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Abstract. We consider exponent equations in finitely generated groups. These are
equations, where the variables appear as exponents of group elements and take values from
the natural numbers. Solvability of such (systems of) equations has been intensively studied
for various classes of groups in recent years. In many cases, it turns out that the set of all
solutions on an exponent equation is a semilinear set that can be constructed effectively.
Such groups are called knapsack semilinear. Examples of knapsack semilinear groups are
hyperbolic groups, virtually special groups, co-context-free groups and free solvable groups.
Moreover, knapsack semilinearity is preserved by many group theoretic constructions, e.g.,
finite extensions, graph products, wreath products, amalgamated free products with finite
amalgamated subgroups, and HNN-extensions with finite associated subgroups. On the
other hand, arbitrary HNN-extensions do not preserve knapsack semilinearity. In this
paper, we consider the knapsack semilinearity of HNN-extensions, where the stable letter t
acts trivially by conjugation on the associated subgroup A of the base group G. We show
that under some additional technical conditions, knapsack semilinearity transfers from
base group G to the HNN-extension H. These additional technical conditions are satisfied
in many cases, e.g., when A is a centralizer in G or A is a quasiconvex subgroup of the
hyperbolic group G.

1. Introduction

For an infinite finitely generated group G we consider equations of the form

h0g
x1
0 h1g

x2
1 · · ·hng

xn
n hn+1 = 1 (1.1)

where the gi and hi are given elements of G and the xi are variables that range over N (in this
paper, the natural numbers always include 0). In general, it is allowed that xi = xj for i 6= j.
Equations of this form are known as exponent equations and have received a lot of attention
in recent years, see e.g. [2, 4, 6, 7, 8, 11, 13, 14, 15, 25, 26, 27, 28, 30, 31]. Several variants
and problems have been studied in this context. The most general decision problem is to
decide whether a given system of exponential equations has a solution where natural numbers
are assigned to the variables xi. This problem is known to be decidable in hyperbolic groups
[26], free solvable groups [11], co-context-free groups (groups where the complement of the
word problem is context-free), and virtually special groups (finite extensions of subgroups of
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right-angled Artin groups).1 Many groups are known to be virtually special, e.g., Coxeter
groups, fully residually free groups, one-relator groups with torsion, and fundamental groups
of hyperbolic 3-manifolds.

A simpler problem is the so-called knapsack problem: In this problem the input is a
single equation of the form (1.1), where all xi are pairwise different variables, and it is asked
whether a solution exists. There are groups with a decidable knapsack problem but an
undecidable solvability problem for systems of exponent equations. Examples are the discrete
Heisenberg group [25] and the Baumslag-Solitar group BS(1, 2) [5, Theorem E.1]. Let us
also remark that the variants of these problems, where the variables xi range over Z are not
harder, since one can replace a power gxii with xi ranging over Z by gxii (g−1

i )yi with xi, yi
ranging over N.

Another problem is to describe the set of all solutions of an equation (1.1). It turned
out that for many groups this set is effectively semilinear for every exponent equation;2 such
groups are called knapsack semilinear. First of all, for a knapsack semilinear group one
can decide whether a given system of exponent equations has a solution; see [15, Lemma
3.2]. Hyperbolic groups, virtually special groups, co-context-free groups, and free solvable
groups are all knapsack semilinear; see [26, Theorem 8.1] for hyperbolic groups, [15] for free
solvable groups, [25] for co-context-free groups,3 and [13] for virtually special groups. In
fact, it is shown in [13] that the class of knapsack semilinear groups is closed under finite
extensions, graph products, amalgamated free products with finite amalgamated subgroups,
and HNN-extensions with finite associated subgroups. In addition, it is shown in [15] that
the class of knapsack semilinear groups is closed under wreath products, which implies that
free solvable groups are knapsack semilinear (by Magnus embedding theorem a free solvable
group can be embedded in an iterated wreath product of free abelian groups and the latter
are knapsack semilinear).

In this paper we want to further elaborate HNN-extensions. HNN-extensions are a
fundamental operation in all areas of geometric and combinatorial group theory. A theorem
of Seifert and van Kampen links HNN-extensions to algebraic topology. Moreover, HNN-
extensions are used in all modern proofs for the undecidability of the word problem in finitely
presented groups. For a base group G with two isomorphic subgroups A and B and an
isomorphism ϕ : A→ B, the corresponding HNN-extension is the group

H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉. (1.2)

Intuitively, it is obtained by adjoing to G a new generator t (the stable letter) in such a way
that conjugation of A by t realizes ϕ. The subgroups A and B are also called the associated
subgroups. Recall from the above discussion that if G is knapsack semilinear and A and B
are finite then also H is knapsack semilinear [13]. For arbitrary HNN-extensions, this is not
true. For instance, the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 is not knapsack
semilinear [28] but it is an HNN-extension of the knapsack semilinear group 〈a〉 ∼= Z. This
example shows that we have to drastically restrict HNN-extensions in order to get a transfer

1We will state in a moment more general results which allow to decide whether a system of exponential
equations has a solution in a co-context-free group or a virtually special group.

2A subset of Nn is semilinear if it is a finite union of sets of shifted subsemigroups of (Nn,+). Effectively
semilinear means that from a given exponent equation one can effectively compute the finitely many vectors
from a semilinear description of the solution set. More details on these definitions can be found in Section 2.1.

3Knapsack semilinearity of co-context-free groups is not explicitly shown in [25] but follows directly from
the decidability proof in [25] for the knapsack problem in a co-context-free group.
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result for knapsack semilinearity beyond the case of finite associated subgroups. In this paper
we study HNN-extensions of the form

H = 〈G, t | t−1at = a (a ∈ A)〉, (1.3)

where A ≤ H is a subgroup. In other words, we take in (1.2) for ϕ : A→ B the identity on A.
Intuitively: we add to the group G a free generator t together with commutation identities
at = ta for all a ∈ A. This operation interpolates between the free product G ∗ 〈t〉 ∼= G ∗ Z
and the direct product G× 〈t〉 ∼= G× Z.

Even HNN-extensions of the form (1.3) with f.g. A are too general for our purpose: if
the subgroup membership problem for A is undecidable then H has an undecidable word
problem. Hence, we also need some restriction on the subgroup A ≤ G. We say that
G is knapsack semilinear relative to the subgroup A if for every expression of the form
h0g

x1
0 h1g

x2
1 · · ·hngxnn hn+1 (with gi, hi ∈ G) the set of all tuples (c1, . . . , cn) ∈ Nn such that

h0g
c1
0 h1g

c2
1 · · ·hngcnn hn+1 ∈ A is a semilinear set. Our main result states that if the group

G is (i) knapsack semilinear as well as (ii) knapsack semilinear relative to the subgroup
A, then the HNN-extension H in (1.3) is knapsack semilinear. In some situations we can
even avoid the explicit assumption that G is knapsack semilinear relative to the subgroup
A. HNN-extensions of the form (1.3), where A is the centralizer of a single element g ∈ G
are known as free rank one extensions of centralizers and were first studied in [32] in the
context of so-called exponential groups. It is easy to observe that if G is knapsack semilinear
and A ≤ G is the centralizer of a finite set of elements, then G is also knapsack semilinear
relative to A. In particular the operation of free rank one extension of centralizers preserves
knapsack semilinearity. A corollary of this result is that every fully residually free group
is knapsack semilinear. The class of fully residually free groups is exactly the class of all
groups that can be constructed from Z by the following operations: taking finitely generated
subgroups, free products and free rank one extensions of centralizers. Knapsack semilinearity
of fully residually free groups also follows from the fact that every fully residually free group
is virtually special [39].

In the second part of the paper, we study HNN-extensions of the form (1.3), where G is a
hyperbolic group. A group is hyperbolic if all geodesic triangles in the Cayley-graph are δ-slim
for a constant δ. The class of hyperbolic groups has several alternative characterizations
(e.g., it is the class of finitely generated groups with a linear Dehn function), which gives
hyperbolic groups a prominent role in geometric group theory. Moreover, in a certain
probabilistic sense, almost all finitely presented groups are hyperbolic [17, 34]. Also from
a computational viewpoint, hyperbolic groups have nice properties: it is known that the
word problem and the conjugacy problem can be solved in linear time [10, 21]. In [26] it
was shown that hyperbolic groups are knapsack semilinear. Here we extend this result by
showing that a hyperbolic group is knapsack semilinear relative to a quasiconvex subgroup.
Quasiconvex subgroups in hyperbolic groups are known to have nice properties. Many
algorithmic problems are decidable for quasiconvex subgroups, including the membership
problem [24], whereas Rips constructed finitely generated subgroups of hyperbolic groups
with an undecidable membership problem [36].

A short version of this paper was presented at the conference ISSAC 2022 [12].
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2. Preliminaries

In the following three subsections we introduce some definitions concerning semilinear sets,
finite automata, and groups.

2.1. Semilinear sets. Fix a dimension d ≥ 1. We extend the operations of vector addition
and multiplication of a vector by a matrix to sets of vectors in the obvious way. A linear
subset of Nd is a set of the form

L = L(b, P ) = b+ P · Nk,
where b ∈ Nd and P ∈ Nd×k. A subset S ⊆ Nd is semilinear, if it is a finite union of linear
sets. The class of semilinear sets is known to be effectively closed under boolean operations;
quantitative results on the descriptional complexity of boolean operations on semi-linear sets
can be found in [3]. If a semilinear set S is given as a union

⋃
1≤i≤k L(bi, Pi), we call the

tuple R = (b1, P1, . . . , bk, Pk) a semilinear representation of S.
In the context of knapsack semilinearity (which will be introduced in a moment), we will

consider semilinear subsets as sets of mappings f : {x1, . . . , xd} → N for a finite set of variables
U = {x1, . . . , xd}. Such a mapping f can be identified with the vector (f(x1), . . . , f(xd))

T.
This allows to use all vector operations (e.g. addition and scalar multiplication) on the set
NU of all mappings from U to N. In general, if ∗ is a binary operation on N (we only use
addition or multiplication for ∗) we denote with f ∗ g (for f, g ∈ NU ) the pointwise extension
of the operation ∗ to NU , i.e., (f ∗ g)(x) = f(x) ∗ g(x) for all x ∈ U . Moreover, for mappings
f ∈ NU , g ∈ NV with U ∩V = ∅ we define f ⊕ g ∈ NU∪V by (f ⊕ g)(x) = f(x) for x ∈ U and
(f ⊕ g)(y) = g(y) for y ∈ V . All operations on NU will be extended to subsets of NU in the
standard pointwise way. For L ⊆ NU and V ⊆ U we denote with L�V the set {f�V | f ∈ L}
obtained by restricting every function f ∈ L to the subset V of its domain. It is easy to see
that the operations ⊕ and �V preserve semilinearity in an effective way.

The semilinear sets are exactly those sets that are definable in first-order logic over the
structure (N,+) (the so-called Presburger definable sets). All the above mentioned closure
properties of semilinear sets follow from this characterization. A good survey on semilinear
results and Presburger arithmetic with references for the above mentioned results is [18].

2.2. Regular languages, rational relations, and Parikh images. More details on
finite automata can be found in the standard textbook [23]. Let Σ be a finite alphabet of
symbols. As usual, Σ∗ denotes the set of all finite words over the alphabet Σ. For a word
w = a1a2 · · · an with a1, . . . , an ∈ Σ we denote with |w| = n the length of w. We denote the
empty word (the unique word of length 0) with ε; in group theoretic contexts we also write 1
for the empty word. A factor of a word w ∈ Σ∗ is any word u such that w = suv for word
some words s, v.

A finite automaton over the alphabet Σ is a tuple A = (Q, I, δ, F ), where Q is a finite
set of states, I ⊆ Q is the set of initial states, δ ⊆ Q × Σ × Q is the set of transitions,
and F ⊆ Q is the set of final states. A word w = a1a2 · · · an is accepted by A if there are
transitions (qi−1, ai, qi) ∈ δ for 1 ≤ i ≤ n such that q0 ∈ I and qn ∈ F . With L(A) (the
language accepted by A) we denote the set of all words accepted by A. A language L is
called regular if it is accepted by a finite automaton.

We fix an arbitrary enumeration a1, . . . , ak of the alphabet Σ. For w ∈ Σ∗ and 1 ≤ i ≤ k
let |w|ai be the number of occurrences of ai in w. The Parikh image of w is the tuple P (w) =
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(|w|a1 , . . . , |w|ak) ∈ Nk. For a language L ⊆ Σ∗ its Parikh image is P (L) = {P (w) | w ∈ L}.
The following important result was shown by Parikh [35].

Theorem 2.1. The semilinear sets are exactly the Parikh images of the regular languages.
From a given finite automaton A one can compute a semilinear representation of P (L(A)).

We will also use the following simple lemma:

Lemma 2.2 (c.f. [13, Lemma 5.8]). Let p, q, r, s, u, v ∈ Σ∗. Then the set

{(x, y) ∈ N× N | pqxr = suyv}
is semilinear and a semilinear representation can be computed from p, q, r, s, u, v.

A finite state transducer T over the alphabet Σ is a tuple T = (Q, I, δ, F ) where I and
F have the same meaning as for a finite automaton and

δ ⊆ (Q× Σ× {ε} ×Q) ∪ (Q× {ε} × Σ×Q).

A pair (u, v) ∈ Σ∗ × Σ∗ is accepted by T if there are transitions (qi−1, ai, bi, qi) ∈ δ for
1 ≤ i ≤ |u| + |v| (where ai, bi ∈ Σ ∪ {ε}) such that u = a1 · · · a|u|+|v|, v = b1 · · · b|u|+|v|,
q0 ∈ I and q|u|+|v| ∈ F . With R(T ) we denote the set of all pairs accepted by T . A relation
R ⊆ Σ∗ × Σ∗ is a rational relation if it is accepted by a finite state transducer.

2.3. Groups. For more details on group theory we refer the reader to [29]. Infinite groups
are usually given by presentations. Take an arbitrary non-empty set Ω and let Ω−1 = {a−1 |
a ∈ Ω} be a set of formal inverses such that Ω ∩ Ω−1 = ∅. Let Σ = Ω ∪ Ω−1. The bijection
a 7→ a−1 from Ω to Ω−1 can be extended to a natural involution w 7→ w−1 on Σ∗. For
this we set (a−1)−1 = a for a ∈ Ω and (a1 · · · an)−1 = a−1

n · · · a−1
1 for a1, . . . , an ∈ Σ. A

word w ∈ Σ∗ is called reduced if it does not contain an occurrence of a word aa−1 or a−1a
(a ∈ Σ). Applying the cancellation rules aa−1 → ε or a−1a → ε as long as possible, every
word w ∈ Σ∗ can be mapped to a unique reduced word red(w). The free group F (Ω) consists
of all reduced words together with the group multiplication u · v = red(uv) for reduced words
u and v. The mapping red can be also viewed as a monoid morphism from Σ∗ to F (Ω). For
a subset R ⊆ Σ∗ one defines the group 〈Σ | R〉 as the quotient group F (Ω)/NR, where NR is
the smallest normal subgroup that contains red(R) ⊆ F (Ω). In other words, F (Ω)/NR is the
intersection of all normal subgroups of F (Ω) that contain red(R). Clearly, every group is
(isomorphic to a group) of the form 〈Σ | R〉.

Let G = 〈Σ | R〉 in the following. If Σ is finite then G is called finitely generated (f.g. for
short) and Σ is called a finite symmetric generating set for G. If both Σ and R are finite,
then G is called finitely presented. The surjective monoid morphism red : Σ∗ → F (Ω) extends
to a surjective monoid morphism h : Σ∗ → G, called the evaluation morphism. For two words
u, v ∈ Σ∗ we write u =G v if h(u) = h(v). For a subset S ⊆ G we write u ∈G S if h(u) ∈ S.

3. Knapsack and exponent equations

Let G be a finitely generated group with the finite symmetric generating set Σ. Moreover,
let X be a set of formal variables that take values from N. For a subset U ⊆ X, we call a
mapping σ : U → N a valuation for U . An exponent expression over Σ is a formal expression
of the form e = v0u

x1
1 v1u

x2
2 v2 · · ·uxkk vk with k ≥ 1, words ui, vi ∈ Σ∗ and exponent variables

x1, . . . , xk ∈ X. Here, we allow xi = xj for i 6= j. We also write e(x1, . . . , xk) in order to
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make the exponent variables explicit. We can assume that ui 6= ε for all 1 ≤ i ≤ k. If
every exponent variable occurs at most once in e, then e is called a knapsack expression.
Let Xe = {x1, . . . , xk} be the set of exponent variables that occur in e. For a valuation
σ : U → N such that Xe ⊆ U (in which case we also say that σ is a valuation for e), we define
σ(e) = v0u

σ(x1)
1 v1u

σ(x2)
2 v2 · · ·uσ(xk)

k vk ∈ Σ∗. We say that σ is a G-solution of the equation
e = 1 if σ(e) =G 1 holds. With solG(e) we denote the set of all G-solutions σ : Xe → N of e.
We can view solG(e) as a subset of Nm for m = |Xe| ≤ k. We define solvability of systems of
exponent equations over G as the following decision problem:
Input: A finite list of exponent expressions e1, . . . , en over Σ.
Question: Is

⋂
1≤i≤n solG(ei) non-empty?

The knapsack problem for G is the following decision problem:
Input: A single knapsack expression e over Σ.
Question: Is solG(e) non-empty?
It is easy to observe that the concrete choice of the generating set Σ has no influence on the
decidability and complexity status of these problems.

For the above decision problems one could restrict to exponent expressions of the form
e = ux11 u

x2
2 · · ·u

xk
k v: for e = v0u

x1
1 v1u

x2
2 v2 · · ·uxkk vk and

e′ = (v0u1v
−1
0 )x1(v0v1u2v

−1
1 v−1

0 )x2 · · · (v0 · · · vk−1ukv
−1
k−1 · · · v

−1
0 )xkv0 · · · vk

we have σ(e) =G σ(e′) for every valuation σ.
The group G is called knapsack semilinear if for every knapsack expression e over Σ, the

set solG(e) is a semilinear set of vectors and a semilinear representation can be effectively
computed from e. This implies that for every exponent expression e over Σ, the set solG(e) is
semilinear as well and a semilinear representation can be effectively computed from e. This
fact can be easily deduced from the known effective closure properties of semilinear set, see
e.g. [13].

Since the semilinear sets are effectively closed under intersection, solvability of systems
of exponent equations is decidable for every knapsack semilinear group. As mentioned in
the introduction, the class of knapsack semilinear groups is very rich. Examples of a groups,
where knapsack is decidable but solvability of systems of exponent equations is undecidable
are the Heisenberg group H3(Z) (the group of all upper triangular (3 × 3)-matrices over
the integers, where all diagonal entries are 1) [25] and the Baumslag-Solitar group BS(1, 2)
[5, 28, Theorem E.1]. These groups are not knapsack semilinear in a strong sense: there are
knapsack expressions e such that solH3(Z)(e) (resp. solBS(1,2)(e)) is not semilinear.

Let S ⊆ G. We say that G is knapsack semilinear relative to S if for every knapsack
expression e over Σ, the set {σ : Xe → N | σ(e) ∈G S} is a semilinear set of vectors and a
semilinear representation can be effectively computed from e. We are mainly interested in
the case where S is a subgroup of G. For sets {S1, . . . , Sk} ⊆ G we say that G is knapsack
semilinear relative to {S1, . . . , Sk} if for every 1 ≤ i ≤ k, G is knapsack semilinear relative to
Si. Note that G is knapsack semilinear if and only if it is knapsack semilinear relative to 1.

4. HNN-extensions

In this section we introduce the important operation of HNN-extension. Suppose G = 〈Σ | R〉
is a finitely generated group with the finite symmetric generating set Σ = Ω∪Ω−1 and R ⊆ Σ∗.
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Fix two isomorphic subgroups A and B of G together with an isomorphism ϕ : A→ B. Let
t /∈ Σ be a new letter. Then the corresponding HNN-extension is the group

H = 〈Σ ∪ {t, t−1} | R ∪ {t−1a−1tϕ(a) | a ∈ A}〉
(formally, we identify here every element g ∈ A ∪B with a word over Σ that evaluates to g).
This group is usually denoted by

H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉. (4.1)

Intuitively, H is obtained from G by adding a new element t such that conjugating elements
of A with t applies the isomorphism ϕ. Here, t is called the stable letter and the groups A
and B are the associated subgroups. A basic fact about HNN-extensions is that the group G
embeds naturally into H [20].

In this paper, we consider HNN-extensions H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉, where
A ≤ G is a subgroup of G = 〈Σ | R〉 and ϕ : A→ A is the identity mapping. Thus, H can
be written as

H = 〈G, t | t−1at = a (a ∈ A)〉. (4.2)
Let us fix this HNN-extension for the further consideration. Let us denote with

h : (Σ ∪ {t, t−1})∗ → H

the evaluation morphism.
A word u ∈ (Σ ∪ {t, t−1})∗ is called Britton-reduced if it does not contain a factor of

the form t−αwtα with α ∈ {−1, 1}, w ∈ Σ∗ and w ∈G A. A factor of the form t−αwtα with
α ∈ {−1, 1}, w ∈ Σ∗ and w ∈G A is also called a pin, which we can replace by w. Since
this decreases the number of t’s in the word, we can reduce every word to an equivalent
Britton-reduced word. We denote the set of all Britton-reduced words in the HNN-extension
(4.2) by BR(H). For u ∈ (Σ ∪ {t, t−1})∗ we define πt(u) as the projection of the word u
onto the alphabet {t, t−1} and πΣ(u) as the projection of the word u onto the alphabet Σ.
Britton’s lemma states that if u =H 1 (u ∈ (Σ ∪ {t, t−1})∗) then u contains a pin or u ∈ Σ∗

and u =G 1. Note that a consequence of this is that if u ∈H G then u contains a pin or
u ∈ Σ∗. To see this, note that u ∈H G implies that uv =H 1 for a word v ∈ Σ∗. Britton’s
lemma implies that uv must contain a pin (i.e., u must contain a pin) or uv ∈ Σ∗ (i.e.,
u ∈ Σ∗). In particular, a Britton-reduced word that contains t±1 cannot represent an element
of the base group G.

Note that H/N(t) ∼= G, where N(t) is the smallest normal subgroup of H containing
t. By πG : H → G we denote the canonical projection. We have πG(g0t

δ1g1 · · · tδkgk) =
g0g1 · · · gk for g0, . . . , gk ∈ G. Hence, on the level of words, πG is computed by the projection
πΣ : (Σ ∪ {t, t−1})∗ → Σ∗.

Lemma 4.1. Let w ∈ (Σ∪ {t, t−1})∗. Then w =H 1 if and only if w ∈H G and πΣ(w) =G 1.

Proof. If w =H 1, i.e., h(w) = 1, then clearly w ∈H G. Moreover, by Britton’s lemma, w
can be reduced to a word from Σ∗ using Britton reduction. But this word must be πΣ(w).
Hence, we have πΣ(w) =G 1. On the other hand, if w ∈H G and πΣ(w) =G 1, then, again, w
can be reduced to πΣ(w) =G 1 using Britton reduction, which implies w =H 1.

We will also need the following lemma (cf. Lemma 2.3 of [19]):

Lemma 4.2. Assume that u = u0t
δ1u1 · · · tδkuk and v = v0t

ε1v1 · · · tε`v` are Britton-reduced
words with ui, vj ∈ Σ∗. Let 0 ≤ m ≤ max{k, `} be the largest number such that
• δk−i = −εi+1 for all 0 ≤ i ≤ m− 1 and
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u0
tδ1

u1

· · ·
uk−m

tδk−m+1

· ·
·

tδk

uk v0

tε1

· · ·

tεm

vm
· · ·

v`−1

tε` v`

a

Figure 1: The situation from Lemma 4.2.

• uk−i+1 · · ·ukv0 · · · vi−1 ∈G A for all 0 ≤ i ≤ m (for i = 0 this condition is trivially
satisfied).

Then w := u0t
δ1u1 · · · tδk−m(uk−m · · ·ukv0 · · · vm)tεm+1vm+1 · · · tε`v` is a Britton-reduced word

with w =H uv.

The above lemma is visualized in Figure 1, where

a = uk−m+1 · · ·ukv0 · · · vm−1 ∈H A.

5. Knapsack semilinearity of HNN-extensions

The goal of this section is show that the HNN-extension (4.2) is knapsack semilinear provided
G is knapsack semilinear relative to {1, A}. We first introduce some concepts that can be
found in a similar form in [13].

We call a word w ∈ BR(H) well-behaved, if wm is Britton-reduced for every m ≥ 0. Note
that w is well-behaved if and only if w and w2 are Britton-reduced. Note that every word
w ∈ Σ∗ is well-behaved.

Lemma 5.1 (c.f. [13, Lemma 6.3]). From a given word u ∈ BR(H) we can compute words
s, p, v ∈ BR(H) such that um =H svmp for every m ≥ 0 and v is well-behaved.

In the following we assume that G is knapsack semilinear relative to {1, A}. For a
knapsack expression e = v0u

x1
1 v1u

x2
2 v2 · · ·uxkk vk over the alphabet Σ ∪ {t, t−1} we define the

knapsack expression

πΣ(e) = πΣ(v0)πΣ(u1)x1πΣ(v1)πΣ(u2)x2πΣ(v2) · · ·πΣ(uk)
xkπΣ(vk)

over the alphabet Σ.
For an exponent expression e(x1, . . . , xn) over the alphabet Σ ∪ {t, t−1} we call

e(x1, . . . , xn) ∈H G
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a G-constraint. If e is an exponent expression over the alphabet Σ, then e ∈G A is called
an A-constraint. Since G is knapsack semilinear relative to A, the set of solutions of an
A-constraint is semilinear.

Lemma 5.2. Let u, v ∈ BR(H) be well-behaved, u′ (resp., v′′) be a proper prefix of u (resp.,
v) and u′′ (resp., v′) be a proper suffix of u (resp., v). Let e = e(z1, . . . , zk) be a knapsack
expression over the alphabet Σ. Then the set of all (x, y, z1, . . . , zk) ∈ Nk+2 such that the
G-constraint

u′′uxu′e(z1, . . . , zk) v
′vyv′′ ∈H G (5.1)

holds is semilinear and a semilinear representation can be effectively computed from the words
u, v, u′, u′′, v′, v′′, e.

Proof. We first claim that by cyclically rotating u and v we can assume that u′′ = v′′ = ε.
We only prove this for u′′, for v′′ we can argue analogously. We can write u = ru′′ for some
word r. Then for all x ∈ N we have u′′uxu′ = u′′(ru′′)xu′ = (u′′r)xu′′u′. The word u′′u′ is
either a prefix of u′′r or we can write u′′u′ = (u′′r)ũ for some prefix ũ of u′′r. In the first case,
we can simply replace u′′uxu′ in (5.1) by (u′′r)xu′′u′ (note that u′′r is well-behaved since it is
a cyclic rotation of the well-behaved word u = ru′′). In the second case (where u′′u′ = (u′′r)ũ

for some prefix ũ of u′′r), we replace u′′uxu′ in (5.1) by (u′′r)xũ. If L ⊆ N{x,y,z1,...,zk} is
the set of solutions of the resulting G-constraint, then the formula (x+ 1, y, z1, . . . , zk) ∈ L
describes the set of solution of (5.1). Clearly, a Presburger formula for L immediately yields
a Presburger formula for (x+ 1, y, z1, . . . , zk) ∈ L.

By the previous paragraph, it suffices to consider the set of solutions of the G-constraint

uxu′e(z1, . . . , zk) v
′vy ∈H G.

This constraint holds (for certain values of x, y, z1, . . . , zk) if and only if uxu′e(z1, . . . , zk) v′vy

can be Britton-reduced to a word from Σ∗ which must be πΣ(uxu′e(z1, . . . , zk) v
′vy). Since

ux and vy are Britton-reduced for every x, y ∈ N we can apply Lemma 4.2.
Let Su be the set of suffixes of u that start with t±1 and let Pv be the set of prefixes of

v that end with t±1. We define Su′ and Pv′ analogously. Then by Lemma 4.2 the following
formula is equivalent to uxu′e(z1, . . . , zn) v′vy ∈H G (as usual, ∧ denotes logical conjunction
and ⇒ denotes logical implication):

πt(u
xu′) = πt(v

′vy)−1 ∧
∀x′ < x∀y′ < y :

∧
s∈Su

∧
p∈Pv

πt(s u
x′u′) = πt(v

′vy
′
p)−1 ⇒ πΣ(s ux

′
u′ e v′vy

′
p) ∈G A∧

s∈Su

∧
p∈Pv′

πt(s u
x′u′) = πt(p)

−1 ⇒ πΣ(s ux
′
u′ e p) ∈G A∧

s∈Su′

∧
p∈Pv

πt(s) = πt(v
′vy
′
p)−1 ⇒ πΣ(s e v′vy

′
p) ∈G A∧

s∈Su′

∧
p∈Pv′

πt(s) = πt(p)
−1 ⇒ πΣ(s e p) ∈G A.

Let us explain the intuition behind this formula; see also Figure 2 which shows a van Kampen
diagram for u8u′e(z1, . . . , zk) v

′v5 =H g.
The formula πt(uxu′) = πt(v

′vy)−1 expresses that every t (resp., t−1) in uxu′ cancels
with a t−1 (resp., t) in v′vy. If this is not the case, then uxu′e(z1, . . . , zk) v

′vy cannot be
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Figure 2: The idea behind the proof of Lemma 5.2. The fact that all vertical lines represent
elements from the subgroup A is expressed by the formula from the proof.

Britton-reduced to a word over Σ. The other four lines of the formula ensure that the Britton-
reduction of uxu′e(z1, . . . , zk) v

′vy to a word over Σ actually exists. This Britton-reduction
proceeds from right to left in Figure 2. In each reduction step, the right-most slice in Figure 2
is eliminated. Assume that the Britton-reduction has already eliminated the part to the
right of the shaded slice. The special form of our HNN-extension (4.2) implies that if a word
w ∈ (Σ ∪ {t, t−1})∗ is Britton-reduced to a word over Σ, then we have w =H πΣ(w) (every
Britton-reduction step is of the form t−1at → a or tat−1 → a for a ∈ A). Hence, we must
have a =G πΣ(s u4u′ e v′v2p) in Figure 2. In order to eliminate the shaded slice, the following
must hold:
• a must belong to the subgroup A, i.e., πΣ(s u4u′ e v′v2p) ∈G A,
• the first letter of s (a suffix of u) must be t (or t−1), and
• the last letter of p (a prefix of v) must be t−1 (or t); note that v goes from right to left.
The second line in the above formula ensures that πΣ(s ux

′
u′ e v′vy

′
p) ∈G A whenever x′ < x,

y′ < y, s is a suffix of u that starts with t±1, p is a prefix of v that ends with t±1 and
πt(s u

x′u′) = πt(v
′vy
′
p)−1 holds. This ensures that s ux′u′ e v′vy′p is the group element

represented by one of the vertical edges in Figure 2. The other parts of the above formula
deal with the cases where the vertical edge has an endpoint in u′ or v′. Altogether this
ensures that all the vertical edges in Figure 2 represent elements of the subgroup A.

By Lemma 2.2 the solution set of the equation πt(uxu′) = πt(v
′vy)−1 (which is interpreted

over the free monoid {t, t−1}∗) is semilinear. To see this let w = v−1 and w′ = (v′)−1. Then
πt(u

xu′) = πt(v
′vy)−1 is equivalent to πt(u)xπt(u

′) = πt(w)yπt(w
′). For the same reason, also

the equation πt(s ux
′
u′) = πt(v

′vy
′
p)−1 is equivalent to a semilinear constraint. The solution

sets of the equations πt(s) = πt(v
′vy
′
p)−1 and πt(s) = πt(v

′vy
′
p)−1 are finite. Moreover, each

of the A-constraints (πΣ(s ux
′
u′ e v′vy

′
p) ∈G A etc.) is equivalent to a semilinear constraint

because G is knapsack semilinear relative to A. Hence, the above formula is equivalent to a
Presburger formula and therefore defines a semilinear set.

Remark 5.3. There are variations of Lemma 5.2, where the G-constraint has one of the
following forms:

u′e(z1, . . . , zk) v
′vyv′′ ∈H G,

u′uxu′′e(z1, . . . , zk) v
′ ∈H G,

or u′e(z1, . . . , zk) v
′ ∈H G

with u, u′, u′′, v, v′, v′′ as in Lemma 5.2. In all cases, the set of solutions of the G-constraint
can be shown to be effectively semilinear using the arguments from the proof of Lemma 5.2.
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Definition 5.4. We define a reduction relation on tuples over BR(H) of arbitrary length.
Take u1, u2, . . . , um ∈ BR(H) and 1 ≤ i < j ≤ m. Then we have

(u1, u2, . . . , um)→ (u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(uj), uj+1, . . . , um)

if πt(ui) 6= ε 6= πt(uj), ui+1 · · ·uj−1 ∈ Σ∗ and uiui+1 · · ·uj−1uj ∈H G. Note that this implies
that uiui+1 · · ·uj−1uj =H πΣ(ui)ui+1 · · ·uj−1πΣ(uj). A concrete sequence of such rewrite
steps leading to a tuple where all entries belong to Σ∗ is a G-reduction of the initial tuple, and
the initial tuple is called G-reducible. We also say that ui and uj matched in a G-reduction.

A G-reduction of a tuple (u1, u2, . . . , um) can be seen as a witness for the fact that
u1u2 · · ·um ∈H G. On the other hand, u1u2 · · ·um ∈H G does not necessarily imply that
(u1, u2, . . . , um) has a G-reduction. But we can show that u1u2 · · ·um ∈H G implies that
(u1, u2, . . . , um) can refined (by factorizing the ui) such that the resulting refined tuple has
a G-reduction. Moreover, it is important that we have an upper bound on the length of
the refined tuple (4m in Lemma 5.5 below) that only depends on m and not on the words
u1, u2, . . . , um.

We say that the tuple (v1, v2, . . . , vn) is a refinement of the tuple (u1, u2, . . . , um) if there
exist factorizations ui = ui,1 · · ·ui,ki in (Σ ∪ {t, t−1})∗ such that ki = 1 whenever ui ∈ Σ∗

and (v1, v2, . . . , vn) = (u1,1, . . . , u1,k1 , . . . , um,1, . . . , um,km).

Lemma 5.5. Let m ≥ 2 and u1, u2, . . . , um ∈ BR(H). If u1u2 · · ·um ∈H G, then there exists
a G-reducible refinement of (u1, u2, . . . , um) that has length at most 4m.

Proof. Let u = (u1, u2, . . . , um). Let us define γ(u) as the number of pairs (i, j) with
1 ≤ i < j ≤ m such that uiui+1 · · ·uj is not Britton-reduced and ui+1 · · ·uj−1 ∈ Σ∗. Note
that πt(ui) 6= ε 6= πt(uj) for such a pair (i, j). Moreover, if we have two pairs (i, j) and (k, `)
of this form, then either j ≤ k or ` ≤ i. Let τ(u) be the number of i such that πt(ui) 6= ε.

We prove by induction over γ(u) + τ(u) that there exists a G-reducible refinement of u
that has length at most 2γ(u) + τ(u) +m ≤ 4m.

The case m = 2 is trivial: either γ(u1, u2) = τ(u1, u2) = 0 and u1, u2 ∈ Σ∗ or γ(u1, u2) =
1, τ(u1, u2) = 2 in which case (u1, u2) must reduce in one step to (πΣ(u1), πΣ(u2)). If m ≥ 3
then u1u2 · · ·um must contain a pin. Since every ui is Britton-reduced, there must exist
i < j such that uiui+1 · · ·uj is not Britton-reduced and ui+1 · · ·uj−1 ∈ Σ∗. By Lemma 4.2
we can factorize ui and uj in (Σ ∪ {t, t−1})∗ as ui = u′ir and uj = su′j such that rs ∈H G

and uiui+1 · · ·uj−1uj =H u′iπΣ(r)ui+1 · · ·uj−1πΣ(s)u′j is Britton-reduced. Note that r and s
must contain t or t−1. Moreover, we can assume that either u′i = ε or u′i ends with t

±1 (if u′i
ends with a non-empty word over Σ, we can remove this word from u′i and add it to r) and,
similarly, either u′j = ε or u′j begins with t

±1.

Case 1. u′i and u
′
j both contain t±1. Then we have

γ(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) < γ(u)

since u′iπΣ(r)ui+1 · · ·uj−1πΣ(s)u′j is Britton-reduced and u′i and u
′
j both contain t±1. More-

over, we have

τ(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) = τ(u).

Hence, we can apply the induction hypothesis to the tuple

(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um). (5.2)
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It must have a G-reducible refinement of length at most

2(γ(u)− 1) + τ(u) +m+ 2 = 2γ(u) + τ(u) +m.

In this refinement πΣ(r), πΣ(s) ∈ Σ∗ will not be factorized into more than one factor. We
therefore can take the refinement of (5.2) and replace πΣ(r) and πΣ(s) by r and s, respectively.
This leads to a G-reducible of our original tuple u having length at most 2γ(u) + τ(u) +m.

Case 2. u′i = ε and u′j begins with t
±1. Then we have

γ(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) ≤ γ(u)

and
τ(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) < τ(u).

We can therefore apply the induction hypothesis to the tuple

(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) (5.3)

and obtain a G-reducible refinement of length at most

2γ(u) + τ(u)− 1 +m+ 1 = 2γ(u) + τ(u) +m.

Replacing πΣ(ui) by ui and πΣ(s) by s in this refinement yields a G-reducible refinement of
u.

The remaining cases where (i) u′j = ε and u′i ends with t±1 or (ii) u′i = u′j = ε are
analogous to case 2. This concludes the proof of the lemma.

Now we are able to prove the main theorem of this section.

Theorem 5.6. Let H = 〈G, t | t−1at = a (a ∈ A)〉 be an HNN-extension, where G is
knapsack semilinear relative to {1, A}. Then H is knapsack semilinear.

Proof. The proof of the theorem is based on ideas from [13]. Consider a knapsack expression

e(x2, x4, . . . , xm) = u1u
x2
2 u3u

x4
4 u5 · · ·uxmm um+1

with m even (later it will convenient to have only variables with an even index). We can
assume that all ui are Britton reduced. Moreover, by Lemma 5.1, we can assume that every
ui with i even is well-behaved and moreover non-empty (otherwise we can remove the power
uxii ).

In the following we describe an algorithm that computes a semilinear representation of
solH(e) in three main steps. The algorithm transforms logical statements into equivalent
logical statements (we do not have to define the precise logical language; the meaning of the
statements should be always clear). Every statement contains the variables x2, x4, . . . , xm
from our knapsack expression and equivalence of two statements means that for every
valuation σ : {x2, x4, . . . , xm} → N the two statements yield the same truth value. We
start with the statement e(x2, x4, . . . , xm) =H 1 and end with a Presburger formula. In
each of the three steps we transform the current statement Φ into an equivalent disjunction∨n
i=1 Φi. We can therefore view the whole process as a branching tree of depth three, where

the nodes are labelled with statements. If a node is labelled with Φ and its children are
labelled with Φ1, . . . ,Φn then Φ is equivalent to

∨n
i=1 Φi. The leaves of the tree are labelled

with Presburger formulas with free variables x2, x4, . . . , xm. We will concentrate on a single
branch of this tree, which can be viewed as a sequence of nondeterministic guesses.



Vol. 14:2 EXPONENT EQUATIONS IN HNN-EXTENSIONS 1:13

Let NΣ ⊆ [1,m+ 1] be the set of indices such that ui ∈ Σ∗ and let Nt = [1,m+ 1] \NΣ

be the set of indices such that πt(ui) 6= ε. Moreover, let us define wi = ui for i odd and
wi = uxii for i even.

By Lemma 4.1, e =H 1 is equivalent to e ∈H G ∧ πΣ(e) =G 1. Since G is knapsack
semilinear, the set solG(πΣ(e)) is semilinear. Hence, it suffices to show that the set of all
(x2, x4, . . . , xm) ∈ Nm/2 with e(x2, x4 . . . , xm) ∈H G is semilinear. Here, we will use the
assumption that G is knapsack semilinear relative to A.

Step 1: Applying Lemma 5.5. We construct a disjunction Ψ from the knapsack expression
e using Lemma 5.5. More precisely, we construct Ψ by nondeterministically guessing the
following data:

(i) symbolic factorizations wi = yi,1 · · · yi,ki in (Σ ∪ {t, t−1})∗ for all i ∈ [1,m+ 1]. Here
the yi,j are existentially quantified variables that take values in BR(H). Later, these
variables will be eliminated. The guessed ki must satisfy ki ≥ 1 for all i, ki = 1 for all
i ∈ NΣ, and

∑
1≤i≤m+1 ki ≤ 4(m+ 1).

(ii) a G-reduction (according to Definition 5.4) of the tuple

(y1,1 · · · y1,k1 , . . . , ym+1,1 · · · ym+1,km+1).

For the wi with i odd we can of course guess concrete words for the variables yi,1, . . . , yi,ki .
Later, we will do this, but in order to simplify the notation, we will still use the names
yi,1, . . . , yi,ki for these words.

For every specific guess in (i) and (ii) we write down the conjunction of the following
formulas:
• the equation wi = yi,1 · · · yi,ki from (i) (every variable yi,j is existentially quantified) and
• all G-constraints that result from G-reduction steps in the guessed G-reduction (this will
made more precise in Step 2 below).

The formula Ψ is the disjunction of the above existentially quantified conjunctions, taken over
all possible guesses in (i) and (ii). This formula is equivalent to the G-constraint e ∈H G.

Step 2: Eliminating the equations wi = yi,1 · · · yi,ki. For an odd i (i.e., wi = ui) we can
eliminate this equation by guessing a concrete factorization ui = ui,1 · · ·ui,ki and then replace
the equation wi = yi,1 · · · yi,ki by the conjunction

ki∧
j=1

yi,j = ui,j .

For an even i (i.e., wi = uxii ) we can eliminate the equation wi = yi,1 · · · yi,ki by guessing a
symbolic factorization of uxii into ki factors. A specific guess leads to a formula

ki∧
j=1

yi,j = u′′i,ju
xi,j
i u′i,j+1 ∧ xi = ci +

ki∑
j=1

xi,j . (5.4)

Here, every u′i,j (2 ≤ j ≤ ki) is a proper prefix of ui and every u′′i,j (2 ≤ j ≤ ki) is a proper
suffix of ui such that either ui = u′i,ju

′′
i,j or u′i,j = u′′i,j = ε for all 2 ≤ j ≤ ki. We set

u′i,ki+1 = u′′i,1 = ε in the above formula. Moreover, ci is the number of 2 ≤ j ≤ ki for which
u′i,j 6= ε 6= u′′i,j holds. The u

′
i,j and u

′′
i,j are nondeterministically guessed.

We also guess which of the new exponent variables xi,j are zero and which of the xi,j are
non-zero. If we guess xi,j = 0, then we replace xi,j in (5.4) by 0. This yields the equation
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yi,j = u′′i,ju
′
i,j+1. If we guess xi,j > 0, then we add this constraint to (5.4). After this step, it

is determined whether a yi,j contains t or t−1 (for i even as well as for i odd). Those yi,j
must be matched by G-reduction steps in the G-reduction that we guessed in Step 1. In fact,
what we guessed in Step 1 is such a matching.

Step 3: Eliminating G-constraints. Assume that yi,j and yk,` are matched in the guessed
G-reduction. W.l.o.g. assume that i < k or i = k and j < `, i.e., (i, j) is lexicographically
before (k, `). Then our formula contains the G-constraint

yi,j

 ∏
(i,j)≺(p,q)≺(k,`)

πΣ(yp,q)

 yk,` ∈H G,

where ≺ is the strict lexicographic order on pairs of natural numbers. In this constraint,
we can replace every ya,b with a even by u′′i,ju

xi,j
i u′i,j+1 (or u′′a,bu

′
a,b+1 in case xi,j = 0 was

guessed), whereas every ya,b with a odd can be replaced by the concrete word ua,b. If both
yi,j and yk,` contain an exponent variable we obtain a G-constraint of the form (5.1). If yi,j
or yk,` is a concrete word we obtain a G-constraint having one of the three forms listed in
Remark 5.3. Lemma 5.2 and Remark 5.3 imply that in each case, the set of solutions of the
G-constraint is semilinear. This concludes the proof of the theorem.

For a subset S ⊆ G of the group G one defines the centralizer

C(S) = {h ∈ G | gh = hg for all g ∈ S}.
The HNN-extension H = 〈G, t | t−1at = a (a ∈ C(S))〉 is an extension of the centralizer C(S).
Extensions of centralizers were first studied in [32] in the context of exponential groups.

Theorem 5.7. If G is knapsack semilinear and H is an extension of a centralizer C(S) with
S finite, then H is knapsack semilinear as well.

Proof. We have to show that G is also knapsack semilinear relative to C(S). Let e =
e(x1, . . . , xn) be a knapsack expression. Then e ∈G C(S) is equivalent to

∧
a∈S ea =G ae.

Note that ea =G ae is equivalent to eae−1a−1 =G 1 and eae−1a−1 is an exponent expression.
Since G is knapsack semilinear and semilinear sets are closed under finite intersections, the
set of solutions of

∧
a∈S ea = ae is semilinear.

Remark 5.8. It is straightforward to generalize Theorem 5.6 to a multiple HNN-extension

H = 〈G, t1, . . . , tn | t−1
i ati = a (a ∈ Ai, 1 ≤ i ≤ n)〉.

If G is knapsack semilinear relative to {1, A1, . . . , An} then H is knapsack semilinear.

6. Quasi-convex subgroups of hyperbolic groups

In this section we show that hyperbolic groups are knapsack semilinear relative to quasiconvex
subgroups. We start with the definition hyperbolic groups.
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Figure 3: The shape of a geodesic triangle in a hyperbolic group

6.1. Cayley-graphs and hyperbolic groups. Let G be a finitely generated group with
the finite symmetric generating set Σ and let h : Σ∗ → G be the evaluation morphism. The
Cayley-graph of G (with respect to Σ) is the graph Γ = Γ(G) with node set G and all edges
(g, ga) for g ∈ G and a ∈ Σ. We view Γ as a geodesic metric space, where every edge (g, ga)
is identified with a unit-length interval. It is convenient to label the directed edge from g to
ga with the generator a. Note that since Σ is symmetric, there is also an edge from ga to g
labelled with a−1. Therefore one can view Γ as an undirected graph. The distance between
two points p, q is denoted with dΓ(p, q). For g ∈ G let |g| = dΓ(1, g). For κ ≥ 0 and g ∈ G
let Bκ(g) = {h ∈ G | dΓ(g, h) ≤ κ} be the ball of radius κ around g.

Paths can be defined in a very general way for metric spaces, but we only need paths
that are induced by words over Σ. Given a word w = a1a2 · · · an (with ai ∈ Σ), one obtains a
unique path P [w] : [0, n]→ Γ, which is a continuous mapping from the real interval [0, n] to Γ.
It maps the subinterval [i, i+1] ⊆ [0, n] isometrically onto the edge (h(a1 · · · ai), h(a1 · · · ai+1))
of Γ. The path P [w] starts in 1 and ends in h(w) (the group element represented by w). We
also say that P [w] is the unique path that starts in 1 and is labelled with the word w. More
generally, for g ∈ G we denote with g · P [w] the path that starts in g and is labelled with w.
When writing u ·P [w] for a word u ∈ Σ∗, we mean the path h(u) ·P [w]. A path P : [0, n]→ Γ
of the above form is geodesic if dΓ(P (0), P (n)) = n and it is a (λ, ε)-quasigeodesic if for all
points p = P (a) and q = P (b) we have |a− b| ≤ λ · dΓ(p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that there is no
shorter word representing the same group element from G. Similarly, we define the notion
of (λ, ε)-quasigeodesic words. A set (or language) of words L ⊆ Σ∗ is called geodesic (resp.,
(λ, ε)-quasigeodesic), if every w ∈ L is geodesic (resp., (λ, ε)-quasigeodesic).

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths P1 = Pp,q,
P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y is a geodesic path from x
to y. We call a geodesic triangle δ-slim for δ ≥ 0, if for all i ∈ {1, 2, 3}, every point on Pi
has distance at most δ from a point on Pj ∪ Pk, where {j, k} = {1, 2, 3} \ {i}. The group
G is called δ-hyperbolic, if every geodesic triangle is δ-slim. Finally, G is hyperbolic, if it is
δ-hyperbolic for some δ ≥ 0. Figure 3 shows the shape of a geodesic triangle in a hyperbolic
group. Finitely generated free groups are for instance 0-hyperbolic with respect to a free finite
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generating set. The property of being hyperbolic is independent of the chosen generating set
Σ. The word problem for every hyperbolic group can be decided in real time [21].

6.2. Asynchronous biautomatic structures. Let G be a f.g. group with the finite
symmetric generating set Σ and let h : Σ∗ → G be the evaluation morphism. An asynchronous
biautomatic structure for G consists of a regular language L ⊆ Σ∗ such that the following
holds; see also [9, 33]:
• G = h(L),
• the relation {(u, v) ∈ L× L | u =G v} is rational, and
• for every generator a ∈ Σ the relations

{(u, v) ∈ L× L | ua =G v} and {(u, v) ∈ L× L | au =G v}
are rational.

If in the last point it is only required that the relation {(u, v) ∈ L × L | ua =G v} is
rational, then L is called an asynchronous automatic structure for G. A f.g. group G is called
asynchronously (bi)automatic if it has an asynchronous (bi)automatic structure. We need
the following lemma.

Lemma 6.1. Let L be an asynchronous biautomatic structure for G, let L1 and L2 be regular
subsets of L and let v1, v2 ∈ Σ∗. Then the relation

{(u1, u2) ∈ L1 × L2 | v1u1 =G u2v2}
is rational. Moreover, a finite state transducer for this relation can be effectively computed
from the words v1, v2 and finite automata for L1 and L2.

Proof. It suffices to show that the relation R := {(u1, u2) ∈ L×L | v1u1 =G u2v2} is rational.
The corresponding finite state transducer can in addition simulate the automaton for L1

(resp., L2) on the first (resp., second) tape. Rationality of the relation R can be shown by
induction on |v1|+ |v2|. The case v1 = v2 = ε is clear. Assume w.l.o.g. that v1 6= ε and let
v1 = v′1a with a ∈ Σ. By induction, the relation R1 = {(u′1, u2) ∈ L × L | v′1u′1 =G u2v2}
is rational. Moreover, the relation R2 = {(u1, u

′
1) ∈ L× L | au1 =G u

′
1} is rational as well.

Finally, we have R = R2 ◦R1, where ◦ is relational composition. The lemma follows since
the class of rational relations is closed under relational composition [38].

We also need the following result from [22]:

Lemma 6.2. Let G be a hyperbolic group and let Σ be a finite symmetric generating set for
G. Let λ and ε be fixed constants. Then the set of all (λ, ε)-quasigeodesic words over the
alphabet Σ is an asynchronous biautomatic structure for G.

In [22] it is only stated that the set of all (λ, ε)-quasigeodesic words is an asynchronous
automatic structure for G. But since for every (λ, ε)-quasigeodesic word w ∈ Σ∗ also w−1

is (λ, ε)-quasigeodesic, it follows easily that the set of all (λ, ε)-quasigeodesic words is an
asynchronous biautomatic structure for G. With Lemma 6.1 we obtain the following lemma.

Lemma 6.3. Let G be a hyperbolic group with the finite symmetric generating set Σ and let λ
and ε be fixed constants. Assume that L1, L2 ⊆ Σ∗ are (λ, ε)-quasigeodesic regular languages
and v1, v2 ∈ Σ∗. Then the relation

{(u1, u2) ∈ L1 × L2 | v1u1 =G u2v2}
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is rational. Moreover, a finite state transducer for this relation can be effectively computed
from the words v1, v2 and finite automata for L1 and L2.

6.3. Parikh images in hyperbolic groups. Let us fix a hyperbolic group G with the
finite symmetric generating set Σ for the rest of the section. We fix an arbitrary enumeration
a1, . . . , ak of the alphabet Σ in order to make Parikh images well-defined. Recall that the
semilinear sets are exactly the Parikh images of regular languages; see Theorem 2.1. Together
with Lemma 6.3 we obtain the next result.

Lemma 6.4. Let G be a hyperbolic group with the finite symmetric generating set Σ and let λ
and ε be fixed constants. Assume that L1, L2 ⊆ Σ∗ are (λ, ε)-quasigeodesic regular languages
and v1, v2 ∈ Σ∗. Then the set

{(P (u1), P (u2)) ∈ N2k | u1 ∈ L1, u2 ∈ L2, v1u1 =G u2v2} (6.1)

is semilinear. Moreover, a semilinear representation for this set can be effectively computed
from the words v1, v2 and finite automata for L1 and L2.

Proof. Let Σ′ = {a′ | a ∈ Σ} be a disjoint copy of the alphabet Σ. By Lemma 6.3 there is a
finite state transducer T for the relation

{(u1, u2) ∈ L1 × L2 | v1u1 =G u2v2}.
From T we obtain a finite automaton A over the alphabet Σ∪Σ′ by replacing every transition
(p, a, ε, q) by (p, a, q) and every transition (p, ε, a, q) by (p, a′, q). For the alphabet Σ ∪ Σ′

we take the enumeration a1, . . . , ak, a
′
1, . . . , a

′
k. With this enumeration, the set (6.1) is the

Parikh image of the language L(A). Hence, the lemma follows from Theorem 2.1.

6.4. The main result. We now come to the main technical result of this section.

Theorem 6.5. Let G be a hyperbolic group with the finite symmetric generating set Σ =
{a1, . . . , ak}. Fix constants ε, λ. For 1 ≤ i ≤ n let Li ⊆ Σ∗ be a regular (λ, ε)-quasigeodesic
language. Then the set

{(P (w1), . . . , P (wn)) ∈ Nnk | wi ∈ Li for 1 ≤ i ≤ n,w1w2 · · ·wn =G 1}
is semilinear and a semilinear representation of this set can be computed from finite automata
for L1, . . . , Ln.

We postpone the proof of Theorem 6.5 and first derive some corollaries.

Theorem 6.6. Let G be hyperbolic and let S ⊆ Σ∗ be a regular geodesic set. Then G is
knapsack semilinear relative to h(S), where h : Σ∗ → G is the evaluation morphism.

Proof. Let e be a knapsack expression over Σ. We want to find a semilinear representation
for the set

{σ : Xe → N | ∃w ∈ S : σ(e) =G w} =
⋃
w∈S

solG(ew−1). (6.2)

In a first step we show that we can assume that for every power ux that appears in e (x ∈ Xe)
the language u∗ is (λ, ε)-quasigeodesic for fixed constants λ, ε that only depend on the group
G. For this we use [26, Proposition 8.4]. It states that from our given knapsack expression e
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one can compute a finite list of knapsack expressions e1, . . . , en with Xei ⊆ Xe for 1 ≤ i ≤ n,
functions mi, di : Xei → N and semilinear sets Fi ⊆ NXe\Xei such that

solG(e) =
⋃

1≤i≤n
(mi · solG(ei) + di)⊕Fi. (6.3)

Moreover, every knapsack expression ei has the property that for every power ux that appears
in ei, the language u∗ is (λ, ε)-quasigeodesic for some fixed constants λ, ε that only depend
on the group G.

Consider now for an arbitrary word w ∈ S the knapsack expression ew−1. From the
construction in [26, Proposition 8.4], it follows that

solG(ew−1) =
⋃

1≤i≤n
(mi · solG(eiw

−1) + di)⊕Fi. (6.4)

The reason is that in the proof of [26, Proposition 8.4], every ei is computed from e by
replacing every power ux in e either by a fixed power uk for some k ∈ N or by vũxv′ for a
(λ, ε)-quasigeodesic word ũ and words v and v′. The same replacements are also made for
ew−1. Therefore, the set (6.2) is equal to⋃

w∈S
solG(ew−1) =

⋃
w∈S

⋃
1≤i≤n

(mi · solG(eiw
−1) + di)⊕Fi

=
⋃

1≤i≤n

(
mi ·

(⋃
w∈S

solG(eiw
−1)

)
+ di

)
⊕Fi.

The closure properties of semilinear sets imply that the set (6.2) is semilinear provided the
set ⋃

w∈S
solG(eiw

−1) = {σ : Xei → N | ∃w ∈ S : σ(ei) =G w}

is semilinear for all 1 ≤ i ≤ n.
This shows that it suffices to find a semilinear representation of (6.2) for a knapsack

expression e = v0u
x1
1 v1u

x1
1 · · ·uxnn vn where all ui have the property that u∗i is a regular

(λ, ε)-quasigeodesic language. Clearly, we can also assume that every ui is non-empty and
every vi is geodesic. Moreover, since S is regular and geodesic, it is easy to see that also S−1

is regular and geodesic.
Let (L1, . . . , Lm) be the tuple of languages ({v0}, u∗1, {v1}, . . . , u∗n, {vn}, S−1) (with m =

2(n+ 1)). All these languages are regular and (λ, ε)-quasigeodesic. By Theorem 6.5, the set

{(P (w1), . . . , P (wm)) ∈ Nmk | wi ∈ Li for 1 ≤ i ≤ m,w1 · · ·wm =G 1}
is semilinear and a semilinear representation of this set can be computed. Applying a
projection yields a semilinear representation of the set

{(P (w1), . . . , P (wn)) ∈ Nnk | wi ∈ u∗i for 1 ≤ i ≤ n,
∃w ∈ S : v0w1v1 · · ·wnvn =G w}.

Choose for every ui a symbol aji ∈ Σ such that `i := |ui|aji > 0 (recall that ui 6= ε). Then
we project every P (wi) in the above set to the ji-th coordinate. The resulting projection is

{(`1 · x1, . . . , `n · xn) ∈ Nn | ∃w ∈ S : v0u
x1
1 v1 · · ·uxnn vn =G w}.
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The semilinearity of this set easily implies the semilinearity of the set

{(x1, . . . , xn) ∈ Nn | ∃w ∈ S : v0u
x1
1 v1 · · ·uxnn vn =G w}.

This concludes the proof.

A subset A ⊆ G is called quasiconvex if there exists a constant κ ≥ 0 such that every
geodesic path from 1 to some g ∈ A is contained in

⋃
h∈ABκ(h). The following result can be

found in [16] (h denotes the evaluation morphism):

Lemma 6.7. A subset A ⊆ G is quasiconvex if and only if the language of all geodesic words
in h−1(A) is regular.

Theorem 6.8. Let G be hyperbolic and let H be a quasiconvex subgroup of G. Then G is
knapsack semilinear relative to H.

Proof. Fix a finite symmetric generating set Σ for G and let h be the evaluation morphism.
By Lemma 6.7 the set of all geodesic words in h−1(H) is a geodesic regular language. By
Theorem 6.6, G is knapsack semilinear relative to H.

It is known that every finitely generated free group F is locally quasiconvex, which
means that every finitely generated subgroup of F is quasiconvex.

Corollary 6.9. Let G be a finitely generated free group and let H be a finitely generated
subgroup of G. Then G is knapsack semilinear relative to H.

This corollary can actually be generalized. Schupp proved that a group G, which is
virtually an orientable surface group of genus at least two or virtually a Coxeter group
satisfying a certain reduction hypothesis, is locally quasiconvex [37, Theorem IV]. Since
these groups are hyperbolic, it follows that the groups considered by Schupp are knapsack
semilinear relative to any finitely generated subgroup.

Theorems 5.6 and 6.8 yield the following result:

Corollary 6.10. Let H = 〈G, t | t−1at = a (a ∈ A)〉 be an HNN-extension where G is
hyperbolic and A ≤ G is a quasiconvex subgroup of G. Then H is knapsack semilinear.

It is known that every cyclic subgroup of a hyperbolic group is quasiconvex, see e.g. [1].
Hence, for every element a ∈ G of a hyperbolic group G, the HNN-extension 〈G, t | t−1at = a〉
is knapsack semilinear. It is also known that if the hyperbolic group G is non-elementary
(i.e., it contains a copy of the free group F2) then the centralizer of an element g ∈ G is
cyclic [1, Lemma 2]. Hence, we obtain Theorem 5.7 for the case of a centralizer of a single
element in a non-elementary hyperbolic group.

7. Proof of Theorem 6.5

We now come to the proof of Theorem 6.5. Let G be δ-hyperbolic. For 1 ≤ i ≤ n let Li ⊆ Σ∗

be a regular (λ, ε)-quasigeodesic language. Let Ai = (Qi, Si, δi, Ti) be a finite automaton
for Li. Without loss of generality, we can assume that every q ∈ Qi belongs to a path from
some initial state q0 ∈ Si to some final state q1 ∈ Ti. This ensures that every word that
labels a path from a state p to a state q is a factor of a word from Li. Since factors of
(λ, ε)-quasigeodesic words are (λ, ε)-quasigeodesic as well, it follows that every word that
labels a path between two states of Ai is (λ, ε)-quasigeodesic.
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Lp2,q2v1

Lp1,q1

v3

Lp3,q3

v2

Figure 4: The 2n-gon for n = 3 from the proof of Theorem 6.5

We want to show that the set

{(P (w1), . . . , P (wn)) ∈ Nnk | wi ∈ Li for 1 ≤ i ≤ n,w1w2 · · ·wn =G 1}
is semilinear. For this, we prove a slightly more general statement: For words v1, . . . , vn ∈ Σ∗

we consider the set

{(P (w1), . . . , P (wn)) ∈ Nnk | wi ∈ Li for 1 ≤ i ≤ n,w1v1 · · ·wnvn =G 1}.
By induction over n we show that this set is semilinear. For the case n = 2 we can directly
use Lemma 6.4. This also covers the case n = 1 since we can take L2 = {1}.

Now assume that n ≥ 3. We can assume that the words vi are geodesic. Define
the automaton A as the disjoint union of the automata Ai. Thus, the state set of A is
Q =

⊎
1≤i≤nQi and the transition set of A is δ =

⊎
1≤i≤n δi (the sets of initial and final

states of A are not important). Let us denote for p, q ∈ Q with Lp,q the set of all finite words
that label a path from p to q in the automaton A. The above properties of the automata Ai
ensure that every language Lp,q is (λ, ε)-quasigeodesic. Note that Li =

⋃
p∈Si,q∈Ti Lp,q. Since

the semilinear sets are effectively closed under union, it suffices to show for states pi, qi ∈ Q
(1 ≤ i ≤ n) that the following set is semilinear:

{(P (w1), . . . , P (wn)) ∈ Nnk | wi ∈ Lpi,qi for 1 ≤ i ≤ n,w1v1 · · ·wnvn =G 1}.
In the following, we denote this set with P (p1, q1, v1, . . . , pn, qn, vn). We will construct a
Presburger formula with free variables xi,j (1 ≤ i ≤ n, 1 ≤ j ≤ k) for this set. The
variables xi,j with 1 ≤ j ≤ k encode the Parikh image of the words from Lpi,qi . Let us write
x̄i = (xi,j)1≤j≤k in the following.

Recall from Section 6.1 the definition of the path P [w] for a word w ∈ Σ∗. Consider a
tuple (w1, . . . , wn) ∈

∏n
i=1 Lpi,qi with w1v1w2v2 · · ·wnvn =G 1 and the corresponding 2n-gon

that is defined by the (λ, ε)-quasigeodesic paths Pi = (w1v1 · · ·wi−1vi−1) · P [wi] and the
geodesic paths Qi = (w1v1 · · ·wi) · P [vi], see Figure 4 for the case n = 3. Since all paths Pi
and Qi are (λ, ε)-quasigeodesic, we can apply [31, Lemma 6.4]: Every side of the 2n-gon is
contained in the κ-neighborhoods of the other sides, where κ = ξ + ξ log(2n) for a constant ξ
that only depends on the constants δ, λ, ε.

Let us now consider the side P2 of the quasigeodesic 2n-gon. It is labelled with a
word from Lp2,q2 . Its neighboring sides are Q1 and Q2, which are labelled with v1 and v2,
respectively. We distinguish several cases. In each case we cut the 2n-gon into smaller pieces
along paths of length ≤ κ (length 2κ+ 1 in Case 2). When we speak of a point on the 2n-gon,
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Lr,q2Lp2,r
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Lp3,q3

v2

w

Figure 5: Case 1.1 from the proof of Theorem 6.5

we mean a node of the Cayley graph (i.e., an element of the group G) and not a point in the
interior of an edge.

For each of the following six cases we construct a Presburger formula describing a
semilinear set. The union of these six sets is P (p1, q1, v1, . . . , pn, qn, vn).

Case 1: There is a point a ∈ P2 that has distance at most κ from a point b that does not
belong to P1∪Q1∪Q2∪P3. Thus b must belong to one of the paths Q3, P4, . . . Qn−1, Pn, Qn.
Let w be a geodesic word of length at most κ that labels a path from a to b. There are two
subcases:

Case 1.1: b belongs to a path Qi with 3 ≤ i ≤ n. The situation is shown in Figure 5 for
n = i = 3. Let T be the set of all tuples (r, vi,1, vi,2, w) such that r ∈ Q, vi = vi,1vi,2, and
w ∈ Σ∗ is of length at most κ. By induction, the following two sets are semilinear for every
tuple t = (r, vi,1, vi,2, w) ∈ T :

St,1 = P (p1, q1, v1, p2, r, wvi,2, pi+1, qi+1, vi+1, . . . , pn, qn, vn),

St,2 = P (r, q2, v2, p3, q3, v3, . . . , pi, qi, vi,1w
−1).

Intuitively, St,1 corresponds to the 2(n− 1)-gon (when wvi,2 is viewed as a single side) on
the left of the w-labelled edge in Figure 5, whereas St,2 corresponds to the 2(n− 1)-gon on
the right of the w-labelled edge. We then define the formula

A1.1 =
∨
t∈T
∃ȳ2, z̄2 : (x̄1, ȳ2, x̄i+1, . . . , x̄n) ∈ St,1 ∧ (z̄2, x̄3, . . . , x̄i) ∈ St,2 ∧ x̄2 = ȳ2 + z̄2.

Here ȳ2 and z̄2 are k-tuples of new variables. The Presburger formula A1.1 is one of the six
formulas whose union is P (p1, q1, v1, . . . , pn, qn, vn).

Case 1.2: b belongs to the path Pi, where 4 ≤ i ≤ n (this case can only occur if n ≥ 4). This
case is analogous to Case 1.1. Let T be the set of all tuples (r, r′, w) such that r, r′ ∈ Q and
w ∈ Σ∗ is of length at most κ. By induction, the following two sets are semilinear for every
tuple t = (r, r′, w) ∈ T :

St,1 = P (p1, q1, v1, p2, r, w, r
′, qi, vi, pi+1, qi+1, vi+1, . . . , pn, qn, vn),

St,2 = P (r, q2, v2, p3, q3, v3, . . . , pi−1, qi−1, vi−1, pi, r
′, w−1).
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Figure 6: Case 2.1 from the proof of Theorem 6.5

Moreover, let A1.2 be the formula

A1.2 =
∨
t∈T
∃ȳ2, z̄2, ȳi, z̄i : (x̄1, ȳ2, z̄i, x̄i+1, . . . , x̄n) ∈ St,1 ∧

(z̄2, x̄3, . . . , x̄i−1, ȳi) ∈ St,2 ∧
x̄2 = ȳ2 + z̄2 ∧ x̄i = ȳi + z̄i.

Case 2: Every point on P2 has distance at most κ from a point on P1 ∪Q1 ∪Q2 ∪ P3. Since
the starting point of P2 has distance 0 ≤ κ from P1∪Q1 and the end point of P2 has distance
0 ≤ κ from Q2 ∪ P3, there must be points b1 on P1 ∪Q1, b on P2, and b2 on Q2 ∪ P3 such
that the distance between b1 and b is at most κ and the distance between b and b2 is at most
κ+ 1. Hence, the distance between b1 and b2 is at most 2κ+ 1. Let w be a word that labels
a geodesic path from b1 to b2 (thus, |w| ≤ 2κ+ 1). This leads to the following four subcases.

Case 2.1: b1 ∈ Q1 and b2 ∈ Q2. This case is shown in Figure 6. Let T be the set of
all tuples (v1,1, v1,2, w, v2,1, v2,2) such that v1 = v1,1v1,2, v2 = v2,1v2,2 and w ∈ Σ∗ is of
length at most 2κ+ 1. By induction, the following two sets are semilinear for every tuple
t = (v1,1, v1,2, w, v2,1, v2,2) ∈ T :

St,1 = P (p2, q2, v2,1w
−1v1,2),

St,2 = P (p1, q1, v1,1wv2,2, p3, q3, v3, . . . , pn, qn, vn).

We define the formula

A2.1 =
∨
t∈T

x̄2 ∈ St,1 ∧ (x̄1, x̄3 . . . , x̄n) ∈ St,2.

Case 2.2: b1 ∈ P1 and b2 ∈ Q2, see Figure 7. This case is exactly the same as Case 1.1 with
i = 3, if we replace the side P2 in Case 1.1 by P1; see Figure 5.

Case 2.3: b1 ∈ Q1 and b2 ∈ P3. This case is analogous to Case 2.2.

Case 2.4: b1 ∈ P1 and b2 ∈ P3, see Figure 8. Let T be the set of all tuples (w1, w2, w, r1, r2, r3)
such that |w| ≤ 2κ + 1, |w1| ≤ κ, |w2| ≤ κ + 1, w = w−1

1 w2 in G, and r1, r2, r3 ∈ Q. By
induction, the following three sets are semilinear for every tuple t = (w1, w2, w, r1, r2, r3) ∈ T :

St,1 = P (r1, q1, v1, p2, r2, w1),

St,2 = P (r2, q2, v2, p3, r3, w
−1
2 ),

St,3 = P (p1, r1, w, r3, q3, v3, p4, q4, v4, . . . , pn, qn, vn).
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Figure 7: Case 2.2 from the proof of Theorem 6.5

Lr2,q2Lp2,r2
v1

Lr1,q1

Lp1,r1

v3

Lr3,q3

Lp3,r3

v2

w1 w2

w

Figure 8: Case 2.4 from the proof of Theorem 6.5

We define the formula

A2.4 =
∧
t∈T
∃ȳ1, z̄1, ȳ2, z̄2, ȳ3, z̄3 : (z̄1, ȳ2) ∈ St,1 ∧ (z̄2, ȳ3) ∈ St,2 ∧

(ȳ1, z̄3, x̄4, . . . , x̄n) ∈ St,3 ∧
3∧
i=1

x̄i = ȳi + z̄i.

This concludes the case distinction.
A tuple (x̄1, . . . , x̄n) ∈ Nnk belongs to the set P (p1, q1, v1, . . . , pn, qn, vn) if and only

if A1.1 ∨ A1.2 ∨ A2.1 ∨ A2.2 ∨ A2.3 ∨ A2.4 holds. This yields a Presburger formula for
P (p1, q1, v1, . . . , pn, qn, vn).
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