𝑝, 𝑞 ∈ 𝑄 with 𝐿𝑝,𝑞 the set of all finite

words that label a path from 𝑝 to 𝑞 in the automaton A. We can

assume that all these languages are (𝜆, 𝜖)-quasigeodesic. Note that
𝐿𝑖 =

⋃
𝑝∈𝑆𝑖 ,𝑞∈𝑇𝑖 𝐿𝑝,𝑞 . Since the semilinear sets are effectively closed

under union, it suffices to show for states 𝑝𝑖 , 𝑞𝑖 ∈ 𝑄 (1 ≤ 𝑖 ≤ 𝑛)

that the following set is semilinear:

{(𝑃 (𝑤1), . . . , 𝑃 (𝑤𝑛)) ∈ N𝑛𝑘 | 𝑤𝑖 ∈ 𝐿𝑝𝑖 ,𝑞𝑖 (1 ≤ 𝑖 ≤ 𝑛),
𝑤1𝑣1 · · ·𝑤𝑛𝑣𝑛 =𝐺 1}

We denote this set with 𝑃 (𝑝1, 𝑞1, 𝑣1, . . . , 𝑝𝑛, 𝑞𝑛, 𝑣𝑛) and construct a

Presburger formula with free variables 𝑥𝑖, 𝑗 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘)

for it. The variables 𝑥𝑖, 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 encode the Parikh image of

the words from 𝐿𝑝𝑖 ,𝑞𝑖 . Let us write 𝑥𝑖 = (𝑥𝑖, 𝑗 )1≤ 𝑗≤𝑘 .
Consider (𝑤1, . . . ,𝑤𝑛) ∈ ∏𝑛

𝑖=1
𝐿𝑝𝑖 ,𝑞𝑖 with 𝑤1𝑣1 · · ·𝑤𝑛𝑣𝑛 =𝐺 1

and the corresponding 2𝑛-gon that is defined by the (𝜆, 𝜖)-quasi-
geodesic paths 𝑃𝑖 = (𝑤1𝑣1 · · ·𝑤𝑖−1𝑣𝑖−1) · 𝑃 [𝑤𝑖 ] and the geodesic

paths 𝑄𝑖 = (𝑤1𝑣1 · · ·𝑤𝑖 ) · 𝑃 [𝑣𝑖 ], see Figure 1 for the case 𝑛 = 3.
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𝐿𝑝2,𝑞2𝑣1

𝐿𝑝1,𝑞1

𝑣3

𝐿𝑝3,𝑞3

𝑣2

Figure 1: The 2𝑛-gon for 𝑛 = 3 from the proof of Theorem 6.5

Since all paths 𝑃𝑖 and 𝑄𝑖 are (𝜆, 𝜖)-quasigeodesic, we can apply

[28, Lemma 6.4]: every side of the 2𝑛-gon is contained in the 𝜅-

neighborhoods of the other sides, where 𝜅 = 𝜉 + 𝜉 log(2𝑛) for a
constant 𝜉 that only depends on the constants 𝛿, 𝜆, 𝜀. This allows

to cut the 2𝑛-gon into several 2𝑚-gons (for values𝑚 < 𝑛) along

paths of length at most 𝜅 . To each of these smaller 2𝑚-gons we can

then apply the induction hypothesis. The end points of the paths,

along which we cut the 2𝑛-gon, have to be carefully chose in order

to ensure that the resulting 2𝑚-gons satisfy𝑚 > 𝑛. This leads to

several cases. A systematic consideration of all cases can be found in

[9]; it follows the proof of the knapsack semilinearity of hyperbolic

groups from [23]. Here, we only want to consider one typical case:

Assume there is a path 𝑃 of length at most 𝜅 connecting a point 𝑎

on 𝑃2 (1 ≤ 𝑖 ≤ 𝑛) with a point on 𝑄𝑖 with 3 ≤ 𝑖 ≤ 𝑛. Assume that

the path 𝑃 is labelled with the word𝑤 ∈ Σ∗. The situation is shown

in Figure 2 for 𝑛 = 𝑖 = 3. Let𝑇 be the set of all tuples (𝑟, 𝑣𝑖,1, 𝑣𝑖,2,𝑤)
such that 𝑟 ∈ 𝑄 , 𝑣𝑖 = 𝑣𝑖,1𝑣𝑖,2, and 𝑤 ∈ Σ∗ is of length at most 𝜅.

By induction, the following two sets are semilinear for every tuple

𝑡 = (𝑟, 𝑣𝑖,1, 𝑣𝑖,2,𝑤) ∈ 𝑇 :

𝑆𝑡,1 = 𝑃 (𝑝1, 𝑞1, 𝑣1, 𝑝2, 𝑟 ,𝑤𝑣𝑖,2, 𝑝𝑖+1, 𝑞𝑖+1, 𝑣𝑖+1, . . . , 𝑝𝑛, 𝑞𝑛, 𝑣𝑛)
𝑆𝑡,2 = 𝑃 (𝑟, 𝑞2, 𝑣2, 𝑝3, 𝑞3, 𝑣3, . . . , 𝑝𝑖 , 𝑞𝑖 , 𝑣𝑖,1𝑤

−1)
Intuitively, 𝑆𝑡,1 corresponds to the 2(𝑛 − 1)-gon (when 𝑤𝑣𝑖,2 is

viewed as a single side) on the left of the𝑤-labelled edge in Figure 2,

whereas 𝑆𝑡,2 corresponds to the 2(𝑛 − 1)-gon on the right of the

𝑤-labelled edge. We then define the formula

𝐴1 =
∨
𝑡 ∈𝑇

∃𝑦2, 𝑧2 : (𝑥1, 𝑦2, 𝑥𝑖+1, . . . , 𝑥𝑛) ∈ 𝑆𝑡,1 ∧
(𝑧2, 𝑥3, . . . , 𝑥𝑖 ) ∈ 𝑆𝑡,2 ∧ 𝑥2 = 𝑦2 + 𝑧2 .

Here 𝑦2 and 𝑧2 are 𝑘-tuples of new variables.

In [9], five more cases are considered, which lead to similar

formulas 𝐴2, . . . , 𝐴6. Finally, a tuple (𝑥1, . . . , 𝑥𝑛) ∈ N𝑛𝑘 belongs to

the set 𝑃 (𝑝1, 𝑞1, 𝑣1, . . . , 𝑝𝑛, 𝑞𝑛, 𝑣𝑛) iff
∨

1≤𝑖≤6
𝐴𝑖 holds. This yields

a Presburger formula for 𝑃 (𝑝1, 𝑞1, 𝑣1, . . . , 𝑝𝑛, 𝑞𝑛, 𝑣𝑛). □

Let us derive some corollaries from Theorem 6.5.

Theorem 6.6. Let 𝐺 be hyperbolic and let 𝑆 ⊆ Σ∗ be a regular
geodesic language. Then 𝐺 is knapsack semilinear relative to ℎ(𝑆),
where ℎ : Σ∗ → 𝐺 is the evaluation morphism.

Proof. Consider the knapsack expression

𝑒 = 𝑣0𝑢
𝑥1

1
𝑣1𝑢

𝑥1

1
· · · 𝑣𝑛−1𝑢

𝑥𝑛
𝑛 𝑣𝑛

𝐿𝑟,𝑞2
𝐿𝑝2,𝑟

𝑣1

𝐿𝑝1,𝑞1

𝑣3,2 𝑣3,1

𝐿𝑝3,𝑞3

𝑣2

𝑤

Figure 2: A typical case from the proof of Theorem 6.5

over the alphabet Σ. We want to find a semilinear representation for

the set of all 𝐺-solutions of 𝑒 = 1. In a first step, one modifies 𝑒 in

such a way that for every power 𝑢
𝑥𝑖
𝑖

that appears in 𝑒 the language

𝑢∗
𝑖
is (𝜆, 𝜖)-quasigeodesic for fixed constants 𝜆, 𝜖 that only depend

on the group𝐺 . This is done exactly in the same way as in the proof

of [23, Proposition 8.4]. Clearly, we can also assume that every 𝑢𝑖
is non-empty and every 𝑣𝑖 is geodesic. Moreover, since 𝑆 is regular

and geodesic, it is easy to see that also 𝑆−1
is regular and geodesic.

Let 𝑟 = 2(𝑛 + 1) and define the tuple of languages

(𝐿1, . . . , 𝐿𝑟 ) = ({𝑣0}, 𝑢∗1, {𝑣1}, . . . , 𝑢∗𝑛, {𝑣𝑛}, 𝑆−1) .

All the languages 𝐿𝑖 are regular and (𝜆, 𝜖)-quasigeodesic. By Theo-

rem 6.5, the set

{(𝑃 (𝑤1), . . . , 𝑃 (𝑤𝑟 )) ∈ N𝑟𝑘 | 𝑤𝑖 ∈ 𝐿𝑖 (1 ≤ 𝑖 ≤ 𝑟 ),𝑤1 · · ·𝑤𝑟 =𝐺 1}

is semilinear and a semilinear representation can be computed.

Applying a projection yields a semilinear representation of the set

{(𝑃 (𝑤1), . . . , 𝑃 (𝑤𝑛)) ∈ N𝑛𝑘 | 𝑤𝑖 ∈ 𝑢∗𝑖 for 1 ≤ 𝑖 ≤ 𝑛,

∃𝑤 ∈ 𝑆 : 𝑣0𝑤1𝑣1 · · ·𝑤𝑛𝑣𝑛 =𝐺 𝑤}.

Choose for every 𝑢𝑖 a symbol 𝑎 𝑗𝑖 ∈ Σ such that ℓ𝑖 := |𝑢𝑖 |𝑎 𝑗𝑖
> 0

(recall that 𝑢𝑖 ≠ 𝜀). Then we project every 𝑃 (𝑤𝑖 ) in the above set

to the 𝑗𝑖 -th coordinate. The resulting projection is

{(ℓ1 · 𝑥1, . . . , ℓ𝑛 · 𝑥𝑛) ∈ N𝑛 | ∃𝑤 ∈ 𝑆 : 𝑣0𝑢
𝑥1

1
· · · 𝑣𝑛−1𝑢

𝑥𝑛
𝑛 𝑣𝑛 =𝐺 𝑤}.

The semilinearity of this set easily implies the semilinearity of the

set {(𝑥1, . . . , 𝑥𝑛) ∈ N𝑛 | ∃𝑤 ∈ 𝑆 : 𝑣0𝑢
𝑥1

1
𝑣1 · · ·𝑢𝑥𝑛𝑛 𝑣𝑛 =𝐺 𝑤}. □

A subset 𝐴 ⊆ 𝐺 is called quasiconvex if there exists a constant
𝜅 ≥ 0 such that every point on a geodesic path from 1 to some

𝑔 ∈ 𝐴 has distance at most 𝜅 from 𝐴. The following result can be

found in [13] (ℎ denotes the evaluation morphism):

Lemma 6.7. A subset 𝐴 ⊆ 𝐺 is quasiconvex if and only if the
language of all geodesic words in ℎ−1 (𝐴) is regular.

Theorem 6.6 and Lemma 6.7 imply Theorem 1.3 from the intro-

duction. Finally, Theorems 1.2 and 1.3 yield the following result:

Corollary 6.8. If 𝐴 is a quasiconvex subgroup of the hyperbolic
group 𝐺 then ⟨𝐺, 𝑡 | 𝑡−1𝑎𝑡 = 𝑎 (𝑎 ∈ 𝐴)⟩ is knapsack semilinear.
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